© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

Empowering Owners with Control in Digital Data Markets

Sabrina De Capitani di Vimercati, Sara Foresti, Giovanni Livraga, Pierangela Samarati
Computer Science Department, Universita degli Studi di Milano
Milan, Italy
{sabrina.decapitani, sara.foresti, giovanni.livraga, pierangela.samarati}@unimi.it

Abstract—We propose an approach for allowing data owners
to trade their data in digital data market scenarios, while
keeping control over them. Our solution is based on a combi-
nation of selective encryption and smart contracts deployed on
a blockchain, and ensures that only authorized users who paid
an agreed amount can access a data item. We propose a safe
interaction protocol for regulating the interplay between a data
owner and subjects wishing to purchase (a subset of) her data,
and an audit process for counteracting possible misbehaviors
by any of the interacting parties. Our solution aims to make
a step towards the realization of data market platforms where
owners can benefit from trading their data while maintaining
control.
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I. INTRODUCTION

In our hyper-connected society, data are continuously gen-
erated at the astonishing pace of quintillions of bytes each
day, and the trend is forecasted to grow in the near future
also due to the incredible diffusion of the IoT technology.
These data, often related to individuals, have a huge value
for creating knowledge [1] (data is oftentimes referred to
as the oil of the future), and this has fostered a vision
towards the development of digital data markets, where
data are monetized and traded. In the current scenario, the
value is most of the times cashed by a few big players on
the market, which have a revenue in collecting and trading
data. The problem is that this is frequently done without
the explicit consent of the individuals to whom the data
refer, and this is increasingly seen as a violation of their
fundamental rights. Recent laws and regulations, such as
the EU General Data Protection Regulation (GDPR), clearly
state that data subjects (i.e., users to whom data refer) should
always be in control of their data. A natural corollary is
the need for markets where data owners (be them data
subjects/controllers or more generally users with the rights
to share data) can directly contribute their data, and monetize
them by making them available to others in a controlled way.

The realization of such data market platforms clearly
raises a number of issues, for instance due to high require-
ments for storage, networking, and computation resources.
Having powerful and elastic platforms that are already used
today for storing and processing huge amounts of data, cloud
service providers are in a unique position for unlocking the
full potential of data markets. As a matter of fact, in many

real-world scenarios cloud platforms are already operating
as large data hubs. To fully realize such a data market vision
and satisfy data protection requirements, individuals should
have adequate guarantees that the data they make available
in the data market are properly protected, meaning accessed
only with their consent and with an adequate compensation.
A naive solution could delegate the management of accesses
and payments to the data market provider. This would
however require trust in the provider by both the owners and
the users purchasing data, which is a strong and unrealistic
assumption.

In this paper, we propose a solution for empowering
data owners to monetize their data, while keeping control
over them, in data market platforms. We consider dynamic
scenarios where, as time passes, data owners (users) can
upload to the market platform new datasets, and processors
(external users) can purchase access to them. We do not rely
on a trusted market provider and, to properly protect data, we
adopt owner-side encryption. The contribution of this paper
is three-fold. First, we propose a data protection mechanism
for data markets based on selective encryption, where each
data item is encrypted with a different key, to enforce fine-
grained access restrictions. The burden of key management
is limited through the adoption of a key derivation strategy.
Second, we present a safe interaction protocol for regulating
payments for resources based on blockchain and smart
contracts. Third, we propose an audit process that, leveraging
the combined adoption of selective encryption, blockchain,
and smart contracts, counteracts possible misbehaviors in
case any of the interacting subjects acts maliciously.

The remainder of this paper is organized as follows.
Section II gives some preliminaries and basic concepts.
Section III characterizes our reference scenario and its
requirements. Section IV illustrates our solution based on
selective encryption for protecting data. Section V discusses
our blockchain-based interaction protocol and our audit
process for managing data purchases and for recognizing
and discouraging misbehaviors. Section VI presents some
considerations on our approach. Section VII discusses re-
lated works. Finally, Section VIII concludes the paper.

