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Abstract

We obtain the explicit distribution of the position of a particle performing a cyclic, minimal, random motion with constant
velocity c in R

n. The n + 1 possible directions of motion as well as the support of the distribution form a regular hyperpolyhedron
(the first one having constant sides and the other expanding with time t), the geometrical features of which are here investigated.

The distribution is obtained by using order statistics and is expressed in terms of hyper-Bessel functions of order n + 1. These
distributions are proved to be connected with (n + 1)th order p.d.e. which can be reduced to Bessel equations of higher order.

Some properties of the distributions obtained are examined. This research has been inspired by a conjecture formulated in
Orsingher and Sommella [E. Orsingher, A.M. Sommella, A cyclic random motion in R3 with four directions and finite velocity,
Stochastics Stochastics Rep. 76 (2) (2004) 113–133] which is here proved to be false.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Dans ce travail, on étudie l’évolution dans l’espace R
n d’une particule animée d’un mouvement aléatoire cyclique à vitesse

constante. Le mouvement est supposé minimal au sens où les différentes directions prises sont au nombre de n + 1 ; de plus, ces
directions forment un hyper-polyèdre régulier fixe. Le support de la distribution de la position de la particule est également un
hyper-polyèdre régulier (de taille évolutive au cours du temps).

Faisant appel aux statistiques d’ordre, on a pu obtenir explicitement la loi de probabilité de la position de la particule à un instant
donné. Le résultat s’exprime au moyen de fonctions de Bessel généralisées d’ordre n + 1 et montre que cette étude est liée à des
équations aux dérivées partielles hyperboliques d’ordre n + 1.

Ce travail a été inspiré par une conjecture formulée par Orsingher et Sommella [E. Orsingher, A.M. Sommella, A cyclic random
motion in R3 with four directions and finite velocity, Stochastics Stochastics Rep. 76 (2) (2004) 113–133], laquelle se révèle
finalement être fausse.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We here study the cyclic motion in R
n of a particle (with position (X(t), t � 0)) which can take n + 1 directions

�vj , j = 0, . . . , n , and moves with speed c < +∞. The extremities of the vectors representing the directions form a
regular n-dimensional polyhedron with n + 1 vertices (for short, we say (n + 1)-hedron) inscribed in the unit sphere.

The particle can initially choose one of the possible directions with probability 1
n+1 . The directions are taken

successively at Poisson paced times, that is the particle moving with direction �vj , after a Poisson event, takes the
direction �vj+1, j = 0, . . . , n (with �vn+1 = �v0).

The minimality of the number of directions, together with the cyclicity make the derivation of the explicit distrib-
utions of motion possible.

Motions of particles in a turbulent medium, for example in the presence of a vortex, can be adequately described
by the models studied below.

Usually, the analysis of random motions with finite velocity is either performed by means of analytic arguments,
essentially based on partial differential equations, or by a more probabilistic approach, based on order statistics.

The analytic method has been implemented in the study of cyclic motions on the plane (with three directions) and
in space R

3 (with four directions associated with a regular tetrahedron) by Orsingher [6] and Orsingher and Som-
mella [7]. Random motions in the plane with three directions and Erlang distributed interarrival times is considered in
Di Crescenzo [1].

The approach based on order statistics has proved to be more suitable for generalizations on higher order spaces
(as will be applied here) as well as on non-cyclic motions; the cases of planar motions – symmetrically deviating and
with uniform choice of directions – is examined in Leorato and Orsingher [4].

This work proves that the conjecture formulated in the paper by Orsingher and Sommella [7] is false and we are
now able to obtain the exact distributions of the position of a randomly moving particle in R

n and to show that it
matches the necessary requirements, including the connection with the partial differential equations governing the
probability laws. These equations, derived by different authors (Kolesnik [3], Samoilenko [8,9] and others) are related
to hyper-Bessel functions analyzed by Kiryakova [2] and Turbin and Plotkin [10].

Our main result is the derivation of the distribution of X(t):

p̃r ( x, t)dx = Pr
{
X(t) ∈ dx, complete cycle + r directions

}
= dx e−λt

(n + 1)rn!Vn

(
λ

c

)n+r

Hr,n+1( x, t)Ir,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)
(1.1)

where x = (x0, . . . , xn−1), dx = dx0 · · ·dxn−1 and hj ( x, t) = ct + n
∑n−1

i=0 vi,j xi = 0 are the equations of the hyper-
faces of a (n + 1)-hedron Tct with volume Vn(ct)

n, and (v0,j , . . . , vn−1,j ) are the coordinates of the vectors �vj for
j = 0, . . . , n.

The functions Hr,n+1 are defined as

Hr,n+1( x, t) = 1

n + 1

n∑
j=0

j+r−1∏
l=j

hl( x, t)

while the hyper-Bessel functions Ir,n(x) are

Ir,n(x) =
∞∑

q=0

1

(q!)n−r ((q + 1)!)r
(

x

n

)nq

, 0 � r � n.

Our paper is organized as follows. The second section is devoted to the geometrical description of the directions of
motion together with that of the support of the distributions.

We then turn our attention to the probabilistic analysis of the cyclic motion as well as to the analysis of the related
governing equations (Section 3). In particular, the functions qj (u ) for 0 � j � n, defined as

pj (x, t) = const · qj (u ) = Pr
{
X(t) ∈ dx, the current direction is �vj

}
/dx
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where u = (u0, . . . , un) = (h0( x, t), . . . , hn( x, t)), are governed by the (n + 1)th order partial differential equations

∂n+1qj

∂u0 · · · ∂un

=
(

λ

(n + 1)c

)n+1

qj . (1.2)

We shall see that the p.d.e. (1.2) is related to the (n + 1)th order Bessel equation:(
w

∂

∂w

)n+1

q =
(

λw

c

)n+1

q.

The fourth part of the paper is concerned with the explicit derivation of the conditional probabilities below by
means of order statistics:

Pr
{
X(t) ∈ dx | N(t) = (n + 1)q + r − 1

}
, r = 0, . . . , n, q � 1, (1.3)

where N(t) denotes the number of Poisson events up to time t .
Our analysis shows that the conditional distributions (1.3) coincide with the corresponding components of (1.12)

of Orsingher and Sommella [7] for r = 0, n and arbitrary values of q = 1,2, . . . , while for r = 1, . . . , n − 1 the con-
ditional distributions and, a fortiori, the absolutely continuous component differ from those conjectured. By summing
(1.1) we get a complete expression for the absolutely continuous part of the distribution of motion in R

n. Let us
point out that the singular component of the distribution of X(t) is spread on the

∑n
k=1

(
n+1
k

)
subspaces of dimension

d = k − 1, composing the boundary of Tct , with 0 � d � n − 1.
The concluding section is devoted to checking that

d

dt

[ ∫
Tct

I0,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)
dx

]
= d

dt
Vol(Tct ) +

∫
Tct

∂

∂t

[
I0,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)]
dx.

For higher-order derivatives, a formula similar to that above does not hold and this is the reason why the conjecture
formulated in Orsingher and Sommella [7] is not true.

In Subsection 5.2, we have shown that the distributions obtained (suitably simplified) satisfy an (n + 1)th order
p.d.e. related to the hyper-Bessel equation.

