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Abstract. We prove that the inverse problem of determining unknown defects of various types
in a conductor by performing electrostatic measurements at the boundary is severely ill-posed.
We show that the ill-posedness does not depend on the nature of the defects to be determined
and, more importantly, by the kind, choice and number of measurements performed.

1. Introduction
We discuss the instability character of the following kind of inverse boundary value problems
arising in nondestructive evaluation. Let us assume that we have a homogeneous and isotropic
conductor body, which is contained in a reasonably smooth and bounded domain Ω ⊂ RN ,
N ≥ 2. We assume that the body suffers form the presence of flaws or defects which can not
be directly observed since they may be on an inaccessible part of the boundary or inside the
conductor. We would like to determine the shape and location of these defects by performing
a certain number (possibly finite) of suitably chosen electrostatic measurements of voltage and
current type on a part of the boundary of the conductor which is assumed to be known, accessible
and safe. The defects may be of different nature, namely they may be either perfectly insulating
or perfectly conducting. Moreover, we can classify the defects by their topological properties into
four broad categories. If a defect has non-empty interior, for instance if it is a curve in R2 or
a surface in R3, we speak of a crack. If the crack is completely inside the conductor, we call it
a buried crack or crack for short, if it reaches the boundary we call it a surface-breaking crack
or surface crack for short. If the defect is the closure of a domain, we call it a material loss. If
the material loss is compactly contained in Ω we call it a cavity, if it intersects the boundary
we speak of a material loss at the boundary or boundary material loss for short. In any of these
cases, the inverse problem may be viewed as a (part of the) boundary identification problem.

The inverse crack problem has been introduced in [12], where the first uniqueness result in
two dimensions has been proved. In three dimensions uniqueness results are provided in [3]. For
what concerns stability we refer to [17], in two dimensions, and to [3], in three dimensions, and
their references. For other uniqueness and stability results, as well as reconstruction methods,
see the recent review [7].

The uniqueness for the surface crack problem has been studied in [11] in two dimensions
and in [4] in three dimensions. Stability results, in two dimensions, and other references on the
problem may be found in [16].
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Uniqueness for the determination of a material loss at the boundary, in two dimensions, was
proved in [6]. The same argument works for the determination of cavities, as well. Stability
estimates for the determination of cavities or material losses at the boundary in two dimensions
may be found, respectively, in [5] and [16], and their references, whereas in three dimensions
they have been treated in [2] and [8].

It is well-known that these kinds of inverse problems are severely ill-posed, or exponentially
ill-posed, that is, even if we have unique determination, the error on the defects may depend in
a logarithmic way from the error on the measurements (usually due to noise).

The first example of severely ill-posedness has been constructed in [1] and deals with the
problem of the determination of a boundary material loss in a planar conductor. An example
similar to the one in [1] has been constructed for the problem of cavities, still in two dimensions, in
[5]. These two examples are explicit in the sense that a family of solutions showing the instability
character of the problem is given by explicit formulas, choosing defects whose boundaries are
highly oscillating. The construction of a family satisfying the instability property looked for is
not an easy task for other inverse problems. In [14] N. Mandache has proved that the inverse
conductivity problem is also exponentially unstable. The procedure used in [14] does not depend
on an explicit construction, it is instead constituted by a purely topological argument, which
follows from the work of A. N. Kolmogorov and V. M. Tihomirov, [13]. Following the topological
arguments of [13] and the procedure described in [14], a general method for determining
instability has been extracted in [9]. The outline of the method has been stated in a rather
abstract framework. We recall the result below. Let (X, d) be a metric space (in our case the
space of the defects) and let H be a separable Hilbert space with scalar product (·, ·). As usual
we denote with H ′ its dual and for any v′ ∈ H ′ and any v ∈ H we denote by 〈v′, v〉 the duality
pairing between v′ and v. With L(H, H ′) we denote the space of bounded linear operators
between H and H ′ with the usual operators norm. We observe that L(H, H ′) will represent the
space of the measurements. We shall also fix γ : H\{0} 7→ [0,+∞] such that

γ(λv) = γ(v) for any v ∈ H\{0} and any λ ∈ R\{0}. (1.1)

Let us remark that the function γ may attain both the values 0 and +∞ and can be thought
of as a suitable kind of Rayleigh quotient. Let F be a function from X to L(H, H ′), that is, for
any x ∈ X, F (x) is a linear and bounded operator between H and H ′. We remark that the map
F represents the map which associates to any defect in X its corresponding measurements. We
also fix a reference operator F0 ∈ L(H, H ′) and a reference point x0 in X. We wish to point
out that no connection is required between x0 and F0, in particular F0 might be different from
F (x0). For any ε > 0, let Xε = {x ∈ X : d(x, x0) ≤ ε}. We recall that, given a metric space
(Y, dY ) and a positive ε, Y1 ⊂ Y , is ε-discrete if for any two distinct points y1, y′1 ∈ Y1 we have
dY (y1, y

′
1) ≥ ε. The following exponential instability result related to the map F is proved in [9].

Theorem 1.1 Let us assume that the following conditions are satisfied.

i) There exist positive constants ε0, C1 and α1 such that for any ε, 0 < ε < ε0, we can find
an ε-discrete set Zε contained in Xε with at least exp(C1ε

−α1) elements.
ii) There exist three positive constants p, C2 and α2 and an orthonormal basis in H, {vk}+∞

k=1,
such that the following conditions hold. For any k ∈ N, we have that γ(vk) < ∞, and for
any n ∈ N,

#{k ∈ N : γ(vk) ≤ n} ≤ C2(1 + n)p (1.2)

where # denotes the number of elements. For any x ∈ X and any (k, l) ∈ N× N we have

|〈(F (x)− F0)vk, vl〉| ≤ C2 exp(−α2 max{γ(vk), γ(vl)}). (1.3)
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Then there exists a positive constant ε1, depending on ε0, C1, C2, α1, α2 and p only, so that for
every ε, 0 < ε < ε1, we can find x1 and x2 satisfying

x1, x2 ∈ Xε; d(x1, x2) ≥ ε;
‖F (x1)− F (x2)‖L(H,H′) ≤ 2 exp(−ε−α1/2(p+1)). (1.4)

In [9], Theorem 1.1 has been applied to the inverse inclusion and inverse scattering problems,
showing the exponential ill-posedness in both situations. Then, in [10], it has also been applied
to boundary identification problems of parabolic type.

Here we apply the abtract method outlined in Theorem 1.1 to the determination of defects
inside a conductor, in any dimension and for any of the types of defects we have described
before. We show that, even if we perform all possible measurements and we assume strong a
priori hypotheses on the unknown defect, still the problem is exponentially ill-posed. We observe
that, in the case of cavities, we assume that the unknown cavity is star-shaped with respect to a
fixed point and, in certain cases, the cavity to be determined is a priori known to be even convex,
see Remark 2.1. We may therefore conclude that the logarithmic stability estimates obtained in
[2, 3, 5, 8, 16, 17] are essentially optimal.

The plan of the paper is as follows. In Section 2 we carefully describe all the boundary
identification problem we deal with and the instability results we prove. Then we proceed with
the proofs of these results, which are in general obtained as straightforward applications of the
abstract theorem. In order to apply the abstract theorem, what is essentially needed is to choose
a suitable orthonormal basis and to check that all the hypotheses of the abstract theorem
are satisfied. Concerning orthonormal basis, we shall employ eigenfunctions corresponding to
eigenvalue problems of Stekloff type. We have collected all the information we shall need about
these orthonormal basis in Section 3. Then, in Section 4, the proofs of the instability results
are concluded. Using the orthonormal basis introduced in Section 3, we verify that the abstract
result applies to the problems we consider and we prove their exponential instability.