II. PRELIMINARIES

Our solution combines three building blocks: i) key
derivation; ii) blockchain; and #ii) smart contracts.
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An example of key derivation structure and token catalog

Key derivation. Key derivation permits to derive the value
of an encryption key k, from the knowledge of another
encryption key k;, and of a public label I, (i.e., a piece
of information) associated with k, [2], [3]. The derivation
of k, from k, is enabled by a public token ¢, , computed
as k,®h(ks,l,), with @ the bitwise xor operator, and h
a deterministic non-invertible cryptographic function. The
derivation relationship between keys can be direct, via a
single token, or indirect, through a chain of tokens. Key
derivation structures can be graphically represented as di-
rected acyclic graphs, where vertices represent ecryption
keys (and their labels), and edges represent tokens. Tokens
are physically stored in a public catalog 7. Figure 1 illus-
trates an example of derivation among three keys ks, ky,, and
k., and the corresponding token catalog 7. For simplicity,
in our examples we use x to denote the label of key k.., and
use the label of a key to denote the corresponding vertex
(e.g., vertex a in Figure 1 represents key k, and its label).
In the following, when clear from the context, we will use
the terms keys and vertices (tokens and edges, respectively)
interchangeably.

Blockchain. A blockchain is a shared and trusted public
ledger of transactions, maintained in a distributed way by a
decentralized network of peers. Transactions are organized
in a list of blocks, linked in chronological order, where each
block contains a certain number of transaction records and a
cryptographic hash of the previous one. Each transaction is
validated by the network of peers, and is included in a block
through a consensus protocol. The state of a blockchain is
continuously agreed upon by the network of peers: everyone
can inspect a blockchain, but no single user can tamper with
it, since modifications to the content of a blockchain requires
mutual agreement. Once a block is committed, nobody can
modify it: updates are reflected in a new block containing
the new information. This permits to trust the content and
the status of a blockchain, while not trusting the single peers.

Smart contracts. Smart contracts are a powerful tool for
establishing contracts among multiple, possibly distrusting,
parties. A smart contract is a software running on top
of a blockchain and defines a set of rules, on which the
interacting parties agree. It can be seen as a set of ‘if-
then’ instructions, defining triggering conditions and sub-
sequent actions capturing and formalizing the clauses of a
contract to be signed by the parties. The execution of a
smart contract can be trusted for correctness thanks to the
underlying blockchain consensus protocols, meaning that all
the conditions of the agreement modeled by the contract are

certainly met and validated by the network. However, smart
contracts and their execution lack confidentiality and privacy,
as plain visibility over the content of a contract and over the
data it manipulates is necessary for validation [4].

III. SCENARIO AND REQUIREMENTS

We address the problem of allowing subjects to leverage
the availability of data market platforms for trading their
data with interested processors (i.e., entities that need to
perform some processing over them). Our scenario is then
characterized by a set O of data owners on one side, and a
set P of processors on the other side, who interact through
the market platform to sell and buy data, modeled as a
generic set R of resources. In this paper, we investigate two
main issues: i) ensuring adequate data protection, and ii)
ensuring that owners and processors can profitably leverage
data market platforms for doing business. Our first goal aims
at maintaining the owner in control of her data, by defining
a solution that enables a processor to access a resource only
upon payment, and which ensures that the owner is aware
of which processor has access to which resource. Due to the
involvement of money and since processors and data owners
might not fully trust each other, our second goal aims at
defining mechanisms for counteracting misbehaviors from
owners and processors (e.g., a malicious owner does not
provide access to a paid resource or, conversely, a processor
claims her money back by maliciously declaring the owner
did not grant access despite the payment). In designing our
solution, we keep the following requirements in mind:

RI. the content of published resources must remain pro-
tected, and only authorized processors who purchased
access to a resource can access its content;

R2. the data owner must be aware of which processors
have purchased which resources;

R3. after a processor p purchases access to a resource,
the owner cannot claim that payment has not been
received (and refuse to grant access to p);

R4. after the owner has granted to a processor access to
a resource, the processor cannot claim that access has
not been granted (and ask to be refunded).

While the first two requirements deal with ensuring data
protection, the latter two reduce the possibility of misbe-
haviors from both the data owner and the processors. We
satisfy RI by protecting resources through selective owner-
side encryption. We satisfy R2 by monitoring access rights
through blockchain and smart contracts. We satisfy R3 and
R4 by counteracting misbehaviors through an audit process
that incentivizes all parties to behave correctly.