2. The directional vectors and the geometry of Tct

2.1. The vectors of directions

Let �vj , j = 0, . . . , n, be the vectors representing the possible directions of the cyclic motion. Let �v0 = (1,0, . . . ,0)

and let �vj = (v0,j , v1,j , . . . , vj,j ,0, . . . ,0) and �vn = (v0,n, v1,n, . . . , vn−1,n). In order to evaluate the numbers vi,j ,
0 � i � n − 1, 0 � j � n, we consider the following symmetry conditions:

�vj · �vk = const if j �= k, (2.1)

|�vj |2 = 1 for all j, (2.2)
n∑

j=0

�vj = �0. (2.3)

The constant in (2.1) is equal to − 1
n

as can be obtained in the following manner:

0 =
(

n∑
j=0

�vj

)
· �vk = |�vk|2 +

n∑
j=0
j �=k

�vj · �vk = 1 + n const.

Thus, the conditions (2.1) and (2.2) can be rewritten as

�vj · �vk =
{− 1

n
if j �= k, (2.4)
1 if j = k.
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The coordinates of the vector �v1 = (− 1
n
, v1,1,0, . . . ,0) can immediately be calculated because of (2.2): v1,1 =

±
√

1 − 1
n2 . By convention we take, throughout the paper, the positive signs. We also get, from (2.4), that v0,j = − 1

n
,

for 1 � j � n, that is, all the first components of the vectors �vj , j � 1, are identical.
From (2.4) we obtain that

v1,j = −1

n

√
n + 1

n − 1
for 2 � j � n

because

−1

n
= v0,1v0,j + v1,1v1,j = 1

n2
+

√
n2 − 1

n
v1,j for j � 2.

By applying the same procedure we can check that

�v2 =
(

−1

n
,−1

n

√
n + 1

n − 1
,

√
n + 1

n

√
n − 2

n − 1
,0, . . . ,0

)
.

This easily permits us to find that v2,j = −
√

n+1
n

1√
(n−1)(n−2)

for j > 2 because �v2 · �vj =∑2
i=0 vi,2vi,j = − 1

n
.

We write down the general form of the coordinates vi,j of the vectors �vj for j � n − 1

vi,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
√

n+1
n

1√
(n−i+1)(n−i)

if i < j,√
n+1
n

n−j
n+1−j

if i = j,

0 if i > j.

(2.5)

The components vi,j for i < j can be easily evaluated by induction by using (2.4) as for v1,j and v2,j . Then, in view
of (2.2), we find that

vj,j =
√√√√1 −

j−1∑
i=0

v2
i,j =

√√√√1 −
j−1∑
i=0

n + 1

n

1

(n − i + 1)(n − i)
. (2.6)

The sum inside (2.6) can be evaluated without effort:

j−1∑
i=0

1

(n − i + 1)(n − i)
=

j−1∑
i=0

[
1

n − i
− 1

n − i + 1

]
= j

(n + 1)(n − j + 1)
.

Finally, the last vector �vn, thanks to (2.3) writes

vi,n = −
√

n + 1

n

1√
(n − i + 1)(n − i)

, for 0 � i � n − 1.

The matrix V of the components of the directional vectors �vj , j = 0, . . . , n, is given in Table 1. The reader can
check that conditions (2.3) are fulfilled.

2.2. The (n + 1)-hedron Ta

Let us introduce the points Aj , j = 0, . . . , n, defined by
−−−→
OAj = a�vj , for a fixed a > 0. The points Aj , j = 0, . . . , n,

are the vertices of a regular (n + 1)-hedron Ta with center O . The length of the edges of Ta can clearly be obtained
by observing that, for the edge

−−−−→
AjAk , with endpoints Aj and Ak , we have that

−−−−→
AjAk = a(�vk − �vj ) and thus, by (2.4),∣∣−−−−→

AjAk

∣∣2 = a2(|�vk|2 + |�vj |2 − 2�vj · �vk

)= 2
n + 1

n
a2.
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Table 1
The matrix V of directions

�v0 �v1 �v2 · · · �vn−1 �vn

1 − 1
n − 1

n · · · − 1
n − 1

n

0
√

n+1
n

n−1
n − 1

n

√
n+1
n−1 · · · − 1

n

√
n+1
n−1 − 1

n

√
n+1
n−1

0 0
√

(n+1)(n−2)
n(n−1)

· · · −
√

n+1
n(n−1)(n−2)

−
√

n+1
n(n−1)(n−2)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 · · · −
√

n+1
n(n−i+2)(n−i+1)

−
√

n+1
n(n−i+2)(n−i+1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 · · · −
√

n+1
n

1
2·3 −

√
n+1
n

1
2·3

0 0 0 · · ·
√

n+1
n

1
2 −

√
n+1
n

1
2

2.2.1. Analytic representation of Ta

We now derive the equations of the hyperfaces of Ta , which play an important role in the distribution of X(t).
Let Ak be an arbitrary vertex of the hyperface Fj orthogonal to the vector �vj for j �= k. It is clear that

−−−→
OM = −−−→

OAk + −−−−→
AkM = a�vk + −−−−→

AkM, (2.7)

where M is an arbitrary point of Fj (and thus
−−−−→
AkM is orthogonal to �vj ) with coordinates (x0, . . . , xn−1). By taking

the scalar product of (2.7) by �vj we get

n−1∑
i=0

vi,j xi = �vj · −−−→
OM = �vj · (a�vk + −−−−→

AkM
)= −a

n
.

The equation of the hyperface Fj for j = 0, . . . , n is thus
∑n−1

i=0 vi,j xi + a
n

= 0. The (n + 1)-hedron Ta is then
analytically defined as

Ta =
{

(x0, . . . , xn−1) ∈ R
n:

n−1∑
i=0

vi,j xi + a

n
� 0 for j = 0, . . . , n

}
(2.8)

and we shall see that Tct is the set of all possible positions of the moving particle at time t .

Remark 2.1. Observe that the inequality
∑n−1

i=0 vi,j xi + a
n

> 0 represents the half-space containing the vertex Aj =
(av0,j , . . . , avn−1,j ). Indeed, in Aj we have that a

∑n−1
i=0 v2

i,j + a
n

= a(1 + 1
n
) > 0.

2.2.2. Volume of Ta

For our further analysis, it is useful to evaluate the volume of the (n+ 1)-hedron Ta . This can be split up into n+ 1
not regular (n + 1)-hedrons of equal volume obtained from Ta with each vertex successively being replaced by the
origin O . In this way we have that

Vol(Ta) = (n + 1)Vol
(
TO

a

)
(2.9)

where TO
a is a (n + 1)-hedron with one vertex in O . By means of a well-known formula and by using Table 1, we get

Vol
(
TO

a

)= an

n! det(�v0, . . . , �vn−1) = an

n!

∣∣∣∣∣∣∣∣∣∣∣

1 − 1
n

· · · − 1
n

0
√

n+1
n

n−1
n

· · · − 1
n

√
n+1
n−1

...
...

. . .
...

0 0 · · ·
√

n+1

∣∣∣∣∣∣∣∣∣∣∣

2n
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= an

n!

(√
n + 1

n

)n−1

· 1√
n

= (n + 1)(n−1)/2

nn/2 n! an.

