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Abstract 
 
Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-
2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality 
demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when 
inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will 
demonstrate the field strength and field quality that can be achieved. An effective quench detection and 
protection system will have to be developed to operate with the HTS superconducting materials. This 
paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone 
field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality 
using this type of material. A selection of magnet designs is presented as result of a first phase of 
development. 
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Abstract – Future high-energy accelerators will need very high 

magnetic fields in the range of 20 T. The EuCARD-2 work-

package-10 is a collaborative push to take HTS materials into an 

accelerator quality demonstrator magnet. The demonstrator will 

produce 5 T standalone and between 17 T and 20 T, when 

inserted into the 100 mm aperture of Fresca-2 high field out-sert 

magnet. The HTS magnet will demonstrate the field strength and 

field quality that can be achieved. An effective quench detection 

and protection system will have to be developed to operate with 

the HTS superconducting materials. This paper presents a 

ReBCO magnet design using multi strand Roebel cable that 

develops a stand-alone field of 5 T in a 40 mm clear aperture and 

discusses the challenges associated with good field quality using 

this type of material. A selection of magnet designs is presented 

as result of a first phase of development. 
 

Index Terms—Accelerator magnet, EuCARD-2, 

Superconducting Magnets, HTS magnet design, quench 

protection, YBCO Roebel cable, ReBCO. 

I. INTRODUCTION 

UCARD-2 is a European, EC-FP7 supported, collaboration 

intending to develop a High Temperature Superconductor 

(HTS) accelerator quality magnet demonstrator, capable of 

producing a 5 T central magnetic field in standalone 

configuration [1]. In a second stage the field is increased 

further, ~17 T, when inserted in the high field aperture of 

Fresca-2 or similar. As a design constraint the EuCARD-2 

magnets must contain all forces without relying on mechanical 

support from the structure of Fresca-2 [2]. Both ReBCO and 

BSCCO conductors are being considered, however due to the 

complexity of the reaction treatment for high performance 

BSCCO, this design is part of the US program, supported by 

the US-BSCCO collaboration, based on the Canted Cosine-

Theta (CCT) geometry [3],[4].  
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Fig.  1.  Aligned block development HTS magnets, (bottom right) Feather-M0 

quench detection development coil, (top left) Feather-M2 the EuCARD-2 five 

Tesla standalone approaching accelerator field quality insert magnet. 

 

The EuCARD-2 dipole magnet design is therefore focused 

on ReBCO coated conductors. As part of the EuCARD-2 

project [1],[5], a number of collaborating laboratories, 

universities, and industry are working together to achieve the 

above mentioned goal. CERN is specifying and procuring the 

ReBCO Roebel cable in collaboration with KIT and other 

institutes. As the result of a broad design study, two magnet 

designs are being developed, aligned block and cosine-theta.  

CERN is focusing on the design and construction of a set of 

novel aligned block designs, named Feather-M0/2 [6]. 

Feather-M0 is used to develop coil winding and quench 

detection. Feather-M2 is the EuCARD-2 insert-magnet 

(see Fig. 1). CEA Saclay is studying a ReBCO classical 

cosine-theta design [7]. A new finite element quench code for 

HTS coils is being developed by the Tampere University of 

Technology (TUT), and INFN Milan is preparing a low 

temperature test station for the standalone test for the final 

magnet. The 13 T Fresca-2 magnet has a 100 mm diameter 

clear aperture, which is under construction at CERN. 

This paper compares the different design options for 

EuCARD2 and discusses the challenges for the design and 

construction of an HTS accelerator quality magnet.   

