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We deal with the determination of finitely many cavities in a planar inhomoge-
neous conductor from one current and voltage measurement collected on the
exterior boundary. We prove stability estimates under essentially minimal a priori
regularity assumptions. We construct an explicit example showing the optimality of
such stability estimates. © 2001 Academic Press

1. INTRODUCTION

Consider a simply connected bounded open set W of the plane and a
closed subset S which is the union of finitely many, pairwise disjoint,
closed simply connected subset si, i=1, ..., n, each of them coinciding
with the closure of its interior (that is for any i=1, ..., n, si=s̊i where s̊i

denotes the interior part of si).
The Neumann problem

div(A Nu)=0 in W0S,

A Nu · n=0 on “si, i=1, ..., n,

A Nu · n=k on “W

(1.1)



provides a model for the electrostatic potential u in the conductor W when
each si, i=1, ..., n, represents a cavity inside it, S being therefore a mul-
tiple cavity, k is the applied current density and A is the, possibly aniso-
tropic and inhomogeneous, conductivity tensor. Here, we assume: >“W k=0,
k – 0, A ¥ L.(W) is uniformly elliptic, and we denote by n the exterior
normal to W0S.

We shall deal with the inverse problem of determining the multiple cavity
S, when, given W, A and k, the potential u is measured on an open portion
C of the exterior boundary “W.

Such a problem presents some similarities with other well-known inverse
boundary value problems.

(I) The so-called inverse problem of cracks is the one in which each
component of S, instead of having interior points, is just a simple arc. For
this case, it is well known that, either when S is assumed to have only one
component, [15], or finitely many ones, [6], two distinct, suitably chosen
measurements are sufficient and necessary to uniquely determine the mul-
tiple crack. Moreover, stability estimates for the determination of a single
crack have been obtained. See [8] for an updated account on such results.

(II) Consider for simplicity A — I, then (1.1) can be viewed as the
limit as kQ 0 of the problems

div((1+(k−1) qS) Nuk)=0 in W,

Nuk · n=k on “W.
(1.1k)

Here qS is the characteristic function of S. In this case S represents an
inclusion in W, whose conductivity gets smaller as kQ 0. When k ] 1 is
fixed, the relative inverse problem of determining S is known as the inverse
conductivity problem with one measurement. Plenty of papers have been
devoted to this problem but, still, the uniqueness question remains open.
For references, see, for instance, [7].

Contrary to the above stated inverse problems, in the case of cavities the
uniqueness with a single measurement is nearly straightforward. Let us
outline a proof, suited to the two-dimensional setting, which has the
advantage of requiring very little about the regularity of the conductivity A
and of the boundaries of the conductor W and of the cavities. Let v be a
stream function associated to u, (a notion that generalizes the one of
harmonic conjugate), namely a function satisfying

Nv=5
0 −1

1 0
6 A Nu almost everywhere in W0s.(1.2)
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It can be seen that, due to (1.1), such a function exists, it is single valued,
and it satisfies, for some unknown constants ci, i=1, ..., n,

div(B Nv)=0 in W0S,

v=ci on “si, i=1, ..., n,

v=Y on “W,

(1.3)

and also, in a weak sense,

F
b

B Nv · n=0 for every smooth Jordan curve b … W0S.(1.4)

Here B=(det A)−1 AT, ( · )T denoting transpose, and Y is an antiderivative
of k along “W. See, for details, [6] and also [8].

Notice also that v can be continuously extended to W by setting
v|si=v|“si=ci for any i=1, ..., n.

Suppose now SŒ is another multiple cavity and let uŒ, vŒ be the solution
to (1.1), (1.3) respectively when S is replaced with SŒ. If S, SŒ give rise
to the same boundary measurement, that is u|C=uŒ|C, then v, vŒ have the
same Cauchy data on C. By the unique continuation property, and the
maximum principle, one obtains v — vŒ in W (see again [6] for details).

Hence, if we had SŒ0S ]” then SŒ would have some of its interior
points inside W0S and we would obtain v=vŒ — const. on an open subset
of W0S. Again by unique continuation, we obtain v — const. which is
impossible since k – 0.

The aim of this paper is to prove stability estimates for the inverse
problem of cavities under very general assumptions on the conductivity, on
the regularity of the boundaries of W and of the cavities and on the
prescribed current density k. We shall prove our stability results under
different type of regularity assumptions on S, see Theorem 2.1. Moreover
we shall show their optimality by an explicit example, Theorem 4.1. See
also [5], where an example, different in various respects, but of the
same nature, was presented for the so-called material loss (or corrosion)
problem.

Our approach has some common features with the one used in [8] for
the stability estimates in the determination of a single crack from two
measurements and it will require a sequence of intermediate steps: first of
all we shall prove an inverse Hölder estimate on the function f=u+iv, see
Theorem 3.3. Then, according to the different a priori regularity assump-
tions on S, we shall derive stability estimates for a Cauchy type problem,
see Proposition 3.5 and 3.6, which, along with the inverse Hölder estimate
previously recalled, will allow us to conclude the proof of Theorem 2.1.
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However, there are various relevant additional difficulties. First, the pos-
sible presence of multiple cavities introduces technical complications in the
treatment of quasiconformal mappings between multiply connected domains,
a crucial step in this treatment being Lemma 3.2 which provides estimates
on the size deformation of a circular domain (that is a multiply connected
domain bounded by finitely many circles) under the effect of a k-quasi-
conformal mapping.

Second, we recall that in the stability estimates obtained in [4], [8] for
the crack problem, and, more specifically, in [20], for the problem of a
cavity, the prescribed Neumann data k was assumed to satisfy certain
conditions on its sign changes which enabled to show that, in a generalized
sense, the corresponding potential u had no interior critical points. Here no
such assumption on k will be made, in fact any nontrivial data k will suit
our purpose. On the other hand, we shall obtain, as it is reasonably
expected, that the constants in the stability estimates depend on the
oscillation character of k. That is, the less is the oscillation of k the better
is the stability. Roughly speaking, such an oscillation character will be
controlled by the quantity H2, appearing in (2.6) below, which dominates a
ratio of two different norms for k. We shall prove that, under such a
bound on the oscillation of k, taking f=u+iv where v is the above men-
tioned stream function associated to u, and fixing any z0 ¥ W0S then,
locally, |f−f(z0)| can be dominated from below by an explicit function
vanishing at finitely many points and with finite order (see Theorem 3.3).
We believe that such type of estimate, which to the authors’ knowledge is
new in the context of elliptic equations in divergence form and measurable
coefficients in two variables, may prove to be useful also for other purposes
and especially for other inverse boundary value problems.

We wish to mention that stability estimates for a strictly related problem
of determination of an interior boundary have been obtained in [13],
where they consider the case of a single cavity s, they assume the conduc-
tivity A to be homogeneous, A — I, and the regularity assumptions on the
boundaries are slightly different.

Let us also mention that a companion problem, in a different topological
setting, when s … W̄ intersects “W on a nontrivial arc in such a way that
W0s remains simply connected, has already been treated by various
authors, [5], [9], [10], [12, 14], [17] and [20, 21].

An extended account on these and other related topics can be found in
the doctoral dissertation [22] of which the present research constitutes a part.

The plan of the paper is the following. In Section 2, we present our basic
assumptions and state our main Theorem 2.1, which contains our stability
results under various type of a priori assumptions on S. Section 3 contains the
proof of Theorem 2.1 in its various steps. Finally, in Section 4, we illus-
trate an example showing the optimality of the stability estimates (II) and (III)

OPTIMAL STABILITY FOR MULTIPLE CAVITIES 359



in Theorem 2.1. In fact such an example provides a much stronger state-
ment,Theorem 4.1, showing that logarithmic stability is the best possible also
when all pairs of boundary measurements {u|“W, A Nu · n|“W} are available.