Example 3.1: For the sake of concreteness, we refer our
discussion to the data generated by a fitness tracker that
measures a number of parameters (e.g., heart rate, steps and
movements, sleep quality). The measurements are collected
throughout the whole day, and the owner of the device (and



hence also of the generated data) can download them for
analysis. Since these data can be of interest to a multitude
of subjects (e.g., researchers and pharmaceutical compa-
nies), the owner decides to monetize them and, at regular
time intervals, publishes them on a data market platform.
In our examples, we consider the release of six sets of
measurements R={a,b, c,d, e, £}, each one consisting of
the measurements collected in two months (i.e., one year of
measurements). These data are of interest for four processors
P={w,x,y,z}, which over time buy access to resources.

IV. PROTECTING RESOURCES

In this section, we illustrate how to enforce requirement
RI to guarantee that the content of each resource is visible
only to processors who purchased access to it. For simplic-
ity, but without loss of generality, we consider the set of
resources published by one owner o, with the note that the
same reasoning applies to each data owner operating on the
data market. In line with the goal of monetizing data, we
assume that the data owner does not pose access restrictions
to her data except from the fact of receiving a payment.
Our proposal can however be easily extended to consider
additional access conditions.

A. Authorization Policy and Key Derivation Structure

The authorization policy A regulating access to resources
needs to reflect purchases of the processors. We represent
the authorization policy by means of the capability lists of
the processors in P, where cap(p) represents the set of
resources for which processor peP is authorized (i.e., for
which the owner o has received a payment from p). Every
time processor p buys access to a resource 7€R, r will be
added to her capability list (i.e., cap(p)=cap(p)U{r}).

To allow fine-grained access control as demanded by
our scenario, without the need to trust the data market to
enforce access privileges, we leverage selective owner-side
encryption [3]. Intuitively, selective owner-side encryption
consists in encrypting, at the owner-side, different resources
with different keys, and in distributing keys to processors in
such a way that each processor can decrypt all and only the
resources she is authorized to access. Since the encryption
layer is provided at the owner side, resources self-enforce the
access restrictions defined over them and their content is pro-
tected also to the eyes of the market provider. The data owner
can then make her resources available to the market platform
(which can be hosted, for instance, on the cloud), with the
guarantee that only processors knowing the encryption keys
will be able to decrypt resources. A straightforward solution
to enforce access restrictions through selective encryption
consists in encrypting each resource with a different key, and
in distributing to each processor the keys of the resources
in her capability list. However, this practice would imply
a considerable key management burden for processors. To

mitigate such overhead, we adopt key derivation (see Sec-
tion II). Intuitively, each processor p agrees a key &, with the
data owner, who publishes a token allowing p to compute &,
from k,, for each r in cap(p) (if a same processor purchases
resources from different owners, she can create a set of
tokens enabling her to compute the key shared with each
owner from a single (secret) master key). While effective,
this simple solution could not be efficient since it might
create more tokens than necessary. To reduce the number
of tokens, the key derivation structure is typically enriched
with additional vertices whose key is used for derivation
only [3], [5]. While in cloud-based scenarios such additional
vertices are typically associated with groups of users, the
considered scenario would benefit from the definition of
keys associated with groups of resources. Indeed, such an
approach guarantees that each resource r has a different
encryption key (the one corresponding to singleton set {r}).
Also, processors join the system purchasing subsets of
resources and it is therefore natural to think in terms of
groups of resources in contrast to groups of users. Formally,
a key derivation structure is defined as follows.

Definition 4.1 (Key derivation structure): Given a set
R={r1,...,rn} of resources and a set P={p1,...,pm}
of processors, a key derivation structure over R and P is a
directed acyclic graph G(V,E) such that:

1) Yo, eV, (x €P)V(z CR);

2) VpeP,v,eVandVr e R, v, € V;

3) Y(vg,vy) € E: (yCx)V (z€P Ay CR).

According to the definition above, vertices in the key
derivation structure represent processors or sets of resources
(Condition 1). Also, the derivation structure has a vertex for
each processor and for each resource (Condition 2). Vertices
representing processors have only outgoing edges ending
at vertices representing (sets of) resources, while edges
connecting sets of resources satisfy the subset containment
relationship, that is, each vertex is connected to vertices
representing subsets of its resources (Condition 3). Each
processor p knows the key of its vertex v, and each resource
r is encrypted with the key of its vertex v,. With reference
to Example 3.1, Figure 2(b) illustrates an example of key
derivation structure with a vertex for each processor (gray),
a vertex for each resource, and additional vertices for subsets
of resources. As already noted, for simplicity in the figures
we denote each vertex v, with x (e.g., a is the vertex for
resource a and x is the vertex of processor x.)