Therefore, from (2.9) we have that

Vol(Ta) = (n + 1)(n+1)/2

nn/2 n! an. (2.10)

In the rest of the paper we shall use the results of this section applied to the case where a = ct . We also put

Vn = Vol(T1) = (n+1)(n+1)/2

nn/2n! .

3. Analytic description of random motion

3.1. The support of the random position

We consider the randomly moving point X(t) = (X0(t),X1(t), . . . ,Xn−1(t)) which, at time t = 0, was at the origin
O = (0, . . . ,0) and initially took one of the directions �vj , j = 0, . . . , n, with probability 1

n+1 .
The motion is cyclic in the sense that at each Poisson event the particle switches from direction �vj to �vj+1 (we set

�vn+1 = �v0 and, in general, �v(n+1)k+j = �vj for any positive integer k).
Let N(t) be the number of Poisson events up to time t and let T1, . . . , Tn, . . . denote the instants where they occur.

Therefore, the position X(t) of the moving particle starting with direction �v0 is

X(t) = c

[
I{N(t)�1}

N(t)−1∑
k=0

(Tk+1 − Tk)�vk + (t − TN(t))�vN(t)

]
. (3.1)

The first sum in (3.1) refers to the case where at least one change of direction has occurred while the second one
is related to the displacement along the current direction at time t . If N(t) = 0, then X(t) = c(t − TN(t))�v0 = ct �v0
and the particle is located in A0 (with a = ct) at time t . If we put TN(t)+1 = t the displacement (3.1) takes the form

X(t) = c
∑N(t)

k=0 (Tk+1 − Tk)�vk and, by (2.4), for all j = 0, . . . , n,

X(t) · �vj + ct

n
= c

N(t)∑
k=0�vk �=�vj

−1

n
(Tk+1 − Tk) + c

N(t)∑
k=0�vk=�vj

(Tk+1 − Tk) + ct

n

= − c

n

N(t)∑
k=1

(Tk+1 − Tk) + c

(
1 + 1

n

) N(t)∑
k=0�vk=�vj

(Tk+1 − Tk) + ct

n

= c

(
1 + 1

n

) N(t)∑
k=0�vk=�vj

(Tk+1 − Tk) � 0.

This permits us to conclude that, in view of (2.8), the moving particle at time t is always inside or on the boundary
of Tct .

In order that the moving point X(t) be located on the boundary ∂Tct we must have that

X(t) · �vj + ct

n
= 0 for some 0 � j � n.

This equality is realized if N(t) is such that the identity �vk = �vj does not hold for any value of k and thus the set on
which the sum is performed is empty. If the initial direction is �v0, then

X(t) · �vj + ct

n
= 0 for N(t) < j � n, (3.2)

which means that the moving particle lies on a N(t)-face (face of dimension N(t)) of ∂Tct at time t .
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Remark 3.1. For example, for n = 2 and N(t) = 1 (which implies j = 2 in (3.2)), we have

X(t) · �v2 + ct

2
= 0

which represents the side of ∂Tct opposite to �v2. If N(t) = 0, (3.2) holds for j = 1,2 and therefore, the moving point
is located simultaneously on the two lines X(t) · �v1 + ct

2 = 0 and X(t) · �v2 + ct
2 = 0, that is on the vertex (ct,0).

3.2. About the governing equations

Let D(t) be the current direction of motion at time t . Clearly D(t) takes values �vj , j = 0, . . . , n . For the densities
of the probabilities pj (x, t)dx = Pr{X(t) ∈ dx,D(t) = �vj } for x ∈ int(Tct ) we have the following theorem.

Theorem 3.2. The densities pj satisfy the following differential system

∂pj

∂t
( x, t) = −c

∂pj

∂ �vj

( x, t) − λ
(
pj (x, t) − pj−1( x, t)

)
for 0 � j � n, (3.3)

where p−1 = pn and

∂pj

∂ �vj

( x, t) = −−−→
gradpj · �vj .

Proof. Suppose that the particle is located in x at time t + �t . If no Poisson event has occurred during [t, t + �t]
(which happens with probability 1 −λ�t + o(�t)), then the particle must have been in x − c�t �vj at time t . If exactly
one Poisson event has occurred (with probability λ�t + o(�t)) during [t, t + �t], the direction of the particle at time
t was �vj−1. Finally, the probability that more than one Poisson event has occurred is o(�t). This short discussion
leads to the following equality:

pj (x, t + �t) = (1 − λ�t)pj ( x − c�t �vj , t) + λ�tpj−1( x, t) + o(�t).

We next expand

pj (x − c�t �vj , t) = pj (x, t) − c�t

n−1∑
i=0

∂pj

∂xi

( x, t)vi,j + o(�t)

and

pj (x, t + �t) = pj (x, t) + ∂pj

∂t
( x, t)�t + o(�t).

Some obvious simplifications and the limit with �t → 0 yield (3.3). �
The system (3.3) can be substantially reduced as shown in the next theorem.

Theorem 3.3. Let pj (x, t) = e−λtqj (u ) where u is the vector with components

uj = ct + n

n−1∑
i=0

vi,j xi, j = 0, . . . , n. (3.4)

Then the functions qj satisfy the differential system

(n + 1)c
∂qj

∂uj

= λqj−1, j = 0, . . . , n. (3.5)

Proof. The exponential transformation applied to (3.3) readily yields the system

∂qj = −c
∂qj + λqj−1, j = 0, . . . , n. (3.6)
∂t ∂ �vj
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In view of (3.4) we have that

∂qj

∂t
= c

n∑
k=0

∂qj

∂uk

and
∂qj

∂xi

= n

n∑
k=0

∂qj

∂uk

vi,k. (3.7)

Thus, by (2.4),

∂qj

∂ �vj

= −−−→
gradqj · �vj =

n−1∑
i=0

∂qj

∂xi

vi,j = n

n∑
k=0

∂qj

∂uk

(
n−1∑
i=0

vi,j vi,k

)

= n

n∑
k=0
k �=j

(
−1

n

∂qj

∂uk

)
+ n

∂qj

∂uj

= −
n∑

k=0

∂qj

∂uk

+ (n + 1)
∂qj

∂uj

. (3.8)

By plugging (3.7) and (3.8) into (3.6) we obtain (3.5). �
We remark that Eqs. (3.5) have substantially the same form as those of the systems (3.4) of Orsingher and Sommella

[7] and (2.8) of Orsingher [6], except for some constants, because of a different definition of the transformation (3.4).