2. THE STABILITY THEOREM

Given z ¥ C and r > 0, we denote by Br(z) the open disc with center z
and radius r and by Br[z] its closure, that is Br[z]=Br(z).

We shall need, in several places, quantitative notions of smoothness for
the boundary of W and the boundaries of the cavities. Such assumptions
can be summarized as follows.

Given an integer k=0, 1, 2, ..., a number a, 0 < a [ 1, and a finite family
of simple closed curves ci, i=1, ..., n, such that the domains bounded by
each ci are pairwise disjoint, we shall say that this family is Ck, a with
constants d, M> 0 if for any z ¥1n

i=1 ci, (1n
i=1 ci) 5 Bd(z) is given, up

to a rigid transformation, by the graph {y=f(x), x2+y2 < d2} of a Ck, a

function f on [−d, d] such that ||f||C k, a[−d, d] [M.
We shall especially focus on the case k=0, a=1, in which case we shall

speak of Lipschitz curves.
Use will be also made of the following notion. Given two finite families

of simple closed curves, ci, i=1, ..., n, and c −j , j=1, ..., m, both satisfying
the assumption that the domains bounded by each of the curves of the
same family are pairwise disjoint, we shall say that they are Relative
Lipschitz Graphs (RLG for short) with constants d, M if for every z ¥
(1n

i=1 ci) 2 (1m
j=1 c −j), there exists a coordinate system (x, y) with origin in

z such that with respect to these coordinates (1n
i=1 ci) 5 Bd(z)={y=f(x),

x2+y2 < d2} and (1m
j=1 c −j) 5 Bd(z)={y=fŒ(x), x2+y2 < d2} where f

and fŒ are Lipschitz on [−d, d] with Lipschitz norm bounded by M. More-
over we assume that {y < f(x), x2+y2 < d2} and {y < fŒ(x), x2+y2 < d2}
are contained in one of the domains bounded by ci, i=1, ..., n, and
c −j , j=1, ..., m, respectively. We remark that either (1n

i=1 ci) 5 Bd(z) or
(1m

j=1 c −j) 5 Bd(z) might be empty. In this case it is enough to have f (or
respectively fŒ) larger than or equal to d, if Bd(z) is contained in one of the
domains bounded by a curve belonging to the first (or respectively to the
second) family, or otherwise f [ −d (fŒ [ −d respectively).

Before stating our main Theorem, let us illustrate the main a priori
assumptions.

Prior Information on the Domain

Given positive constants d, M and L, let W be a bounded, simply con-
nected domain in R2 whose boundary “W is a simple, closed Lipschitz curve
with constants d, M and length bounded by L.
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Let us observe that by the a priori information we may deduce that the
length of “W is greater than or equal to d and there exists a positive con-
stant M1 depending on d, M and L only such that

length“W(z0, z1) [M1 |z0−z1 |, for every z0, z1 ¥ “W,(2.1)

where length“W(z0, z1) denotes the length of the smallest arc in “W connect-
ing z0 to z1.

The bound on the length of “W allows us to obtain an upper bound on
the diameter, and consequently on the measure, of W by a constant
depending on L only. Finally, the measure of W can be bounded from
below by a positive constant depending on d and M only.

Prior Information on the Conductivity

Given l, L > 0, let A=A(z), z ¥ W, be a 2×2 matrix with bounded
measurable entries verifying

(a) A(z) t ·t \ l |t|2 for every t ¥ R2 and for a.e. z ¥ W;

(b) |aij(z)| [ L for every i, j=1, 2 and for a.e. z ¥ W.
(2.2)

Prior Information on the Multiple Cavity

We shall assume that S … W is the union of finitely many, pairwise
disjoint, closed and not empty sets si, i=1, ..., n, n \ 1, each of them
bounded by a simple closed curve ci. Concerning the regularity of the
curves ci, we shall pose various alternative assumptions in the statement of
Theorem 2.1.

Moreover we shall assume

dist(z, “W) \ d for any z ¥ S.(2.3)

We remark that this kind of definition guarantees that W0S is a
connected open set.

Prior Information on the Boundary Data

The current density on the boundary will be given by a non trivial
function k ¥ L2(“W) with zero mean, that is >“W k=0.

We define the antiderivative along “W of k as

Y(s)=F k(s) ds,(2.4)

where the indefinite integral is taken with respect to the arclength on “W
oriented in the counterclockwise direction.
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We recall that the function Y is defined up to an additive constant. For
the time being, we normalize Y in such a way that >“W Y=0 and for this
choice of the additive constant we prescribe that, for given constants H,
H1 > 0, we have

(a) ||k||L2(“W) [H;

(b) ||Y||L2(“W) \H1.
(2.5)

From (2.5)(a) and (2.5)(b) we immediately infer

||k||L2(“W)

||Y||L2(“W)
[H2,(2.6)

where H2=H/H1 and Y has zero average.
Furthermore, by (2.5)(a) and (2.1), Y verifies for any z0, z1 ¥ “W

|Y(z0)−Y(z1)| [H(length“W(z0, z1))1/2 [H3 |z0−z1 |1/2,(2.7)

where H3=HM1/2
1 .

Prior Information on the Measurements

Let C … “W be a subarc whose length is greater than d.

The set of constants {d, M, L, l, L, H, H1} will be referred to as the a
priori data.

Let us finally recall that, under the stated assumptions, a weak solution
to (1.1), that is a function u ¥W1, 2(W0S) satisfying

F
W0S

A Nu ·Nj=F
“W

kj for every j ¥W1, 2(W0S),(2.8)

exists and it is unique up to an additive constant.
Given another multiple cavity SŒ, satisfying the a priori assumptions,

with components s −j , j=1, ..., m, m \ 1, whose boundaries are simple
closed curves denoted by c −j , j=1, ..., m, we shall denote by uŒ a solution
to (2.8) when S is replaced with SŒ.

Theorem 2.1. Let the above prior assumptions be satisfied.
Suppose

||u−uŒ||L.(C) [ e.(2.9)
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We have:

(I) If the two families of boundaries ci and c −j are Lipschitz with
constant d,M, then

dH(S, SŒ) [ w(e),(2.10)

where w: (0,+.)W (0,+.) satisfies

w(e) [K(log |log e|)−b for every e, 0 < e < 1/e(2.11)

and K, b > 0 depend on the a priori data only.
Furthermore there exists a constant e0 > 0, depending on the a priori data

only, so that if e [ e0 then the number of connected components of S and SŒ

is the same, for instance equal to n, and, up to rearranging their order, we
have

dH(si, s −i) [ w(e), for every i=1, ..., n,(2.12)

w as in (2.11).
(II) If ci and c −j are RLG with constants d, M, then (2.10) holds where

in this case w: (0,+.)W (0,+.) satisfies

w(e) [K1 |log e|−b1 for every e, 0 < e < 1/e(2.13)

and K1, b1 > 0 depend on the a priori data only.
Also in this case, if e [ e0, e0 > 0 depending on the a priori data only, S

and SŒ have the same number n of connected components, and, again after
rearranging their order, (2.12) holds with w as in (2.13).

(III) If, for some k=1, 2, ... and some a, 0 < a [ 1, ci and c −j are Ck, a

with constants d, M then S and SŒ verify (2.10) where w is as above in
(2.13) with K1, b1 > 0 depending on the a priori data and on k and a only.