2. Statement of the instability results
Before stating the main results, we need to introduce some notation about the Sobolev spaces we
shall use and to describe the spaces of the unknowns. For any N ≥ 2, any x = (x1, . . . , xN ) ∈ RN

and any r > 0, we denote BN (x, r) = {y ∈ RN : ‖y − x‖ < r}. We set SN−1(x, r) = ∂BN (x, r).
Furthermore, we set SN−1 = ∂BN (0, 1), and SN−1

+ = {y ∈ SN−1 : yN ≥ 0}, and, analogously,
SN−1
− = {y ∈ SN−1 : yN ≤ 0}. Finally, we denote B′

N−1(x, r) = {y ∈ BN (x, r) : yN = xN}.

Notations on Sobolev spaces Let Ω ⊂ RN , N ≥ 2, be a bounded domain and let ∂Ω be its
boundary. About regularity, we assume that there exists a homeomorphism χ : BN (0, 1) 7→ Ω
such that, for a positive constant C, we have

‖χ(x̃)− χ(ỹ)‖ ≤ C‖x̃− ỹ‖ for any x̃, ỹ ∈ BN (0, 1),
‖χ−1(x)− χ−1(y)‖ ≤ C‖x− y‖ for any x, y ∈ Ω.

(2.5)

Furthermore, we shall consider two internally disjoint subsets of ∂Ω, ΓA and ΓI , so that
ΓA ∪ ΓI = ∂Ω. We assume either that ΓA = ∂Ω and ΓI = ∅, or that ΓA and ΓI are
not empty and are assumed to be regular enough, namely there exists a homeomorphism
χ : BN (0, 1) 7→ Ω satisfying (2.5), so that, if we still denote with χ its extension by continuity
to BN (0, 1), then ΓA = χ(SN−1

+ ) and ΓI = χ(SN−1
− ). We introduce the following Sobolev

spaces. Let H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)}, where ∇u denotes the gradient of u
in the sense of distributions. We recall that H1(Ω) is a Hilbert space with scalar product
(u, v)H1(Ω) =

∫
Ω∇u · ∇v + uv. With H1/2(ΓA) we denote the space of traces of H1(Ω) functions
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on ΓA, which can be endowed in a canonical way with a scalar product induced by the one
of H1(Ω) so that H1/2(ΓA) is a Hilbert space. By H−1/2(ΓA) we shall denote the dual space
to H1/2(ΓA). We recall that H1/2(ΓA) ⊂ L2(ΓA) ⊂ H−1/2(ΓA). We shall also make use of the
following spaces. Let 0H

1/2(ΓA) = {ψ ∈ H1/2(ΓA) :
∫
ΓA

ψ = 0}. Its dual is given by the space

0H
−1/2(ΓA) = {η ∈ H−1/2(ΓA) : 〈η, 1〉 = 0}, where 〈·, ·〉 denotes the duality pairing. If ΓI is not

empty, we set H1
0 (Ω, ΓI) and H1

const(Ω, ΓI) as the closed subspaces of H1(Ω) constituted by the
functions u ∈ H1(Ω) so that u = 0 in a weak sense on ΓI and u = constant in a weak sense on ΓI ,
respectively. With H

1/2
0 (ΓA,Ω) and H

1/2
const(ΓA,Ω) we denote the closed subspaces of H1/2(ΓA)

constituted by the traces of H1
0 (Ω, ΓI) and H1

const(Ω, ΓI) functions on ΓA, respectively. For our
purposes, we need to introduce on the Sobolev spaces defined above suitable scalar products,
which are different but topologically equivalent to the canonical ones. We wish to remark that
the definitions of these scalar products do not take into account the fact that the spaces H−1/2

and H1/2 are dual one to each other. For any ψ, ϕ ∈ H1/2(ΓA), we set ψ̃ ∈ H1(Ω) as the solution
to 




∆ψ̃ = 0 in Ω,

ψ̃ = ψ on ΓA,
∂ψ̃
∂ν = 0 on ΓI ,

(2.6)

and ϕ̃ as the solution to the same boundary value problem with ψ replaced by ϕ, and the scalar
product we use on H1/2(ΓA) is given by

(ψ, ϕ)H1/2(ΓA) =
∫

Ω
∇ψ̃ · ∇ϕ̃ +

∫

ΓA

ψϕ. (2.7)

We observe that 0H
1/2(ΓA) coincides with the subspace which is orthogonal, with respect to this

scalar product, to the constant function 1. Any η ∈ H−1/2(ΓA) can be decomposed, in a unique
way, into the sum of η̂, an element of 0H

−1/2(ΓA), and a constant function c(η). Furthermore,
to η̂ we can associate η̃ ∈ H1(Ω) that solves





∆η̃ = 0 in Ω,
∂η̃
∂ν = η̂ on ΓA,
∂η̃
∂ν = 0 on ΓI .

(2.8)

If, in the same way, we associate to φ ∈ H−1/2(ΓA) the functions φ̂, c(φ) and φ̃, then the scalar
product on H−1/2(ΓA) may be defined as

(η, φ)H−1/2(ΓA) =
∫

Ω
∇η̃ · ∇φ̃ + c(η)c(φ). (2.9)

We remark that, with respect to this scalar product, 0H
−1/2(ΓA) is the orthogonal subspace

to the constant function 1. We take ΓI not empty. If ψ belongs to H
1/2
const(ΓA,Ω), then there

exist (and are unique) ψ̂ ∈ H
1/2
0 (ΓA,Ω) and a constant function c(ψ) so that ψ = ψ̂ + c(ψ). Let

ψ̃ ∈ H1(Ω) solve 



∆ψ̃ = 0 in Ω,

ψ̃ = ψ̂ on ΓA,

ψ̃ = 0 on ΓI .

(2.10)

Then, if we associate to ϕ ∈ H
1/2
const(ΓA,Ω) its corresponding decomposition given by ϕ̂ and c(ϕ),

and its corresponding function ϕ̃, on H
1/2
const(ΓA,Ω) we introduce the scalar product

(ψ, ϕ)
H

1/2
const(ΓA,Ω)

=
∫

Ω
∇ψ̃ · ∇ϕ̃ + c(ψ)c(ϕ). (2.11)
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Such a scalar product obviously induces a scalar product on H
1/2
0 (ΓA,Ω), which is the closed

subspace of H
1/2
const(ΓA,Ω) orthogonal to the constant function 1.

Spaces of smooth perturbations of a given set We shall consider the following examples. Let us
fix integers N ≥ 2 and m ≥ 1 and positive constants ε and β. Let us also fix x ∈ RN and r > 0.

Let f be any real function defined on B′
N−1(x, r). We define the graph of f in the following way.