A key derivation structure correctly enforces an autho-
rization policy A iff it allows each processor to derive all
and only the keys used to encrypt the resources that she
purchased, meaning that each processor must be able to
reach, starting from its vertex, all and only the vertices
representing the resources in her capability list.

Definition 4.2 (Correctness): Given an authorization pol-
icy A over a set R of resources and a set P of processors,
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Figure 2. An example of authorization policy (a), and of a key derivation
structure enforcing it (b)

a key derivation structure G(V,E) over R and P correctly
enforces A iff:
VreR,VpeP : recap(p) < 3 a path in G from v, to v,.

To correctly enforce the authorization policy A, we
include in the key derivation structure a vertex for each
capability list of the processors in P and and edge to
connect the vertex v, of each processor to the vertex veap(p)
representing her capability list cap(p). If needed to further
reduce the number of tokens, we insert additional vertices
representing subsets of resources even if not corresponding
to any capability list. We then connect vertices representing
sets of resources in such a way to ensure that the set R
of resources represented by a vertex vy is covered by the
vertices directly reachable from vg through an edge in G
(meaning that the union of the sets of resources represented
by the vertices directly reachable from vy is exactly R).

Example 4.1: Consider the authorization policy in Fig-
ure 2(a) for the sets of resources and processors of Exam-
ple 3.1. Figure 2(b) illustrates an example of a key derivation
structure enforcing the policy. The structure includes one
vertex for each resource, one vertex for each processor,
and three vertices representing their capability lists. Edges
of the structure connect processors to their capability lists,
and sets of resources according to the subset containment
relationship, in such a way to guarantee coverage (e.g.,
vertex abc is covered by a, b, and c). It is immediate
to verify that the key derivation structure in Figure 2(b)
correctly enforces the authorization policy in Figure 2(a),
since it enables each processor to reach all and only the
resources she is entitled to access.

B. Resources and Access Management

The key derivation structure is updated whenever new
resources are published and/or purchased.

The publication of resource 7 is easily enforced by simply
inserting in the structure a vertex for 7. The owner generates
an encryption key k,. and a label [,. for the vertex, encrypts r
with k,., and publishes the encrypted resource on the market.
To illustrate, consider the structures in Figure 3. The leftmost
one represents the structure for our running example after

the publication of the six resources (since no authorization
has been granted yet, no processor vertex is present).

The purchase of a set R of resources by processor p
is enforced by procedure Enforce_Purchase (Figure 4).
Note that, in the figure and in the following discussion, the
generation of vertices (edges, resp.) implies the generation of
their keys and labels (tokens, resp.). The procedure takes as
input the requesting processor p, its current capability list
cap(p), the set R of resources she wants to buy, and the
key derivation structure G(V,E). It updates the structure
enabling p to derive the keys necessary to decrypt the
resources in cap(p)UR. The procedure fist checks whether
the structure already contains a vertex v, for p (ie., if p
already purchased resources in the market) and, if this is
not the case, it creates vertex v, and the corresponding key
and label (lines 1-2). If the vertex ve,p(p) representing the
(old) capability list of p does exist, the procedure deletes
(Vp, Veap(p)) (lines 3—4). It then checks whether the removal
Of Veap(p) could reduce the number of edges [3] and, if this
is the case, it removes vc,p(p) connecting all its parents to
all its children (lines 5-13). The procedure then updates
the capability list cap(p) by including the resources in R
(line 14). If the key derivation structure already includes
VerteX veap(p) Tepresenting the nmew capability list of p,
then v, is simply connected t0 vcap(p), and the procedure
terminates (line 15). Otherwise, vcap(p) first needs to be
created, and only at this point an edge is created to enable the
derivation of vc,p(p) from v, (lines 16-19). To guarantee the
correctness of the key derivation structure, all the resources
in cap(p) should be reachable from vc,p(,) (Definition 4.2).
Hence, the procedure identifies the set Desc of vertices
representing subsets of resources in cap(p), and selects a
subset Cover of vertices in Desc forming a set cover for
cap(p) (lines 20-21). Vertex Vcap(p) 18 connected to the
vertices in Cover (line 22). The procedure finally checks
if it is possible to further reduce the number of edges [3]
thanks to the presence of vcap(py. To this aim, the procedure
identifies the set Par of the vertices representing supersets of
cap(p), and the set of DescCover of the vertices reachable
from a vertex in Cover (lines 23-24). Indeed, if a vertex
Upqr i Par is directly connected to more than one vertex
in Cover and/or in DescCover, the insertion of vcap(p) as an
intermediate vertex and removal of edges from v, to the
vertices in Cover and/or in DescCover (lines 25-31) reduces
the number of edges.