II. ROEBEL CABLE 

The use of cable offers the possibility to increase the current 

E 
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that is transported in a single turn of the magnet winding. High 

current will reduce the required number of turns and therefore 

inductance. This leads to the possibility of faster current 

extraction for protecting longer magnets, a common practice 

in large scale applications. The Roebel cable was selected 

because it has the overall engineering current density to meet 

the field requirements. In addition, the tapes in the cable are 

transposed with respect to an external transverse field, which 

should help reduce transient time constants, and improve 

current sharing. However it should be noted that the individual 

tapes are not transposed like the filaments in a Rutherford 

cable. Because Roebel cable is relatively new in the field of 

magnet technology the following development steps are taken. 

A.  Dummy Cable Production 

For initial mechanical tests, short lengths of cable are 

required. Because of the high cost of such HTS cables, and 

because the mechanical properties of the ReBCO tape are 

dominated by the hard steel substrate, several lengths of 

dummy cable were produced from 0.1 mm thick stainless steel 

tapes. The precise shape is cut from a wide sheet using 

chemical etching at CERN, or fine blanked in a semi-

automatic Roebel cable manufacturing line at KIT. The cable 

was assembled by hand, from short lengths of 2 m, at CERN, 

and up to 20 m of cable was produced at KIT, (see Fig. 2). 

Cable assembly was a lengthy and a delicate process. 

Manufacturing longer cable lengths is an issue that will 

require demonstration. The dummy cable was used to perform 

a number of tests: coil winding, cable hard way bend, cable 

insulation, and stacked cable compression tests. 

B. Mechanical Winding Tests 

Previously KIT has experimentally determined the 

minimum easy-way-bend to be 11 mm radius [8]. For the 

hard-way-bend radius, needed for the layer jump, a series of 

tests was performed. During the tests a dummy cable was 

clamped underneath a glass plate while being bent over a 

length of ~50 cm. The cable achieved a 2 m radius hard-way-

bend without buckling the individual tapes. This is a larger 

value than the theoretical strain limits in the tape, which 

predict 0.9 m.  Winding the tape around a 70 mm diameter rod 

highlighted the problem of longitudinal slippage between 

tapes. This is a complex problem caused by the difference in 

arc-length when the cable is wound around the coil end. There 

is no immediate solution. Axial cable tension applied during 

winding must be limited to prevent damage.  

C. Compression Test and Impregnation 

The bare cable is cut into 20 cm long sections and 

assembled into a stack. The stacks of conductors are then 

compressed up to 150 MPa. This is the calculated transverse 

average stress expected in a 20 T coil. The resulting severe 

plastic deformation to the cable (see Fig. 3) confirms the need 

to protect the cable by impregnation. This instigated a search 

for a suitable resin capable to fully impregnate the coil and 

support each tape from the scissoring action of the adjacent 

tapes.  

 
Fig.  2.  Roebel cable, 20 m, dummy stainless steel, supplied by Karlsruhe 

Institute of Technology Institute for Technical Physics (KIT). 

 

A further series of pressure sensitive film tests highlighted 

the differences between even and odd numbers of tapes [9]. 

Due to the geometry of the cable, wrapping with insulation 

compresses the cable width significantly so is not suitable as 

an insulation system. We selected glass-sleeve insulation 

similar to Nb3Sn magnets. Testing of many resins is ongoing 

[10]. Promising results were obtained with a resin/silica 

mixture. 

 
 
Fig.  3. Damaged dummy stainless steel Roebel cable after loading the bare 

cable up to 150 MPa. 

D.  Finite Element Roebel Cable Model 

As a result of the compression tests, a parametric, finite 

element model was built to investigate the stress history 

during manufacture, cool-down and powering of the 

impregnated Roebel cable.  The model highlights the need to 

control the thermal contraction of the resin-cable assembly 

[10], [11] and the need to perform impregnation, cool-down, 

and load testing with real superconducting tapes.  

III. CROSS SECTION LAYOUT COMPARISON 

The hunt for a promising cross section that meets all the 

requirements has led to a comparison of many cross section 

layouts: cosine-theta, normal rectangular block, and ultimately 

aligned block designs. The most promising layout options 

from this study are presented in Table I.  