We pose graph(f) = {y ∈ RN : yN = f(y1, . . . , yN−1, xN ), (y1, . . . , yN−1, xN ) ∈ B′
N−1(x, r)},

and, assuming f ≥ xN , we define the subgraph of f as subgraph(f) = {y ∈ RN : xN ≤ yN ≤
f(y1, . . . , yN−1, xN ), (y1, . . . , yN−1, xN ) ∈ B′

N−1(x, r)}.
We denote Xmβε(B′

N−1(x, r)) = {graph(f) : f ∈ Cm
0 (B′

N−1(x, r)), ‖f‖Cm(B′N−1(x,r)) ≤
β and xN ≤ f ≤ xN + ε} and with Ymβε(B′

N−1(x, r)) we indicate the space obtained by taking
the subgraphs of all the functions belonging to the same class as before. We consider the spaces
Xmβε(B′

N−1(x, r)) and Ymβε(B′
N−1(x, r)) as metric spaces with the Hausdorff distance. To any

strictly positive function g defined on SN−1(x, r) = ∂BN (x, r), we denote its radial graph as
graphrad(g) = {y ∈ RN : y = x + g(ω) · (ω−x

r

)
, ω ∈ SN−1(x, r)} and its radial subgraph

as subgraphrad(g) = {y ∈ RN : y = x + ρ · (
ω−x

r

)
, 0 ≤ ρ ≤ g(ω), ω ∈ SN−1(x, r)}.

Then, with the notation Xmβε(SN−1(x, r)) we denote the space given by {graphrad(g) : g ∈
Cm(SN−1(x, r)), ‖g‖Cm(SN−1(x,r)) ≤ β and r ≤ g ≤ r + ε} and with Ymβε(SN−1(x, r)) we
denote the space of radial subgraphs of all the functions belonging to the same class used before.
Also the spaces Xmβε(SN−1(x, r)) and Ymβε(SN−1(x, r)) are metric spaces endowed with the
Hausdorff distance. It is an easy remark the fact that Xmβε(B′

N−1(x, r)) and Xmβε(SN−1(x, r))
are contained in the closed ball, with respect to the Hausdorff distance between closed sets,
of radius ε centred at B′

N−1(x, r) and SN−1(x, r), respectively. Analogously, Ymβε(B′
N−1(x, r))

and Ymβε(SN−1(x, r)) are contained in the closed ball, again with respect to the Hausdorff
distance, of radius ε and centre B′

N−1(x, r) and BN (x, r), respectively. Maybe more interesting
and significant is the following remark.

Remark 2.1 For any m, β and ε, the elements of Ymβε(SN−1(x, r)) are all compact subsets
which are star-shaped with respect to the point x ∈ RN . Furthermore, for any integers N ≥ 2
and m ≥ 3, and for any positive β and r, there exists ε̃, depending on N , m, β and r only, such
that if 0 < ε < ε̃, then any element of Ymβε(SN−1(x, r)) is a compact convex set.

The determination of convex or star-shaped sets is usually considered to be more stable than
the determination of other kinds of sets. Nevertheless our results show that even with a convexity
or star-shapedness assumption the instability is still of exponential type. We would like to study
properties of ε-discrete sets of Xmβε(B′

N−1(x, r)), Ymβε(B′
N−1(x, r)) and Xmβε(SN−1(x, r)),

Ymβε(SN−1(x, r)). We have the following proposition.

Proposition 2.2 Let us fix integers N ≥ 2 and m ≥ 1 and positive constants β and r.
We also fix x ∈ RN . Fixed ε > 0, let Xε be equal to one of the following four metric
spaces: Xmβε(B′

N−1(x, r)), Ymβε(B′
N−1(x, r)), Xmβε(SN−1(x, r)) or Ymβε(SN−1(x, r)). Then,

there exists a positive constant ε0, depending on N , m, β and r only, so that for any ε,
0 < ε < ε0, we can find Zε satisfying the following properties. We have that the set Zε is
contained in Xε; Zε is ε-discrete, with respect to the Hausdorff distance; and, finally, Zε has at
least exp(2−Nε

(N−1)/m
0 ε−(N−1)/m) elements.

Proof. The proof can be obtained, with slight modifications, along the lines of the proof of
Lemma 2 in [14]. ¤
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2.1. Inverse crack problem
Let Ω = BN (0, 1), N ≥ 2, be the region occupied by a homogeneous conducting body. Let us
assume that inside the conductor there is a crack σ, that is a closed set inside Ω so that Ω\σ is
connected and, locally, σ can be represented by the graph of a smooth function. We can consider
two different types of cracks, perfectly insulating and perfectly conducting, and we can prescribe
on the (exterior) boundary of Ω either the voltage or the current density. Thus, the electrostatic
potential u in Ω satisfies either {

∆u = 0 in Ω\σ,
∂u
∂ν = 0 on ∂σ;

(2.12)

if σ is perfectly insulating, or, when σ is assumed to be perfectly conducting,
{

∆u = 0 in Ω\σ,
u = constant on σ.

(2.13)

We remark that, in (2.12), on ∂σ means on either sides of σ. On the boundary the potential
satisfies either

u = ψ on ∂Ω; 〈∂u

∂ν
|∂Ω, 1〉 = 0; (2.14)

where ψ ∈ H1/2(∂Ω) is the prescribed voltage at the boundary, or, if we prescribe the current
density on the boundary to be η ∈ 0H

−1/2(∂Ω),

∂u

∂ν
= η on ∂Ω;

∫

∂Ω
u = 0; (2.15)

we wish to remark that normalization conditions have been added to the boundary conditions.
We have that all the direct problems (2.12)-(2.14), (2.12)-(2.15), (2.13)-(2.14) and (2.13)-(2.15)
admit a unique (weak) solution. The inverse crack problem consists of recovering the shape and
location of the unknown crack σ by performing electrostatic measurements at the boundary.
In this subsection we shall state the instability character of such an inverse problem, in all
the possible cases, that is when we consider either insulating or conducting cracks, and when
either we prescribe voltages and measure corresponding currents or we prescribe currents and
measure corresponding voltages. We wish to remark that, for what concerns uniqueness and
stability results, these have been obtained with a finite number of boundary measurements,
usually with two suitably chosen measurements. Our instability example shows the optimality
of the stability estimates previously obtained and that the stability can not be improved by
taking different or more measurements. The framework of our example is as follows. Let N ≥ 2
and m, positive integers, and β, a positive constant, be fixed. Let X = Xmβ(1/4)(B′

N−1(0, 1/2))
with the Hausdorff distance. To any σ ∈ X, we can associate the following four operators. Let
Λ1(σ) : H1/2(∂Ω) 7→ H−1/2(∂Ω) be given by

〈Λ1(σ)ψ, ϕ〉 = 〈∂u

∂ν
|∂Ω, ϕ〉 =

∫

Ω
∇u · ∇ϕ̃,

where ψ, ϕ ∈ H1/2(∂Ω), u solves (2.12)-(2.14) and ϕ̃ is any H1(Ω\σ) function whose trace on
∂Ω coincides with ϕ. Let N1(σ) : 0H

−1/2(∂Ω) 7→ 0H
1/2(∂Ω) be given by

N1(σ)η = u|∂Ω,

where η ∈ 0H
−1/2(∂Ω) and u solves (2.12)-(2.15). Let Λ2(σ) : H1/2(∂Ω) 7→ H−1/2(∂Ω) be given

by

〈Λ2(σ)ψ, ϕ〉 = 〈∂u

∂ν
|∂Ω, ϕ〉 =

∫

Ω
∇u · ∇ϕ̃,
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where ψ, ϕ ∈ H1/2(∂Ω), u solves (2.13)-(2.14) and ϕ̃ is any H1
const(Ω, σ) function whose trace

on ∂Ω coincides with ϕ. Let N2(σ) : 0H
−1/2(∂Ω) 7→ 0H

1/2(∂Ω) be given by

N2(σ)η = u|∂Ω,

where η ∈ 0H
−1/2(∂Ω) and u solves (2.13)-(2.15). Let us remark that for any σ ∈ X, each Λi(σ)

and Ni(σ), i = 1, 2, is a bounded linear operator between a Hilbert space and its dual, it is self-
adjoint and its norm is always assumed to be the canonical one of bounded operators between
these two Hilbert spaces. The operator Λi, i = 1, 2, is usually referred to as the Dirichlet-to
Neumann map, whereas Ni, i = 1, 2, is usually called the Neumann-to-Dirichlet map. Keeping
in mind the notation and this remark, we are able to state our instability result.