As before, we may find e0 > 0 depending on the a priori data, on k and on
a only, such that if e [ e0 both S and SŒ have n connected components, which
ordered in a suitable way verify (2.12) with w as in (2.13), K1, b1 > 0
depending on the a priori data and on k and a only. Moreover, for any
i=1, ..., n, there exist regular parametrisations zi=zi(t) and z −i=z −i(t),
0 [ t [ 1, of ci and c −i respectively such that for every ã, 0 < ã < a,

||zi−z
−

i ||C k, ã[0, 1] [K2w(e) (a− ã)/(k+a),(2.14)
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where w still verifies (2.13) and K2 depends on the a priori data, on k, on a

and on ã only.

First, we recall that dH( · , · ) denotes the Hausdorff distance between
bounded closed sets.

Next, we observe that the assumption made at point (II) can be viewed
as a non-trivial closeness condition between Lipschitz curves. In fact there
are examples of pairs of Lipschitz curves which are arbitrarily close in the
sense of the Hausdorff distance but are not RLG, see [21].

The key step of (III) will indeed be the following. If S and SŒ are a priori
known to be Ck, a, k \ 1, a > 0, with given constants d, M and they are
sufficiently closed in the Hausdorff sense then they are RLG.

3. PROOF OF THEOREM 2.1

For the time being, we shall assume that S and SŒ satisfy the assump-
tions stated in (I) of Theorem 2.1. It is easy to observe that if S and SŒ

verify the assumptions (II) or (III) of Theorem 2.1, then they verify also (I)
of the same Theorem. In view of assumption (I), let us remark some prop-
erties of S. The same properties are clearly shared also by SŒ. We have that
the boundary ci of any of the components si of S has a length bounded by
a constant depending on the a priori data only. Furthermore there exist a
positive constant d1 and an integer N, depending on the a priori data only,
such that

dist(si, sj) \ d1, for every i ] j,(3.1)

and

n=number of connected components of S [N.(3.2)

In the Introduction we have considered, (1.2), the notion of stream
function and we have stated that there exists a single valued stream func-
tion v associated to u, u weak solution to (1.1). Let us recall that v satisfies
the Dirichlet type boundary value problem (1.3) with condition (1.4), where
the constants ci are unknown, B=(det A)−1AT and Y is defined as in (2.4).
We shall always assume that v is extended to W by setting v|si=v|“si=ci

for any i=1, ..., n.
Then the complex valued function f=u+iv, defined in W0S, satisfies

the following first order Beltrami type equation

fz̄=mfz+nfz almost everywhere in W0S,(3.3)
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where m and n are bounded measurable, complex valued coefficients,
satisfying

|m|+|n| [ k < 1 almost everywhere in W0S(3.4)

with k depending on l, L only.
For any k, 0 [ k < 1, we say that a function f is a k-quasiconformal

function in a domain D if it satisfies (3.3), (3.4). A univalent solution to
(3.3), (3.4) is said a k-quasiconformal mapping. A function f is a quasicon-
formal function, respectively mapping, if it is a k-quasiconformal function,
respectively mapping, for some k, 0 [ k < 1. Concerning quasiconformal
functions, their properties and characterizations we refer to [18].

A circular domain D will be, by definition, a bounded domain whose
boundary is composed by a finite number of circles, that is D=BR(z)0
1n

i=1 Bri[zi], where n is a positive integer, for any i=1, ..., n Bri[zi] … BR(z)
and the cavities Bri

[zi] are pairwise disjoint. We call “BR(z) the exterior
boundary and 1n

i=1 Bri
[zi] the multiple cavity of the circular domain D.

Furthermore we introduce the following notations. For any cavity Bri
[zi],

i=1, ..., n, let us denote

di=dist 1Bri
[zi],0

j ] i
Brj[zj] 2 “BR(z)2 .

We shall say minimal radius (of the multiple cavity) the number min {ri | i
=1, ..., n} and separation distance (of the multiple cavity) the number
min {di | i=1, ..., n}.

Proposition 3.1. Under the assumptions of Part (I) of Theorem 2.1, let
u be a weak solution to (1.1) and v be its stream function, solution to (1.3)
with condition (1.4). Then the following representation holds

f=F p q,(3.5)

where q: W0S W D is a quasiconformal mapping satisfying

|q(x)−q(y)| [ C1 |x−y|a1 for any x, y ¥ W0S(3.6)

and

|q−1(x)−q−1(y)| [ C1 |x−y|a1 for any x, y ¥ D,(3.7)
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D=B1(0)01n
i=1 Bri[zi] is a circular domain such that its exterior boundary

is “B1(0) and is the image through q of “W and the minimal radius and
the separation distance of its multiple cavity are greater than d2 > 0 and
F=U+iV is a holomorphic function on D. Here C1 > 0, a1, 0 < a1 < 1,
and d2 > 0 depend on the a priori data only.

Proof. We may find a bi-Lipschitz transformation q1 from C onto itself
such that the image through q1 of W0S is a circular domain D̃ such that
0 ¥ D̃, its exterior boundary “B1(0)=q1(“W) and the minimal radius
and separation distance of its multiple cavity are greater than d3 > 0,
d3 depending on the a priori data only. The Lipschitz constants of
such a transformation and of its inverse are dominated by constants only
depending on M, d and L.

The function f̃=f p q−1
1 is k1-quasiconformal, where k1 depends only

on k and on the Lipschitz constants of q1 and q−1
1 . Then by a Representa-

tion Theorem proved by L. Bers and L. Nirenberg, [11], there exist a
k1-quasiconformal mapping q2 from B1(0) onto itself, with q2(0)=0, and a
holomorphic function F̃=Ũ+iṼ on q2(D̃) such that the representation
f̃=F̃ p q2 holds.

By [24, Chapter 3, Theorem 5.2], we may find a conformal mapping q3

from q2(D̃) onto a circular domain D still satisfying q3(0)=0 and “B1(0)=
q3(“B1(0)), “B1(0) being the exterior boundary of D. Then picking
q=q3 p q2 p q1 and F=U+iV=F̃ p q−1

3 the conclusion is immediate
once the following Lemma is available. L

Lemma 3.2. Let D0 be a circular domain such that 0 ¥ D0, its exterior
boundary is “B1(0) and the minimal radius and separation distance of its
multiple cavity are greater than a positive constant d0. Fixed k, 0 [ k < 1,
there exist constants d1 > 0, C2 > 0 and a2, 0 < a2 < 1, depending on d0 and k
only such that if q is a k-quasiconformal mapping from D0 onto another
circular domain D1 whose exterior boundary is “B1(0) such that q(0)=0 and
“B1(0)=q(“B1(0)), then the minimal radius and separation distance of the
multiple cavity of D1 are greater than d1 and q verifies

|q(x)−q(y)| [ C2 |x−y|a2 for any x, y ¥ D0(3.8)

and

|q−1(x)−q−1(y)| [ C2 |x−y|a2 for any x, y ¥ D1.(3.9)

We defer the rather technical proof of this Lemma to the Appendix.
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Let D, F and q be as in the thesis of Proposition 3.1. Then, by the
regularity properties of D and q, by (2.5)(a) and (2.7) and standard
regularity theory we immediately infer

|F(z1)−F(z2)| [ C3 |z1−z2 |a3 for every z1, z2 ¥ D̄,(3.10)

and consequently

|f(z1)−f(z2)| [ C4 |z1−z2 |a4 for every z1, z2 ¥ W0S,(3.11)

where C3, C4 and a3, a4, 0 < a3, a4 < 1, depend on the a priori data only.
We remark that if as usual we extend v on W in such a way that

v|si=v|“si=ci for any i=1, ..., n, then it is easy to show that we have

|v(z1)−v(z2)| [ C5 |z1−z2 |a4 for every z1, z2 ¥ W̄,(3.12)

C5 depending on the a priori data only.
Before stating the following Theorem let us recall that the Kelvin trans-

form with respect to the ball B=Br0 (z0) is given by

TB(z)=r2
0/(z−z0)+z0, z ¥ C.

