Research Paper

Metamorphism and exhumation of basement gneiss domes in the Quadrilátero Ferrífero: Two stage dome-and-keel evolution?

Kathryn Cuttsa,**, Cristiano Lanas, Fernando Alkmima, Federico Farinaa,b, Hugo Moreiraa,c, Viviane Coelhoa

aApplied Isotope Research Group, Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil
bDepartment of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205, Geneva, Switzerland
cSchool of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, PO1 3QL, UK

A R T I C L E I N F O

Article history:
Received 7 August 2018
Received in revised form 5 November 2018
Accepted 25 February 2019
Available online xxx

Handling Editor: Richard M Palin

Keywords:
São Francisco Craton
Zircon U-Pb
Titanite U-Pb
Phase diagrams
Dome-and-keel

A B S T R A C T

The presence of dome-and-keel provinces in Archean cratons has been connected with the initiation of plate tectonics on Earth as these features are most commonly observed in Archean rocks. The Quadrilátero Ferrífero in Brazil has been identified as a Paleoproterozoic dome-and-keel province for more than three decades. The prevailing model suggests that it formed during the Rhyacian Transamazonian orogeny, making it unique among dome-and-keel provinces. However, a lack of appropriate lithologies, datable minerals and the metamorphic overprint of later orogenesis has resulted in a cryptic metamorphic record for the formation of this dome-and-keel province. A clinopyroxene-bearing migmatite from the core of the Bação dome has peak P–T conditions of 5–7 kbar and 700–750 °C and a published age of ca. 2730 Ma based on U–Pb ages of zircon from leucosomes, suggesting that this age represents the migmatisation event. A fine-grained epidote-albite-titanite assemblage overprints the coarse-grained clinopyroxene and amphibole, giving P–T conditions of 8–9 kbar and 550 °C with an associated titanite age of ca. 2050 Ma. A garnet-bearing amphibolite sample also from the core of the dome has peak P–T conditions of 7–8 kbar and 650–700 °C and texturally late titanite from this sample produces an age of ca. 2060 Ma. Three additional samples were collected from the edges of the dome. A garnet-gedrite bearing felsic schist produces peak P–T conditions of 8–9 kbar and 650–700 °C on a clockwise P–T path. An amphibolite dike, observed to cross-cut the felsic schist gives both zircon U–Pb ages of ca. 2775 Ma and again during the Transamazonian event. The most plausible explanation for this data is that dome-and-keel formation occurred in the Archean with migmatisation and high-temperature metamorphism occurring at this time. The Paleoproterozoic event is interpreted as a reaction of the dome-and-keel formation structures, with Paleoproterozoic keels crosscutting Archean keels and producing metamorphic aureoles. The high radiogenic heat production and the presence of dense sedimentary successions in Archean terranes make dome-and-keel provinces a uniquely Archean feature, but they are susceptible to reworking, resulting in an enigmatic record of formation.

© 2019, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The ongoing debate on the initiation of plate tectonics on Earth (Davies, 1992; Hamilton, 1998; Stern, 2005; Brown, 2006, 2007a, b).
and-keel provinces (e.g., the Barberton Greenstone belt and the East Pilbara Terrane of the Pilbara Craton, although both these regions also experienced later M-type doming), remain inconclusive and are still a matter of debate in the literature (Kisters et al., 2003; Van Kranendonk et al., 2007, 2014; Cutts et al., 2014, 2015; Brown et al., 2015; Nijman et al., 2017).

Several models try to explain the formation of the enigmatic B-type dome-and-keel structures. These include: 1) the aforementioned gravitationally driven, partial convective overturn (Anhaeusser et al., 1969; Hickman, 1984; Collins, 1989; Williams and Collins, 1990; Hipping, 1994; Sandiford et al., 2004; Van Kranendonk et al., 2004, 2007); 2) superimposed folding creating regional dome-and-keel interference patterns (Drake and Morgan, 1980; Dimroth et al., 1983; Myers and Watkins, 1985; Hudleston et al., 1988); and 3) up-warping or steepening of a regional extensional detachment, i.e. a metamorphic core complex (Bickle et al., 1980, 1983; Chemela et al., 1994; Kisters et al., 2003; Lana et al., 2010b).

The Quadrilátero Ferrífero (QF) mining district in the southern São Francisco craton of Brazil hosts a B-type dome-and-keel province. The basement consists of ca. 3200–2800 Ma granitoid-gneiss complexes and the keels are composed of 2900–2100 Ma supracrustal sequences. Dome formation is interpreted to have occurred at ca. 2050 Ma (Marshak et al., 1997; Alkmim and Marshak, 1998). This age determination is based on the depositional age of the youngest supracrustal sequence occurring in the keels at ca. 2125 Ma (the Sabara Group; Machado et al., 1996), as well as on a garnet-muscovite-whole rock Sm–Nd age of 2095 ± 65 Ma from the metamorphic aureole on the northern side of the Serra do Curral (Fig. 1; Marshak et al., 1997). However, several lines of evidence challenge the Paleoproterozoic formation of this dome-and-keel province: 1) the domes are mostly made up of gneisses however, poorly deformed granites are also abundant (Fig. 1). These are all Neoarchean with ages mostly spanning 2770–2700 Ma.

Figure 1. Regional map of the QF area showing the distribution of the basement domes and supracrustal rocks. Abbreviations: M – Mamona, Sa – Samambaia, SN – Souza-Noschese, granite plutons. The dashed black line indicates the originally defined area of the Quadrilátero Ferrífero (Dorr, 1969; Farina et al., 2016). The ages plotted on the figure are previously published U–Pb ages (in Ma, compiled from Machado et al., 1992; Machado and Camerino, 1992; Lana et al., 2013; Romano et al., 2013; Farina et al., 2015a) with squares indicating TTG ages, circles indicating potassic granitoid ages, and triangles being interpreted metamorphic ages.
Considering that plate tectonic processes were active in the late Archean, these rocks and structures present a unique opportunity to study the processes involved in the formation of dome-and-keel provinces and to understand why they are so common in Archean terrains. A greater understanding of the formation of dome-and-keel provinces will further the debate about the onset of plate tectonic processes in terms of whether these unique structures could be the result of particular plate tectonic processes, and the nature of processes that preceded plate tectonics.

The objectives of this study are to determine whether dome-and-keel formation in the QF happened in the Archean or Paleoproterozoic then use this information to interpret the tectonic evolution of the QF and compare to other dome-and-keel provinces. To achieve this we will investigate samples from the Bação dome complex in the central QF (Figs. 1 and 2) using a combination of U–Pb zircon and titanite geochronology and metamorphic phase equilibria.

Figure 2. Sketch map of the Bação dome showing main lithologies and sample localities (white squares). The black circles with ages in boxes indicate previously published U–Pb ages from the Bação dome (Lana et al., 2013; Romano et al., 2013; Farina et al., 2015). All ages are in Ma and ages marked with an ‘m’ were interpreted to be metamorphic while unmarked ages are magmatic (Farina et al., 2015a).

2. Regional geology

The São Francisco Craton in eastern Brazil is a large, well-exposed shield, surrounded by Neoproterozoic fold belts (Heilbron et al., 2017, Fig. 1). The basement in the northern part of the craton is separated into the Gavião, Jequió, Serrinha and Itabuna-Salvador-Curacã blocks. Each of these Archean to Paleoproterozoic blocks is bounded by major ca. 2100 Ma sutures zones (Teixeira and Figueredo, 1991; Barbosa and Sabate, 2004; Aguilar et al., 2017). To the south, the craton consists of amphibolite facies granitoid gneiss complexes (e.g. Bonfim, Belo Horizonte, Bação, Santa Bárbara and Caeté) and polydeformed, low-grade Archean to Proterozoic supracrustal sequences.

The Quadrilátero Ferrífero (QF) is in the southern portion of the craton, bordered to the east by the Neoproterozoic Araquã Belt and to the south by the Paleoproterozoic Mineiro Belt (Fig. 1). Folds and thrusts in the region are represented by a NE-orientation in the northemmost section of the QF, whereas in the south, the regional structures are NS and E–W trending. This pattern results from the superposition of two major tectonic episodes: the Rachian 2100–2000 Ma Transamazonian contraction and extension, as well as the Ediacaran-Cambrian Brasiliano orogeny (Marshak et al., 1997; Alkmim and Marshak, 1998; Farina et al., 2016; Aguilar et al., 2017; Alkmim and Teixera, 2017).

The region has two major lithostratigraphic units which are arranged in a distinctive structural architecture (Chemela et al., 1994; Marshak et al., 1997; Alkmim and Marshak, 1998; Alkmim and Martins-Neto, 2012). The Archean granitoid–gneiss complexes are exposed in the core of domal structures such as the Bação, Belo Horizonte, Caeté, Santa Bárbara and Bonfim domes (Fig. 1). The domes expose three main groups of rocks: 1) fine-grained banded orthogneiss intruded by 2) leucogranites and aplite/pegmatite veins and dikes; and by 3) medium-coarse frozen, mostly weakly foliated granites.

The banded gneisses alternate between leucocratic and mesocratic bands varying in width from 2 mm to 10 cm and define a penetrative amphibolite facies foliation. A small proportion of gneisses correspond to non-foliated migmatites (Farina et al., 2015a), showing folded sheets and pods of leucogranites.

Geochemistry indicates that the banded gneisses are medium-K and have a similar composition to Archean Tonalite-Trondhjemite-Granodiorite (TTG) series rocks (Farina et al., 2015a; Albert et al., 2016). The crystallization ages of these rocks fall into three groups named Santa Bárbara (ca. 3220–3200 Ma, only poorly preserved in the Santa Bárbara dome), Rio dos Velhas I (ca. 2930–2850 Ma) and Rio dos Velhas II (ca. 2800–2760 Ma; Lana et al., 2013). The leucocratic dikes, local migmatisation and age of the amphibolite facies foliation are dated at ca. 2770 Ma with many magmatic zircons that give Rio das Velhas I crystallization ages having a metamorphic rim that gives a Rio das Velhas II age (Lana et al., 2013; Farina et al., 2016). Two weakly foliated plutons (the Caeté and Samambaia plutons) also give an age of 2770 Ma (Machado and Carneiro, 1992; Machado et al., 1992; Noce et al., 2005).