Proposition 2.3 Let us fix integers N ≥ 2 and m ≥ 1 and a positive constant β. Let (X, d) be
the metric space where X = Xmβ(1/4)(B′

N−1(0, 1/2)) and d is the Hausdorff distance. Let us fix
T ∈ {Λ1,N1,Λ2,N2}. Then there exists a positive ε1, depending on N , m and β only, so that
for any ε, 0 < ε < ε1, there exist two cracks σ1, σ2 belonging to X satisfying

d(σj , B′
N−1(0, 1/2)) ≤ ε, for any j = 1, 2; d(σ1, σ2) ≥ ε;

‖T (σ1)− T (σ2)‖ ≤ 2 exp(−ε−(N−1)/(2mN)).
(2.16)

For the proof of this proposition we refer to Subsection 4.1.

2.2. Inverse cavity problem
The inverse cavity problem can be treated if we substitute, in the previous subsection, the set
of cracks inside Ω, X = Xmβ(1/4)(B′

N−1(0, 1/2)), with the set of cavities inside Ω given by
X = Ymβ(1/4)(SN−1(0, 1/2)). With almost no modification in the proof, a result completely
analogous to the one described in Proposition 2.3 can be obtained. So also the inverse cavity
problem shows an exponential instability character.

In the planar case, an explicit example developed in [5] shows the exponential instability
character of the inverse cavity problem and, consequently, that the stability estimates therein
contained are essentially optimal. Our results here confirm this fact and extend it to the higher
dimensional case, thus providing the essential optimality of stability estimates of logarithmic
type.

2.3. Inverse surface crack problem
Let Ω = BN (0, 1)\{x ∈ BN (0, 1) : xN−1 ≥ 0 and xN = 0}, N ≥ 2, and let ΓI = {x ∈ BN (0, 1) :
xN−1 ≥ 0 and xN = 0}. Inside Ω, we consider the geodesic distance between two points as the
infimum of the lengths of smooth paths contained in Ω connecting the two points. If we consider
the boundary of Ω with respect to this distance, we notice that this boundary contains two
overlapping copies of ΓI , one obtained by approaching ΓI with points x in Ω such that xN > 0
and the other obtained by approaching it with points x ∈ Ω so that xN < 0. The set ΓA is
obtained from ΓI by taking the closure, in the topology of ∂Ω induced by the geodesic distance
defined above, of ∂Ω\ΓI . We remark that ΓA coincides, from a set point of view, with SN−1, but
each point belonging to the intersection of ΓI and SN−1 should be counted with multiplicity two,
as for points of ΓI . With H1/2(ΓA) we denote the space of traces of H1(Ω) functions on ΓA and
with H−1/2(ΓA) we shall denote its dual. On these two spaces, we consider scalar products which
are defined exactly as we have done before for regular domains, in (2.7) and (2.9), respectively. We
notice that H1/2(ΓA) ⊂ L2(SN−1) ⊂ H−1/2(ΓA). Finally, we notice that the spaces 0H

1/2(ΓA)
and 0H

−1/2(ΓA) are the orthogonal subspaces, respectively in H1/2(ΓA) and H−1/2(ΓA), to
the constant function 1 and are dual one to each other. We observe that the spaces H1

0 (Ω, ΓI)
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and H1
const(Ω, ΓI) are given by the spaces of H1(BN (0, 1)) functions which are, respectively,

identically zero or constant in a weak sense on ΓI . The spaces of traces on ΓA of functions
belonging to H1

0 (Ω, ΓI) and H1
const(Ω, ΓI), respectively, are again denoted by H

1/2
0 (ΓA,Ω) and

H
1/2
const(ΓA,Ω). On these two last spaces, a scalar product is defined in the same fashion as we have

done for regular domains in (2.11). If N = 2, let σ0 = {x ∈ B2(0, 1) : x1 ≥ −1/2 and x2 = 0}.
If N ≥ 3, let f ∈ C∞

0 (B′
N−2(0, 1/4)) so that −1/4 ≤ f ≤ 0. Let σ0 = ΓI ∪ {y ∈ B′

N−1(0, 1) :
f((y1, . . . , yN−2, 0)) ≤ yN−1 ≤ 0, (y1, . . . , yN−2, 0) ∈ B′

N−2(0, 1/4)}. By definition if N = 2, and
by a suitable choice of f if N ≥ 3, we can always assume that B′

N−1(x̃0, 1/16) is contained in
σ0, where x̃0 = (0, . . . , 0,−1/8, 0). Then we fix a positive integer m and a positive constant β
and we define X as the set

X = {σ = (σ0\B′
N−1(x̃0, 1/16)) ∪ σ′ : σ′ ∈ Xmβ(1/4)(B

′
N−1(x̃0, 1/16))}. (2.17)

We remark that each σ ∈ X is a connected closed set inside BN (0, 1) so that ΓI ⊂ σ and
σ\ΓI ⊂ BN (0, 4/5). If we assume that BN (0, 1) is occupied by a homogeneous conductor, we
can think any σ ∈ X as a surface crack inside BN (0, 1). We can distinguish between two
different kinds of surface cracks, namely insulating and conducting. Let us assume that σ ∈ X
is an insulating surface crack and that we prescribe on ΓA the current density to be equal to
η ∈ 0H

−1/2(ΓA). Then the electrostatic potential u in BN (0, 1) satisfies




∆u = 0 in BN (0, 1)\σ,
∂u
∂ν = 0 on either sides of σ,
∂u
∂ν = η on ΓA,∫
ΓA

u = 0,

(2.18)

where we have also added a normalization condition. We have that u is a weak solution to (2.18)
if and only if u ∈ H1(BN (0, 1)\σ),

∫
ΓA

u = 0, and

∫

BN (0,1)\σ
∇u · ∇w = 〈η, w|ΓA

〉, for any w ∈ H1(BN (0, 1)\σ).

Clearly such a function u exists and is unique. We have that u|ΓA
belongs to 0H

1/2(ΓA) and that
the operator N3(σ) : 0H

−1/2(ΓA) 7→ 0H
1/2(ΓA) so that, for any η ∈ 0H

−1/2(ΓA), N3(σ)η = u|ΓA
,

u solution to (2.18), is linear, bounded and self-adjoint. When, otherwise, σ ∈ X is a conducting
surface crack in BN (0, 1) and we prescribe the voltage on ΓA to be ψ ∈ H

1/2
const(ΓA,Ω), then the

potential u in BN (0, 1) solves




∆u = 0 in BN (0, 1)\σ,
u = c(ψ) on σ,
u = ψ on ΓA,

(2.19)

where c(ψ) is a constant so that ψ̂ = ψ − c(ψ) ∈ H
1/2
0 (ΓA,Ω). Let ψ̃ be any H1

0 (BN (0, 1)\σ, σ)
function so that ψ̃|ΓA

= ψ̂. Then u solves in a weak sense (2.19) if and only if u − c(ψ) − ψ̃ ∈
H1

0 (BN (0, 1)\σ) and
∫

BN (0,1)\σ
∇u · ∇w = 0, for any w ∈ H1

0 (BN (0, 1)\σ).