Theorem 3.3. Under the assumptions of Part (I) of Theorem 2.1, there
exists a positive constant d0, depending on the a priori data only, such that
for every z0 ¥ W0S and for every d [ d0 there exist finitely many points
zk ¥ W such that for every z ¥ W0 S̊ satisfying dist(z, “W) \ d we have

|f(z)−f(z0)| \ c(d)D
k

1 |z−zk |
C6

2bk/a1
,(3.13)

where bk are positive integers satisfying

C
k
bk [ C(d),(3.14)

C6 depending on the a priori data only, a1 as in (3.7) and c(d) > 0 and C(d)
depending on the a priori data and on d only.

Proof. We recall the bi-Lipschitz mapping q1: CW C we considered at
the beginning of the proof of Proposition 3.1 which verifies q1(W0S)=D̃,
where D̃ is a circular domain. We have that D̃=B1(0)01n

i=1 Bri[xi], 0 ¥ D̃,
and there exists d3 > 0 depending on the a priori data only such that for any
i=1, ..., n ri \ d3 and Bri+d3 (xi)0Bri[xi] is contained in D̃. The function
f̃=f p q−1

1 which is k1-quasiconformal, k1 depending on the a priori data
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only, may be extended to another k1-quasiconformal function, still denoted
by f̃, on the circular domain D̃1=B1(0)01n

i=1 Blri[xi], where l, 0 < l < 1,
depends on d3 only, in the following way

f̃(z)=f̃(TBri
(xi)(z))+2cii for any z ¥ Bri

(xi)0Blri[xi], i=1, ..., n,
(3.15)

where ci=v|“si=ṽ|“Bri
(zi).

As in the proof of Proposition 3.1 we apply the Representation
Theorem, [11], and Lemma 3.2 to obtain a circular domain D, F, a holo-
morphic function on D, and a quasiconformal mapping q2: D̃1 W D such
that f̃=F p q2. We recall that we may assume D=B1(0)01n

i=1 Bsi[yi]
and that for any i=1, ..., n si \ d2 > 0, d2 depending on the a priori data
only. Moreover, for any i=1, ..., n, we have that Bsi+d2 (yi)0Bsi[yi] is
contained in D. We denote q=q2 p q1 : q−1

1 (D̃)W D and we remark that q

verifies (3.6), (3.7) on q−1
1 (D̃) and D respectively and on W0S we have

f=F p q.
It is easy to see that we also have

|F(z1)−F(z2)| [ C7 |z1−z2 |a3 for every z1, z2 ¥ D̄,(3.16)

C7 depending on the a priori data only.
We take z0 ¥ W0S. Letting w0=q(z0), we set F0=F(w0)=f(z0). Let

Z={wk} be the countable set of the zeroes of F−F0 in D. We have that
setting f=log |F−F0 |

Df=0 in D0Z,

and since f has negatively diverging isolated singularities at each wk, there
exist positive integers bk such that, in the sense of distributions,

Df=2p C
k
bkd( · −wk) in D.

Fixed a positive d we denote

Dd={z ¥ D | dist(z, “D) > d}.

Then, by arguments in [3] based on Harnack’s inequality and the com-
parison principle, there exist positive constants C8 and C −8 depending on d2

only such that

C
wk ¥ D2d

bk [ C8d−C −8 51+log 1maxDd
|F−F0 |

maxD2d
|F−F0 |
26 .(3.17)
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Moreover, there exist positive constants C9, C
−

9 and C10 also depending on
d2 only such that if we set c1(d)=C9d−C −9 , which is greater than 1 if d is
small enough, we have for any w ¥ D3d

|F(w)−F0 | \ e−c1(d) 5 (maxD3d
|F−F0 |)c1(d)

(maxD2d
|F−F0 |)c1(d)−1

6 D
wk ¥ D2 d

1 |w−wk |
C10

2bk

.(3.18)

By (3.16) we readily observe that

max
D

|F−F0 | [ C11,(3.19)

where C11 depends on the a priori data only. Moreover, if we denote
V0=V(z0), we have the following estimate

max
D

|F−F0 | \ max
D

|V−V0 | \
1
2 oscD |V|.

Then we infer that oscD |V| \ osc“B1(0) |V| and also osc“B1(0) |V|=osc“W |v|=
osc“W |Y|.

Hence, since osc“W |Y| \ ||Y||L2(“W)/|“W|, by (2.5)(b) and the a priori
information on the domain W, we can find a positive constant C12 depend-
ing on the a priori data only such that

max
D

|F−F0 | \ C12.

Again by (3.16) we may find d̃0 > 0 depending on the a priori data only
such that for any d, 0 < d [ d̃0, we have

max
D3d

|F−F0 | \ C12/2.(3.20)

Then by the Hölder continuity properties of q and its inverse, (3.6) and
(3.7), we may find a constant d0 depending on the a priori data only such
that for any d, 0 < d [ d0, there exists d̃, 0 < d̃ [ d̃0, depending on the
Hölder constants of q and q−1 and on d only, such that for every z ¥ W0 S̊

satisfying dist(z, “W) \ d we have w=q(z) ¥ D3d̃.
Then, since |f(z)−f(z0)|=|F(w)−F0 |, taking zk=q−1(wk), by (3.18),

(3.19), (3.20) and by (3.7) it follows

|f(z)−f(z0)| \ e−c1(d̃) 5 (C12/2)c1(d̃)

(C11)c1(d̃)−1
6D

k

1 |z−zk |
C13

2bk/a1
,(3.21)
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where C13 depends on the a priori data only and, by (3.17), we clearly have

C
k
bk [ C8d̃−C −8 51+log 1 C11

C12/2
26 .(3.22)

This clearly concludes the proof. L

Proposition 3.4. Let all the hypotheses of Part (I) of Theorem 2.1, with
the exception of (2.9), be satisfied. Let v and vŒ be the stream functions
associated to u and uŒ respectively. If we have

||v−vŒ||L.(W) [ g,(3.23)

then the two multiple cavities S and SŒ satisfy

dH(S, SŒ) [K3gb2,(3.24)

K3 > 0, b2, 0 < b2 < 1, depending on the a priori data only.

Proof. Let p=dH(S, SŒ). Let us assume, without losing the generality,
that p=supz ¥ SŒ dist(z, S).

Then there exist positive constants C14 and C15, depending on the a priori
data only, and a point z0 ¥ SŒ such that BC14 p(z0) … SŒ and for any
w ¥ BC14 p(z0) we have dist(w, S) \ C15p. Since BC14 p(z0) … SŒ, recalling (2.3),
clearly we also have dist(w, “W) \ d for any w ¥ BC14 p(z0).