A. Attainable Magnetic Field 

The current densities of most layouts are set to 70% on the 

load line, for both 5 T standalone mode and when operated as 

an insert in a 13 T background field. During the studies it was 

found that the critical current of the coil blocks could be 

increased by aligning the tapes with the magnetic field lines. 

This aligned block layout is an improvement over the normal 

block, especially when operated in a background field. It can 

be seen that a higher magnetic field can be reached with less 

conductor. In a standard low temperature superconductor the 

short sample limit would be in the high field position, but here 

the position moves to the upper and lower edges of the coil 

blocks where the field angle is less well aligned with the tape. 

For the cosine-theta design achievable current density is much 

lower due to the perpendicular magnetic field located on 
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TABLE I 

COMPARISON BETWEEN THE THREE MOST PROMISING MAGNET CROSS SECTIONS DESIGNS. 

  

the mid-plane. This means that this layout requires the use of 

more conductors to attain the 5 T in standalone. In addition a 

lower field is attained when operated in a background field. 

However due to the lower current density the cosine-theta is a 

viable option for the final design, as it may be easier to protect 

against quenches. 

B. Field Quality 

Due to the aperture restrictions of Fresca-2 and the width of 

the cable, it is not possible to position three blocks above the 

mid-plane. This means that the (aligned) block layouts are 

limited to two decks, which when optimized for b3 field 

quality leads to an open mid-plane design. To be able to fit in 

the layer jump it is necessary to align the inner turns of the 

wing and central decks. In order to attain b3 field quality it is 

necessary to add a set of magnetic poles inside the wing coil.  

This also helps to achieve the stringent field strength 

requirement. However, due to saturation, a non-linear term in 

the harmonics is introduced. The bend radius required for the 

coil ends of the classical cosine-theta layout, with good field 

quality, is currently smaller than the value at which significant 

degradation occurs. A solution for this problem could be the 

inclusion of an iron pole again at the cost of non-linearity. 

However for future ReBCO magnets it is expected that 

dynamic field quality, caused by shielding currents in the wide 

tapes [6], could be the real issue. Measurement of harmonics 

during cold testing of Feather-M2 should clarify achievable 

dynamic field quality. 

C. Mechanical Considerations 

In the background field the stresses in the coil blocks are 

significantly higher than for standalone. In the aligned block 

layout, these forces are directed perpendicular to the broad 

side of the cables. For the cosine-theta it varies from 

perpendicular to parallel. Large forces will be applied at the 

sharp edges of the Roebel cable, creating insulation 

challenges. On the broad face, line stresses due to scissoring 

between tapes are the challenge. The stresses presented in 

Table I, are the “perpendicular magnetic force” divided by the 

width of the Roebel cable. Detailed finite element modelling 

will follow with the final mechanical magnet designs. 

IV. QUENCH STUDIES 

Due to the low normal zone propagation velocity [12] it may 

prove difficult to protect magnets constructed using ReBCO 

coated conductors. This section presents the development 

work and proposed tests.  

A. Time, Temperature, Voltage Estimates 

Tampere University of Technology Finland is developing a 

general quench model for the analysis of HTS magnets [13]. 

Fig. 4 shows results from simulations. The temperature rises 

quickly. Therefore it is important to detect the quench during 

the very early stages. During this phase the voltages are very 
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small, predicted in the order of 1 or 2 mV.  If we limit the hot 

spot temperature to 400 K, the total time to detect and extract 

the current is ~60 ms at 8.2 kA and ~130 ms at 6 kA.  

 

 
Fig.  4. Hot spot temperatures and quench voltages calculated at constant 

current in the Feather-M0 coil using the TUT finite element model.  

B. Quench Detection 

A multi-detection system incorporating voltage taps, pickup 

coils, magnetic probes, fiber optics, and acoustic sensors is 

foreseen [14-18]. During cold testing a fast data acquisition 

system featuring a field-programmable gate array (FPGA) 

[19] will be used to simultaneously acquire signals to compare 

the performance of the different detection methods. Testing 

will prove if the multi-tape Roebel cable structure will obscure 

the quench signals, preventing timely quench detection. 