By standard elliptic equations methods we infer that u, solution to (2.19), exists and it is
unique. To such a solution we can associate ∂u

∂ν |ΓA
∈ (H1/2

const(ΓA,Ω))′ as follows. For any
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ϕ ∈ H
1/2
const(ΓA,Ω), let the constant c(ϕ) be so that ϕ̂ = ϕ − c(ϕ) ∈ H

1/2
0 (ΓA,Ω), and let ϕ̃

be any H1
0 (BN (0, 1)\σ, σ) function so that ϕ̃|ΓA

= ϕ̂. Then,

〈∂u

∂ν
|ΓA

, ϕ〉 =
∫

BN (0,1)\σ
∇u · ∇ϕ̃.

The operator Λ3(σ) : H
1/2
const(ΓA,Ω) 7→ (H1/2

const(ΓA,Ω))′ so that, for any ψ ∈ H
1/2
const(ΓA,Ω),

Λ3(σ)ψ = ∂u
∂ν |ΓA

, u solution to (2.19), is linear, bounded and self-adjoint. The inverse surface
crack problem consists of the determination of the unknown surface crack from suitable
information on the operator N3 or Λ3, respectively. The operators N3 and Λ3 correspond to
electrostatic boundary measurements. Many papers have treated this problem when a finite
number of measurements is performed, that is when either N3(η) is measured for a finite number
of different η or Λ3(ψ) is measured for a finite number of different ψ.

Proposition 2.4 We fix integers N ≥ 2 and m ≥ 1 and a positive constant β. Let X be the set
of closed sets described in (2.17) and let (X, d) be a metric space with the Hausdorff distance.
Let σ0 be defined as before. Let us fix T ∈ {N3,Λ3}. Then we can find ε1 > 0, that depends on
N , m and β only, so that for any ε, 0 < ε < ε1, there exist two surface cracks σ1, σ2 belonging
to X so that

d(σj , σ0) ≤ ε, for any j = 1, 2; d(σ1, σ2) ≥ ε;
‖T (σ1)− T (σ2)‖ ≤ 2 exp(−ε−(N−1)/(2mN)).

(2.20)

We prove this result in Subsection 4.2.

2.4. Inverse boundary material loss problem
Let Ω = {x ∈ BN (0, 1) : xN > 0}, and let ΓA = {x ∈ ∂BN (0, 1) : xN ≥ 0} = SN−1

+ and
ΓI = {x ∈ BN (0, 1) : xN = 0} = B′

N−1(0, 1). Fixed a positive integer m and a positive constant
β, let

X = {σ = ΓI ∪ σ′ : σ′ ∈ Ymβ(1/4)(B
′
N−1(0, 1/2))}. (2.21)

Then every σ ∈ X is a closed subset contained in Ω so that (σ\ΓI) ⊂ BN (0, 4/5). We assume
that Ω is the region occupied by a homogeneous conductor and σ ∈ X is a boundary material
loss, which might be due to a corrosion phenomenon, for instance. We assume that ΓA is an
accessible part of the boundary of our conductor, whereas Γσ = ∂(Ω\σ)\ΓA, that is the other
part of the boundary where the material loss occurs, is not. Also in this case we distinguish two
kinds of boundary material losses, insulating and conducting. In the first case, no current passes
through Γσ, the part of boundary of Ω\σ which is contained in σ. In the second case, the voltage
is constant on σ. More precisely, we have that if σ is an insulating boundary material loss and
if we prescribe the current density on ΓA to be equal to η ∈ 0H

−1/2(ΓA), then the electrostatic
potential u inside Ω\σ is the unique solution to





∆u = 0 in Ω\σ,
∂u
∂ν = 0 on Γσ,
∂u
∂ν = η on ΓA,∫
ΓA

u = 0,

(2.22)

where the last line is a normalization condition. Otherwise, if σ is conducting, then the
electrostatic potential u in Ω is given by





∆u = 0 in Ω\σ,
u = c(ψ) on σ,
u = ψ on ΓA,

(2.23)
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where ψ ∈ H
1/2
const(ΓA,Ω) is the prescribed voltage on ΓA and c(ψ) is a constant so that ψ− c(ψ)

belongs to H
1/2
0 (ΓA,Ω). In the insulating case, for every σ ∈ X, we define N4(σ) : 0H

−1/2(ΓA) 7→
0H

1/2(ΓA) so that for any η ∈ 0H
−1/2(ΓA), then N4(σ)η = u|ΓA

, u being the unique solution
to (2.22). We have that N4(σ) is a linear, bounded and self-adjoint operator. In the conducting
case, if σ ∈ X, let us define Λ4(σ) : H

1/2
const(ΓA,Ω) 7→ (H1/2

const(ΓA,Ω))′ as follows. For any ψ,
ϕ ∈ H

1/2
const(ΓA,Ω),

〈Λ4(σ)ψ, ϕ〉 = 〈∂u

∂ν
|ΓA

, ϕ〉 =
∫

Ω\σ
∇u · ∇ϕ̃,

where u solves (2.23) and ϕ̃ is any H1
const(Ω, σ) so that ϕ̃|ΓA

= ϕ. Also Λ4(σ) is a linear, bounded
and self-adjoint operator, for any σ ∈ X. The inverse problem consists of the determination of the
shape and the location of the unknown boundary material loss σ from electrostatic measurements
performed on the accessible part of the boundary, that is ΓA. The case of a single electrostatic
measurement is particularly interesting and uniqueness and optimal stability estimates have been
obtained for this situation. In two dimensions, the severely ill-posedness of this problem has been
shown through an explicit example in [1]. In the next proposition, proven in Subsection 4.2, we
confirm that logarithmic stability is essentially optimal in any dimension, no matter how many
and which measurements we perform.

Proposition 2.5 Let N ≥ 2 and m ≥ 1 be integers and β be a positive constant. Let X be
defined as in (2.21), endowed with the Hausdorff distance d. Let us fix T ∈ {N4,Λ4}. Then there
exists a constant ε1 > 0, that depends on N , m and β only, so that for any ε, 0 < ε < ε1, there
exist two boundary material losses σ1, σ2 belonging to X so that

d(σj , B′
N−1(0, 1)) ≤ ε, for any j = 1, 2; d(σ1, σ2) ≥ ε;

‖T (σ1)− T (σ2)‖ ≤ 2 exp(−ε−(N−1)/(2mN)).
(2.24)

3. Stekloff eigenvalue problems
In this section we collect some results which will be repeatedly used later, when we shall apply
the abstract theorem. Most of the results described in this section are obtained by standard
methods, thus, for the sake of brevity, we do not enter into any detail and we limit ourselves to
fix the notation and to state the results which will be needed later, referring to the literature
when necessary. Let Ω ⊂ RN , N ≥ 2, be a bounded domain and let ΓA and ΓI be two internally
disjoint subsets of ∂Ω, so that ΓA ∪ ΓI = ∂Ω. About the regularity and the properties of Ω,
ΓA and ΓI , we shall consider the same assumptions used at the beginning of Section 2. The
following eigenvalue problems of Stekloff type will be discussed; first





∆u = 0 in Ω,
∂u
∂ν = λu on ΓA,
∂u
∂ν = 0 on ΓI ,

(3.25)

and then, assuming ΓI not empty,




∆v = 0 in Ω,
∂v
∂ν = µv on ΓA,
v = 0 on ΓI .