By the maximum principle, the level set {u=u(z0)} contains a conti-
nuum containing z0 and intersecting “BC14 p(z0) in at least two different
points. Let us fix d=min {d0, d}, d0 as in Theorem 3.3. Let us consider the
points zk obtained in Theorem 3.3 with respect to the point z0 and the
positive number d. Their number, by (3.14), is bounded by a constant N
depending on the a priori data only. There exists a constant C16 > 0
depending on N and on C14 only such that we may find N+1 pairwise
disjoint open discs with radius C16p that are contained in BC14 p(z0) and
whose center belongs to {u=u(z0)}. Therefore at least one of these discs
has none of the points zk in its interior. Let z1 be the center of this disc.
Clearly for any zk we have |z1−zk | \ C16p.

Then by (3.13) we have

|f(z1)−f(z0)| \ c(d)D
k

1 |z1−zk |
C6

2bk/a1
;
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hence, by (3.14) and since |z1−zk | \ C16p,

|f(z1)−f(z0)| \ c(d) 1 C16p
C6

2C(d)/a1
.

Since we have that u(z1)=u(z0) and, obviously v(z1)=v(z0), we deduce

|f(z0)−f(z1)|=|v(z0)−v(z1)| [ |v(z0)−vŒ(z0)|+|v(z1)−vŒ(z1)| [ 2g.

Putting together the last two equations the conclusion easily follows. L

Let us denote F=W+iZ=u−uŒ+i(v−vŒ) : W0(S 2 SŒ)W C.
We can normalize Z in order to have that it is identically zero on “W.

Moreover by (2.9) we obtain |W| [ e on C.
Recalling (3.11) there exists a constant D1 depending on the a priori data

only such that

|F(z)| [ D1 for any z ¥ W0(S 2 SŒ).(3.25)

We shall consider the following Cauchy type problem

˛Fz̄=mFz+nFz in W0(S 2 SŒ),
|F| [ e on C,
IF=0 on “W,

(3.26)

where |m|+|n| [ k < 1.
Recalling Proposition 3.4, the stability estimate on the inverse problem

of cavities has been reduced to a stability estimate for the Cauchy type
problem (3.26), that is obtaining an upper bound for |Z| on W̄ in terms of
the boundary error e.

We shall obtain different kinds of stability estimates for the Cauchy type
problem (3.26), depending on the assumptions stated in the different parts
of Theorem 2.1.

Proposition 3.5. Let the assumptions of Part (I) of Theorem 2.1 be
satisfied and let v and vŒ be the stream functions associated to u and uŒ
respectively. Then we have

||v−vŒ||L.(W̄) [ g(e),(3.27)
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where g: (0,+.)W (0,+.) satisfies

g(e) [K4(log |log e|)−b3 for every e, 0 < e < 1/e,(3.28)

where K4 and b3 > 0 depend on the a priori data only.

Proof. We give a sketch of the proof which is based on a technique
developed in [4] (see also [8]). The main difference here is the presence of
a multiple cavity, instead of a single crack.

First of all we define, as in [4], the following kind of so-called h-tubes. If
z0 ¥ C, let l be the segment bisecting the open angular sector S … W whose
vertex is z0, whose radius is d and whose amplitude depends on M only.
We know that dist(z1, “W) \M2 |z0−z1 |, for any z1 ¥ l, M2 < 1 depending
on M only.

Let c be a smooth curve contained in W0(S 2 SŒ) so that its first end-
point z0 belongs to C, c coincide with l for a length of at least h and
thereafter the distance of any point of c from “W is greater than M2h. An
h-tube will be the M2h neighbourhood of any curve c̃ obtained by removing
from such a curve c its linear part of length h which is contained in l.

An h-accessible point will be a point belonging to the closure of an
h-tube which is contained in W0(S 2 SŒ). We denote with Gh the set of
h-accessible points.

If we apply the method used in [4] together with Theorem 4.5 in [8], we
obtain for every z ¥ Gh and every h, 0 < h [ h0,

|v(z)−vŒ(z)| [ D2ha4+(D3+e) 1 e

D3+e
2exp(−D4/h2)

,(3.29)

with constants D2, D3, D4, h0 depending on the a priori data only and a4 as
in (3.12).

Given the Hölder continuity of v and of vŒ, which is stated in (3.12), and
the maximum principle, we may extend the estimate (3.29) to any z ¥ W̄

applying the method described in the proof of Theorem 3.1 in [4] with few
modifications. In particular the main difference is that for any connected
component Q of W0Gh more than two connected components of S or SŒ

may be involved. However, in this case, there exists a constant D5 depending
on the a priori data only such that for any connected component s of S or
SŒ contained in Q with at least one point belonging to “Gh, we may find a
point w0 ¥ s 5 “Gh and a point w1 ¥ “Gh belonging to another connected
component of S or SŒ contained in Q, such that |w0−w1 | [ D5h. For anal-
ogous considerations see [4, Lemma 3.6]. Then, by an iterated use of the
above inequality and by the maximum principle, we find that there exists a
constant c depending on Q such that if c̃ is the constant value of v
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(or respectively vŒ) on any connected component of S (respectively SŒ)
contained in Q then we have

|c̃−c| [ D6ha4+(D3+e) 1 e

D3+e
2exp(−D4/h2)

, for every h, 0 < h [ h0,

D6 depending on the a priori data only. Obtained this result we conclude as
in [4].

Once (3.29) is available for any z ¥ W̄ the thesis easily follows. L

Proposition 3.6. Let the hypothesis of Part (II) of Theorem 2.1 be
satisfied. Then v and vŒ, the stream functions associated to u and uŒ respec-
tively, verify (3.27) where g: (0,+.)W (0,+.) satisfies

g(e) [K5 |log e|−b4 for every e, 0 < e < 1/e,(3.30)

K5 and b4 > 0 depending on the a priori data only.

Proof. Let G be the connected component of W0(S 2 SŒ) such that
C … “G. Since ci and c −j are RLG then it is not difficult to show that G
satisfies a uniform interior cone condition, that is for any point z ¥ “G
there exists an angular sector S contained in G, with vertex in z and whose
positive radius and amplitude depend on the a priori data only and do not
depend on z.

Therefore by the technique developed in [21] we are able to obtain

|v(z)−vŒ(z)| [ D7 |log e|−a5 for every z ¥ G,(3.31)

where D7 and a5 > 0 depend on the a priori data only. Then, again with the
help of the maximum principle, the conclusion follows. L

Lemma 3.7. Let us fix a positive integer k and a constant a, 0 < a [ 1,
and let C0=1n

i=1 ci and C −

0=1m
j=1 c −j be two finite families of simple closed

curves, such that the domains bounded by each of the curves of one of the two
families are pairwise disjoint. We assume that the two families are both Ck, a

with constants d, M, and the length of any curve belonging to one of the two
families is bounded by a constant L.

Then there exists p0 > 0 depending on d, M, L, k and a only such that if
p=dH(C0, C −

0) [ p0 then both C0 and C −

0 have n connected components,
which ordered in a suitable way verify

dH(ci, c −i) [ p for any i=1, ..., n.(3.32)
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Furthermore for any i=1, ..., n, there exist regular parametrisations
zi=zi(t) and z −i=z −i(t), 0 [ t [ 1, of ci and c −i respectively such that for every
ã, 0 < ã < a,

||zi−z
−

i ||C k, ã[0, 1] [K6(dH(ci, c −i))
(a− ã)/(k+a),(3.33)

where K6 depends on d, M, L, k, a and on ã only.

Proof. By our assumptions we have that both the families verify

dist(ci, cj) \ d4, for every i ] j,

with a constant d4 > 0 depending on d, M, L, k and a only.
Therefore the first part of the Lemma is obvious. Once the first part is

established, the second one may be obtained following a procedure analo-
gous to the one used to prove Lemma 2.1 in [21]. L

Proof of Theorem 2.1. Concerning Part (I) of Theorem 2.1, (2.10) and
(2.11) are a direct consequence of Proposition 3.4 and of Proposition 3.5,
whereas (2.12) may be deduce from (2.10) and (2.11) by taking into
account (3.1).