Corollary 3.4. Each function qj satisfies the following (n + 1)th order partial differential equation

∂n+1qj

∂u0 · · · ∂un

=
(

λ

(n + 1)c

)n+1

qj , j = 0, . . . , n. (3.9)

Proof. By differentiating the first equation of (3.5) with respect to un we get

∂2q0

∂u0∂un

= λ

(n + 1)c

∂qn

∂un

=
(

λ

(n + 1)c

)2

qn−1. (3.10)

By differentiating (3.10) we obtain

∂3q0

∂u0∂un∂un−1
=
(

λ

(n + 1)c

)3

qn−2

and by iterating this procedure we finally get Eq. (3.9) for j = 0. The other cases are quite similar. �
Proposition 3.5. The solutions q of p.d.e. (3.9) depending only on the variable w = n+1

√
u0 · · ·un verify the (n + 1)th

order hyper-Bessel equation(
w

∂

∂w

)n+1

q =
(

λw

c

)n+1

q. (3.11)

Proof. Let us now consider the transformation{
vj = uj for j = 0, . . . , n − 1,

w = n+1
√

u0 · · ·un.
(3.12)

In view of (3.12), for i = 0, . . . , n − 1,

∂qj

∂ui

=
n−1∑
k=0

∂qj

∂vk

∂vk

∂ui

+ ∂qj

∂w

∂w

∂ui

= ∂qj

∂vi

+ w

(n + 1)vi

∂qj

∂w
, (3.13)

and

∂qj

∂un

=
n−1∑ ∂qj

∂vk

∂vk

∂un

+ ∂qj

∂w

∂w

∂un

= v0 · · ·vn−1

(n + 1)wn

∂qj

∂w
. (3.14)
k=0
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In light of (3.13) we have that

∂nqj

∂u0 · · · ∂un−1
=
(

n−1∏
i=0

1

vi

(
vi

∂

∂vi

+ w

n + 1

∂

∂w

))
qj (3.15)

and, by using the well-known formula

n−1∏
i=0

(αi + x) =
n∑

m=0

xm
∑

0�l1<···<ln−m�n−1

αl1 · · ·αln−m =:
n∑

m=0

xmσn−m(α0, . . . , αn−1),

the differential operator in (3.15) can be written as

∂n

∂u0 · · · ∂un−1
= 1

v0 · · ·vn−1

n∑
m=0

(
w

n + 1

∂

∂w

)m

σn−m

(
v0

∂

∂v0
, . . . , vn−1

∂

∂vn−1

)
.

Formula (3.14), applied to the above expression, enables us to write the differential operator in (3.9) as

∂n+1

∂u0 · · · ∂un

= 1

(n + 1)wn

∂

∂w

[
n∑

m=0

(
w

n + 1

∂

∂w

)m

σn−m

(
v0

∂

∂v0
, . . . , vn−1

∂

∂vn−1

)]

= 1

wn+1

n−1∑
m=0

(
w

n + 1

∂

∂w

)m+1

σn−m

(
v0

∂

∂v0
, . . . , vn−1

∂

∂vn−1

)
+ 1

((n + 1)w)n+1

(
w

∂

∂w

)n+1

.

Therefore, the solutions of (3.9) depending only on w satisfy the ordinary equation (3.11) �
Remark 3.6. We check here that the hyper-Bessel function

I0,n(w) =
∞∑

k=0

1

(k!)n
(

w

n

)nk

is a solution to the hyper-Bessel equation (w ∂
∂w

)nq = wnq . Since (w ∂
∂w

)wnk = (nk)wnk and thus (w ∂
∂w

)nwnk =
(nk)nwnk , we have that(

w
∂

∂w

)n

I0,n(w) =
∞∑

k=0

1

(k!)n
(nk)n wnk

nnk
=

∞∑
k=1

1

nn(k−1)

wnk

((k − 1)!)n

= wn
∞∑

k=0

1

(k!)n
(

w

n

)nk

= wnI0,n(w).

This implies that the function I0,n+1(
λ
c
w) is a solution to Eq. (3.11).

4. Order statistics applied to cyclic motions

In this section, we introduce the number Nj(t) of times the direction �vj is taken, up to time t . Of course, the
random numbers Nj(t) and N(t) are linked by

n∑
j=0

Nj(t) = N(t) + 1.

We can immediately write down the following relationship:

Pr
{
X(t) ∈ dx

}=
∑

k0,...,kn�0

Pr
{
N0(t) = k0, . . . ,Nn(t) = kn

}
Pr
{
X(t) ∈ dx | N0(t) = k0, . . . ,Nn(t) = kn

}
. (4.1)

For the cyclic motion the explicit form of Pr{N0(t) = k0, . . . ,Nn(t) = kn} is almost straightforward and this makes
the derivation of (4.1) in a closed form possible.
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For the planar motion with three directions, the probabilities Pr{N0(t) = k0, N1(t) = k1, N2(t) = k2} where
N0(t) + N1(t) + N2(t) = N(t) + 1, have been explicitly evaluated for the symmetrically deviating motion by means
of an extension of Bose–Einstein statistics (Leorato and Orsingher [4]).

For a number of directions greater than or equal to 4, the evaluation of the distribution of (N0(t), . . . ,Nn(t))

becomes extremely difficult except for the uniform case, where (N0(t), . . . ,Nn(t)) is a multinomial random vector.
The aim of this section is the evaluation of the conditional probabilities in (4.1) by means of order statistics.

This method has been successfully applied in the case of planar, cyclic motions with orthogonal directions (Leorato
et al. [5]) and also for motions with three directions (Leorato and Orsingher [4]).

The results of Subsections 4.1 and 4.2 hold for any form of the chance mechanism regulating the change of direc-
tions. Since the behaviour of (N0(t), . . . ,Nn(t)) in the cyclic case is essentially deterministic, the relevant part of the
analysis reduces to the derivation of the conditional probabilities appearing in (4.1).

We observe that the minimality of the number of directions is very important in order to obtain the conditional
distributions in (4.1) in a relatively simple way as will become clear below.

4.1. Some preliminary results about the position of the particle

We start by writing the vector (3.1) in a new convenient form:

X(t) = c

[
I{N(t)�1}

N(t)−1∑
k=0

(Tk+1 − Tk)�vk + (t − TN(t))�vN(t)

]

= c

[
I{N(t)�1}

n∑
j=0

∑
0�l�N(t)−1:

�vj is taken in [Tl,Tl+1)

(Tl+1 − Tl)�vj +
n∑

j=0

(t − TN(t))�vj I{�vj is taken in [TN(t),t]}

]

= ct

n∑
j=0

Lj (t)�vj (4.2)

where

Lj (t) = 1

t

[
I{N(t)�1}

∑
0�l�N(t)−1:

�vj is taken in [Tl,Tl+1)

(Tl+1 − Tl) + (t − TN(t))I{�vj is taken in [TN(t),t]}
]

is the proportion of time spent travelling with direction �vj . The r.v.’s Lj (t) can also be written as

Lj (t) = 1

t

Nj (t)∑
m=1

T
(j)
m , (4.3)

where T
(j)
m indicates how long the particle has travelled the mth time that �vj has been taken. We remark that

n∑
j=0

Nj (t)∑
m=1

T
(j)
m = t

n∑
j=0

Lj (t) = t.

The r.v.’s T
(j)
m , 1 � m � Nj(t), 0 � j � n, are independent and exponentially distributed with parameter λ.