 

C. Quench protection 

Standard quench protection strategies can be employed for 

the standalone, low inductance coils of Feather-M0 and 

Feather–M2 namely, using an external dump resistor and 

negative power supply voltage to rapidly extract the magnet 

energy. The situation becomes more difficult when the magnet 

is inserted into the high field Nb3Sn aperture of Fresca-2 [20]. 

For this case, fast current extraction of the insert followed by 

opening of a semiconducting switch is studied. This is 

followed by dump of the Fresca-2 magnet. In addition it is 

possible to use copper loops, which form part of the Feather-

M2 magnet structure (see Fig. 5). When the dump resistor is 

switched in the circuit, the current inside the coil is inductively 

transferred to the loops within milliseconds, protecting the 

magnet in standalone mode as well as in Fresca-2 

configuration. The relatively slow current decay of Fresca-2 

limits the induced current in the loops, avoiding significant 

heating (maximum temperature is ~100 K). The resulting 

Lorentz forces are supported by the magnet structure. The 

estimated field error developed during operational ramping, 

due to the loops, is estimated to be less than one unit of the 

principal dipole field. The loops also provide conduction 

cooling close to the coil outer surfaces. 

V. MAGNET ASSEMBLY 

The layer jump section of the coil is first placed in a mold 

that forms the ‘S’ shape of the layer jump. The layer jump is 

impregnated to fix the cable in position. It is then fitted into 

the coil winding/impregnation tool. The coil will then be 

wound with low actual cable tension to prevent damaging 

individual tape. A moderate cable transverse pressure is 

applied to produce a relatively low contact resistance between 

tapes after which the coil is impregnated. The finished coil is 

then mounted onto the titanium former. Fig. 5 presents 

Feather-M2 cross-section with copper loops (ICEE) that fill 

the space between the coil and high-strength external support. 

The full assembly is then impregnated. On cooling to 77 K or 

4 K, the external high strength super-alloy support cylinder 

contracts more than the titanium former and coil. This places 

the coils under a small compressive stress. We expect to 

unload the coil on the inner coil surface during magnetic 

powering at high fields. Any resulting movement of the coil 

should not pose a problem as at 6 kA the temperature margin 

is ~28.6 K. 
  

 
 

Fig.  5. (left) Feather-M2 magnet cross-section, (right) Inductively Coupled  

Energy Extraction copper rings (ICEE’s). Magnetic poles top & bottom. 

VI. TEST PLANNING   

A. Feather-M0 

Feather-M0 is planned to be tested in liquid nitrogen at 

77 K, ~1.5 kA, then tested in liquid helium at 4.5 K list of 

operating currents (see Table I ), to fine tune the quench 

detection system. 

B. Feather-M2 

A mechanical model is foreseen to be able to estimate 

stresses during cool-down.  Feather-M2 will be equipped with 

a quench detection system optimised during testing of feather-

M0. Room temperature field quality measurements are 

foreseen, and then testing at higher temperatures 80 K, then in 

steps down to liquid helium operation at 4K will be 

performed. Dynamic field quality will be measured.  

VII. CONCLUSION 

    The EuCARD-2 project to develop a 5 T standalone 

operation, 40 mm aperture, HTS dipole that approaches 

accelerator quality is advancing rapidly. In a second step it is 

foreseen to approach a 17 T central field when inserted in a 

13 T high field magnet. Model coils are under construction, 

cables and magnet designs are progressing. Models will test 

dynamic field quality and confirm if it is possible to detect and 

protect the ReBCO high current density present in the aligned 

Roebel cable design. Mechanical stress in ReBCO tapes needs 

careful design to avoid degradation. A design based on a 

cosine-theta is also under consideration. 
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