The gneisses are intruded by multiple leucogranite sheets (cm to meter scale), which vary from subparallel to the gneissosity to younger felsic/pegmatitic dikes that crosscut the gneissosity (Lana et al., 2013). Granitic rocks form large batholiths (i.e. Mamon batholith; Fig. 1) as well as decimetre to meter scale domains or stocks intruded into or closely associated with the banded gneiss. The granites generally only preserve a weak foliation, often showing complex intermingling gneiss-granite structures, domains of granite intruding into the gneiss and xenoliths of banded gneiss hosted within granite. This widespread granitic magmatism occurred in the QF between 2750–2680 Ma with the emplacement of slightly to non-foliated granites as large batholiths (i.e., Mamon; Fig. 1; Romano et al., 2013) to small leucogranitic veins and dikes.

Geochronologically, these granites are high-K, and this event is considered to mark the stabilization of the craton (Romano et al., 2013).

The supracrustal sequences that form the keels between the Archean granitoid–gneiss dome complexes are separated into three sequences: 1) the Rio dos Velhas Supergrupo (ca. 2900–2730 Ma); 2) the Minas Supergrupo (ca. 2600–2100 Ma); and 3) the Itacolomi Group (ca. 2100–2000 Ma). The Itacolomi Group is interpreted to post-date keel formation.
The Rio das Velhas Supergroup is divided into the Nova Lima and Maquiné Groups. The Nova Lima Group consists of massive komatiites to pillowed komatiitic basalts which are intercalated with chemical carbonaceous sediments, consistent with a submarine environment (Schrank et al., 1990). This was followed by submarine deposition of pelite, banded iron formation and subordinate chert, which are in turn capped by volcanioclastic sequences of conglomerate-greywacke, sandstone-greywacke and pelitic greywacke. Three volcanioclastic greywackes intercalated within the Nova Lima Group give ages of 2792 ± 7 Ma and 2751 ± 9 Ma (Machado et al., 1992, 1996; Noce et al., 2005). The 2000 m thick Maquiné Group unconformably overlies the Nova Lima Group. This unit consists of clastic fluvial and marine sediments with the base of the unit considered a flysch to molasse type sequence, which becomes more quartz rich and conglomeritic toward the top (Dorr; 1969). The Maquiné Group has a unimodal source region (2780–2770 Ma) and a maximum deposition age of ca. 2730 Ma. This suggests that deposition occurred during or immediately after a mountain building event (Moreira et al., 2016).

The Minas Supergroup was deposited unconformably on top of the Rio das Velhas Supergroup and the granitoid gneiss terrain (Fig. 1). The base of the supergroup consists of alluvial sandstones, conglomerates and shales that grade upward into coastal marine pelites (Caraça Group; Dorr; 1969; Renger et al., 1995; Alkmim and Martins-Neto, 2012). U–Pb zircon data suggests that these early units were derived predominantly from erosion of TTG and potassic granites with a maximum deposition age of ca. 2600 Ma (Machado et al., 1996; Hartmann et al., 2006; Martínez Dópico et al., 2017). Following the shallow marine sediments, a major marine transgression occurred resulting in a period of chemical sediment precipitation, leading to the accumulation of the marker bed of the QF, the Lake Superior-type Caúé banded iron formation (in the Itabira Group). This was followed by stromatolite-rich carbonates, marine sandstones and pelites that also record U–Pb zircon ages consistent with a provenance from the QF basement (Piracicaba Group). The final unit of the Minas Supergroup, the Sabará Group, consists of a thick pile of turbidites, lithic conglomerates and diamicticites that are chiefly derived from ca. 2100 Ma sources. This syn-orogenic deposition represents the closure of the Minas Basin and has a maximum deposition age of 2121 Ma (Dorr, 1969; Renger et al., 1995; Machado et al., 1996; Martínez Dópico et al., 2017).

The Itacolomi Group is separated from the Minas Supergroup by a regional unconformity and consists of an up to 2000 m thick pile of alluvial sediments (impure metasandstones, metaglomerates and minor phyllites). While the Minas Supergroup is portrayed as a passive margin to syn-orogenic sequence, the Itacolomi Group is thought to be an intermontane molasse accumulated during the collapse phase of the Rhaycian orogeny (Marshak et al., 1992; Alkmim and Marshak, 1998; Alkmim and Martins-Neto, 2012). Zircon age determination from this unit by Machado et al. (1996; Pb–Pb) and Hartmann et al. (2006; U–Pb) produce different results with maximum depositional ages of ca. 2060 Ma and ca. 2140 Ma respectively.

3. Dome-and-keel formation and 2000 Ma metamorphism

As previously mentioned, the map/structural pattern of the QF (Fig. 1) is marked by keels of supraclastic cover rocks surrounding domes of Archean granitoid/gneisses. The strata in the keels are characterized by a lateral continuity over large (>100 km) distances, and their younging directions often point away from the domes. In contrast to a number of Archean dome-and-keel provinces, in which formation is commonly associated with intense plutonism in and around the domes, the keels of the QF expose supracrustal strata that are significantly younger than the gneisses and granitoids in the adjacent domes (Machado et al., 1992; Machado et al., 1992, 1996; Teixeira et al., 1996; Lana et al., 2013; Romano et al., 2013; Farina et al., 2015a). The QF keels contain the 2900–2600 Ma Rio das Velhas greenstone belt succession and the Paleoproterozoic Minas strata, for which the uppermost supracrustal unit (Machado et al., 1996) of the folded sequence pinpoints the maximum age for the doming event at ca. 2125 Ma. The contact between the supracrustals and granite-gneiss domes is described as strongly sheared with a dip away from the centers of the domes. Next to these contacts, the supracrustal assemblages are severely thinned or missing (Marshak et al., 1992). Regional constraints indicate that Minas keels appear to crosscut Rio das Velhas keels, suggesting that Paleoproterozoic dome-and-keel structures of the Quadrilátero Ferrífero partially reactivated a pre-existing Archean M-type dome-and-keel province (Marshak et al., 1997; Alkmim and Marshak, 1998). This is seen most clearly where the Serra do Curral Homocline meets the Mateus Leme Syncline (see Figs. 1 and 6 of Alkmim and Marshak, 1998). As shown in Fig. 1, most keels represent first order synclines (e.g. the Moeda, Dom Bosco, Pitangui-Petí, Mateus Leme synclines), and a large homocline (Serra do Curral homocline), some of them bounded by normal shear zones (Alkmim and Marshak, 1999).

Hertz (1978) identified 1–4 km-wide metamorphic aureoles around the granitic domes with increasing pressure-temperature (P–T) conditions from the centers of the synclines towards the crystalline domes. The aureoles are characterized by progressive growth of biotite, garnet, staurolite, cordierite, and sillimanite. Garnet-bearing and staurolite-bearing schists were observed in the Nova Lima, the Piracicaba, and Sabará Groups. Outside of the metamorphic aureoles, the strata contain low green schist facies assemblages with chlorite, muscovite, plagioclase and quartz (Hertz, 1978). Detailed petrographic observations in a restricted area in the north-western portion of the QF (Jordt-Evangelista et al., 1992; also see Fig. 6 of Alkmim and Marshak, 1998) documented staurolite and kyanite that are progressively replaced by andalusite and cordierite towards the Belo Horizonte Dome. Temperatures close to 625 °C at pressures of around 3 kbar were estimated according to reactions involving kyanite + staurolite + quartz assemblages giving way to cordierite + sillimanite assemblages (Jordt-Evangelista et al., 1992). The metamorphism was linked to the dome exhumation and metamorphic zones were interpreted as a product of conductive heat emanating from hot, exhumed basement gneisses (Jordt-Evangelista et al., 1992; Marshak et al., 1992). Porphyroblasts of staurolite and garnet record syn-kinematic growth, and are marked by oriented inclusions that are slightly rotated with respect to the rock foliation. Some garnet porphyroblasts record sigmoidal inclusion trails that are continuous with a weakly curved foliation in the matrix and seem to preserve pressure shadows, indicating that shearing continued after syn-kinematic growth (Jordt-Evangelista et al., 1992; Marshak et al., 1992, 1997; Hippett and Davis, 2000). Structural observations around the domes indicate a single pervasive shear foliation subparallel to, or at a low angle to bedding of the supracrustal strata adjacent to the domes. Basement-dome-up, supracrustal-rock-down sense of shear in the synclinal limbs is indicated by a number of meso- and microstructural shear sense indicators such as S–C fabrics, asymmetric conglomerate pebbles, and microfolds (Marshak et al., 1992; Chemale et al., 1994; Hippett, 1994; Alkmim and Marshak, 1998; Hippett and Davis, 2000). Steep, down-dip preferred orientations of metamorphic minerals in shear planes are often associated with the asymmetric indicators and are consistent with porphyroblast growth (Hippett and Davis, 2000). Microfolds, rotated porphyroblasts and S–C fabrics are equally found in the basement dome rocks and make a set of undisputed kinematic evidence that the doming occurred in solid
state, along normal shear zones under amphibolite facies conditions.

Recent monazite and titanite ages from amphibolitic and leucocratic dikes, granitoids and gneisses in the Bação, Bonfim and Belo Horizonte complexes give ages ranging between 2100–1950 Ma, suggesting that the Archean crust was affected by a long-lived metamorphic event representing the closure of the Minas Basin and the amalgamation of the Archean nuclei of the São Francisco and Congo cratons (Aguilar et al., 2017). Dome-and-keel formation is interpreted to have occurred during the extensional collapse period of this orogenic event (Marshak et al., 1997; Alkmim and Marshak, 1998).