Theorem 4.1. Fix some positive integers k0, . . . , kn such that
∑n

j=0 kj = k + 1. The joint conditional distribution of
(L0(t), . . . ,Ln−1(t)) is given by

Pr
{
L0(t) ∈ dl0, . . . ,Ln−1(t) ∈ dln−1 | N0(t) = k0, . . . ,Nn(t) = kn

}= f (l0, . . . , ln−1)dl0 · · ·dln−1 (4.4)

where

f (l0, . . . , ln−1) = k!∏n
j=0(kj − 1)!

n∏
j=0

l
kj −1
j I{l0,...,ln−1�0,

∑n−1
j=0 lj �1}, (4.5)

and ln = 1 −∑n−1
lj .
j=0
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Proof. For the instants T1, . . . , Tk of occurrence of the Poisson events we have the following well-known conditional
distribution:

Pr
{
T1 ∈ dt1, . . . , Tk ∈ dtk | N(t) = k

}= k!
tk

I{0�t1�···�tk�t} dt1 · · ·dtk. (4.6)

For the r.v.’s Sj = Tj − Tj−1, j = 1, . . . , k , after some obvious transformations we have that

Pr
{
S1 ∈ ds1, . . . , Sk ∈ dsk | N(t) = k

}= k!
tk

I{ s1�0,...,sk�0,
s1+···+sk�t

} ds1 · · ·dsk.

From (4.6) we can extract, by direct integration, the distribution of (Tj1 , . . . , Tjn), under the condition that N(t) = k,
where 0 < j1 < j2 < · · · < jn < k. Indeed,

Pr{Tj1 ∈ dtj1, . . . , Tjn ∈ dtjn | N(t) = k}
dtj1 · · ·dtjn

= k!
tk

∫
· · ·

∫
{0�t1<···<tj1<···<tj2<···<tjn<···<tk�t}

dt1 · · ·dtj1−1 dtj1+1 · · ·dtj2−1 dtj2+1 · · ·dtjn−1 dtjn+1 · · ·dtk

= k!
tk

∫
{0�t1<···<tj1−1<tj1 }

dt1 · · ·dtj1−1

∫
{tj1<tj1+1<···<tj2−1<tj2 }

dtj1+1 · · ·dtj2−1 · · ·
∫

{tjn<tjn+1<···<tk�t}
dtjn+1 · · ·dtk

= k!
tk

t
j1−1
j1

(j1 − 1)!
(tj2 − tj1)

j2−j1−1

(j2 − j1 − 1)! · · · (t − tjn)
k−jn

(k − jn)! I{0�tj1<···<tjn�t}.

Let us now assume that the intervals of time spent travelling with the same direction are put together and let us choose

jm = k0 + · · · + km−1, 1 � m � n.

The time Tjm can now be regarded as the instant at which the particle ends its travelling with directions �vj , 0 � j �
m − 1, and switches to direction �vm (see Fig. 1).

0

� �v0 �

Tk0 = Tj1

� �v1 �

Tk0+k1 = Tj2

Tk0+···+km−1 = Tjm

Tk0+···+kn−1 = Tjn

� �vn
�

t

Fig. 1. How the interval [0, t] is split up into subintervals.

In light of the exchangeability of the r.v.’s representing the length of time between successive changes of direction,
we can write that

L0(t)
d= Tj1

t
,L1(t)

d= Tj2 − Tj1

t
, . . . ,Ln−1(t)

d= Tjn − Tjn−1

t
. (4.7)

By means of the transformation

tj1 = t l0, tj2 = t (l0 + l1), . . . , tjn = t (l0 + · · · + ln−1)

emerging from (4.7), we can extract the distribution (4.4) of (L0(t), . . . ,Ln−1(t)) from (4.7) as follows:

Pr
{
L0(t) ∈ dl0, . . . ,Ln−1(t) ∈ dln−1 | N(t) = k,N0(t) = k0, . . . ,Nn−1(t) = kn−1

}
= Pr

{
Tj1 ∈ t dl0, Tj2 ∈ t d(l0 + l1), . . . , Tjn ∈ t d(l0 + · · · + ln−1) | N(t) = k

}
= k!(t l0)k0−1 · · · (t ln−1)

kn−1−1(t − t (l0 + · · · + ln−1))
k−∑n−1

j=0 kj tn dl0 · · ·dln−1
k

I{l0,...,ln−1�0:
∑n−1 lj �1}
t (k0 − 1)!(k1 − 1)! · · · (k − k0 − · · · − kn−1)! j=0
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= k!∏n
j=0(kj − 1)!

n∏
j=0

l
kj −1
j dlj I{l0,...,ln−1�0:

∑n−1
j=0 lj �1}

where kn = 1 + k − k0 − · · · − kn−1 and ln = 1 − l0 − · · · − ln−1. �
4.2. Deriving the conditional law

The connection between the position vector X(t), t � 0, and the random times Lj (t), 0 � j � n, spent moving
with direction �vj , is given by formula (4.2), which we rewrite, for our convenience, in the following manner:

X(t) = ct

[
n−1∑
j=0

Lj (t)�vj +
(

1 −
n−1∑
j=0

Lj(t)

)
�vn

]
= ct

[
�vn +

n−1∑
j=0

Lj (t)(�vj − �vn)

]
. (4.8)

An alternative representation of (4.8) is therefore⎛⎜⎜⎝
X0(t)

X1(t)
...

Xn−1(t)

⎞⎟⎟⎠= ct

⎡⎢⎢⎣
⎛⎜⎜⎝

v0,n

v1,n

...

vn−1,n

⎞⎟⎟⎠+ Ṽ

⎛⎜⎜⎝
L0(t)

L1(t)
...

Ln−1(t)

⎞⎟⎟⎠
⎤⎥⎥⎦

where Ṽ is the matrix of the coordinates of the vectors �v0 − �vn, �v1 − �vn, . . . , �vn−1 − �vn with respect to the canonical
basis:

Ṽ = (vi,j − vi,n)0�i,j�n−1. (4.9)

This means that the vectors X(t) = (X0(t), . . . ,Xn−1(t)) and L(t) = (L0(t), . . . ,Ln−1(t)) are linked by the relation-
ship

X(t) = φ
(
L(t)

)
(4.10)

where φ : Rn 	→ R
n is defined by

φ(l0, . . . , ln−1) =
(

ct

(
v0,n +

n−1∑
j=0

(v0,j − v0,n)lj

)
, . . . , ct

(
vn−1,n +

n−1∑
j=0

(vn−1,j − vn−1,n)lj

))
.

4.2.1. Inversion of the matrix Ṽ
We need to invert the affine transformation φ in order to determine the distribution of X(t) from (4.5). To this aim,

we must evaluate the inverse Ṽ−1 of the matrix (4.9).
In light of (2.4), for all 0 � k � n − 1, we can write

�vk · (�vj − �vn) =
{

0 if k �= j,

1 + 1
n

if k = j

or, equivalently,

n−1∑
i=0

vi,k(vi,j − vi,n) = n + 1

n
δk,j (4.11)

where δk,j is the Kronecker delta function. The relationship (4.11) can be rewritten in terms of matrices

n

n + 1

⎛⎝ v0,0 · · · v0,n−1
...

...

vn−1,0 · · · vn−1,n−1

⎞⎠T⎛⎝ v0,0 − v0,n · · · v0,n−1 − v0,n

...
...

vn−1,0 − vn−1,n · · · vn−1,n−1 − vn−1,n

⎞⎠= n

n + 1
WṼ = I.

Thus

Ṽ−1 = n

n + 1
W = n

n + 1

⎛⎝ v0,0 · · · v0,n−1
...

...

⎞⎠T

. (4.12)
vn−1,0 · · · vn−1,n−1
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For the evaluation of the Jacobian of the transformation φ, we need the determinant det(Ṽ), which equals
[det(Ṽ−1)]−1, where

det
(
Ṽ−1)=

(
n

n + 1

)n

det(�v0, . . . , �vn−1)
by (2.10)= nn/2

(n + 1)(n+1)/2
= 1

n!Vn

.

