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Introduction.

The story of p-adic modular forms mainly started during the International
Summer School on “Modular functions of one variable and arithmetic applica-
tions” which took place at Antwerp University, from July 17 to August 3, 1972.
It appeared immediately clear that the definition of a p-adic modular form
should have taken into account the peculiarities and the arithmetic content
of the p-adic topology. In particular, the first attempt to give a definition
of p-adic modular forms was made by Serre in [Se72], which defined p-adic
modular forms as formal power series with Qp coefficients which are limits of
classical modular forms with rational coefficients. This approach was very
direct, and had the advantage that a single p-adic modular form could be
seen as a limit of classical forms of different integral weights. In particular, in
[Se72] it is proved that a p-adic modular form may have a weight which is a
character of Z×p , generalizing greatly the classical idea of weight as an integer.

Parallel to the work of Serre, also Nicholas Katz proposed a definition of p-
adic modular forms in his fundamental paper [Ka73]. The advantage of Katz’s
definition is in his purely geometrical character. In fact, instead of starting
from the classical q-expansion principle, Katz used a different interpretation
of modular forms. Classically, a modular form can be interpreted as a
function defined over moduli spaces of elliptic curves over a suitable ring.
This idea is the starting point of Katz’s definition of p-adic modular forms as
functions defined over moduli spaces of elliptic curves whose reductions are
not supersingular. In [Ka73] there are two really important improvement in
the theory of p-adic modular forms. First, even if in the first chapters Katz
only deals with modular forms of integral weight (here the weight appears as
the exponent in the tensor power of the sheaf of invariant differentials), in
Chapter IV there is a way to see how Serre’s p-adic modular forms can be
incorporated in this geometric setting. In fact it is proved that the invertible
sheaf which defines modular forms can be canonically reconstructed from
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the monodromy representation of the fundamental group of the modular
curve at a geometric point. This idea allows to define geometrically also
modular forms with weight χ ∈ End(Z×p ), simply by taking the invertible
sheaf associated to the composition of the monodromy representation with
the character. Another important concept introduced in [Ka73] is the notion
of overconvergence. The idea of overconvergence comes to be very useful in
the theory of Hecke operators, where the spaces of p-adic modular forms are
really too large to have a reasonable spectral theory. In fact, p-adic modular
forms are defined as functions on a line bundle over the p-adic modular curve,
which parametrizes elliptic curves with a suitable level structure. In classical
setting it is well-known that it is possible to introduce Hecke operators acting
over the spaces of modular forms. Moreover, the spectral theory of Hecke
operators gives important decomposition results and simplify the study of
spaces of classical modular forms. In the p-adic setting a definition of Hecke
operators is also possible, at least over the (lifting to characteristic 0) of
the ordinary locus of the modular curve. The study of spectral theory of
Hecke operators is then crucial also in the p-adic setting to understand the
structure of the spaces of p-adic modular forms. Unfortunately, almost all
the p-adic modular forms defined over the ordinary locus are eigenvectors
for the operators of Hecke’s algebra, hence the spectral theory is not useful
to understand the structure of these spaces. Katz’s idea was to consider
modular forms and Hecke operators which can be extended a little bit inside
the supersingular locus. This idea gave the possibility to evaluate modular
forms over these neighborhoods of the ordinary locus, which are essentially
described via the p-adic valuation of a suitable lifting of the Hasse invariant,
whose importance in characteristic p is given by the fact that, as a modular
form, it detects which points of the modular curve describe supersingular
elliptic curves. Clearly the overconvergence neighborhoods of the ordinary
locus are no more given by schemes, but they can be described generically as
rigid analytic spaces. Inside the algebra of Hecke operators, one operator is
particularly important, which is the so called Up operator. Geometrically, in
characteristic p it can be described as an operator which evaluate a modular
form over all possible preimages of a given elliptic curve under Frobenius
morphism. In characteristic 0, clearly, the Frobenius morphism is no more
available, hence one of the object which is necessary to define Hecke operators
is the canonical subgroup, which gives a lifting in characteristic 0 of the kernel
of mod p Frobenius isogeny. This canonical subgroup almost trivially exists
inside the ordinary locus, but the existence, unders suitable overconvergence
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conditions, inside the supersingular locus was first studied by Lubin, and
chapter 3 of Katz gives a precise description and construction of the canonical
subgroup and its properties over the supersingular locus.