(3.26)

We state the following propositions concerning the eigenvalues and eigenfunctions of (3.25) and
(3.26) respectively.
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Proposition 3.1 Under the assumptions on Ω, ΓA and ΓI previously made, we have that the
eigenvalues of (3.25), counted with their multiplicity, are given by an increasing sequence

0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λk ≤ . . .

so that limk→∞ λk = ∞. For any n ∈ N, we set N1(n) = #{k ∈ N : λk ≤ n}. Then the
asymptotic behaviour of the eigenvalues is as follows. There exists a constant C1 depending on
Ω, ΓA and ΓI only so that

N1(n) ≤ C1n
N−1, for any n ∈ N. (3.27)

Moreover, there exists a corresponding sequence of eigenfunctions, {uk}k∈N, that is uk ∈
H1(Ω)\{0} and the couple (λk, uk) solves (3.25) for any k ∈ N, so that the following three
conditions holds

{uk|ΓA
}k∈N is an orthonormal basis of L2(ΓA);

{
uk√

1 + λk
|ΓA

}

k∈N
is an orthonormal basis of H1/2(ΓA);

{1|ΓA
} ∪ {

√
λkuk|ΓA

}k≥2 is an orthonormal basis of H−1/2(ΓA);

where we have considered the spaces H1/2(ΓA) and H−1/2(ΓA) with the scalar products defined
in (2.7) and (2.9) respectively. We remark that u1 is a constant function not identically equal
to zero.

Proposition 3.2 Under the assumptions on Ω, ΓA and ΓI previously made, and assuming that
ΓI is not empty, then the eigenvalues of (3.26), counted with their multiplicity, constitute an
increasing sequence

0 < µ1 ≤ µ2 ≤ . . . ≤ µk ≤ . . .

so that limk→∞ µk = ∞. For any n ∈ N, we set as before N2(n) = #{k ∈ N : µk ≤ n}. Then
the eigenvalues satisfy the following asymptotic behaviour. There exists a constant C2 depending
on Ω, ΓA and ΓI only so that

N2(n) ≤ C2n
N−1, for any n ∈ N. (3.28)

Furthermore, we can find a sequence {vk}k∈N of corresponding eigenfunctions, that is vk ∈
H1(Ω)\{0} and the couple (µk, vk) is a solution to (3.26) for any k ∈ N, so that

{vk|ΓA
}k∈N is an orthonormal system of L2(ΓA);

{1|ΓA
} ∪

{
vk√
µk
|ΓA

}

k∈N
is an orthonormal basis of H

1/2
const(ΓA,Ω);

where we have considered the space H
1/2
const(ΓA,Ω) with the scalar product defined in (2.11).

Beyond the asymptotic behaviour of the eigenvalues, we are interested in the asymptotic
behaviour of the eigenfunctions, in particular in a kind of exponential decay, in terms of the
eigenvalues, of the eigenfunctions away from ΓA. In the next examples, we present some particular
cases in which such kind of decay holds.
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Example 3.3 Let Ω = BN (0, 1) and ∂Ω = SN−1, and let ΓA = ∂Ω and ΓI = ∅. In this
case the problem (3.25) is a classical Stekloff eigenvalue problem and it is well-known that
the orthonormal basis of L2(SN−1) constituted by the traces of eigenfunctions, as described in
Proposition 3.1, coincides with

{fjp : j ≥ 0 and 1 ≤ p ≤ pj} (3.29)

where each fjp is a spherical harmonic of degree j, j being a nonnegative integer. We have that
the function

ujp(x) = ‖x‖jfjp(x/‖x‖) (3.30)

is harmonic in RN and solves the eigenvalue problem (3.25) with eigenvalue λ = j. So, the
sequence {ujp : j ≥ 0 and 1 ≤ p ≤ pj} coincides with the sequence of eigenfunctions we
have described in Proposition 3.1. The integers pj are the dimensions of the spaces of spherical
harmonics of degree j and we have that, see for instance [15, page 4],

pj =

{
1 if j = 0,
(2j+N−2)(j+N−3)!

j!(N−2)! if j ≥ 1,

so that
pj ≤ 2(j + 1)N−2, j ≥ 0,

and

N1(n) ≤
n∑

j=0

pj ≤
n∑

j=0

2(j + 1)N−2 ≤ 2(n + 1)N−1, for any n ∈ N.

Furthermore, for any r0, 0 < r0 < 1, there exist two positive constants, C(r0, N) and α(r0), so
that for any ujp as in (3.30) it holds

‖ujp‖H1(BN (0,r0)) ≤ C(r0, N) exp(−α(r0)j). (3.31)

Example 3.4 Let Ω = {x ∈ BN (0, 1) : xN > 0}, and let ΓA = {x ∈ ∂BN (0, 1) : xN ≥ 0} =
SN−1

+ and ΓI = {x ∈ BN (0, 1) : xN = 0} = B′
N−1(0, 1). First of all, we notice that the hypoteses

of Proposition 3.1 and Proposition 3.2 are satisfied, so the conclusions of Proposition 3.1 and
of Proposition 3.2 hold for the eigenvalues and eigenfunctions related to problem (3.25) and
problem (3.26) with these data, respectively. The following exponential decay property can be
obtained, as well. We have that if u ∈ H1(Ω)\{0} solves (3.25) for a constant λ, then, by
a reflection argument, it follows that there exist j, a nonnegative integer, and f , a spherical
harmonic function on SN−1 of degree j, so that u(x) = ‖x‖jf(x/‖x‖) for any x ∈ Ω and λ = j.
Thus, if we assume that ‖f‖L2(ΓA) = 1, we can conclude that for any r0, 0 < r0 < 1,

‖u‖H1(BN (0,r0)∩Ω) ≤ C(r0, N) exp(−α(r0)λ), (3.32)

where the constants C(r0, N) and α(r0) coincide with the ones obtained in Example 3.3. Again
by a reflection argument, we have that if v ∈ H1(Ω)\{0} and a constant µ solve (3.26) then there
exist j, a positive integer, and f , a spherical harmonic function on SN−1 of degree j, so that
v(x) = ‖x‖jf(x/‖x‖) for any x ∈ Ω and µ = j. Thus, if we assume as before that ‖f‖L2(ΓA) = 1,
we immediately infer that for any r0, 0 < r0 < 1,

‖v‖H1(BN (0,r0)∩Ω) ≤ C(r0, N) exp(−α(r0)µ), (3.33)

with the same constants C(r0, N) and α(r0) as before.
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Example 3.5 Let Ω = BN (0, 1)\{x ∈ BN (0, 1) : xN−1 ≥ 0 and xN = 0}, and let ΓI = {x ∈
BN (0, 1) : xN−1 ≥ 0 and xN = 0}, as in Subsection 2.3. We set ΓA as in Subsection 2.3, as well.
Also the notations concerning Sobolev spaces on ΓA are the ones introduced in Subsection 2.3.
The eigenvalue problem (3.25) with these data can be rewritten as





∆u = 0 in Ω,
∂u
∂ν = λu on ΓA,
∂u
∂ν = 0 on (either sides of) ΓI ,

(3.34)

that is, u ∈ H1(Ω) solves (3.34) if
∫

Ω
∇u · ∇w =

∫

ΓA

λuw, for any w ∈ H1(Ω).