Example 4.2: Figure 3 illustrates the evolution of the left-
most structure to enforce the sequence of requests illustrated
at the bottom of the figure. The first two requests insert
vertices abc and cdef for w and x respectively. The third
request does not insert vertices since cap(y)=abc already
belongs to the structure. The fourth request inserts bc for
z. Note that connecting abc to bc saves an edge. The fifth
request inserts a vertex for the entire set R, for which z
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ENFORCE_PURCHASE (p,cap(p),R,G(V,E))
1 if v, € V then
generate vy V :=V U {v,}
if veap(p) € V then
B2 B\ {0 veap(p))}
if #p’#p s.t. cap(p) = cap(p’) then
let par be the number of incoming edges of Veap(p)
let desc be the number of outgoing edges of vVeap(p)
if (parxdesc) < (par-desc) then
for each v,0, €V : (Vpar,Vord)EE do
E = E\ {(vpar, vord)}
for each vesc€V : (Void, Vdese) EE do
E := E\ {(void,Vdesc)} U {('Upurv Vdese) }
V= V\{Veap(p) }
cap(p) :=cap(p) UR
: it; Veap(p) € V then E := E U {(vp, Veap(p)) }
else

generate Veap(p)
V=V U {Veap(p) }
E:=EU{(vp, veap(p)) }
let Desc C V be the set of vertices over a set of resources C cap(p)
let Cover be a subset of Desc whose resources form a set cover for cap(p)
for each v .pyer € Cover do E := E U {(vcap(p), Veover) }
let Par C V be the set of vertices over a set of resources D cap(p)
let DescCover be the set of vertices reachable from vertices in Cover
for each v, € Par do
ToRemove :=
for each v € DescCover U Cover do
if (Vpar,v) € E then ToRemove:= ToRemove U{(vpar,v)}
if |ToRemove| > 2 then
E = EU{(vpar; Vaap(p))}
for each (vyqar,v.)EToRemove do E := E \ {(vpar,v2)}

Figure 4. Procedure managing the purchase of a set of resources

is authorized. Vertex bc then becomes redundant and is
removed. The last request authorizes w for all the resources.
Since cap(w) belongs to the structure, no vertex is inserted.

V. COUNTERACTING MISBEHAVIORS

Since authorizations are granted upon payment, data
owners and processors should trust each other, like in any
situation where a vendor sells a product or a service (access
to resources, in our case) to a buyer. If access to a resource
is granted before payment, the owner needs to trust the
processor to finalize the payment. If access is granted after
payment, the processor needs to trust the owner to grant
access to the purchased resource(s). Requiring such level
of trust is unrealistic in our scenario, and processors and
owners might misbehave and get advantages. We then need
a solution enabling them to conclude a contract without
fully trusting each other. In this section, we first illustrate

Evolution of a key derivation structure to enforce a sequence of purchases

possible misbehaviors that a malicious party could adopt to
gain advantages over the counterpart. We then present our
solution to mitigate these risks.

A. Malicious Behaviors

In principle, both the data owner and the processors
might get advantages in behaving maliciously. The data
owner might not grant access to her resources after hav-
ing received a payment, with economic/privacy advantages.
The processor might instead not pay after having received
access to a resource, with economic/knowledge advantages.
Also, a malicious party can blame a misbehavior on the
other (honest) party (e.g., a malicious owner could claim a
payment has not been executed and require a new payment).
The main misbehaviors can be classified as follows:

e NO_ACCESS: a malicious data owner does not grant
access to a processor p for (at least) a resource for
which p paid the agreed amount;

NO_PAYMENT: a malicious processor does not pay to
the data owner o the agreed amount for (at least) a
resource for which o provided access;

NO_ACCESS*: a malicious processor claims that, for (at
least) a resource for which she paid the agreed amount,
access has not been provided (while it has);
NO_PAYMENT?*: a malicious owner claims that, for (at
least) a resource for which she granted access to a
processor, payment has not been finalized (while it has).