The Part (II) may be obtained through Proposition 3.4 and Proposi-
tion 3.6.

For what concerns Part (III) the proof is an easy consequence of the
previous part of Theorem 2.1 and of Lemma 3.7. In fact we have that the
two families of curves C0=1n

i=1 ci and C −

0=1m
j=1 c −j which consist of the

boundaries of the connected components of S and SŒ respectively satisfy
the assumptions of Lemma 3.7.

Then if e is small enough we have, by Part (I) of Theorem 2.1, dH(C0, C −

0)
[ p0 and hence the number of connected components of S and SŒ is the
same.

Given (3.32), (3.33), it is not difficult to show that there exists e1 > 0,
depending on the a priori data and on k and a only such that if e [ e1 then
ci, i=1, ..., n, and c −j , j=1, ..., m, are RLG with constants d5 > 0, M3 > 0
with d5 and M3 depending on d, M, L, k and a only and not depending
on e.

So the conclusion follows. L

4. INSTABILITY EXAMPLE

Let W=B1(0) and let s0=B1/2[0]. Let D0=W0s0. The two connected
components of the boundary of D0 are the two simple closed curves
b=“W=“B1(0) and c0=“s0=“B1/2(0).

374 ALESSANDRINI AND RONDI



For any n=1, 2, ..., let us denote by fn the holomorphic function so
defined

fn(z)=z exp[En(zn−z−n)], z ¥ C0{0}, n=1, 2, ...,(4.1)

where En is the following positive real constant

En=
C0

nk2n ,(4.2)

where k is a fixed positive integer and C0 is a positive constant to be chosen
later.

The first derivative of fn is given by

f −n(z)=[1+Enn(zn−z−n)] exp[En(zn−z−n)], z ¥ C0{0}, n=1, 2, ...,

hence we may find a positive constant C0, C0 not depending on n and on k,
such that if (4.2) holds then we have

|f −n(z)−1| [ 1/4, for any z ¥ D0, n=1, 2, ...,(4.3)

and therefore fn is invertible on a neighbourhood (which may depend on n)
of D0.

From now on we shall assume that this condition is satisfied. For any
n=1, 2, ..., we call Dn=fn(D0). The boundary of Dn has two connected
components, the image through fn of b and c0 respectively. It is easily seen
that fn(b)=b and we shall denote by cn the image through fn of c0. We
remark that cn is a Jordan curve and we denote by sn the closed region
bounded by cn. Therefore we have that Dn=W0sn.

By switching to polar coordinates, we shall characterize more precisely
the behaviour of fn along b and c0 and hence the regularity properties of cn

and, consequently, of sn.
Let us introduce polar coordinates in the following way. Given z ¥

C0{0} let (r, h), r > 0, satisfy z=r exp(ih). We have that r=|z| and h is
defined up to equivalence modulus 2p. We call (r, h) the polar coordinates
of z. Then, in these coordinates, fn can be written as

fn(r, h)=(jn(r, h), fn(r, h)),

where

jn(r, h)=r exp[En(rn−r−n) cos nh]
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and

fn(r, h)=h+En(rn+r−n) sin nh.

First of all we notice that if r=1 then jn(1, h)=1 for any h ¥ R and we
have

|fn(1, h)−h| [ 2En, for any h ¥ R.(4.4)

Then we want to estimate the Hausdorff distance between sn and s0. It is
easy to observe that

dH(sn, s0)=max
[0, 2p]

|jn(1/2, h)−1/2|.

We may find two constants C1 and C2, 0 < C1 < C2, such that

0 < C1En2n [ dH(sn, s0) [ C2En2n.(4.5)

Without loss of generality, changing C0 in (4.2) if necessary, we may
assume C2En2n [ 1/4.

Let us fix r, 1/2 [ r [ 1, and let us consider the function fn(r, · ): [0, 2p]
W R. Then we can find C0 > 0 not depending on n and on k such that if
(4.2) holds then | “

“h fn(r, h)−1| [ 1/3 for any r ¥ [1/2, 1] and h ¥ [0, 2p].
By this estimate we infer that fn(r, · ): [0, 2p]W [0, 2p] is bi-Lipschitzian
with Lipschitz constants not depending on n, on k and on r.

Moreover, for any integer i \ 2 we notice that

: “ i

“h i fn(r, h): [ En(rn+r−n) n i.

If we fix the positive integer k and we define En as in (4.2) with C0 > 0
satisfying the previously stated conditions, it is straightforward to prove
that for any n=1, 2, ..., cn is a Ck simple closed curve with constants d, M
not depending on n. Here the notion of a Ck curve with constants d, M is
in the sense specified at the beginning of Section 2, with the obvious modi-
fication of replacing the Ck, a norm with the one in Ck.

For any n=0, 1, 2, ..., let us consider, as usual, the following Sobolev
spaces H1(Dn)={u ¥ L2(Dn) |Nu ¥ L2(Dn)}. We denote by H1/2(b) its
corresponding trace space on b. By H−1/2(b) we shall denote the dual
space to H1/2(b). With 0H1/2(b) and 0H−1/2(b) the corresponding sub-
spaces of elements with zero means are considered. We remark that
0H1/2(b) and 0H−1/2(b) are dual to each other. With 0L2(b) we denote the
L2 functions on b with zero average. We remark that the dual of 0L2(b) is
the space itself. Finally, if X and Y are two Banach spaces we shall denote
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by B(X, Y) the space of all bounded linear operators from X to Y, with the
usual norm.

Concerning trace spaces, fractional Sobolev spaces and interpolation
inequalities, which will be used several times in the sequel, we refer to [1]
and [19].

Let g ¥ 0H−1/2(b). Then for any n=0, 1, 2, ..., let us consider the
following Neumann type boundary value problem

Dun=0 in Dn,

Nun · n=0 on cn,

Nun · n=g on b,

un |b ¥ 0H1/2(b).

(NPn)

The weak formulation of the problem is the following. To find
un ¥H1(Dn) such that un |b ¥ 0H1/2(b) and the following holds

F
Dn

NunNf=g[f|b], for any f ¥H1(Dn).(NPŒn)

We have that the solution to (NPn) exists and is unique and we may find
a constant C not depending on n such that if D=B1 0B4/5 then

||un ||H 1(D) [ C||g||H −1/2(b).(4.6)

For any n=0, 1, 2, ..., letNn: 0H−1/2(b)W 0H1/2(b) be the Neumann-to-
Dirichlet map defined in the following way

Nn(g)=un |b for any g ¥ 0H−1/2(b),(4.7)

where un is the solution to (NPn).
From (4.6) we have that

||Nn(g)||0 H 1/2(b) [ C ||g||0 H −1/2(b), for any g ¥ 0H−1/2(b),(4.8)

where C is a positive constant which does not depend on n.
Let us state our instability result.

Theorem 4.1. Let us fix a positive integer k. Then there exists a constant
C0 > 0 such that if (4.2) holds then for any n=0, 1, 2, ..., cn is a Ck simple
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closed curve with positive constants d, M not depending on n and the fol-
lowing inequality holds

dH(sn, s0) \ C |log ||Nn−N0 ||B(0 H −1/2(b), 0 H 1/2(b)) |−k,(4.9)

where C is a positive constant which does not depend on n.