During the 80’s another major breakthrough was by Haruzo Hida, who
constructed the first examples of p-adic families of modular forms, in [Hi1] and
[Hi2]. When Hida started to work on p-adic modular forms, they were defined
to be sections of an invertible sheaf defined over the p-adic modular curve
with a given integer or p-adic weight. The real improvement in the theory
was the discovery that ordinary modular eigenforms, which are modular
forms which are simultaneous eigenvectors for all the Hecke’s operators whose
corresponding eigenvalue is a unit, live naturally “in families”. This means
that, defining the weight space as the formal spectrum of the Iwasawa algebra
Zp[[Z×p ]], for a given character of an ordinary modular eigenform, there
exists a neighborhood of this character, and associated modular eigenforms
which interpolate the given modular form. This means that under suitable
hypothesis, modular eigenforms can be continuously parametrized by their
p-adic weights. The problem with Hida’s theory as it was formulated was
that the almost unique example of p-adic family of modular forms could be
given for the Eisenstein series. A key object for Hida’s theory is the so called
ordinary projector, which is an idempotent operator acting on the spaces
of cuspidal modular forms. This object can only be defined for eigenforms
whose slope, i.e. the p-adic valuation of its Up-eigenvalue, is zero. The crucial
role of the ordinary projector in Hida’s theory is the main difficult to extend
its approach to greater slopes eigenforms.

However, Hida’s theory opened the possibility of organizing overconvergent
eigenforms in a geometrical object. In particular, as a consequence of Hida’s
description, slope 0 overconvergent eigenforms can be parametrized by a rigid
analytic curve which is finite and flat over the rigid analytic weight space.
This means that each point of this rigid analytic curve corresponds to a
normalized overconvergent eigenform with slope 0. At this point, the idea
developed by Robert Coleman in a series of papers ([Col96], [Col97]) and
Barry Mazur ([CM98]) was to generalize Hida’s theory to arbitrary but finite
slope overconvergent modular eigenforms. In this way Coleman and Mazur
constructed a rigid analytic curve E , called the Eigencurve, over Qp, whose
Cp points parametrize normalized finite slope overconvergent eigenforms. By
construction, this rigid analytic curve is fibered over the weight space, and in
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particular it fits into a diagram:

E Gm

W

ap

w

whereW is the rigid analytic weight space, which is described as the Raynaud’s
rigid analytic fiber attached to the formal scheme Spf(Zp[[Z×p ]]), w is the
map sending an eigenform to its p-adic weight, and Gm is the p-adic torus
which is the target of the map ap sending an eigenform to its eigenvalue for
the Up operator. Coleman’s construction of the Eigencurve starts with the
construction of the spectral curve attached to the Up-operator. This curve is
essentially defined to be the set of zeroes of the characteristic series of the
Up-operator, which is the main object of investigation of this thesis. It is
proved in [CM98] that, even if the theory of the Eigencurve is rigid analytic,
hence defined over Qp, the characteristic series of the Up operator is integral.
Moreover, there exists a universal characteristic series with coefficients in the
Iwasawa algebra which interpolates all characteristic series of Up coming from
different p-adic weights. This means that it should be possible to globalize
the theory using some integral models of the construction, and moreover that
also operations like the mod p reduction of the characteristic series should
have some geometric explanation.