Then, all the conclusions of Proposition 3.1 still hold true for the eigenvalue problem (3.34), also
with the possibility to replace the space L2(ΓA) with the space L2(SN−1). The exponential decay
of the eigenfunctions is still valid. By separation of variables, we have that if u ∈ H1(Ω)\{0}
solves (3.34) with a constant λ, then there exists a function g ∈ L2(SN−1) so that u(x) =
‖x‖λg(x/‖x‖) for any x ∈ Ω. Assuming that ‖g‖L2(SN−1) = 1, we obtain that for any r0,
0 < r0 < 1,

‖u‖H1(BN (0,r0)∩Ω) ≤ C1(r0, N) exp(−α(r0)λ), (3.35)

where C1(r0, N) is a positive constant not depending on λ and α(r0) coincides with the one
defined in Example 3.3. For what concerns the eigenvalue problem (3.26) with these data, that
is, 




∆v = 0 in Ω,
∂v
∂ν = µv on ΓA,
v = 0 on ΓI ,

(3.36)

we have that v solves (3.36), in a weak sense, for a constant µ, if v ∈ H1
0 (Ω, ΓI) and

∫

Ω
∇v · ∇w =

∫

ΓA

µvw, for any w ∈ H1
0 (Ω, ΓI).

Then, all the results of Proposition 3.2 are still valid for the eigenvalue problem (3.36), and we
can again replace the space L2(ΓA) with the space L2(SN−1). If v ∈ H1

0 (Ω, ΓI)\{0} and µ are
a solution to (3.36), then, by separation of variables, we can find a function g ∈ L2(SN−1) so
that v(x) = ‖x‖µg(x/‖x‖) for any x ∈ Ω. If we further suppose ‖g‖L2(SN−1) = 1, we have that
for any r0, 0 < r0 < 1,

‖v‖H1(BN (0,r0)∩Ω) ≤ C2(r0, N) exp(−α(r0)µ), (3.37)

where C2(r0, N) is a positive constant not depending on µ and α(r0) is the same as before.

4. Proofs of the main results
In this section we apply the abstract theorem to the inverse problems described in Section 2 and
we conclude the proofs of our instability results.
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4.1. Inverse crack problem
The proof of Proposition 2.3 follows directly from the abstract theorem stated in Theorem 1.1.
We just need to check that all the hypotheses of Theorem 1.1 are satisfied. Therefore, the proof
is divided into two steps, each corresponding to one of the hypotheses of Theorem 1.1.
Proof of Proposition 2.3 - First step. First, let x0 ∈ X be B′

N−1(0, 1/2). Then, by
Proposition 2.2, X satisfies assumption i) of Theorem 1.1, with constants ε0 and C1 depending
on N , m and β only, and constant α1 = (N − 1)/m. We recall also that σ ⊂ BN (0, 4/5) for any
σ ∈ X. ¤For what concerns the second step,
we turn our attention to assumption ii) of Theorem 1.1. Each case, corresponding to operators
Λi and Ni, i = 1, 2, should be treated separately. We limit ourselves to two cases, namely the
cases corresponding to N1 and Λ2, in order to show the main points of the proof, and we leave
the details concerning the other two cases to the reader.

Insulating crack & Neumann-to-Dirichlet case
Proof of Proposition 2.3 - Second step. First, we notice that u is a solution to (2.12)-(2.15)
if and only if u ∈ H1(Ω\σ),

∫
∂Ω u = 0, and

∫

Ω\σ
∇u · ∇w = 〈η, w|∂Ω〉, for any w ∈ H1(Ω\σ).

We observe that for any σ ∈ X, N1(σ) is a bounded and linear operator between 0H
−1/2(∂Ω)

and its dual. Hence we take H to be 0H
−1/2(∂Ω) and F : X 7→ L(H, H ′) to be defined as

F (σ) = N1(σ) for any σ ∈ X. With F0 we denote in an analogous way the Neumann-to-Dirichlet
map related to (2.12)-(2.15) when σ = ∅, that is the Neumann-to-Dirichlet map associated to
the body where no crack is present. For any η ∈ 0H

−1/2(∂Ω)\{0}, we define

γ(η) =
‖η‖2

L2(∂Ω)

‖η‖2
H−1/2(∂Ω)

. (4.38)

Referring to Proposition 3.1, Example 3.3 and (3.29), {vk}k∈N, the orthonormal basis of H we
shall employ, is given by {√

jfjp : j ≥ 1 and 1 ≤ p ≤ pj

}
(4.39)

with the natural order. We have that γ(
√

jfjp) = j, for any j and p. Again by our remarks in
Example 3.3, we deduce that #{k ∈ N : γ(vk) ≤ n} ≤ 2(1 + n)N−1, for any n ∈ N, For what
concerns (1.3), we argue in this way. We need a kind of self-adjointness of F (σ) − F0 for every
σ ∈ X. We have that

〈(F (σ)− F0)η, φ〉 = 〈(F (σ)− F0)φ, η〉
for any η, φ ∈ 0H

−1/2(∂Ω), where 〈·, ·〉 is again the duality pairing between H ′ and H. In fact, if
u solves (2.12)-(2.15), u0 solves the same boundary value problem with σ replaced by the empty
set, v and v0 solves the same boundary value problems with η replaced by φ, then

〈(F (σ)− F0)η, φ〉 =
∫

Ω\σ
∇v · ∇u−

∫

Ω
∇v0 · ∇u0.

By the self-adjointness of the operator F (σ) − F0, for any σ ∈ X, in order to prove (1.3) we
have to show that there exist positive constants C2 and α2, which depend on N , m and β only,
so that, for any j and p,

∥∥∥(F (σ)− F0)
√

jfjp

∥∥∥
H1/2(∂Ω)

≤ C2 exp(−α2j). (4.40)
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We can find a constant C3, depending on N only, so that, for any σ ∈ X,
∥∥∥(F (σ)− F0)

√
jfjp

∥∥∥
H1/2(∂Ω)

≤ C3‖vjp‖H1(Ω\BN (0,4/5))
,

where vjp satisfies 



∆vjp = 0 in Ω\σ,
∂vjp

∂ν = 0 on ∂Ω,
∂vjp

∂ν = −j−1/2 ∂ujp

∂ν on ∂σ,∫
∂Ω vjp = 0,

(4.41)

with ujp given by formula (3.30). Since
∫
∂Ω vjp = 0, a Poincaré type inequality implies that there

exists a constant C4, depending on N only, so that, for any σ ∈ X, we have

∥∥∥(F (σ)− F0)
√

jfjp

∥∥∥
H1/2(∂Ω)

≤ C4

(∫

Ω\BN (0,4/5)
‖∇vjp‖2

)1/2

.