Remark. Let us observe that in inequality (4.9) some kind of depen-
dence on k, the number of derivatives of the curves cn which are a priori
uniformly bounded, should be expected. In fact, in a similar setting, [13],
Hölder type dependence on a suitably chosen boundary measurement was
proved if an analyticity condition on the unknown curve c holds.

The proof of Theorem 4.1 will be obtained through three lemmas.

Lemma 4.2. There exists a positive constant C such that for any g ¥

0L2(b) we have

||N0(g)||H 1(b) [ C ||g||L2(b).(4.10)

Proof. We have already observed, (4.8), that

||N0(g)||0 H 1/2(b) [ C ||g||0 H −1/2(b), for any g ¥ 0H−1/2(b).(4.11)

Moreover it is not difficult to show that if u0 is the solution to (NP0) then
we have, for a positive constant C,

||u0 ||H 1(D0) [ C ||g||0 H −1/2(b), for any g ¥ 0H−1/2(b).

By standard regularity results, see for instance [23], we have that if
g ¥ 0H1/2(b) then u0 belongs to H2(D0) and the following estimate holds

||u0 ||H 2(D0) [ C(||g||0 H 1/2(b)+||u0 ||H 1(D0)), for any g ¥ 0H1/2(b).

Then we immediately deduce

||N0(g)||H 3/2(b) [ C ||g||0 H 1/2(b), for any g ¥ 0H1/2(b).(4.12)

Therefore the thesis may be obtained through (4.11) and (4.12) by using
standard interpolation inequalities. L

Lemma 4.3. There exists a positive constant C not depending on n such
that

||(Nn−N0)(g)||L2(b) [ CE1/2
n ||g||L2(b), for any g ¥ 0L2(b), n=1, 2, ... .

(4.13)
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Proof. For any n=0, 1, 2, ..., let us consider the linear operator
Nn: 0L2(b)W 0L2(b). We have that Nn, with respect to these two spaces,
is bounded and self-adjoint. This can be easily deduced by the weak
formulation of our boundary value problem, (NP −n).

Let hn: Dn W D0 be the inverse map of fn, then hn can be extended to the
closure of Dn and let us recall some properties of the restriction of hn to b.

We have that hn |b: b W b is invertible, bi-Lipschitz with constants not
depending on n and the following estimates holds

|hn(z)−z| [ CEn,(4.14)

where C does not depend on n.
For any n=1, 2, ..., let us define the linear operator Tn: L2(b)W L2(b)

in the following way

Tn(g)(z)=g(hn(z)), for any z ¥ b, g ¥ L2(b).

These linear operators are continuous with norm independent on n, that is

||Tn(g)||L2(b) [ C ||g||L2(b), for any g ¥ L2(b), n=1, 2, ...,(4.15)

they are invertible,

(Tn)−1 (g)(z)=g(fn(z)), for any z ¥ b, g ¥ L2(b),

and their inverses are continuous with norm independent on n.
Let Tg

n be the adjoint operator to Tn, n=1, 2, ..., then Tg
n : L

2(b)W
L2(b) is defined

Tg
n (g)=(Tn)−1 1g 1

|h −n |
2 , for any g ¥ L2(b).

Finally let us observe that if g ¥ 0L2(b) then also Tg
n (g) ¥ 0L2(b).

Let P: L2(b)W 0L2(b) be the projection of L2(b) onto 0L2(b) given by

P(g)=g−
1
2p

F
b

g, for any g ¥ L2(b).

Clearly P is a linear bounded operator with norm 1.
We claim that the following representation holds

Nn(g)=P[TnN0T
g
n](g), for any g ¥ 0L2(b).(4.16)
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Let un be the solution to (NPn) with Neumann datum g ¥ 0L2(b). Let us
denote vn=un p fn. Then vn solves

Dvn=0 in D0,

Nvn · n=0 on c0,

Nvn · n=Tg
n g on b.

(4.17)

Therefore we have un |b=Tn(vn |b) and vn |b is equal to N0T
g
n (g) up to an

additive constant. Hence Nn(g)=un |b=TnN0T
g
n (g)+cn.

By the fact that Nn(g) ¥ 0L2(b) we can immediately infer that
cn=− 1

2p >b TnN0T
g
n (g) and hence (4.16) follows.

Now let us take k ¥H1(b). We want to estimate ||(Tn−I)(k)||L2(b). We
have that

||(Tn−I)(k)||
2
L2(b)=F

2p

0
|k(hn(h))−k(h)|2 dh.

Then by (4.14) we deduce that |k(hn(h))−k(h)| [ CE1/2
n ||k||H 1(b) and

hence we obtain

||(Tn−I)(k)||L2(b) [ CE1/2
n ||k||H 1(b), for any g ¥H1(b),(4.18)

C not depending on n.
Therefore by Lemma 4.2 we may find a constant C which does not

depend on n such that

||(TnN0−N0)(g) ||L2(b) [ CE1/2
n ||g||L2(b), for any g ¥ 0L2(b).(4.19)

By duality we have, with the same constant C,

||(N0T
g
n −N0)(g)||L2(b) [ CE1/2

n ||g||L2(b), for any g ¥ 0L2(b).(4.20)

Obviously PN0=N0, then Nn−N0=P(TnN0T
g
n −N0) and hence for any

g ¥ 0L2(b) we have

||(Nn−N0)(g)||L2(b) [ ||(TnN0T
g
n −N0)(g)||L2(b).

Since

||(TnN0T
g
n −N0)(g)||L2(b) [ ||Tn(N0T

g
n −N0)(g)||L2(b)+||(TnN0−N0)(g)||L2(b)

the thesis follows from (4.15), (4.19) and (4.20). L
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Lemma 4.4. Nn−N0 is an infinitely smoothing operator, that is for any
positive integer i there exists a constant C=C(i) not depending on n such
that we have

||(Nn−N0)(g)||H i(b) [ C(i) ||g||0 H −1/2(b), for any g ¥ 0H−1/2(b).

Proof. Let us fix g ¥ 0H−1/2(b) and let un and u0 be the solutions to
(NPn) and (NP0) respectively. By (4.6) and the mean value property of
harmonic functions it is clear that for any z such that |z|=7/8 there exists
a constant C not depending on n and on g such that

|(un−u0)(z)| [ C ||g||0 H −1/2(b).(4.21)

Then we notice that along b un−u0 satisfies a homogeneous Neumann
condition. Therefore we may extend un−u0 on B8/7 0B7/8 according to the
following reflection rule

(un−u0)(z)=(un−u0)(1/z̄), for any z ¥ B8/7 0B7/8.

We have that un−u0 is harmonic in B8/7 0B7/8, by the maximum principle
and (4.21), on the same domain is bounded by C ||g||

0 H −1/2(b), therefore the
thesis easily follows. L

Proof of Theorem 4.1. By Lemma 4.3 and Lemma 4.4 applied with i=2
and standard interpolation results we immediately infer

||(Nn−N0)(g)||H 1(b) [ CE1/4
n ||g||L2(b), for any g ¥ 0L2(b).

By duality we have

||(Nn−N0)(g)||L2(b) [ CE1/4
n ||g||H −1(b), for any g ¥ 0H−1(b).