Since, Jφ = ctṼ, the Jacobian of φ is clearly given by

|Jφ | = n!Vn(ct)
n. (4.13)

4.2.2. Inversion of the transformation φ

We are now able to invert the transformation φ. To do this, we write the equivalences

φ(l0, . . . , ln−1) = (x0, . . . , xn−1) ⇐⇒
⎛⎝ x0

...

xn−1

⎞⎠= ct

⎡⎣⎛⎝ v0,n

...

vn−1,n

⎞⎠+ Ṽ

⎛⎝ l0
...

ln−1

⎞⎠⎤⎦

⇐⇒
⎛⎝ l0

...

ln−1

⎞⎠= 1

ct
Ṽ−1

⎛⎝ x0 − ctv0,n

...

xn−1 − ctvn−1,n

⎞⎠ .

Referring to (4.12), we obtain, for 0 � k � n − 1,

lk = n

(n + 1)ct

n−1∑
i=0

vi,k(xi − ctvi,n) = 1

(n + 1)ct

(
n

n−1∑
i=0

vi,kxi + ct

)
.

As a result, we get, by putting x = (x0, . . . , xn−1),

φ−1( x ) = 1

(n + 1)ct

(
h0( x, t), . . . , hn−1( x, t)

)
. (4.14)

4.2.3. The conditional law
We are now in a position to state the theorem concerning the conditional distribution of X(t).

Theorem 4.2. Fix k0, . . . , kn � 1 such that k0 + · · · + kn = k + 1. The conditional distribution of X(t) is given by

Pr
{
X(t) ∈ dx | N0(t) = k0, . . . ,Nn(t) = kn

}
= (n + 1)n

n!Vn

k!∏n
j=0(kj − 1)!

1

((n + 1)ct)k

n∏
j=0

hj ( x, t)kj −1 dx (4.15)

for x ∈ int(Tct ), where

hj ( x, t) = ct + n

n−1∑
i=0

vi,j xi, j = 0, . . . , n. (4.16)

Proof. From (4.5), (4.10) and (4.14) we have, for x ∈ int(Tct ),

Pr
{
X(t) ∈ dx | N0(t) = k0, . . . ,Nn(t) = kn

}= f
(
φ−1( x )

)|Jφ−1 |dx

= k!|Jφ−1 |dx∏n
j=0(kj − 1)!

n−1∏
j=0

(
hj ( x, t)

(n + 1)ct

)kj −1(
1 − 1

(n + 1)ct

n−1∑
j=0

hj ( x, t)

)kn−1

= k!∏n
j=0(kj − 1)!

|Jφ−1 |dx

((n + 1)ct)k−n

n∏
j=0

hj ( x, t)kj −1

where in the last equality above we used
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1 − 1

(n + 1)ct

n−1∑
j=0

hj ( x, t) = 1 − 1

(n + 1)ct

n−1∑
j=0

(
ct + n

n−1∑
i=0

vi,j xi

)

= ct + n
∑n−1

i=0 vi,nxi

(n + 1)ct
= hn(x, t)

(n + 1)ct
,

and Jφ−1 is the Jacobian matrix of the transformation φ−1, whose determinant, in view of (4.13), is given by

|Jφ−1 | = 1

n!Vn(ct)n
.

This concludes the proof of (4.15). �
Remark 4.3. The clever reader can ascertain that (4.15) coincides with (2.6) of Leorato and Orsingher [4] in the case
n = 2 for which x = (x, y), h0(x, y, t) = ct + 2x, h1(x, y, t) = ct − x + √

3y and h2(x, y, t) = ct − x − √
3y.

4.3. Deriving the unconditional law

Formula (4.1) makes the derivation of the unconditional distribution of X(t) possible once the joint distribution of
(N0(t), . . . ,Nn(t)) is known.

For cyclic motions this can be easily done. Notice that any integer k can be written as (n + 1)q + r − 1 with
0 � r � n. The equality N(t) = k, rewritten as N(t) = (n + 1)q + r − 1, means that, at time t , the particle has run q

complete cycles and next has taken r consecutive directions.
If the initial direction is �v0 and N(t) = (n + 1)q + r − 1, then the current direction is �vr−1. The first cycle is

complete if the current direction at time t is �vn, although �vn will be in force also after t .
If the initial direction is �vj and N(t) = (n + 1)q + r − 1, then

Nj(t) = · · · = Nj+r−1(t) = q + 1 and Nj+r (t) = · · · = Nj+n(t) = q

where we set Nl(t) = Nl−n−1(t) for l > n. This means that the number of times each direction is taken in a cyclic
motion differs at most by one unit.

In order for the particle to move inside Tct it is necessary and sufficient that at least one cycle be completed (i.e.
q � 1).

Theorem 4.4. We have the following explicit distribution for 0 � r � n:

p̃r ( x, t)dx = Pr
{
X(t) ∈ dx and the last cycle has run r directions

}
= Pr

{
X(t) ∈ dx,

∞⋃
q=1

{q complete cycles + r directions}
}

= e−λt dx

(n + 1)rn!Vn

(
λ

c

)n+r

Hr,n+1( x, t)Ir,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)
(4.17)

for x ∈ int(Tct ), where

Hr,n+1( x, t) = 1

n + 1

n∑
j=0

hj ( x, t) · · ·hj+r−1( x, t) (4.18)

with H0,n+1( x, t) = 1, and

Ir,n+1(ξ) =
∞∑

q=0

1

(q!)n+1−r ((q + 1)!)r
(

ξ

n + 1

)(n+1)q

.
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Proof. The probability (4.17) can be written as

Pr

{
X(t) ∈ dx,

∞⋃
q=1

{
N(t) = (n + 1)q + r − 1

}}

=
∞∑

q=1

n∑
j=0

Pr
{
X(t) ∈ dx,D(0) = �vj ,N(t) = (n + 1)q + r − 1

}
=

∞∑
q=1

n∑
j=0

Pr
{
X(t) ∈ dx, Nj (t) = · · · = Nj+r−1(t) = q + 1,Nj+r (t) = · · · = Nj+n(t) = q

}
=

∞∑
q=1

n∑
j=0

Pr
{
N(t) = (n + 1)q + r − 1,D(0) = �vj

}
× Pr

{
X(t) ∈ dx | Nj(t) = · · · = Nj+r−1(t) = q + 1,Nj+r (t) = · · · = Nj+n(t) = q

}
by (4.15)= e−λt

(n + 1)

(n + 1)n

n!Vn

∞∑
q=1

n∑
j=0

(λt)(n+1)q+r−1

(q!)r ((q − 1)!)n−r+1

× [hj ( x, t) · · ·hj+r−1( x, t)]q [hj+r ( x, t) · · ·hj+n( x, t)]q−1

((n + 1)ct)(n+1)q+r−1
dx

= e−λt

n + 1

(n + 1)n

n!Vn

(
λ

(n + 1)c

)n+r n∑
j=0

∞∑
q=0

(λ/((n + 1)c))(n+1)q

((q + 1)!)r (q!)n−r+1

×
(

n∏
i=0

hi( x, t)

)q

hj ( x, t) · · ·hj+r−1( x, t)dx

= e−λt

(n + 1)rn!Vn

(
λ

c

)n+r 1

n + 1

n∑
j=0

hj ( x, t) · · ·hj+r−1( x, t)

×
∞∑

q=0

(λ/((n + 1)c) n+1
√∏n

j=0 hj ( x, t) )(n+1)q

(q!)n−r+1((q + 1)!)r dx. (4.19)

This concludes the proof of the theorem. �
By summing formula (4.17) with respect to r , we explicitly obtain the absolutely continuous component of the

distribution of X(t), stated below.