We can estimate the right hand side of the last equation as follows. We fix a cut-off function χ
so that χ ∈ C∞

0 (BN (0, 5/6)), 0 ≤ χ ≤ 1, χ ≡ 1 on BN (0, 4/5). Without loss of generality, we
can assume that for every x ∈ RN , ‖∇χ(x)‖ ≤ C5, C5 being a constant depending on N only.
Let us observe that (4.41) means that for every w ∈ H1(Ω\σ) we have

∫

Ω\σ
∇vjp · ∇w = −

∫

Ω\σ
j−1/2∇ujp · ∇(χw).

Then, by taking w = vjp, we infer that
∫

Ω\σ
‖∇vjp‖2 = −

∫

Ω\σ
j−1/2∇ujp · ∇(χvjp).

Straightforward computations allow us to prove that there exists a constant C6, depending on
N only, so that (∫

Ω\σ
‖∇vjp‖2

)1/2

≤ C6

(∫

BN (0,5/6)
‖∇ujp‖2

)1/2

.

Then we can conclude using (3.31). ¤

Conducting crack & Dirichlet-to-Neumann case
Proof of Proposition 2.3 - Second step. We begin with a description of the weak formulation
of the boundary value problem (2.13)-(2.14). With H1

const(Ω, σ) we denote the subspace of H1(Ω)
functions which are constant on σ. For any c ∈ R, we set H1

c (Ω, σ) as the subset of H1(Ω)
functions which are equal to the constant c on σ. For any c ∈ R, we have that there exists and
it is unique a solution to the following boundary value problem





∆uc = 0 in Ω\σ,
uc = c on σ,
uc = ψ on ∂Ω,

(4.42)

that is a function uc ∈ H1
c (Ω, σ) so that uc|∂Ω = ψ and that

∫

Ω\σ
∇uc · ∇w = 0, for any w ∈ H1

0 (Ω) ∩H1
0 (Ω, σ).
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Given uc, solution to (4.42), we can define ∂uc
∂ν |∂Ω ∈ H−1/2(∂Ω) as follows

〈∂uc

∂ν
|∂Ω, ϕ〉 =

∫

Ω\σ
∇uc · ∇ϕ̃,

where ϕ ∈ H1/2(∂Ω) and ϕ̃ is any H1
0 (Ω, σ) function so that ϕ̃|∂Ω = ϕ. We claim that there

exists a unique c ∈ R so that 〈∂uc
∂ν |∂Ω, 1〉 = 0, that is existence and uniqueness of a solution to

(2.13)-(2.14). We have that u solves (2.13)-(2.14) if and only if u ∈ H1
const(Ω, σ) so that u|∂Ω = ψ

and that ∫

Ω\σ
∇u · ∇w = 0, for any w ∈ H1

0 (Ω) ∩H1
const(Ω, σ).

If we take ψ̃ to be any H1
0 (Ω, σ) function so that ψ̃|∂Ω = ψ, we have that u solves (2.13)-(2.14)

if and only if ũ = u− ψ̃ belongs to H1
0 (Ω) ∩H1

const(Ω, σ) and satisfies
∫

Ω\σ
∇ũ · ∇w = −

∫

Ω\σ
∇ψ̃ · ∇w, for any w ∈ H1

0 (Ω) ∩H1
const(Ω, σ).

Standard elliptic theory provides us with existence and uniqueness of such a solution. By the
property 〈∂u

∂ν |∂Ω, 1〉 = 0, we can infer that ∂u
∂ν |∂Ω ∈ H−1/2(∂Ω) can be also defined as

〈∂u

∂ν
|∂Ω, ϕ〉 =

∫

Ω\σ
∇u · ∇ϕ̃,

where ϕ ∈ H1/2(∂Ω) and ϕ̃ is any H1
const(Ω, σ) function so that ϕ̃|∂Ω = ϕ. Now we can denote

with H the space H1/2(∂Ω). Concerning the function γ our choice is the following. For any
ψ ∈ H1/2(∂Ω)\{0}, let

γ(ψ) =
‖ψ‖2

H1/2(∂Ω)

‖ψ‖2
L2(∂Ω)

. (4.43)

Then it remains to choose an orthonormal basis of H, {vk}k∈N, so that γ(vk) is finite for any k
and (1.2) and (1.3) are satisfied. Recalling Example 3.3, in particular (3.29), we consider the set

{
fjp√
1 + j

: j ≥ 0 and 1 ≤ p ≤ pj

}
(4.44)

with the natural order. This set, by Proposition 3.1, is an orthonormal basis of H and it is the
one we choose. We also recall that fjp is a spherical harmonic of degree j so that ‖fjp‖L2(∂Ω) = 1,
hence γ(fjp/

√
1 + j) = 1 + j, for any j and p. Fixed n ∈ N, #{k ∈ N : γ(vk) ≤ n} is clearly

bounded from above by 2(1 + n)N−1, see Example 3.3. The map F : X 7→ L(H, H ′) is given
by F (σ) = Λ2(σ), for any σ ∈ X, and F0 denotes the Dirichlet-to-Neumann map corresponding
to σ = ∅. We recall that the operator F (σ) is self-adjoint for any σ ∈ X, as well as F0 is. We
proceed to verify (1.3) in this case. First, there exists a constant C7, depending on N only, so
that, for any σ ∈ X,

∥∥∥∥(F (σ)− F0)
fjp√
1 + j

∥∥∥∥
H−1/2(∂Ω)

≤ C7

(∫

Ω\BN (0,4/5)
‖∇vjp‖2

)1/2

(4.45)

where vjp = ujp(σ)− ujp√
1+j

, ujp(σ) being the solution to (2.13)-(2.14) with ψ replaced by fjp√
1+j

and ujp being as in (3.30). Hence, vjp satisfies




∆vjp = 0 in Ω\σ,
vjp = 0 on ∂Ω,
vjp = c− ujp√

1+j
on ∂σ,

〈∂vjp

∂ν |∂Ω, 1〉 = 0,

(4.46)
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where c = ujp(σ)|σ. We notice that, if χ is the cut-off function previously defined in this
subsection, then wjp = (vjp − c + χ

ujp√
1+j

) ∈ H1
0 (Ω, σ) and vjp|∂Ω = −c. So,

∫

Ω\σ
∇vjp · ∇wjp = 〈∂vjp

∂ν
|∂Ω,−c〉 = 0,

that is ∫

Ω\σ
∇vjp · ∇vjp =

∫

Ω\σ
∇vjp · ∇(χ

ujp√
1 + j

),

from which we easily deduce that

(∫

Ω\σ
‖∇vjp‖2

)1/2

≤ C8‖ujp‖H1(BN (0,5/6), (4.47)

where C8 depends on N only. So (1.3) is obtained by combining (4.45), (4.47) and (3.31) and
the self-adjointness of the operator F (σ)− F0. ¤

4.2. Inverse cavity problem, inverse surface crack problem and inverse boundary material loss
problem
As we have already observed, the inverse problem of cavities can be treated in a way which is
completely analogous to the treatment of the inverse crack problem.
Proof of Proposition 2.4. It can be obtained along the lines of the proof of Proposition 2.3,
with obvious modifications. In particular, the reference point in X is given by σ0, the orthonormal
basis used are those described in Example 3.5, whereas the reference operator is the one related
to the domain Ω, Ω as in Example 3.5. ¤
Proof of Proposition 2.5. Also the arguments for the proof of Proposition 2.5 are simple
modifications of what we have used to prove Proposition 2.3, clearly making use of the
orthonormal basis described in Example 3.4. ¤
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