Very soon after the construction of the eigencurve has been presented by
Coleman and Mazur, a lot of work has been done in order to understand its
geometry. In particular, the region which seems easier to investigate is the
region close to the boundary. A conjecture was suggested by a computation
of Buzzard and Kilford [BK05], which addresses a question asked by Coleman
and Mazur. Let us be a bit more precise about this conjecture. Let p be an
odd prime number (the conjecture is also formulated for the prime p = 2,
but we assume to work with odd primes during the whole thesis in order to
simplify the notation and also the description of the weight space), and let vp
and | − |p be the p-adic valuation and the p-adic absolute value normalized in
such a way that vp(p) = 1. Denote now by Λ the Iwasawa algebra Zp[[Z×p ]]
which is the union of p− 1 open unit disks indexed by the characters of the
torsion group of Z×p . Then each closed point ofW corresponds to a continuous
p-adic character of Z×p , hence we can define a parameter T on the weight disk,

8



whose value on a given character χ of Z×p is T = Tχ = χ(exp(p)) − 1. For
r ∈ (0, 1) we can take W>r to be the union of annuli where |T | > r, which is
called the “halo” of the weight space. Clearly the weight map w produces a
region of the eigencurve E >r which is the preimage under w of W>r. Then
the conjecture is the following

Conjecture 1. Let r ∈ (0, 1) be sufficiently close to 1. Then the following
hold:

i) The space E >r is a disjoint union of countably infinitely many connected
component Z1, Z2, . . . such that the weight map w|Zn : Zn → W>r is
finite and flat for each n.

ii) There exist non-negative rational numbers α1, α2, . . . ∈ Q in non-
decreasing order and tending to infinity such that for each n and each
point z ∈ Zn, we have

|ap(z)| = |Tw(z)|αn

iii) The sequence α1, α2, . . . is a disjoint union of finitely many arithmetic
progressions counted with their multiplicity.

This conjecture, which is known as the Halo Conjecture has been proved
to be true in many particular situations. When the tame level of the modular
curve involved is trivial and the prime p = 2 it has been verified by an explicit
computation in [BK05]. More explicit computations for small prime p and
small tame levels have appeared in [Ja04], [Kil08], [KM12], [Ro14], and a
partial result independent on the prime and the tame level was proved in
[WXZ14]. This conjecture really describes very well the geometry of the
eigencurve over the boundary of weight space. Another improvement to
the proof of the Halo Conjecture has been given in 2016 in the paper of
Liu, Wan and Xiao [LWX], which proves the Halo Conjecture in the case
of quaternion modular forms for GL2(Qp). Moreover, using the Jacquet-
Langlands correspondence, this result can be viewed as part of the Halo
Conjecture for overconvergent modular forms, simply identifying suitably the
eigenvalues coming from spectral theory of quaternion modular forms with
the eigenvalues coming from overconvergent modular forms.

However, excluding the improvement given by [LWX], the situation for
overconvergent modular forms seems to be more difficult, due to the geometry
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of modular curves. Reading carefully the paper of Liu, Wan and Xiao [LWX]
it seems that two ingredients are needed in order to attach the conjecture.
The first ingredient is an integral model of spaces of families of overconvergent
modular forms, which makes possible some reduction operations.

The work of Andreatta, Iovita and Pilloni [AIP] precisely deals with this
kind of problem. Starting with the integrality of the characteristic series of
Up operator, they produce an integral theory of overconvergent families of
modular forms. In particular, instead of Coleman, they work with formal
schemes, seen as adic spaces. Let me be a bit more precise about how this
construction, in order to fix the notation in what follows. Even if we work
with p ≥ 3, the construction of [AIP] works well also for the even prime. Now
the adic weight space is

W := Spa(Λ,Λ)an

which, thanks to the nature of Huber’s adic spaces, contains both character-
istic 0 and characteristic p points. As we explained before, each connected
component ofW has ring of functions Zp[[T ]], and there is a bijection between
the set of connected components ofW and the finite characters of the Iwasawa
algebra. Inside W it is possible to distinguish a p-adic and a T -adic region.
The first is the region containing the center of weight space, the second one
contains the boundary. In particular, the T -adic region of the connected
component of the trivial finite character has as coordinate ring the ring

B = Zp[[T ]]
〈
p

T

〉
.