4. The Bação complex

The Bação complex is a 20 km-diameter granitoid gneiss dome surrounded by mafic to intermediate greenschist and pelitic amphibolite facies schists (muscovite + epidote, chlorite + amphibole, staurolite) of the Nova Lima Group (Fig. 2).

The dome contains banded gneisses and migmatites around the margins and relatively homogenous granitoids in the core (Hipper, 1994; Lana et al., 2013; Romano et al., 2013). The banded gneisses are characterized by tightly-folded biotite-rich melanocratic, and biotite-free leucocratic bands (Fig. 3A), which are vertical to subvertical and record a concentric trend parallel to the edge of the dome, reflecting the elliptical shape of the dome (e.g. Fig. 2). Large outcrops of banded gneiss are also observed in the inner part of the dome, but often show gradual transition into small, non-foliated, anatectic granites.

Geochemistry on the banded gneisses indicates two age groups for crystallization, with zircon cores giving ages of ca. 2925–2900 Ma and ca. 2795 Ma (Fig. 2; Lana et al., 2013; Romano et al., 2013; Farina et al., 2015a). Zircons of the older gneisses also commonly have structureless rims which give ages of ca. 2775 Ma. Both banded gneiss and granitoids are cross-cut by numerous meter-wide amphibolite dikes that are often boudinaged and rotated into parallelism to the main gneissic banding (Fig. 3B and C). Many of these dikes have been dated at ca. 2775 Ma or are

Figure 3. Field photos. (A) Banded gneisses with tightly folded melanocratic and leucocratic bands. (B) Gneisses are crosscut by metre-scale dikes. (C) Gneisses are in contact with a thin felsic schist. (D) Clinopyroxene-bearing migmatite occurring in one of the amphibolite dikes. Coin is 2 cm in diameter. (E) Garnet porphyroblasts flattened along the foliation plane. (F) Macroscopic asymmetric fold.
Figure 4. Photomicrographs, abbreviations from Kretz (1983). Photomicrographs showing the mineral assemblage in sample MT3 (A, B), sample V-1 (C, D), sample D04 (E, F), and sample FQ15 (G, H).
Figure 5. (A) Garnet compositional profile from sample MT3 from rim to rim of the garnet grain. (B) Garnet compositional profile from sample V-1 from rim to rim of the garnet grain. (C) Garnet compositional profile from sample D04. The location of the profile is given by the white line in Fig. 5D. (D) Elemental maps of garnet from sample D04, the white line gives the garnet compositional profile in Fig. 5C.

Please cite this article as: Cutts, K et al., Metamorphism and exhumation of basement gneiss domes in the Quadrilátero Ferrífero: Two stage dome-and-keel evolution?, Geoscience Frontiers, https://doi.org/10.1016/j.gsf.2019.02.009
crosscut by ca. 2700 Ma granitic leucosomes (Lana et al., 2013; Romano et al., 2013; Farina et al., 2015a). Some of these dikes record amphibolite-facies metamorphic assemblages such as garnet + hornblende + plagioclase + quartz + ilmenite + titanite, with one instance showing clinopyroxene-bearing partial melting (Fig. 3D).

Two leucogranitic-pegmatite dikes in the southern part of the Bação dome yielded Paleoproterozoic U–Pb monazite ages (2030 Ma and 2022 Ma; Machado et al., 1992; Farina et al., 2016). Titanite and monazite ages from the Bação complex also give ages of ca. 2100–1940 Ma (Machado et al., 1992; Noce et al., 1998; Aguilar et al., 2017). These ages are interpreted to be due to a long-lived metamorphic event that affected the southern São Francisco Craton and the adjacent Mineiro and southern Araçuaí belts (Cutts et al., 2018; Moreira et al., 2018).

The contact between the granitoid-gneisses of the dome and the Nova Lima Group is marked by a thin, discontinuous unit (Fig. 2) of biotite-gedrite-garnet felsic schist (Fig. 3C and E) which locally contains boudins of foliated, fine-grained amphibolite consisting of amphibole-biotite-epidote-garnet. The boudins are oriented parallel to the foliation but have discordant contacts indicating that they are likely intrusive into the sequence. Due to their difference in metamorphic grade and different composition, the felsic schist is not considered to be part of the Nova Lima Group but is thought to be a supracrustal rock associated with the basement complex known as the Catarina Mendes Unit (Lima da Silva, 2005). At the contact between the Catarina Mendes Unit and the basement domes the schists record a mylonitic fabric that is continuous with the mylonitic fabric in the domes. This mylonitic fabric is interpreted as part of the peripheral normal shear zones that affect the basement domes in the QF. Macroscopic asymmetric folds (Fig. 3F), rotated feldspar clasts and down-dip to oblique mineral lineation all indicate that the shearing developed during exhumation of the dome.

5. Sample locations

This study utilizes five samples from the Bação dome. Few samples are available from the QF greenstone belt that record suitable metamorphic assemblages for metamorphic petrology. This is mostly because of intense weathering conditions and vegetation cover in the southeastern part of Brazil. The best preserved rocks for this type of study were felsic schists and mafic rocks that were preferentially preserved around the contacts with the Bação dome and as meter-wide dikes exposed in quarries of this dome. It is worth noting however, the contacts with other basement domes expose similar rock types, but were found to be too weathered for further petrological investigation. Samples were obtained from two

Figure 6. (A) Calculated P–T pseudosection for sample MT3 based on the whole rock composition, which is given at the top of the diagram in moles. The diagram was created using the Theriax-Domino software package (De Capitani and Petrakakis, 2010).
locations, the dome edge (the Catarina Mendes Unit) and the core of the dome, to see if there is any variation in P–T conditions experienced throughout the dome. Samples were also selected based on their suitability for P–T modeling. In particular, samples that contained garnet were targeted. The selected samples are: 1) sample MT3 is a garnet-gedrite schist collected from the Catarina Mendes Unit on the edge of the Bação dome; 2) sample V-1 is a garnet-bearing amphibolite obtained from a mafic boudin within the Catarina Mendes Unit; 3) sample CO3 is an amphibolite dike which crosscuts the Catarina Mendes Unit; 4) sample D04 is a garnet-bearing amphibolite dike from the core of the Bação dome; and 5) sample FQ15 is a migmatized amphibolite dike also from the core of the Bação dome (Fig. 2). Geochronology and phase equilibria modeling was conducted on samples MT3, V-1 and D04. Sample CO3 did not contain garnet and was only used for geochronology. Sample FQ15 has been previously dated (ca. 2066 Ma, titanite dated by Aguilar et al. (2017)) and is only used for phase equilibria modeling here.

6. Analytical methods

The petrographic study of samples MT3, D04, FQ15 and V-1 was investigated prior to the P–T modeling. Petrography was carried out using the Zeiss AXIO Scope. A1 with an attached Zeiss Axioscam MRc5 to collect images.

Mineral compositional analysis was performed using a JEOL scanning electron microscope at the Universidade Federal de Ouro Preto. Textures were studied in backscattered electron (BSE) mode and phase compositions quantified by energy dispersive X-ray spectroscopy (EDS) analysis using an Oxford Instrument detector and Oxford software. Beam conditions during the quantitative analyses were 20 kV and approximately 1.5 nA, with a working distance of 13 mm and a specimen beam current of ~4.0 nA. X-ray counts with the set-up used were typically 7000 cps. The counting time was 50 s live-time. Analyses were quantified using natural mineral standards, and mineral chemical compositions were recalculated to mineral stoichiometries to obtain resultant mineral structural formulae. Standards were analyzed during each analytical session and these analyses indicate that for oxides that make up more than 1 wt.% of the mineral composition, relative errors are <5%. Additionally, in each sample, typically 100–150 mineral spots were analyzed on 3–5 distinct sites, allowing for a comprehensive characterization of mineral chemistry. Fe$_2$O$_3$ is calculated for garnet, epidote and ilmenite using the method of Droop (1987). Amphibole analyses were recalculated using the Probe-Amph spreadsheet (Tindle and Webb, 1994). Representative mineral analyses from each sample are included in the supplementary information (Supplementary Appendix 1).

Pressure-temperature pseudosections were calculated for samples using the software package Theria/Domino (De Capitani and Petrakakis, 2010) and the database of Holland and Powell (1998). The geologically realistic system MnNCKFMASHTO (Mn$_2$O$_3$–Na$_2$O–CaO–K$_2$O–FeO–MgO–Al$_2$O$_3$–SiO$_2$–H$_2$O–TiO$_2$–Fe$_2$O$_3$) was used for sample MT3. Samples D04 and V-1 were modeled using the geologically realistic system MnNCKFMASHTO and Mn$_2$O$_3$–Na$_2$O–CaO–FeO–MgO–Al$_2$O$_3$–SiO$_2$–H$_2$O–TiO$_2$–Fe$_2$O$_3$. Sample FQ15 was modeled using the geologically realistic system NCKFMASHTO. The bulk composition of samples V-1, FQ15 and MT3 was determined by whole rock XRF analysis due to the presence of porphyroblasts. For sample D04, the bulk composition was obtained by calculation from the average composition of each mineral within an area, combined with the mineral proportions (e.g. Clarke et al., 2001; Kelsey, 2008). The fine grain size and layer scale compositional variability make this the best method for obtaining a phase diagram which relates to the thin-section of sample D04. The fine-grained assemblage in sample FQ15 was also modeled using a bulk composition obtained by calculation from mineral modes and compositions within an area dominated by this assemblage. The determined composition for samples D04 and FQ15 are given in Table 1 while a phase diagram using the XRF composition for sample D04 is given in the supplementary information (Supplementary Appendix 2). K$_2$O was not included in the modeling for samples D04 and V-1 because it can over stabilize biotite. This occurs because the amphibolites models used do not consider K$_2$O while amphibole grains in the sample contain up to 0.5 wt.% K$_2$O. Thus the modeling adds biotite to every assemblage to take up the excess K$_2$O.