Corollary 4.5. We have for x ∈ int(Tct )

Pr
{
X(t) ∈ dx, N(t) � n

}= dx e−λt

n!Vn

(
λ

c

)n n∑
r=0

(
λ

(n + 1)c

)r

Hr,n+1( x, t)Ir,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)
.

(4.20)

Remark 4.6. (i) By definition of p̃r , the following relation plainly holds:∫
p̃r ( x, t)dx = Pr

{ ∞⋃
q=1

{
N(t) = (n + 1)q + r − 1

}}=
∞∑

q=0

e−λt (λt)(n+1)q+n+r

((n + 1)q + n + r)! . (4.21)
Tct
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Nevertheless, the reader may check it from direct integration of (4.17) using the technical result below:∫
Tct

n∏
j=0

hj ( x, t)kj dx = ((n + 1)ct)
∑n

j=0 kj +n

(n + 1)(n−1)/2nn/2

∏n
j=0 
(kj + 1)


(
∑n

j=0 kj + n + 1)
.

(ii) Now, summing (4.21) with respect to r , we get that∫
Tct

Pr
{
X(t) ∈ dx,N(t) � n

}= e−λt
n∑

r=0

∞∑
q=0

(λt)(n+1)q+n+r

((n + 1)q + n + r)! = e−λt
∞∑
l=n

(λt)l

l!

= Pr
{
N(t) � n

}= Pr
{
X(t) ∈ int(Tct )

}
,

and then
∫
Tct

Pr{X(t) ∈ dx | N(t) � n} = 1. Hence, we have verified that the support of (X(t) | N(t) � n) is Tct .
(iii) In (4.21) appear the so-called generalized hyperbolic functions of order n + 1. The nth order hyperbolic

functions are defined as (cosine hyperbolic)

chn,j (x) =
∞∑

k=0

xnk+j

(nk + j)! = 1

n

[
ex +

n−1∑
k=1

e(cos 2kπ
n

)x cos

((
sin

2kπ

n

)
x − 2jkπ

n

)]
for 0 � j � n − 1. With this notation, the rhs of (4.21) reads e−λt chn+1,n+r (λt).

Remark 4.7. We now consider some special cases of (4.17).
(i) If r = 0, that is if N0(t) = · · · = Nn(t) = q , we have that

p̃0( x, t)dx = Pr
{
X(t) ∈ dx, the current cycle is complete

}
=

∞∑
q=1

Pr
{
X(t) ∈ dx, N0(t) = · · · = Nn(t) = q

}

= e−λt

n!Vn

(
λ

c

)n

I0,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)
dx.

For n = 2 this corresponds to formula (2.8) of Leorato and Orsingher [4].
(ii) When r = 1, a new cycle has begun and its first direction has been taken. In this case we have

H1,n+1( x, t) = 1

n + 1

n∑
j=0

hj ( x, t) = 1

n + 1

n∑
j=0

(
ct + n

n−1∑
i=0

vi,j xi

)
= ct.

The hyper-Bessel function I1,n+1(ξ) can be written as

I1,n+1(ξ) =
∞∑

q=0

1

(q!)n(q + 1)!
(

ξ

n + 1

)(n+1)q

=
(

ξ

n + 1

)−n−1 ∞∑
q=0

1

(q!)n+1(q + 1)

(
ξ

n + 1

)(n+1)(q+1)

=
(

ξ

n + 1

)−n−1
ξ∫

0

∞∑
q=0

1

(q!)n+1

(
u

n + 1

)(n+1)q+n

du

=
(

ξ

n + 1

)−n−1
ξ∫

0

(
u

n + 1

)n

I0,n+1(u)du

= (n + 1)

1∫
wn I0,n+1(wξ)dw.
0
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In conclusion we have that

p̃1( x, t)dx = Pr
{
X(t) ∈ dx, the last cycle has run only 1 direction

}
= dx

e−λtλt

(n + 1)!Vn

(
λ

c

)n

I1,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)

= dx
e−λtλt

n!Vn

(
λ

c

)n
1∫

0

wnI0,n+1

(
λw

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)
dw.

(iii) If r = n, only the last direction must be taken to complete the cycle. In this case, formula (4.18) yields

Hn,n+1( x, t) = 1

n + 1

n∑
j=0

j+n−1∏
l=j

hl( x, t) = 1

n + 1

n∑
j=0

1

hj+n( x, t)

j+n∏
l=j

hl( x, t)

= 1

n + 1

n∏
l=0

hl( x, t)

n∑
j=0

1

hj ( x, t)
. (4.22)

In the last step we applied the periodicity of hl with respect to l. For the hyper-Bessel function In,n+1(ξ) we have that

In,n+1(ξ) =
∞∑

q=0

1

q!((q + 1)!)n
(

ξ

n + 1

)(n+1)q

=
(

ξ

n + 1

)−n ∞∑
q=0

q + 1

((q + 1)!)n+1

(
ξ

n + 1

)(n+1)(q+1)−1

=
(

ξ

n + 1

)−n d

dξ

[ ∞∑
q=0

1

((q + 1)!)n+1

(
ξ

n + 1

)(n+1)(q+1)
]

=
(

ξ

n + 1

)−n d

dξ

(
I0,n+1(ξ) − 1

)=
(

ξ

n + 1

)−n

I ′
0,n+1(ξ). (4.23)

In the light of (4.22) and (4.23), formula (4.17) reads

Pr
{
X(t) ∈ dx, the last cycle has run n directions

}
= e−λt

(n + 1)nn!Vn

(
λ

c

)2n 1

n + 1

n∏
l=0

hl( x, t)

n∑
j=0

1

hj ( x, t)

(
(n + 1)c

λ

)n

×
( n∏

j=0

hj ( x, t)

)−n/(n+1)

I ′
0,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)
dx

= e−λt

n!(n + 1)Vn

(
λ

c

)n

n+1

√√√√ n∏
j=0

hj ( x, t)

n∑
j=0

1

hj ( x, t)
I ′

0,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)
dx. (4.24)

On the other hand, we have

∂

∂t

[
I0,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)]

= λ

c

[
∂

∂t

(
n∏

j=0

hj ( x, t)

)1/(n+1)]
I ′

0,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)
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= λ

(n + 1)c

(
n∏

j=0

hj ( x, t)

)1/(n+1)−1 n∑
j=0

(
n∏

l=0
l �=j

hl( x, t)

)
∂hj

∂t
( x, t)I ′

0,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)

= λ

n + 1
n+1

√√√√ n∏
j=0

hj ( x, t)

(
n∑

j=0

1

hj ( x, t)

)
I ′

0,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)
.