Then, again by interpolation inequalities, we deduce

||(Nn−N0)(g)||0 H 1/2(b) [ CE1/4
n ||g||

0 H −1/2(b), for any g ¥ 0H−1/2(b),

with C a constant not depending on n.
Then the thesis may be obtained through a straightforward computation

by recalling the definition of En, (4.2), and the lower bound on dH(sn, s0),
(4.5). L
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APPENDIX

Proof of Lemma 3.2. During the proof of this Lemma we shall make
use of the notion of capacity. Concerning its definition and its basic prop-
erties we refer to [16]. Here let us simply state some notations and the
definition. Given a bounded domain D and E a subset of D, the pair
(E, D) will be called a condenser and we denote by cap(E, D) the capacity
of the condenser (E, D). If E is compact then

cap(E, D)= inf
u ¥ W(E, D)

F
D
|Nu|2,

where

W(E, D)={u ¥ C.0 (D) | u \ 1 on E}.

Then for any subset E the capacity is defined as

cap(E, D)= inf
E … G … D

G open

sup
K … G

K compact

cap(K, D).

We note also that the capacity may be computed explicitly if the con-
denser is an annulus. In fact, see again [16, page 35], we have for 0 < r < R

cap(Br[x], BR(x))=2p 1 log
R
r
2−1

.(A1)

Let D0=B1(0)01n
i=1 Bri[zi] and D1=B1(0)01n

i=1 Bsi[wi]. We recall
that q(“B1(0))=“B1(0) and we have ordered the cavities in such a way
that q(“Bri

(zi))=“Bsi (wi) for any i=1, ..., n. We note also that, since the
minimal radius is bounded from below by d0 > 0, if n denotes the number
of connected components of the multiple cavity of D0 (and obviously also
of the one of D1), we have

n [N,(A2)

N depending only on d0.
We denote I={1, ..., n}. Then, by the lower bound on the minimal

radius and on the separation distance of the multiple cavity of D0, by (A1)
and by elementary properties of capacity, we may find two constants
0 < C1 < C2 depending on d0 only such that for every I1, nonempty subset
of I, we have

0 < C1 [ cap 1 0
i ¥ I1

Bri[zi], B1(0)< 0
j ¥ I0I1

Brj
[zj]2 [ C2.(A3)
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Since q is k-quasiconformal then there exists a constant C3 > 0 depend-
ing on k only such that

0 < C1/C3 [ cap 1 0
i ¥ I1

Bsi[wi], B1(0)< 0
j ¥ I0I1

Bsj[wj]2 [ C3C2.(A4)

holds for any I1 … I, I1 ]”, see [16, page 288].
We now claim the following result.

Claim. Given k, 0 [ k < 1, and d0 > 0, let f be a k-quasiconformal
mapping from the annulus B1(0)0B1−d0[0] onto B1(0)0s, s being a closed
subset of B1(0), satisfying f(“B1(0))=“B1(0) and 0 ¥ s. Then

dist(s, “B1(0)) \ d1(A5)

where d1 > 0 depends on k and d0 only.

By the Representation Theorem in [11, page 116] it is enough to prove
the Claim when f=u+iv is conformal. Since 0 ¥ s, by (A1) and the
invariance of capacity through conformal mapping, we may find d2 > 0
small enough such that for any 0 < d0 [ d2 either the oscillation of u or of v
on “B1−d0 (0) is greater than 1/4. Then by [2, Theorem 1.3] (see also
[8, page 336]) there exist a constant d3 > 0 and a constant C > 0, both
depending on k and d0 only, such that if 0 < d0 [ d3 we have

|fŒ(z)| \ C, for any z ¥ B1−d0/4[0]0B1−3d0/4(0),(A6)

and from this the conclusion of the proof of the Claim follows very easily.
By the Claim we may immediately infer that there exists a constant d2

depending on k and d0 only such that we have

dist(Bsi[wi], “B1(0)) \ d2 for any i=1, ..., n.(A7)

Let us denote as before

di=dist 1Bsi[wi],0
j ] i
Bsj[wj] 2 “B1(0)2 , i=1, ..., n.

Then, for any i=1, ..., n, we consider the following change of coordinates

Ti(z)=ri/(z−zi), Si(z)=si/(z−wi)

and we take the function fi: Ti(D0)W Si(D1) given by

fi=Si p q p T−1
i .
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We have that there exists a d0 > 0 depending on d0 only such that Ti(D0)
contains the annulus B1(0)0B1−d0[0]. Since 0 ¨ Si(D1), fi satisfies the
hypothesis of the previous Claim, hence we may find d1 > 0 depending on k
and d0 only such that B1(0)0B1−d1[0] … Si(D1) and this implies that there
exists a constant C4 > 0 depending on k and d0 only such that

di \ C4si for any i=1, ..., n.(A8)

Let us remark that, by (A4), we have, for any i=1, ..., n,

0 < C1/C3 [ cap 1Bsi[wi], B1(0)<0
j ] i
Bsj[wj]2 [ cap(Bsi[wi], Bsi+di (wi));

hence, using (A1), we deduce that there exists a constant C5 > 0 depending
on d0 and k only such that

di [ C5si for any i=1, ..., n.(A9)

For any s0, 0 < s0 < 1, let us split the interval (0, s0] into the subintervals
(s2l

0 , s
2l−1

0 ], l=1, 2, ... . Due to (A2), the bound on the number of connected
components of the multiple cavity of D1, there exists l [N+1 such that
si ¨ (s

2l

0 , s
2l−1

0 ) for every i. Hence there exists s, 0 < s [ s0, depending on d0

and s0 only, such that if we set

I1={i ¥ I : si [ s2}, I2={i ¥ I : si \ s},

then I=I1 2 I2.
Let us show I1=” when s0 is sufficiently small. By contradiction let us

assume I1 ]”.
We take the condenser (1i ¥ I1 Bsi[wi], B1(0)01j ¥ I2 Bsj[wj]) and we want

to estimate its capacity. By subadditivity of capacity we have

cap 1 0
i ¥ I1

Bsi[wi], B1(0)< 0
j ¥ I2

Bsj[wj]2(A10)

[ C
i ¥ I1

cap 1Bsi[wi], B1(0)< 0
j ¥ I2

Bsj[wj]2 .

So let us fix i ¥ I1 and let us evaluate cap(Bsi[wi], B1(0)01j ¥ I2 Bsj[wj]).
Assuming without loss of generality s0 [ d2, by (A7) and (A8) applied to
any Bsj[wj] with j ¥ I2, we have that

dist 1Bsi[wi], 0
j ¥ I2

Bsj[wj] 2 “B1(0)2 \ C6s for any i ¥ I1,(A11)
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where C6 depends on d0 and on k only. Then

cap 1Bsi[wi], B1(0)< 0
j ¥ I2

Bsj[wj]2

[ cap(Bsi[wi], Bsi+C6 s(wi)) for any i ¥ I1.

By (A1), since si [ s2,

cap(Bsi[wi], Bsi+C6 s(wi))=2p 1 log
si+C6s
si
2−1

[ 2p 1 log
C6

s
2−1

[ 2p 1 log
C6

s0
2−1

.(A12)

Let us pick s0 depending on k and d0 only such that

2p 1 log
C6

s0
2−1

[ C1/(2C3N).(A13)

Then the combination of (A2), (A10), (A12) and (A13) violates the lower
bound in (A4).

Hence we have found a positive constant s depending on k and d0 only
such that the minimal radius of the multiple cavity of D1 is greater than s.
Then, again by (A7) and (A8), also the separation distance may be
bounded from below by a positive constant s depending on k and d0 only.
It remains to prove the Hölder continuity of q and q−1. Given the bounds
on the minimal radius and the separation distance of the multiple cavities
of D0 and D1 respectively, this may be obtained by standard reflection
arguments, see [18], with the help of our Claim to control the reflection
around “B1(0). L
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