For samples MT3, V-1 and D04, the mineral assemblages and field observations indicate peak metamorphic conditions to be sub-solidus. For this reason, H$_2$O was set in excess. Compositional isopleths for garnet (X_{Alm}, X_{Sp}, X_{Crs}, and X_{Py} and the values used are given in Table 2) and plagioclase (X_{An}) were calculated to aid with interpretation of the P–T path. The proportion of Fe$_2$O$_3$ to FeO has been estimated by considering the abundance of Fe$^{3+}$ bearing minerals and modal constraints in the context of recalculated EDS analyses (using the methods of Droop (1987) and Tindle and Webb (1994)). A T-MFe$_2$O$_3$ diagram was then calculated to determine if these constraints were appropriate. In the modeling of sample D04, the amount of Fe$_2$O$_3$ was decreased to remove magnetite from the retrograde assemblage. The percentage of total iron set as Fe$^{3+}$ for samples MT3, V-1, D04, FQ15 (XRF) and FQ15 (calc) was 5%, 5%, 20.5%, 10% and 36% respectively. The T-MFe$_2$O$_3$ sections are included in the supplementary information (Supplementary Appendix 3).

The following mixing models and notations were applied: garnet, White et al. (2005); plagioclase, Holland and Powell (2003); biotite, White et al. (2005); white mica, Coggon and Holland (2002); ilmenite, White et al. (2005); chlorite, a combination of Mahar et al. (1997) and Holland and Powell (1998); epidote, Holland and Powell (1998); talc, Holland and Powell (1998); clinopyroxene, Green et al. (2007); magnesite-spinel, White et al. (2002); silicate melt, White et al. (2007); orthopyroxene, White et al. (2002). Rutile and quartz are also included as pure phases.

Zircon and titanite grains were separated for samples MT3, V-1, D04 and CO3. Samples MT3 and V-1 contained zircon and titanite, whereas CO3 contained only zircon, and D04 contained only titanite. Grains were mounted in epoxy and imaged using cathodoluminescence (CL) and back-scattered electron (BSE) imaging on a Jeol JSM-6510 scanning electron microscope with attached Centaurus CL detector. Titanite was also analyzed in situ from a thin section of sample D04. Zircon and titanite grains were analyzed with a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) system consisting of a Cetac 213 laser (with a tear drop shaped low volume sample cell) and Thermo Finnigan Element 2 ICP-MS, hosted at the Universidade Federal de Ouro Preto. The data were acquired with single spot analyses employing 20 and 30 μm spot sizes for zircon and titanite respectively. Data acquisition was comprised of 20 s for background and 20 s of signal collection with 10 s wash out. The laser was operated at a repetition rate of 10 Hz and a measured energy output of 10%, corresponding to calculated laser energy of ~0.02 mJ/pulse. Each individual spot analysis acquired counts on masses 202, 204, 206, 207, 208, 232, 235 and 238 during 40 runs, using electrostatic scanning (E-scan). The analytical run (~1 s) integrates data of 20 individual intensity determinations (“passes”) of each isotope. Each pass consists of four individual intensity measurements across the flat top peaks of each mass, with the magnetic field resting at mass 204Hg. The time-resolved raw data were exported from the ICP-MS in ASCII format and processed off-line with an Excel® spreadsheet (Gerdes and Zeh, 2006) and the Isosplot/Ex 3.0 software (Ludwig, 2003) was used to perform isochron analysis and isochron ages (Table 1).
used for final age calculations and the plotting of results. The spreadsheet corrects for the respective background and subsequently the $^{206}\text{Pb}/^{238}\text{U}$ and $^{208}\text{Pb}/^{232}\text{U}$ signals for common Pb using the background and interference corrected ^{204}Pb signal and a model Pb composition (Stacey and Kramers, 1975). Primary reference zircon M127 (TIMS normalization data $^{206}\text{Pb}/^{238}\text{U} = 526.8 \pm 0.2$ Ma, $^{207}\text{Pb}/^{206}\text{Pb} = 1.5244 \pm 0.01$ Ma and $^{207}\text{Pb}/^{206}\text{Pb} = 5248.4 \pm 0.1$ Ma; Mattinson, 2010) and titanite BLR-1 (TIMS normalization data $^{206}\text{Pb}/^{238}\text{U} = 1049.9 \pm 1.3$ Ma, $^{208}\text{Pb}/^{232}\text{U} = 10471.4 \pm 0.4$ Ma and $^{207}\text{Pb}/^{206}\text{Pb} = 1048.0 \pm 0.7$ Ma; Aleinikoff et al., 2007; Mazdab, 2009) were used for external corrections of inter-element fractionation and instrumental mass discrimination. The primary standards were analyzed under exactly the same conditions as the samples. A drift correction was applied by interpolation over a sequence of 12–20 standards (for 30–50 unknowns). Accuracy was checked using secondary standards GJ-1 (ca. 602 Ma; Jackson et al., 2004) and Plešovice (ca. 337 Ma; Sláma et al., 2008) for zircon, and the Khan titanite standard (ca. 520 Ma; Kinny et al., 1994; Heaman, 2009). Over the duration of the study, the average normalized ages for M127 were $^{207}\text{Pb}/^{206}\text{Pb} = 525.7 \pm 5.4$ Ma, $^{208}\text{Pb}/^{232}\text{U} = 525.4 \pm 0.8$ Ma and $^{207}\text{Pb}/^{235}\text{U} = 525.4 \pm 0.9$ Ma $(n = 85)$ and the weighted average $^{206}\text{Pb}/^{238}\text{U}$ age for GJ-1 and Plešovice were 604 ± 2 Ma and 338 ± 2 Ma respectively. The titanite BLR-1 standard gave normalization ages of $^{208}\text{Pb}/^{238}\text{U} = 1050 \pm 3$ Ma, $^{207}\text{Pb}/^{235}\text{U} = 1049 \pm 3$ Ma and $^{206}\text{Pb}/^{238}\text{U} = 1049 \pm 3$ Ma $(n = 22)$ and the weighted average $^{206}\text{Pb}/^{238}\text{U}$ age for Khan was 515 ± 2 Ma. All data is given in Supplementary Table 1.

7. Results

7.1. Sample petrography and mineral chemistry

7.1.1. Sample MT3 – garnet-gedrite schist

Sample MT3 contains garnet, gedrite, biotite, ilmenite, plagioclase, quartz and minor chlorite, apatite, tourmaline and rutile (Fig. 4A and B). Garnet grains are large (up to 1 cm in size) and appear to be zoned at least in their inclusion abundance. Garnet contains inclusions of quartz, plagioclase, ilmenite, biotite, rutile and chlorite. Chlorite occurs on garnet rims and cracks within garnet grains (Fig. 4B). More abundant, fine inclusions of ilmenite occur in the garnet cores and coarser inclusions of quartz occur in the rim or the boundary between cores and rims. Rutile is found almost exclusively as inclusions within garnet and gedrite while ilmenite occurs as inclusions in garnet and gedrite cores, as well as in the matrix (Fig. 4A and B). Gedrite grains are up to 5 mm in size and contain inclusions of quartz, ilmenite and rutile. On cracks and

| Table 1 |

Table 1

Bulk composition calculations.

Table 2

Garnet compositions used for isopleths.
grain edges, gedrite is replaced by anthophyllite and/or chlorite (Fig. 4A). Gedrite, biotite and ilmenite define the foliation of the sample. However, in some areas of the sample, fine-grained biotite is randomly oriented and perhaps grew at the expense of garnet or gedrite (Fig. 4B). Plagioclase is up to 2 mm in size and is sericitized on grain rims and along cracks.

Garnet grains in sample MT3 have a complex zonation (Fig. 5A). Based on changes in slope in the XGrS, XAlm and XPyr profiles, the garnet grains have been split into two zones (Fig. 5A). The grain core is zone 1 and the grain rim is zone 2. In zone 1 XSp = (Mn/(Fe + Mg + Mn + Ca)) is high in the core (0.04) and drops toward the edge of the zone (to 0.02). In zone 2, at about 1 mm from the rim, XSp drops to 0.01 and then increases again up to 0.02 on the edge of the grain. In zone 1, XGrS = (Ca/(Fe + Mg + Mn + Ca)) is high in the core (0.11) then drops toward the edge of the zone (to 0.07). In zone 2, XGrS is high again (0.1) before dropping to 0.08 on the very edge of the grain. In zone 1 XPyr = (Mg/(Fe + Mg + Mn + Ca)) gradually increases from the core (0.11–0.13). In zone 2, XPyr is ca. 0.17 until about 500 μm from the edge of the grain, where it increases abruptly to 0.25. In zone 1, XAlm = (Fe/(Fe + Mg + Mn + Ca)) also gradually increases from 0.73 in the core up to 0.77. In zone 2, XAlm is ca. 0.73 until 500 μm from the grain rim when it drops abruptly to 0.64. Of the two amphiboles in sample MT3, gedrite has an XGrs = (Mg/(Fe + Mg + Mn + Ca)) of 0.51–0.59, whereas anthophyllite has an XGrS of 0.55–0.6. Biotite in sample MT3 has Xm of 0.67–0.69 and TiO₂ contents of 1.42–1.86 wt.% Matrix plagioclase grains in sample MT3 have XAb = (Na/(Na + Ca + K)) values of 0.61–0.73. Cores generally have no zonation (0.62–0.64) while higher values are found on cracks and grain rims. Plagioclase grains which occur as inclusions within garnet have XAb values of 0.57–0.58. Plagioclase grains intergrown with chlorite on garnet rims and on cracks within garnet have XAb of 0.71–0.77. Ilmenite in sample MT3 contains 0–0.35 wt.% MnO, 0–0.73 wt.% MgO and recalculated analyses contain no detectable Fe₂O₃. In sample MT3, chlorite has Xm of 0.62–0.71.

7.1.2. Sample V-1 – garnet-bearing amphibolite

This sample contains garnet, hornblende, plagioclase, quartz, cummingtonite and ilmenite with minor biotite, muscovite, apatite and chlorite (Fig. 4C and D).