Misbehaviors related to payments (i.e., NO_PAYMENT
and NO_PAYMENT¥*) can be easily prevented by adopting
blockchain and smart contracts, granting access to a resource
upon the reception of a money transfer from a processor. A
straightforward solution could consist of directly trading the
encryption keys with a smart contract which, upon receiving
a payment from a processor p for a set R of resources,
triggers the algorithm illustrated in the previous section to
automatically generate keys, labels, and tokens enabling p
to access all resources in R. Unfortunately, this solution
is not viable due to the public nature of the content of
smart contracts. Updating the token catalog requires in fact
knowledge of the keys used in the system (including those
assigned to processors and those used to encrypt resources),
and hence any subject observing the blockchain would be



able to decrypt the resources. We now illustrate our solution
to this problem.

B. Counteracting Approach

We propose an interaction protocol, to regulate the in-
terplay between processors and data owners, and an au-
dit process, to identify misbehaving parties. The interac-
tion protocol prevents NO_PAYMENT and NO_PAYMENT*
misbehaviors, ensuring that no access can be granted
without payment. The audit process detects NO_ACCESS
and NO_ACCESS* misbehaviors, exposing malicious owners
(processors, resp.) that do no grant a purchased access
(maliciously claim a purchased access has not been granted,
resp.). The combined adoption of these two approaches
incentivizes all parties to behave correctly.

Interaction protocol. The interaction protocol relies on
smart contracts to regulate how a processor p and a data
owner o should operate to safely finalize the purchase of a set
R of resources. Its adoption guarantees that the data owner
receives the payment and the processor receives a public
commitment by the data owner to grant access to K. Since
encryption keys cannot be directly managed through smart
contracts, we leverage smart contracts and blockchains only
to enforce the payment, and to securely log the willingness
of o to grant p access to the requested resources after
the payment is received. An executed smart contract then
represents an incontrovertible proof that: i) the payment has
been performed; and ii) the data owner is aware of her
obligation to give p access to the purchased resources. We
then complement smart contracts with a solution (i.e., the
audit process) that enables a designated trusted subject (i.e.,
an auditor) to check, upon request (e.g., when one of the
two parties detects or suspects a misbehavior), whether the
accesses dictated by the contract are actually provided (i.e.,
whether the owner did what she committed to). To enable
such control, within the interaction protocol we: i) store on-
chain the catalog 7 and the capability lists of the processors
(so that they can be queried in the audit); and ii) require the
encryption key k, provided by o to p to be signed by p
(so that it can be proved to be authentic in the audit). We
then assume each processor to have a private (priv,), public
(puby) key pair.

The interaction between a processor p, willing to purchase
a set R of resources, and the owner o of the resources
operates according to the protocol in Figure 5:

1) p contacts o (off-chain) communicating the set R of
resources she wants to buy;

2) if p and o have not yet interacted, o generates a key
k, for p and sends it to p;

3) upon receiving kj,, p signs it with her secret key priv,,
and sends the signed key (denoted [k]priv, ) t0 0;

4) o prepares a smart contract, dictating that “upon re-
ceiving price from p for R, cap(p) := cap(p) UR,

Owner o Blockchain Processor p

communicate R

compute [kp ;

deploy contract

sign contract

update T

send T

——» always executed
—————— #» executed only in the first interaction

Figure 5. Interaction protocol

and the token catalog 7 is updated in such a way to
allow p to derive the keys for the resources in cap(p)”;

5) o deploys the contract on the blockchain;

6) p accesses the contract and signs it, automatically
triggering the payment for price;

7) o updates the key derivation structure as required by
the executed contract (see Section 1V);

8) o updates T on the blockchain.