It is also possible to consider different regions of the weight space where
the topology is p or T -adic and in the regions which don’t contain neither
the center or the boundary, the two topologies coincide. In [AIP] formal
models of these spaces are considered. In particular, there is a formal scheme
which describes the largest region where the topology is T -adic, which is
given by W = Spf(B), which is an admissible formal blowup of the connected
component of tre trivial character inside the weight space. It is also possible to
consider different admissible blowups which describes formal models of smaller
regions of the weight space. The topology over W is the T -adic topology.
If we now consider X/Spf(Zp), the p-adic completion of the Γ1(N)-modular
curve over Zp, we may base change it to W, and define, using a lifting to Zp
of a suitable power of the Hasse invariant, admissible formal blowups which
are formal models for strict neighborhoods of overconvergence of the ordinary
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locus. We call such a blowup Xr, where r is the radius of overconvergence. In
[AIP] it is shown that over Xr it is possible to define an invertible sheaf wr

whose global sections are integral overconvergent modular forms. Moreover,
specializing to the special fiber, it is possible to construct a different modular
sheaf whose global sections are overconvergent modular forms in characteristic
p. The two constructions, one in characteristic 0 and one in characteristic p
may be glued together by first considering an invertible sheaf w∞ over X∞,
which is the T -adic formal scheme given by a projective limit along liftings of
Frobenius to characteristic 0. As we see, everything here is integral, so these
spaces produce integral models of the spaces considered by Coleman, and the
space of overconvergent modular forms, which is

H0(Xr,wr)

is proved to be a projective Banach B-module. This is Proposition 6.9 in
[AIP].

Few years after [AIP], the paper of Jan Vonk [Von] showed that these
spaces of integral overconvergent modular forms are also orthonormalizable,
i.e. they admit an orthonormal basis, at least for r large enough. The idea is
to construct a T -adic version of the Eisenstein series and to use it to trivialize
the line bundle of overconvergent modular forms. This is possible only when
the radius is large enough. The B-basis constructed by Vonk is highly non
canonical, as it depends on the choice for a splitting of the multiplication
by a lifting of the Hasse invariant over the sheaf of functions of Xr,I . The
explicit form of this basis is{(

T

H̃ap
r+1

)
E bm,n

}
m,n

where H̃a is a characteristic 0 lifting of the Hasse invariant, E is the T -adic
Eisenstein series, and bm,n are classical modular forms of weight npr+1(p− 1).
The index m coincide with the dimension of the spaces of classical modular
forms of weight npr+1(p−1). Since the spaces of Andreatta, Iovita and Pilloni
give integral models for overconvergent modular forms and both those spaces
and the continuous functions from Zp to itself are orthonormalizable Banach
spaces, it seems reasonable to compare the two as in [LWX], in order to get
closer to the Halo Conjecture.

This is the idea developed in this thesis. We want to create a connection
between the spaces of integral overconvergent modular forms and the space
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of continuous functions from Zp to a suitable ring of functions for the weight
space. The main result of this thesis is the following

Theorem 1. Let X/Zp be the compactified modular curve over Zp of tame
level Γ1(N). Then there exist, for r large enough, and for every supersingular
point x of the special fiber of X, a T -adically complete, separated and norm
decreasing Zp-algebra Bperf

x and an homomorphism of Bperf := ⊕
x∈SS Bperf

x -
orthonormalizable Banach modules

Ψ : H0(Xr,wr)⊗̂BBperf → Cont(Zp,Bperf)

where SS is the set of supersingular points of the special fiber of X.

The proof of this result consists in constructing explicitly the map ψx.
The idea behind its definition comes from the observation contained in a
letter which Serre wrote to Tate in 1996 (see [Se96]) and which contains the
first approach to the so called Jacquet-Langlands correspondence. In that
letter Serre describes a bijection from the set of supersingular elliptic curves
over Fp with a suitable adelic level structure K = GL2(Qp)Kp and an Fp2