Garnet in this sample is sparse but large (up to 1 cm) and poikiloblastic with inclusions of quartz, ilmenite, hornblende, biotite and plagioclase (Fig. 4C). Garnet contains S-shaped inclusion trails which are not continuous with the matrix foliation. Biotite is rare and occurs only on cracks within and on the edges of garnet (Fig. 4C). Garnet has irregular grain edges and hornblende grains next to garnet are coarser (up to 1 mm in size; Fig. 4C). Hornblende has straight contacts with garnet while cummingtonite is not observed in contact with garnet. The matrix of the sample is reasonably equigranular with hornblende and quartz being around 400 μm while plagioclase and cummingtonite are around 200 μm and ilmenite is up to 100 μm. Plagioclase, ilmenite and hornblende grains are elongate and define the matrix foliation. Cummingtonite grains are associated with hornblende and are euhedral and equigranular (Fig. 4D). In some cases, hornblende is observed surrounding cummingtonite while in other cases cummingtonite seems to partially replace hornblende. In some regions of the matrix, both amphiboles are surrounded by fine-grained reaction rims, which contain plagioclase, epidote and white mica. In one instance, a grain of titanite was observed next to one of these textures on a crack in a hornblende grain. Minor chlorite occurs with biotite on cracks within garnet grains. Muscovite occurs in some matrix plagioclase grains. Garnet in sample V-1 is unzoned with Xm values of 0.64–0.73 (Fig. 5B). The rim values are slightly higher (0.66–0.70) than the

Please cite this article as: Cutts, K et al., Metamorphism and exhumation of basement gneiss domes in the Quadrilátero Ferrífero: Two stage dome-and-keel evolution?, Geoscience Frontiers, https://doi.org/10.1016/j.gsf.2019.02.009
occurs on the phase diagram at 5

typically classified as magmas of hornblende and epidote. Clinopyroxene grains are subhedral and up to 2 cm in size. Clinopyroxene contains inclusions of hornblende, quartz and ilmenite. Where hornblende inclusions occur on cracks in the grain, the inclusions are rimmed by actinolite with hornblende cores (Fig. 4H). Hornblende is subhedral and up to 1 cm in size. Hornblende defines the foliation of the sample and contains inclusions of quartz and ilmenite. Titanite and epidote commonly occur on cracks within hornblende or on the boundaries of hornblende grains. In these locations, hornblende is often rimmed with actinolite (Fig. 4G and H). Where clinopyroxene and hornblende have grain boundaries with plagioclase, symplectitic intergrowths (10—100 μm in size) of quartz and epidote occur. These intergrowths are frequently associated with actinolite, which appears to pseudomorph clinopyroxene or amphibole (Fig. 4G and H). Plagioclase is anhedral and up to 1 cm in size. Biotite is euhedral and forms narrow blades, cross-cutting the foliation. It can also occur as fine grains between amphibole grains (Fig. 4H).

Most amphibole in sample FQ15 is Fe-Mg-Ca amphibole and typically classified as magnesio-hornblende. These grains have X_Mg of 0.66—0.71 with no apparent compositional zonation. This type of amphibole also contains TiO₂ of 0.50—0.88 wt. % and Fe₂O₃ (recalculated) of 0—4.04 wt. %. The second amphibole is an Fe-Mg rich but Al-poor amphibole which is classified as actinolite. This has X_Mg of 0.79—0.86 with up to 1.89 wt. % Fe₂O₃. Plagioclase has X_AB of 0.76—0.96. The highest values occur on grain rims where fine-grained epidote occurs (0.80—0.96). The cores are generally unzoned (ca. 0.76—0.78). Clinopyroxene has high CaO content (22.0—24.5 wt. %), resulting in a wollastonite component close to 50 wt. % and Mg# varying from 0.75 to 0.83. Chemical traverses reveal core-to-rim homogeneous composition. Epidote has variable pustacite contents (X_P = Fe³⁺/(Fe³⁺ + Al³⁺)) with values ranging from 0.14 to 0.38. High values come exclusively from grain cores.

7.2. Metamorphic petrology

7.2.1. Sample MT3-garnet-gedrite schist

This sample contains an interpreted peak assemblage of garnet + gedrite + plagioclase + quartz + rutile + titanite. This occurs on the phase diagram at 5—10 kbar and 625—700 °C (field outlined in bold, Fig. 6A). This field is bound by cordierite on the low pressure side, kyanite at high pressure and melt at high temperature. Based on the mineral assemblage evolution, with early garnet and gedrite containing inclusions of chlorite and ilmenite followed by rutile and the absence of matrix chlorite (except as a retrograde feature), an up-pressure and temperature P-T path can be defined. Since we have no inclusion relationships between garnet and gedrite, it is impossible to know which of these grew first so there is uncertainty in the slope of the path (Fig. 6A). Garnet and plagioclase compositional isopleths, and garnet isomode lines were calculated for the diagram. The maximum temperatures indicated by the location of the peak assemblage field of 600—700 °C imply that garnet compositions may have been partially re-equilibrated. Since this P-T pseudo-section was calculated using the whole-rock composition, only the garnet core composition (zone 1) can be used to determine the P-T evolution (Palin et al., 2016). The position where the garnet core composition isopleths meet occurs near the garnet-in line (Fig. 6B). The change in X_Gr composition from core to rim of the garnet (from 0.11 to 0.07), as well as the decrease in X_Gp and increase in X_Py also indicate an up-pressure and temperature path (blue arrow, Fig. 6B). When the X_AB and garnet mode information is added, peak conditions of 8—9 kbar at 650—700 °C are indicated by the composition of plagioclase cores (the rims are affected by retrogression and indicate much higher values; Fig. 6C). The highest X_AB values of plagioclase in garnet are also consistent with the up-pressure and temperature path (Fig. 6C). The bend in the path is defined by the flat X_AB compositional profiles in plagioclase (a further increase in pressure would result in a change in composition, which is not observed) and the absence of melt in the sample. The retrograde segment of the path is defined by late chlorite, the presence of matrix ilmenite and absence of rutile, and the high X_AB values found on plagioclase rims and along grains cracks. Since these may have occurred in a different effective bulk composition, the retrograde path is poorly defined (Fig. 6C). The interpreted P-T path is a clock-wise path resulting in peak conditions of 650—700 °C and 8—9 kbar with the retrograde path passing through the rutile absent field and then into the chlorite bearing field (Fig. 6).

7.2.2. Sample V-1 — garnet-bearing amphibolite

The interpreted peak assemblage for this sample is garnet + hornblende + cummingtonite + quartz + plagioclase + ilmenite, which occurs on the calculated phase diagram for this sample at 2—6 kbar and 550—720 °C (Fig. 7A). Camp (2) indicates that this field contains two clinoamphiboles, whereas the field above this contains only the aluminum-rich clinoamphibole (hornblende in this case; Fig. 7A). Garnet isopleths were plotted for this sample; however, the calculated X_Alm values are somewhat lower than those found in the sample (0.42—0.65 vs. 0.64—0.73). In contrast, the X_Gr values were higher on the diagram than the compositions found in the sample (0.20—0.46 vs. 0.14—0.16). However, the highest X_Alm values present on the diagram, along with the X_Py and X_Sps composition overlap within the peak field (Fig. 7B) indicating maximum conditions of 650—700 °C at 6 kbar. The P-T path is defined by: the addition of cummingtonite in the mineral assemblage (Fig. 7A); the position of the garnet composition (Fig. 7B); the position of the plagioclase composition (Fig. 7C); and the increase in garnet mode (Fig. 7C). The retrograde portion of the path is defined by the presence of late chlorite and the higher X_AB compositions of plagioclase, which occur on cracks within garnet grains. The fine-grained aggregate of epidote + white mica ± titanite that replace plagioclase occurs in a lower temperature field. This lower temperature assemblage may be part of the same P-T evolution; however, the whole-rock bulk composition of the sample is not appropriate for modeling these, or producing the observed rim composition of plagioclase, which is not present on the diagram.

Thus, although poorly constrained, this sample seems to record a near-isobaric P-T evolution culminating in peak conditions of 6 kbar and 650 °C (Fig. 7C).

7.2.3. Sample D04 – garnet-bearing amphibolite

The interpreted peak assemblage of this sample is garnet + hornblende + plagioclase + quartz + ilmenite which occurs on the calculated phase diagram at 6—10 kbar and 620—740 °C (Fig. 8A). The field below the peak field contains two clinoamphiboles, as indicated by Camp (2), whereas the interpreted peak field contains only the aluminum-rich clinoamphibole (hornblende in this case; Fig. 8A). As with previous samples, garnet isopleths were calculated and again X_Alm does not match between the P-T pseudosection and the sample. However, the highest X_Alm values present on the diagram and the X_Py, X_Gr and X_Sps compositions...
Figure 7. (A) Calculated P–T pseudosection for sample V-1 based on the whole rock composition that is given at the top of the diagram in moles. The diagram was created using the Theriak-Domino software package (De Capitani and Petrakakis, 2010) with measured in the sample, overlap in the low-pressure, high-temperature part of the peak field (Fig. 8B). The P–T path for this sample is defined by: 1) the change in mineral assemblage, this being the addition of garnet to the peak assemblage followed by the addition of cummingtonite that appears to be later than garnet (Fig. 8A); 2) the garnet composition, which overlaps the peak field at conditions of ca. 700 °C and 7 kbar (Fig. 8B); and 3) the change in plagioclase composition between core and rim, and the presence of plagioclase coronas on garnet rims (separating garnet from amphibole) that indicates decompression (Stowell and Stein, 2005, Fig. 8C).

Taken together, it appears that the sample experienced a clockwise P–T path with peak conditions of 7 kbar and 700 °C (Fig. 8C).