Since T is stored on-chain, at the end of the interaction
protocol p can query it for obtaining the information neces-
sary to derive the keys for the resources in R. Also, since
the key derivation structure is updated by the owner on her
premises, keys are kept safe. Note that, to enable the audit
process (as clarified in the remainder of this section), tokens
operate on signed keys [kp]priv, (in contrast to k).

If an interested processor and a data owner in-
teract through this protocol, both NO_PAYMENT and
NO_PAYMENT* misbehaviors are prevented. In fact, the key
derivation structure is updated locally by the owner granting
the processor access to resources only after the payment has
been received. Since the blockchain is public, every user can
verify whether the payment has been performed.

Audit process. Since accesses are directly granted by the
data owner and keys and resources are not exchanged on-
chain, NO_ACCESS and NO_ACCESS* misbehaviors cannot
be prevented. We then propose an audit process for detecting
and exposing them (hence negatively impacting on the
reputation of the misbehaving party). To this end, our audit
process allows a designated trusted auditor, arbitrarily agreed
between the owner and the processor (and possibly identified
in the smart contract, so to have a proof that both parties
agree on it), to check whether the processor does have access
to all the resources for which she paid. The audit process
can be invoked either by a processor claiming and wishing to
expose a NO_ACCESS misbehavior, or by an owner claiming
and wishing to expose a NO_ACCESS* misbehavior.



AUDIT (p,0)
I: retrieve cap(p)
retrieve ¢, cap(p) and leap(p) from T
if £; cap(p) = NULL OF lcap()=NULL then
return ‘NO_ACCESS misbehavior’
retrieve [k |priv, from o
if signature verification of [kp]priv, fails then
return ‘NO_ACCESS misbehavior / o not collaborating’
compute Keap(p) = h([kplprivy s leap(p)) D tp cap(p)
9: derive all the resource keys k,. derivable from k,
10: for each r € cap(p) do
1. r = decrypt(E(r), k)
122 if decryption fails then
13: return ‘NO_ACCESS misbehavior’
14: return ‘NO_ACCESS* misbehavior’

® RN D LE®WN

cap(p)

Figure 6. Pseudocode of the audit process

Given the identity of the processor p and of the owner
o involved in the audit process, the auditor checks whether
the current token catalog 7 enables p to derive the keys for
the resources in cap(p) to discriminate between NO_ACCESS
and NO_ACCESS*. Figure 6 illustrates the audit process. The
auditor first needs to query the public ledger maintained on-
chain to obtain: the capability list cap(p) of the processor,
the token for deriving key kcap(py, and label lcap(p). If the
token (or the label) does not exist, the auditor signals a
NO_ACCESS misbehavior. In fact, the derivation structure
cannot allow p to derive the keys for the resources in
cap(p) (i.e., the owner ignored the payment). Otherwise,
the auditor retrieves [kp],riy, from the owner and, using
the catalog, derives all the encryption keys reachable from
(kplpriv, - To verify that [k,],s, is the key that p and o
exchanged in the interaction protocol (Figure 5), the auditor
checks its signature. If signature verification fails, either o
has defined/updated the derivation structure starting from
the wrong key (and hence p cannot access the resources
in her capability list), or it is not participating honestly in
the audit process (i.e., she returned a different key from
the one agreed with p). In both cases, the auditor signals
a NO_ACCESS misbehavior, exposing a misbehavior of the
owner. On the contrary, if signature verification succeeds,
the auditor derives kcap(p) and the keys of the resources in
cap(p). The auditor can then try to decrypt all resources
in cap(p) using these keys. If decryption fails (because for
at least one resource the related key is not derivable or
incorrect), the auditor again signals a NO_ACCESS misbe-
havior. Otherwise, if decryption succeeds, the auditor returns
a NO_ACCESS* misbehavior, since the owner respected her
obligation and hence the processor is dishonestly accusing
the owner of misbehavior. Note that the audit process could
expose the plaintext content of resources to the auditor,
when the processor maliciously accuses the data owner of
misbehavior. However, a malicious processor can disclose
the purchased resources to any subject (hence including
the auditor) independently from the audit process, so the
process itself does not introduce additional disclosure risks.
Also, thanks to our audit process, the misbehavior of the

processor is revealed. Therefore, we expect processors not
to dishonestly blame a misbehavior on an honest owner, as
this would decrease their reputation.