rational non-vanishing differential and the double quotient

D×(Q)\D×(Af )/ ker τ ·Kp

where D is the quaternion algebra over Q ramified at {p,∞}, Kp is the level
at p and τ : O× → F×p2 is the reduction modulo a uniformizer of the maximal
order in D(Qp). Now, a modular forms comes out to be simply a function
on elliptic curves with non-vanishing differential, and so, evaluating on this
set, Serre obtains continuous functions from this double quotient to Fp. The
construction of this map, which is also compatible with Hecke operators, gives
a correspondence between the Hecke eigenvalues appearing in the spaces of
mod p modular forms and those appearing in the space of quaternionic mod
p automorphic forms, which are identified with the double quotient. The
definition of this map is very geometric, since it deals with an interpretation
of spaces of supersingular elliptic curves as double classes of a quotient. In
my thesis, the construction of the map ψx goes in the same direction. In fact,
I first give an interpretation of the integral model for the anticanonical tower
of modular forms. After that, I consider the complete partial Igusa tower
over X∞ which is constructed in chapter 6 of [AIP], and I describe a moduli
interpretation of this formal scheme, which easily follows from the one given
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for X∞. Thanks to this moduli interpretation, I can give a moduli description
of perfect overconvergent modular forms, which are described as functions
over the Igusa tower which transforms in a suitable way under the action of
the Galois group of the Igusa tower. In particular, I prove that this moduli
interpretation holds:

Proposition 1. A perfect modular form f ∈ H0(X∞,w∞) is a function which
associates to:

i) A T -adically complete and separated B-algebra R which is T -torsion
free and normal;

ii) A character κ defined by the morphism Spf(R)→Wcycl
I ;

iii) An elliptic curve f : E → Spec(R) equipped with a level N-structure
ψN ;

iv) A section η ∈ H0(Spf(R), f ∗(ωp(1−p))) such that ηH̃ap = T modulo p2;

v) A p-divisible group D∞ of height 1 such that, called En := E/Dn, En
admits a level n canonical subgroup and Dn splits generically the exact
sequence of the pn-torsion of En;

vi) A morphism β : Tp(E)→ Z2
p which becomes an isomorphism generically,

an element f(E,ψN , η,D∞, β) ∈ R such that

f(E,ψN , η,D∞, γβ) = κ(γ)−1f(E,ψN , η,D∞, β)

for every γ ∈ Z×p , which acts over the quintuple by changing the generator of
Tp(D∞).

Now, starting from a supersingular point x ∈ XFp the idea is to construct
a suitable characteristic 0 supersingular B-point of the modular curve Xr,
and to create from it the associated Bperf

x -point of the infinite Igusa tower,
where Bperf

x is the normalization of the ring given by taking the completion of
the inductive limit of the pullbacks of the B-point along the anticanonical
tower. In the construction of Bperf

x it is implicit a choice of a compatible
family of pn-th roots of unity. The moduli interpretation of the anticanonical
and of the Igusa tower allows to describe such a point as an elliptic curve
with a trivialization of the generic Tate module. We denote such a point by
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Ea,b, where the notation represents the elliptic curve E we are considering
equipped with the basis a, b of its Tate module, and where a is the basis of the
canonical subgroup. We then prove that for every n ∈ N and for every λ ∈ Zp
it is possible to define an isogeny, which we write πn,λ which sends the point
Ea,b to the point Ea, b+λa

pn
. We prove that, even if this isogeny is constructed

using the trivialization of the Tate module, which only appears generically, it
is well-defined integrally, and so gives another point of the infinite level Igusa
tower. Using this isogeny, we define, for every n ∈ N and for every perfect
modular form f , a map

ψn,x(f) : Zp → Bperf
x

which sends the modular form f to its value over Ea, b+λa
pn

. We prove that this
map is continuous, and we globalize the construction for every n ∈ N defining
a map:

ψx : H0(Xr,wr)⊗̂BBperf
x → Cont(Zp,Bperf

x )
sending f to ∑n≥0 ψn,x(f). Here we implicitly use the fact that the sheaf of
modular forms at infinity can be descended to an invertible sheaf over Xr,
and in fact this sheaf is the sheaf of overconvergent modular forms over Xr.
The sum of these morphisms ψx over all possible supersingular points of XFp
is the map Ψ of Theorem 13. We can study the different maps ψx in order to
understand the properties of the map Ψ.