7.2.4. Sample FQ15 — migmatized amphibolite dike

This sample appears to contain a coarse-grained assemblage of hornblende + clinopyroxene + plagioclase + quartz + ilmenite + melt, based on the presence of large clinopyroxene grains within the felsic leucosomes present in the outcrop (Fig. 3D). Since the sample has melted, it is possible that some melt loss has occurred. Thus, in order to model the melting event, two diagrams were created using the XRF composition of the sample. The first (Fig. 9A) has H2O set such that the solidus is just hydrated. This diagram should indicate the P–T evolution of the sample prior to melting, and in the case that melt is retained. A second diagram with a dry solidus is presented in Fig. 9B. This presents a simplified scenario should melt have been lost from the system during the P–T evolution. In both diagrams the interpreted peak assemblage field occurs just above the solidus, at 5–8 kbar and 700 °C, and 3.5–7 kbar and 700–750 °C in Fig. 9A and B, respectively. It is constrained by garnet-in at higher pressures, the solidus at low temperature, and two-amphibole or orthopyroxene-bearing fields at higher temperatures (Fig. 9A and B). The P–T path presented in Fig. 9A is defined by the increase in mode of clinopyroxene.

On the rims of clinopyroxene and amphibole grains, where plagioclase is present, a fine-grained assemblage of epidote + actinolite + quartz + biotite + titanite + albitic plagioclase occurs (Fig. 4H). A third diagram was calculated using the composition of one of these domains in order to model the P–T conditions of formation. It is possible that these reactions were limited by the availability of H2O, i.e. they only occurred where H2O was present in the sample. For this reason, H2O was set such that it is present in most of the subsolidus fields (Fig. 9C). The interpreted
Figure 8. (A) Calculated P–T pseudosection for sample D04 based on a calculated composition, which is presented at the top of the diagram in moles. The diagram was created using the Theria-Domino software package (De Capitani and Petrakakis, 2010). A peak assemblage field of plagioclase + hornblende + clinopyroxene + actinolite + quartz + titanite + epidote + biotite occurs in this diagram at 4–9 kbar and 550–600 °C. This is quite a large pressure range so compositional isopleths of plagioclase were plotted to constrain the P–T position of the fine-grained assemblage. The field in blue on Fig. 9C indicates where plagioclase with $X_{Ab} > 0.8$ occurs and suggests peak P–T conditions of 8–9 kbar and 550 °C for the fine-grained assemblage. Fig. 9D shows a compilation of the P–T data from sample FQ15. The early coarse-grained assemblage has two fields (H_2O present and absent) and a poorly defined P–T path based on the increase in clinopyroxene mode (H_2O present). The retrograde portion of the path corresponds to the stability of two amphiboles. However, it is possible that the two amphiboles are not stable together but rather one is related to each P–T evolution (Fig. 9D).

7.3. U–Pb geochronology

7.3.1. Sample MT3 – garnet-bearing schist

This sample yielded a large amount of zircon and titanite grains. Zircons were relatively small ($< 150 \mu m$), pink transparent grains. Some grains preserve long prismatic shapes, but many are broken in half and show round terminations. CL images reveal poorly developed zoning (Fig. 10A). The grains are marked by structureless patchy interiors with bright and dark domains. A limited number of grains show core-rim relationships, i.e. structureless/patchy cores surrounded by oscillatory rims (Fig. 10A). LA-ICP-MS spots on the irregular cores gave $^{206}\text{Pb}/^{207}\text{Pb}$ ages of ca. $> 2500 \text{Ma}$ (Fig. 10A). Twelve out of fourteen spots (Supplementary Table 1) on the cores define a discordia line with an upper intercept age of 2999 ± 13 Ma (MSWD = 4.5; Fig. 10B). Analyses on the structureless grains, with both dark and bright domains, gave points that are discordant to slightly discordant (Fig. 10A and B). The most discordant points align along a recent, Pb-loss discordialine that intercepts the concordia at 2775 ± 6 Ma (MSWD = 2.2; Fig. 10B).

The core age of 2999 ± 13 Ma is interpreted as a detrital population while the younger age of 2775 ± 6 Ma is interpreted as metamorphic, however it cannot be excluded that this is an additional detrital population. Alternatively, if the origin of this unit is volcaniclastic, this age may reflect extrusion, giving the age of deposition.

Titanites for this sample are light brown, transparent and irregular in shape. Under BSE imaging they show simple or blocky to compositional zoning, with no inherited cores or other complicating structures. U–Pb results were obtained from a total of eleven titanite analyses on different grains (Supplementary Table 1). All data plot in a coherent group, with the variation in precision directly reflecting the with the internally consistent dataset of Holland and Powell (1998). The interpreted peak field has a bold outline while a grey arrow indicates the prograde P–T path based on the change in mineral assemblage of the sample. Mineral abbreviations as in Kretz (1983) except clinoamphibole which is abbreviated as Camp. Camp (2) indicates that two clinoamphiboles with different compositions are stable. (B) Compositional isopleths for X_{Ab} are given in grey. The grey fields are the composition of the garnet from sample D04. The bold black dashed field is the interpreted peak assemblage of the sample. The red arrow indicates the P–T evolution for the sample based on the change in mineral assemblage, whereas the blue arrow is the P–T evolution for the sample based on the location of the garnet composition as well as the change in mineral assemblage. (C) Garnet mode (in mol) for sample D04 are given in grey. The blue fields indicate the composition of plagioclase from this sample. The darker blue field shows the X_{Ab} composition of plagioclase cores, whereas the lighter blue field shows the X_{Ab} composition of plagioclase rims. The garnet core composition is shown by the thin dashed field. The field outlined in bold dashes indicates the position of the interpreted peak field. The dashed black arrow indicates the interpreted P–T path for this sample defined by the mineral assemblage evolution with the growth of garnet, late cummingtonite, as well as the composition of plagioclase and garnet. The P–T paths based on the mineral assemblage evolution and the change in garnet composition are also given in grey.

Please cite this article as: Cutts, K et al., Metamorphism and exhumation of basement gneiss domes in the Quadrilátero Ferrífero: Two stage dome-and-keel evolution?, Geoscience Frontiers, https://doi.org/10.1016/j.gsf.2019.02.009
wide range in U contents of between 19 and 50 ppm (Fig. 10C; Supplementary Table 1). As a group, the data (11 points) are concordant to slightly discordant but give a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 2037 ± 17 Ma (MSWD = 1.7, n = 11; Fig. 10C), whereas nine concordant grains give a concordia age of 2042 ± 11 Ma.

7.3.2. Sample V-1
e
garnet-bearing amphibolite

Sample V-1 of the fine-grained amphibolite contained zircon and titanite. Zircons display short prismatic to round shapes. All grains range in color from dark brown to slight translucent brown and are marked by bright luminescence under the CL detector.

Figure 9. (A) Calculated P–T pseudosection for sample FQ15 based on the whole-rock composition with the H$_2$O content set such that the solidus is just saturated with H$_2$O. The H$_2$O value used is given at the top of the diagram and the composition used for Fig. 9A and B is presented at the top of the diagram in moles. The diagram was created using the Theria-Domino software package (De Capitani and Petrakakis, 2010) with the internally consistent dataset of Holland and Powell (1998). The interpreted peak field has a bold outline. The thin, dashed line indicates clinopyroxene mode in vol.%, whereas the thick grey dashed arrow indicates the prograde P–T path based on the increase in clinopyroxene mode. (B) A second P–T pseudosection for sample FQ15, using the whole-rock composition but a lower H$_2$O value (assemblages below the solidus and the solidus are dry). The H$_2$O value used is given at the top of the diagram and otherwise the composition used is identical to that of Fig. 9A. The interpreted peak field has a bold outline. The thin, dashed line indicates clinopyroxene mode in vol.%. (C) Calculated P–T pseudosection for sample FQ15 based on a calculated composition, which is presented at the top of the diagram in moles. The diagram was created using the Theria-Domino software package (De Capitani and Petrakakis, 2010) with the internally consistent dataset of Holland and Powell (1998). The interpreted peak field has a bold outline. The blue field indicates the location of plagioclase compositions that correspond to those found within the fine-grained textures. Mineral abbreviations as in Kretz (1983) except clinoamphibole which is abbreviated as Camp. Camp (2) indicates that two clinoamphibole with different compositions are stable. (D) Compilation of the P–T data from sample FQ15.
Figure 10. (A) CL images of zircon grains from sample MT3. Blue spots indicate rim or structureless analyses while red spots indicate grain cores. 207Pb/206Pb ages are given for each of the spots. (B) Concordia plot of zircon from sample MT3. (C) Concordia plot of titanite from sample MT3, the concordia age does not include the two dashed analyses. The mean of the 206Pb/238U age included all analyses. (D) CL images of zircon grains from sample V1. 207Pb/206Pb ages are given for each of the spots. (E) Concordia plot of zircon from sample V1, the concordia age is for the analyses given in red. (F) Concordia plot of titanite from sample V1 with the concordia age and mean 206Pb/238U age of all analyses. (G) CL images of zircon from sample CO3. 207Pb/206Pb ages are given for each of the spots. (H) Concordia plot of zircon from sample CO3. (I) Concordia plot of titanite from sample D04 with the concordia age and mean 206Pb/238U age of all analyses. (J) BSE image of a portion of coarse-grained titanite in sample D04. (K) BSE image showing zonation in finer-grained titanite in sample D04. (L) Concordia plot of in situ titanite analyses from sample D04 with the weighted mean 206Pb/238U age.
(Fig. 10D). No core-rim relationship was clearly observed. A number of round zoned grains gave highly discordant points with
\(^{206}\text{Pb}/^{207}\text{Pb} \) apparent ages ranging from 2300 Ma to 2600 Ma. Other small (>100 \(\mu\text{m}\)) transparent grains were clearly structureless or patchy zoned under CL imaging. Most grains gave concordant points that define a concordia age of 2057 \(\pm\) 6 Ma \((n = 17; \text{Fig. 10E}) \). The age of 2057 \(\pm\) 6 Ma is interpreted as metamorphic. This is supported by consistent low Th/U ratios obtained from analyses that give this age (Supplementary Table 1).

As with sample MT3, titanites from this sample were light green to brown, transparent and irregular in shape. BSE images reveal patchy compositional zoning, with no inherited cores or other complicating structures. U–Pb results were obtained from a total of eleven titanite analyses on different grains (Supplementary Table 1). Nine titanites gave concordant points with a concordia age of 2043 \(\pm\) 12 Ma (Fig. 10F).