The reliability of the results of the audit process clearly
depends on the correctness and freshness of the data over
which controls operate (i.e., tokens, labels, capability lists,
processors’ signed keys). The correctness and freshness of
tokens, labels, and capability lists is guaranteed by the
fact that they are stored on-chain, as dictated by the smart
contract, and hence in a safe and immutable ledger that
the auditor can query. The correctness and freshness of
[kplpriv, is guaranteed by the digital signatures, since o
cannot reproduce (nor p repudiate) a signature with priv,.

The availability of the audit process clearly incentivizes
both the data owner and the processors to behave correctly.
Indeed, the audit process reveals misbehaviors and publicly
exposes the identity of the malicious subject. This can have
serious consequences on her reputation, with clear damages
in a data market platform where (in a similar way to,
for instance, e-commerce platforms) lower reputation can
be expected to cause lower willingness of other parties to
engage in trading. We then expect the availability of our
audit process to prevent misbehaviors.

VI. DISCUSSION

The combined adoption of selective encryption and of an
approach based on blockchain, smart contracts, and an audit
process for regulating the interactions between data owners
and processors can set a first step (out of many) towards the
enforcement of the transparent processing requirement of the
EU GDPR. Transparent processing of data implies, among
other aspects, to log all events related to data processing
and sharing, and to enable the control that the processing
itself is performed according to the policy set by the data
subject (the data owner, in our scenario) [6]. We fulfill
these requirements by ensuring that: i) each resource is
shared only with processors authorized by the owner; and i)
sharing is securely logged on-chain, producing a verifiable
trail of sharing history. This ensures that the data owner
knows and can prove, at any time, who is able to access
her resources, and that each processor is able to prove that
all accessed resources were authorized. Also, since we store
both the authorization policy and the token catalog on-chain,
their updates leave a permanent trace. Hence, not only is it
possible to verify the enforcement of the most up-to-date
policy, but also past versions of the token catalog can be
checked for verifying the correct enforcement of a former
one. Also, since resources are not stored on-chain, the owner
can always delete them in accordance to the regulation.

We close this section with a note on the generality of
our solution. Our proposal does not rely on specific tech-
nologies or architectures, and hence can be easily tailored
and deployed in different application scenarios. For instance,
resource protection through selective encryption (Section V)



can operate with arbitrary (sufficiently strong) encryption
schemes. Similarly, we do not restrict our smart contracts
to operate on a specific blockchain (e.g., Ethereum) or
programming language for coding the smart contract. Of
course, the security of the overall system depends on the
correctness of the developed code, like in any interaction
governed by a smart contract.

VII. RELATED WORK

The adoption of distributed ledgers (such as blockchain)
and of smart contracts has recently been investigated for
exchanging data and/or enforcing access control (e.g., [7],
[8], [9], [10], [11], [12]). In [7], the authors propose a
solution for auditable sharing of private data on blockchains,
which however assumes a (collective) authority for enforcing
access restrictions. The proposal in [8] shares with ours the
adoption of encryption for protecting data, but does not
consider purchases and subsequent possible misbehaviors.
The problem of data trading has been investigated in [9],
which however adopts Bitcoin transactions and does not
support fine-grained authorizations. The approach in [12]
focuses on ensuring fairness of resource exchange, without
explicit reference to data markets and their need for fine-
grained authorizations. A blockchain-based access control
model is proposed in [10], but the possibility of a processor
to transfer her access rights to another processor does not
fit our scenario. The proposal in [11] protects data using
encryption and on-chain storage of pointers to data, while
we decouple data storage and blockchain. Other relevant
examples of blockchain applications include e-auctions [13]
and data provenance architectures [14].

Another line of work close to ours is related to the
enforcement of access control in data outsourcing. Re-
lated approaches have explored the adoption of selective
encryption (e.g., [2], [3], [15]), on which we build part
of our solution. These proposals however do not consider
the purchase requirements of our reference scenario, and
typically focus on enforcing authorization policies defined
and updated according to the wishes of the data owner.

VIII. CONCLUSIONS

We presented an approach combining selective encryp-
tion, blockchain, and smart contracts to enable data owners
to leverage data markets to monetize their data in a con-
trolled way. Our approach is complemented by an audit
process counteracting misbehaviors in case of dishonest
subjects. An interesting direction for extensions concerns
the secure development of smart contracts.
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