After that, we study the translation of the Up operator in the setting of
continuous functions from Zp to Bperf

x , and we prove that the action of the Up
operator over those functions which are in the image of ψ can be described
by the following formula:

Proposition 2. Let Up be the operator acting on the image of the map Ψx.
Then Up splits into a sum of p− 1 operators, and its action over a function g
which belongs to the image of ψx is the following:

Up(g)(λ) =
p−1∑
µ=0

(g(pλ+ µ) + kg)

where kg is a constant depending only on g.

We want to remark that this explicit computation of the action implies
that the map ψx cannot be surjective. In fact, it’s easy to see that the
operator Up is not compact over the space of continuous functions, while it is
proved in [AIP] that the action of the Up operator over the spaces of integral
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overconvergent modular forms is compact. This means that the image of ψ
must be contained in a subspace of Cont(Zp,Bperf

x ) where the action of Up is
compact.

The kernel and the image of the map ψ will surely be argument of later
studies, but what is important in the existence of the map ψ, and of the sum
over different supersingular points Ψ, is related to the fact that the translation
of the Up operator in the module of continuous functions from Zp to Bperf

gives, up to the constant kg, exactly the same operator which is analyzed by
Liu, Wan and Xiao in [LWX]. This consideration opens the possibility to use
the same techniques as in [LWX] to study the action of the Up operator over
the entire space of integral overconvergent modular forms. In fact, in [LWX],
the explicit computation of the action of Up over the spaces of quaternion
overconvergent modular forms gave them the possibility to make a fruitful
analysis of the Newton polygon of its characteristic series, and to prove the
Halo conjecture.

In order to make possible a later analysis of the properties of the map
ψx, and in particular in order to use the Vonk’s description of the basis for
H0(Xr,wr), we also construct a Mahler basis for Cont(Zp,Bperf

x ). We decide
to construct such a Mahler basis in a slightly more general situation than
what we need. In fact, we are able to prove the following result:

Proposition 3. Let R be a Zp Banach algebra which is norm decreasing,
i.e. such that the norm of the image of any element in Zp via the structure
morphism of R is lower or equal than its p-adic norm. Then there is an
isomorphism of Banach R-modules

Cont(Zp,Zp)⊗̂ZpR
∼= Cont(Zp, R).

In particular, the space of continuous functions from Zp to R admits a Mahler
basis.

The proof of this result is strictly based on the computations of Mahler,
and it is essentially a computation in p-adic analysis which uses strongly the
hypothesis on the decreasing of norm. This last result says that we can treat
continuous functions from Zp to Bperf

x by using a Mahler basis. We hope that
the existence of the map Ψ, when a complete description of its kernel and
image will be exhausted, will give, combined with an analysis similar to the
one performed in [LWX] a complete description of the characteristic series of
Up, and we hope that this description will give the proof of the Coleman’s
Halo Conjecture.
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Structure of the Thesis
The first two chapters of this thesis does not contain anything new. The first
one deals with Formal Schemes, Rigid Analytic Varieties and Adic Spaces and
describes the prerequisites which are necessary to understand the geometry
involved in what follows. In particular, we put our attention on the notion
of generic fiber of a Formal Scheme, which can be described both as a Rigid
Analytic and a Huber’s adic space.

In Chapter 2 we focus on the content of [AIP]. In particular we follow the
paper and reproduce the most important arguments. We also give a proof of
a representability result which is used in the paper to prove the existence of
partial Igusa tower.

In Chapter 3 we construct our version of Mahler basis. What is essentially
new here is that we construct a Mahler basis for the space of continuous
functions Cont(Zp, R), where R is any Zp-algebra which is complete and norm
decreasing. This hypothesis is fulfilled by the rings we are dealing with in
Chapter 4.

In Chapter 4 we construct the map Ψ and we show that it is well-defined.
We also study the geometry of the Up operator, and we use this characterization
to write its action over the spaces of continuous functions from Zp to the ring
Bperf.

16



Chapter 1

Formal Schemes and their
Generic Fibers.

In this section we recall the notion of Formal Schemes and the connection with
Huber’s Adic Spaces. In particular, we recall the notion of adic generic fiber,
which substitute the idea of Berthelot’s generic fiber. The main reference for
Formal Schemes is [Bo15], while for the description of the generic fiber, we
follow the treatment in [SW], which gives a generalization of Huber’s papers.
As in classical scheme theory, we first recall the algebraic notion which gives
the open covering of a formal scheme.