7.3.3. Sample C03 – amphibolite dike

This amphibolite dike (Sample C03) cuts felsic schists in the southern part of the Bação complex. It contains pink, transparent zircons ranging in size from 100 to 300 \(\mu\text{m}\) (Fig. 10G). Most grains were prismatic to short prismatic with round edges. CL images show well defined oscillatory zoning. No cores were observed but thin metamorphic rims are visible on many grains, however, these were too thin to date (Fig. 10G). Analyses on the edges and center of several prismatic zoned grains gave concordant to sub-concordant points with a similar range of apparent ages (Supplementary Table 1; Fig. 10G and H). The points align along a discordia line that intersects the upper concordia at 2761 \(\pm\) 3 Ma (MSWD = 2.2; Fig. 10H), when the lower intercept is anchored at zero. This is interpreted to be the crystallization age for this sample.

7.3.4. Sample D04 – garnet-bearing amphibolite

Sample D04 of the coarse-grained amphibolite from the central part of the Bação complex yielded a number of >200 \(\mu\text{m}\) yellow titanite grains, but no zircon. The titanite did not show visible zoning under BSE. However, the grains contain abundant inclusions of silicate phases and are commonly fractured. Several LA-ICP-MS analyses show low U and Th concentrations, ranging between 10–112 ppm and 1–12 ppm, respectively (Supplementary Table 1). The U–Pb analyses plot as a group with variable discordance of between 1% and 4%. U–Pb data from 12 spot analyses gave a concordia age of 2073 \(\pm\) 7 Ma (Fig. 10I).

Data was also collected from titanite in a thin section from sample D04. Three grains were analyzed, one coarse-grained titanite crystal (>2 cm in length, Fig. 10J), and two fine-grained titanite grains (200–300 \(\mu\text{m}\)) that were intergrown with the matrix minerals of the sample. BSE imaging indicated that the large grain has patchy zonation with darker domains on the grain edge. The finer matrix grains display some patchy internal zonation and rim domains (Fig. 10K). This zoning does not seem to relate to age with analyses from all grains giving the same age within uncertainty (Fig. 10L). The weighted mean \(^{206}\text{Pb}/^{238}\text{U} \) age is 2059 \(\pm\) 9 Ma (MSWD = 2.3, \(n = 24; \text{Fig. 10L}) \).

8. Discussion

8.1. Age and nature of metamorphism

Zircon and titanite geochronology of the samples in this study result in a range of ages.

In sample MT3, zircon grains have complex textures with dark and bright bands making it difficult to discern the zoning of grains. Older ages are recorded from the center of grains (Fig. 10A). In some cases, grains that have old cores, also have a dark rim, which gives a younger age. Many of the younger ages are obtained from dark, structureless rims although there are also complexly zoned grains that give young ages (Fig. 10A). Th/U ratios for zircon in sample MT3 are indistinguishable between the older (ca. 2999 Ma) and younger population (ca. 2775 Ma; Supplementary Table 1). However, it is possible for metamorphic zircons to have higher Th/U ratios or to inhibit the Th/U ratio of the inherited magmatic population (e.g. Möller et al., 2003), so this does not preclude the younger group from being metamorphic. Given the upper amphibolite facies grade of the sample and the general occurrence of the younger ages on structureless rims, we interpret the younger population to be metamorphic. Although, it is worth noting that the Nova Lima Group contains volcaniclastic greywackes that yield ages of 2792–2751 Ma (Noce et al., 2005), and while the relationship between the Catarina Mendes formation and the Nova Lima Group is unknown, it is feasible that the younger zircon population represents the age of deposition.

Sample C03, the amphibolite dike, has just one zircon population at ca. 2760 Ma that is interpreted to be the crystallization age for the dike. Sample V-1, the garnet bearing amphibolite, is interpreted to have a metamorphic age of ca. 2057 Ma for the amphibolite dike based on the morphology of the younger zircons (structureless or patchy zonation) as well as low Th/U ratios (<0.1). This coincides with the titanite age of the sample of 2040 Ma. The crystallization age of the dike is unresolvable because the remaining zircons gave a range of discordant ages between 2600–2300 Ma.

The titanite ages of D04, V-1 and MT3 are 2073 \(\pm\) 7 Ma, 2043 \(\pm\) 12 Ma and 2042 \(\pm\) 11 Ma, respectively, and are interpreted to be metamorphic ages because titanite forms from the breakdown of rutile and ilmenite (Tanner and Evans, 2003). The closure temperature of titanite is estimated to be >660–700 °C (depending on grain size; Scott and St-Onge, 1995; Bingen and van Breemen, 1998; Tanner and Evans, 2003), which is similar to the peak conditions obtained in this study. Furthermore, similar metamorphic ages have been obtained from syntectonic garnet in a dome-border shear zone which had an Sm–Nd age of 2095 \(\pm\) 65 Ma (Marshak et al., 1997) and also monazite and titanite U–Pb ages obtained in the basement (Machado et al., 1992; Noce, 1995; Schrank and Machado, 1996a, b; Vlach et al., 2003; Aguilar et al., 2017). Sample V-1 is the only sample that presents similar zircon and titanite ages, 2057 Ma and 2043 Ma, respectively. Thus, it is logical that the metamorphic evolution recorded by sample V-1 unequivocally occurred at ca. 2050 Ma. Potentially, the slightly younger titanite is a result of the difference in closure temperature between zircon and titanite (>900 °C, Lee et al., 1997 vs. 660–700 °C, Tanner and Evans, 2003).

Despite the presence of titanite in mineral separates for samples D04, V-1 and MT3, titanite was only observed in thin section in sample D04. In this sample it occurs in several textural settings: 1) as large, euhedral grains (up to 3 cm in length; Fig. 10J), 2) finer-grained subhedral grains (up to 500 \(\mu\text{m}\); Fig. 10K) that contain inclusions of matrix minerals, 3) euhedral grains with cores of ilmenite, and 4) fine (up to 100 \(\mu\text{m}\)), elongate grains, which are intergrown with chloride or occur along cracks in amphibole (Fig. 10K). Types 2–4 are more abundant in regions of the thin section that display fine-grained, randomly oriented epidote. In situ geochronology was conducted on three grains (one type 1 and two of type 2) with all analyses producing the same age within error of 2059 \(\pm\) 9 Ma (Fig. 10L). This would suggest that the metamorphism experienced by sample D04 occurred at ca. 2050 Ma similar to sample V-1. However, the peak conditions experienced by sample V-1 at ca. 2050 Ma are 650–700 °C (Figs. 7 and 11), which is in the range required to reset titanite ages. Aguilar et al. (2017) also dated titanite from the Bação dome. Their
The sample FQ20 yielded a crystallization age of 2918 ± 10 Ma and a metamorphic age of ca. 2775 Ma (based on zircon dating by Lana et al., 2013), which is similar to the result here for sample MT3. Additionally, titanite had cores and dark colored domains that gave older ages of ca. 2690 Ma, whereas rims and patchy domains produced a mean age of ca. 2050 Ma. Aguilar et al. (2017) interpreted these two ages as the result of two distinct metamorphic histories.

Thus plausibly, sample D04 may have experienced two metamorphic events with the coarse-grained assemblage of amphibole and garnet forming at ca. 2700 Ma and a later event resetting the early titanite and forming the fine-grained assemblage (including the fine-grained titanite, which is texturally late). This would be consistent with textures observed in the thin sections. The titanite-bearing thin section contains only fragmented garnet that appears to be replaced by epidote, secondary amphibole and plagioclase suggesting that the process which resulted in titanite growth is also related to these fine-grained textures and post-dates garnet growth.

Sample FQ15 is the only sample that records two discrete metamorphic events (Fig. 11). The first produced a coarse-grained assemblage associated with leucosome formation, the second formed the fine-grained assemblage that occurs on the rims of clinopyroxene and hornblende grains, and included the growth of titanite. U–Pb zircon dating of grains from the leucosome of this sample gave an age of 2728 ± 4 Ma (Farina et al., 2015b). This matches the age of metamorphic overgrowths on zircon crystals in banded gneisses from the same outcrop (2732 ± 10 Ma, sample FQ17, Farina et al., 2015a). Titanite from this sample yields an age of ca. 2050 Ma with some scattered older analyses (Aguilar, pers. comm.). Titanite from elsewhere in the Baçã Complex gives ages of 1966–2080 Ma (Aguilar et al., 2017), which is similar to the ages obtained from the other samples in this study.

An age of ca. 2730 Ma for the coarse-grained assemblage may also explain the difference between the possible metamorphic zircon age in MT3 (of ca. 2775 Ma) and the titanite age (ca. 2040 Ma) with initial metamorphism producing the coarse mineral assemblage and metamorphic garnet with subsequent metamorphism at ca. 2066 Ma, which caused the resetting of the titanite age but not the zircon, and potentially also resulted in the higher X_{Ab} values recorded by plagioclase rims.

Thus, we interpret that the P–T evolution recorded by samples MT3, D04 and the earlier assemblage of FQ15 to have occurred at ca. 2775–2730 Ma, whereas the fine-grained assemblages in FQ15 and D04, and potentially also the P–T evolution of V-1, correspond to the metamorphic titanite ages of ca. 2050 Ma (Fig. 11).