Therefore, probability (4.24) can be rewritten in the following simple way:

p̃n( x, t)dx = Pr
{
X(t) ∈ dx, the last cycle has run n directions

}
= e−λt dx

λn!Vn

(
λ

c

)n
∂

∂t

[
I0,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)]
. (4.25)

Formula (4.25) for n = 1,2,3, coincides exactly with the second terms in the distributions (1.11), (1.9) and (1.10)
of Orsingher and Sommella [7], respectively. The other terms containing higher-order derivatives in (1.9) and (1.10)
therein do not correspond to what emerges from (4.17) and thus the conjecture (1.12) formulated in that paper fails.

5. Some properties of the distributions obtained

5.1. About the derivatives of the integrated distributions

The following theorem generalizes the relationships (3.25) of Orsingher and Sommella [7] and (3.8) of Ors-
ingher [6]. In view of (4.25), formula (5.1) connects the distribution of X(t) when the cycle is complete (r = 0)
with the case where the cycle is almost complete (r = n).

This result suggests the misleading idea that the distributions p̃r ( x, t) can be obtained by successive derivations
with respect to t of p̃0( x, t) also for all n > r � 1. Unfortunately, this is not true because formula (5.1) cannot be
extended to the case of higher-order derivatives (i.e. by replacing d/dt and ∂/∂t respectively by dk/dtk and ∂k/∂tk

for k � 2) and this is the reason why the conjecture formulated in Orsingher and Sommella [7] is false.
We remark that in the one-dimensional case (that is for the telegraph process) the idea underlying the conjecture

works because only the first derivative of p̃0(x, t), x ∈ R is involved.

Theorem 5.1. The following identity holds:

d

dt

[ ∫
Tct

I0,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)
dx

]
= d

dt
Vol(Tct ) +

∫
Tct

∂

∂t

[
I0,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)]
dx (5.1)

where Vol(Tct ) = Vn(ct)
n = (n+1)(n+1)/2

n!nn/2 (ct)n.

Proof. We give a heuristic proof of the result (5.1) based on a geometrical approach. Indeed, the function F defined
by

F(t) :=
∫

Tct

I0,n+1

(
λ

c
n+1

√√√√ n∏
j=0

hj ( x, t)

)
dx :=

∫
Tct

I( x, t)dx (5.2)

can be written as

F(t) =
ct∫

0

ds

∫
∂Ts

I( x, t)dσ(x ) (5.3)

where dσ(x ) stands for the infinitesimal element of the hyper-surface ∂Ts which is the boundary of the (n + 1)-
hedron Ts . By performing the time-derivative of (5.3) we have that
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F ′(t) = c

∫
∂Tct

I( x, t)dσ(x ) +
ct∫

0

ds

∫
∂Ts

∂I

∂t
( x, t)dσ(x )

= c

∫
∂Tct

I( x, t)dσ(x ) +
∫

Tct

∂I

∂t
( x, t)dx. (5.4)

Since, for x ∈ ∂Tct , we have that
∏n

j=0 hj ( x, t) = 0, we deduce I( x, t) = 1 and thus∫
∂Tct

I( x, t)dσ(x ) =
∫

∂Tct

dσ(x ) = Voln−1(∂Tct ) = cn−1 Voln−1(∂Tt ). (5.5)

In order to evaluate the (n− 1)-dimensional volume Voln−1(∂Tt ), we observe that this latter can be viewed as the vol-
ume of the region comprised between the boundaries of the (n+ 1)-hedrons Tt and Tt+dt divided by the infinitesimal
depth dt . More precisely, we can write that

Voln−1(∂Tt ) = Voln(Tt+dt ) − Voln(Tt )

dt
= d

dt
Voln(Tt )

and then

Voln−1(∂Tct ) = cn−1 Voln−1(∂Tt ) = cn−1 d

dt

[
c−n Voln(Tct )

]= 1

c

d

dt
Voln(Tct ).

Finally, putting this last relation into (5.5) and next into (5.4) leads to (5.1). �
Remark 5.2. An alternative (and more rigorous) proof of Theorem 5.1 can be worked out by applying the derivation
rule to the n-fold integral:

F(t) =
∫

Tct

I( x, t)dx

=
ψ0(t)∫

ϕ0(t)

dx0

ψ1(x0,t)∫
ϕ1(x0,t)

dx1 · · ·
ψn−1(x0,...,xn−2,t)∫

ϕn−1(x0,...,xn−2,t)

I(x0, . . . , xn−1, t)dxn−1, (5.6)

where ϕ0(t) = − ct
n

, ψ0(t) = ct and, for 1 � j � n − 1

ϕj (x0, . . . , xj−1, t) = 1

(n − j)aj

(
j−1∑
i=0

aixi + ct

n

)
,

ψj (x0, . . . , xj−1, t) = − 1

aj

(
j−1∑
i=0

aixi + ct

n

)
,

and where aj = −
√

n+1
n

1√
(n−j+1)(n−j)

.

5.2. The distributions p̃r and the related hyper-Bessel equations

We now show that the probability (4.17) purged of the exponential factor and reduced to a simplified form, by
means of the geometrical transformation (3.4) are solutions to the partial differential equation

∂n+1q

∂u0 · · · ∂un

=
(

λ

c(n + 1)

)n+1

q. (5.7)

It should be noted that in Section 3 we proved that the joint distributions pj (x, t), after the exponential and
geometrical reductions sketched above, also resolve the same p.d.e. (see Corollary 3.4).
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Let us write the probability (4.17) as p̃r ( x, t) = const · q̃r ( u ) where u = (u0, . . . , un) = (h0( x, t), . . . , hn( x, t))

and

q̃r ( u ) =
n∑

j=0

(ujuj+1 · · ·uj+r−1)Ir,n+1

(
λ

c
n+1
√

u0 · · ·un

)

=
∞∑

q=0

(λ/(n + 1)c)(n+1)q

(q!)n+1−r ((q + 1)!)r
n∑

j=0

(u0 · · ·un)
q(uj · · ·uj+r−1).

Since ∂n+1

∂u0···∂un
(u

k0
0 · · ·ukn

n ) = (k0 · · · kn)u
k0−1
0 · · ·ukn−1

n , we have that

∂n+1

∂u0 · · · ∂un

[
(u0 · · ·un)

q(uj · · ·uj+r−1)
]= qn+1−r (q + 1)r (u0 · · ·un)

q−1(uj · · ·uj+r−1).

Therefore,

∂n+1q̃r

∂u0 · · · ∂un

(u ) =
∞∑

q=0

(
λ

(n + 1)c

)(n+1)q
qn+1−r (q + 1)r

(q!)n+1−r ((q + 1)!)r
n∑

j=0

(u0 · · ·un)
q−1(uj · · ·uj+r−1)

=
∞∑

q=1

(λ/(n + 1)c)(n+1)q

((q − 1)!)n+1−r (q!)r
n∑

j=0

(u0 · · ·un)
q−1(uj · · ·uj+r−1)

=
(

λ

(n + 1)c

)n+1 ∞∑
q=0

(λ/(n + 1)c)(n+1)q

(q!)n+1−r ((q + 1)!)r
n∑

j=0

(u0 · · ·un)
q(uj · · ·uj+r−1)

=
(

λ

(n + 1)c

)n+1

q̃r ( u )

and thus q̃r solves (5.7).
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