8.2. Dome-and-keel formation

The two prevailing models for the formation of dome-and-keel provinces are partial convective overturn (Collins, 1989; Van Kranendonk et al., 2004, 2007, 2014) and core complex formation (Chemale and Rosière, 1993; Marshak et al., 1997; Holm et al., 1998; Kisters et al., 2003). The geology of the QF does not satisfy all the requirements for the partial convective overturn model at ca. 2050 Ma. Firstly, partial convective overturn would produce structures similar to diapirs with fabrics that wrap the domes and produce radial metamorphic lineations (Collins, 1989; Van Kranendonk et al., 1997). Such radial lineation patterns are not observed in the QF (Alkmim and Marshak, 1998). Furthermore, partial convective overturn requires a substantial amount of heat from syn-deformational magmatic rocks in order to soften and melt part of the crust prior to doming. For the QF, however, this process cannot be supported because of the age difference between TTG/Granitoid rocks (>2600 Ma; Lana et al., 2013; Romano et al., 2013; Farina et al., 2015a) and the ages recorded in the shear fabrics (2070–2050 Ma; this study) and the youngest sediments deposited in the keels (Minas Supergroup, ca. 2600–2100 Ma). U–Pb ages of some 15 samples from TTG and potassic granitoid have been published in the literature recently (Farina et al., 2015a). All U–Pb zircon ages (>2600 Ma) are at least 500 Ma older than the titanite ages (ca. 2050 Ma, this study), which record the timing of exhumation. If erosion had played a role in obscuring syn-doming magmatism, at least part of the crust would record evidence of injected dikes or feeders that would allow thermal softening and convective overturn. In contrast, the only basement rocks that were found to have experienced melting at ca. 2050 Ma occur in a shear zone south west of the QF. Migmaticites from this shear zone give zircon U–Pb ages of ca. 2050–2030 Ma and are interpreted to record P–T conditions of ca. 730 °C and 5–6 kbar. These rocks are thought to have only experienced melting due to the presence of water in the shear zone (Carvalho et al., 2016, 2017). The surrounding basement rocks did not melt, neither were they overprinted by high enough temperatures to result in significant zircon recrystallization/resetting at ca. 2100 Ma. Sample V-1 of this study is the only sample from the Baçã dome that was found to have metamorphic zircon at ca. 2050 Ma (c.f. this study, Lana et al., 2013; Romano et al., 2013; Farina et al., 2015a).

The metamorphic core complex model alone, is also inadequate to explain the formation of the QF dome-and-keel province. This is because metamorphic core complexes result from upwarping of shallow detachments overlain by a regional array of normal faults. This results in a dome with shallowly dipping borders, unlike classic dome-and-keel terrains including the QF, which have steep to inverted boundaries (Marshak et al., 1997).

The prevailing model for dome-and-keel formation in the QF of Marshak et al. (1997) suggests a hybrid between these two models with orogenic thickening at ca. 2100 Ma creating heat, followed by orogenic collapse and extension, which juxtaposed the hot, felsic granite-gneiss complexes with the cold, dense greenstones. This resulted in gravitational inversion and upwarping of the domes.
Figure 12. Tectonic model for the evolution of the QF based on the results of this study. Adapted from Aguilar et al. (2017). Parts A–G are referred to in the text.
Further extension caused the steepening of the dome borders and the current geology that is observed today.

8.3. Which model do the P–T results match?

The P–T results from this study are potentially compatible with the model of Marshak et al. (1997). However, the P–T evolution recorded by samples MT3, FQ15 and D04 occurred at ca. 2770–2730 Ma. Furthermore, at 2770–2700 Ma the QF had partially molten, buoyant TTG basement and the Nova Lima Group, a thick succession of mafic and volcaniclastic rocks. An age of ca. 2770 Ma is obtained across the QF for leucogranitic dikes, local migmatisation, and is commonly found as an age of metamorphic rims on igneous zircon (Lana et al., 2013; Farina et al., 2015a). It is additionally the age of two weakly foliated granite plutons (Caeté and Samambaia). Together, this suggests that the QF was affected by regional deformation and metamorphism at ca. 2770 Ma (Fig. 12).

Considering that the main elements required for partial convective overturn to occur were already in place at ca. 2770 Ma (Collins et al., 1998; Van Kranendonk et al., 2004, 2014), we suggest that the QF initially experienced orogenesis and crustal thickening, followed by extension and gravitational inversion at ca. 2770 Ma, producing the high-P and T metamorphism that is recorded in samples MT3, D04 and FQ15. The P–T paths of these samples are consistent with burial and heating followed by near isothermal decompression. The flat zoning in the garnet of sample D04 indicates peak temperature conditions were sustained for at least 20 million years (based on a radius of 500 μm and temperature of 700 °C; Carlson, 2006). This would be consistent with burial and heating of the TTGs, partial convective overturn resulting in upwarping of the TTG dome, and then cooling (Fig. 12A–C). In addition, the collision prior to dome-and-keel formation is consistent with the detrital zircon U–Pb age spectra of the Maquiné Group, which clearly sourced the TTG domes (Moreira et al., 2016, Fig. 12C).

The involvement of the Minas Supergroup in the keels suggests that the later crustal thickening during the 2100 Ma event again heated the basement enough to reset the titanian ages (this study, Aguilar et al., 2017) and reactivated the structures formed by the earlier dome-and-keel formation (Fig. 12D–G). This resulted in the Minas Supergroup keel rocks being juxtaposed against hot TTG causing the formation of a metamorphic aureole (i.e. Serra do Curral, Jordt-Evangelista et al., 1992) as well as the isobaric heating/cooling path that is recorded by sample V-1. This scenario would also explain the observation of Marshak et al. (1997) of the Minas keels crossing the Rio das Velhas keels.

The fine-grained assemblage of FQ15 records lower temperature, but higher pressure conditions of ca. 550 °C and 8–9 kbar. Plausibly the melting and dehydration of this rock made it unreactive to high temperature conditions but late metamorphic fluids allowed limited retrogression to occur, resulting in the lower temperature conditions that it preserves (Rubie, 1986; Carlson, 2010; Jantvet and Austrheim, 2010). Other studies have indicated the presence of cryptic secondary metamorphic events with a lack of significant recrystallisation and renewed garnet growth during the later event, such as what is observed in samples FQ15, MT3 and D04 (see Young and Kylander-Clark, 2015; Dragovic et al., 2016 and references therein). The most common explanation is that the compositions of the investigated samples and the amount of fluid available during the second event are not amenable to further/new mineral growth (Young and Kylander-Clark, 2015; Dragovic et al., 2016).

This model for dome-and-keel formation in the QF is similar to that proposed for the eastern Pilbara dome-and-keel complex. Dome-and-keel formation here is suggested to be incremental, with episodes of partial convective overturn at 3320 Ma and 3240 Ma and later compressional events increasing the amplitude of the domes (Van Kranendonk et al., 2007). The initial dome-and-keel structures are proposed to have formed due to incubational heating with high heat producing TTGs (U = 2.5 ppm, Th = 11 ppm and K2O = 2.5 wt.%; Bodorkos and Sandiford, 2006) being blanketed by a 15 km thick basalt suc-cession. The build-up of radiogenic and mantle heat over time (ca. 100 M.y.) caused a decrease in viscosity of the underlying TTG crust and the density contrast between the TTGs and overlying greenstones resulted in partial convective overturn (Bodorkos and Sandiford, 2006).

The Baçao dome has high radiogenic element contents (U 5.9 ppm, Th 17.3 ppm and K2O 3.36 wt.%; Farina et al., 2015a) and the QF experienced significant magmatism at 2770–2700 Ma providing the heat needed for partial convective overturn.

The P–T conditions obtained for the Baçao dome are also similar to what has been obtained from the eastern Pilbara dome-and-keel complex with metasediments from the edge of the Mount Edgar dome giving P–T conditions of 9–11 kbar and 450–550 °C and conditions of 6–7 kbar and 650–750 °C being obtained from the dome core (Françoix et al., 2014).

Crustal thickening during 2100 Ma orogenesis likely resulted in radiogenic heating of the basement with orogenic collapse reactivating the earlier dome-and-keel formation structures.

The results of this study indicate that dome-and-keel formation occurred in the QF in the Archean. Gravitational inversion resulted from heating due to significant magmatism at this time. It is likely that the high-radiogenic element content of the Archean felsic crust, together with the high-density of typical Archean supracrustals is the reason that dome-and-keel provinces are a feature of Archean terrains (Bédard et al., 2013).

9. Conclusions

(1) The QF in the southern Sao Francisco Craton likely experienced two-stage dome-and-keel formation. Orogenesis and crustal thickening at 2770–2700 Ma resulted in peak metamorphic conditions of up to 8–9 kbar and 650–700 °C and a clockwise P–T path for rocks in the dome, with near isothermal decompression.

(2) Structures were reactivated at ca. 2050 Ma due to further burial during the 2100 Ma regional compressional event which resulted in crustal thickening, radiogenic heating of the base-ment and orogenic collapse. This reactivated the structures formed during the earlier dome-and-keel formation event, involved the younger Minas Supergroup within the keels and formed the metamorphic aureole.

(3) The formation of dome-and-keel provinces in Archean terrains is probably due to the inherent properties of Archean rocks, such as the high-radiogenic element contents in Archean felsic crust and the high-density of typical Archean supracrustals. These properties, combined with horizontal tectonic processes are responsible for dome-and-keel formation in the QF at ca. 2770 Ma.

Acknowledgments

This work has benefited from FAPEMIG (APQ03943, APQ-03793-16 and RPQ 00067-10) grants. Kathryn Cutts acknowledges CNPq for her Science without Borders, Jovem Talento Scholarship. Cristiano Lana acknowledges funding from Edital UFOP/Auxílio Pesquisador. Fernando Alkmim acknowledges funding from CNPq grant (30804/2013-0). Hugo Moreira acknowledges CNPq.
Scholarship (234610/2014-0). Federico Farina acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 701494. We would like to thank Anniko Dziggel, Léo Hartmann, Jean Bédard and Besim Dragovic for valuable and constructive comments that improved the manuscript. We would also like to thank two anonymous reviewers for comments on an earlier version of the manuscript, and Carmen Aguilar for geological discussions that improved the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2019.02.009.

References

K. Cutts et al. / Geoscience Frontiers xxx (xxxx) xxx

23

Please cite this article as: Cutts, K et al., Metamorphism and exhumation of basement gneiss domes in the Quadrilátero Ferrífero: Two stage dome-and-keel evolution?, Geoscience Frontiers, https://doi.org/10.1016/j.gsf.2019.02.009