1.1 Formal Schemes.
In this section we see the definition of formal schemes, their fundamental
properties and the Berthelot’s construction of rigid generic fiber of a formal
scheme.

1.1.1 Definition of Formal Schemes.
Definition 1. An I-adic ring A for an ideal I of A is a commutative ring
with unit equipped with the unique topology given by the basis

B = {x+ In | x ∈ A and n ∈ N}

which is I-adically complete and separated, i.e.
A ∼= lim

←−
n

A/In.
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Such a ring is called f-adic if I is finitely generated. In particular, a No-
etherian adic ring is always f-adic. A ring is called adic if it is I-adic for
an ideal I of A, and similarly it is called f-adic if it is adic for a finitely
generated ideal. We call such an ideal I ideal of definition of A. A morphism
of adic rings is a ring homomorphism which is also continuous.

Geometrically, the category of I-adic rings is anti equivalent to the category
of affinoid formal schemes, which are defined in this way:

Definition 2. Given an I-adic ring A, we denote by Spf(A) the topological
space given by all the prime ideals of A containing I, i.e. all the open prime
ideals of A. It is a topological space with the topology induced by the inclusion
Spf(A) ⊆ Spec(A).

Notice that in particular, the Zariski topology over Spec(A) induces a
topology over Spf(A) where a basis of open subsets is given by the sets

D(f) = {p ∈ Spf(A) | f 6= 0 in A/p}

for f ∈ A. In particular, it is possible to equip Spf(A) with a structure sheaf
OSpf(A) which is defined over the basis given by D(f) as

OSpf(A)(D(f)) = A〈f−1〉

It can be proved that (Spf(A),OSpf(A)) defines a locally topologically ringed
space. This allows us to give the following definition

Definition 3. Let A be an adic ring with ideal of definition I. Then the couple
(Spf(A),OSpf(A)) is called the formal spectrum of A. Given a topologically
locally ringed space (X,OX), we say it is an affine formal scheme if there
exists an adic ring A such that (X,OX) ∼= (Spf(A),OSpf(A)).

Remark. Topologically, the formal spectrum Spf(A) is homeomorphic to the
affine scheme Spec(A/I), but their structure sheaves are very different, in
fact the structure sheaf of Spec(A/I) is described by the ring A/I, while the
structure sheaf of Spf(A) is given by

OSpf(A) = lim
←−
n

OSpec(A/In)

Heuristically, this means that formal schemes describe functions which may
be defined in infinitesimal neighborhood of a closed subscheme. In particular,
they are related with the idea of deformations.
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Now that we know what affine objects are, the following definition is clear:

Definition 4. Let (X,OX) be a locally topologically ringed space. Then it is
called a formal scheme if every x ∈ X admits an open neighborhood U , where
(U,OU) is isomorphic as a topologically ringed space to (Spf(A),OSpf(A)) for
an f -adic ring A.

Form now on, we denote by FSch the category of formal schemes, and
by Ad the category of adic rings. The following result can be proved in the
same way as in scheme theory.

Theorem 2. Let X and Y be formal schemes and assume that Y = Spf(A)
is affine. Then there is a bijection:

HomFSch(X, Y ) ∼= HomAd(A,OX(X))

As in the classical scheme situation, formal schemes can be constructed by
glueing affine pieces. In particular, the category of formal schemes is equipped
with fiber product, where the fiber product is constructed by glueing the
affine pieces given by completed tensor product.

Definition 5. Let (A, I) and (B, J) be two adic rings which are topological
algebras over a third adic ring (R,K), where the second component is the
ideal of definition. Then we can define the fiber product of Spf(A) and Spf(B)
over Spf(R) to be:

Spf(A)×Spf(R) Spf(B) = Spf(A⊗̂RB)

where the completed tensor product is defined to be the usual tensor product
A⊗R B equipped with the adic topology given by the ideal I + J .

Remark. One can prove that the completed tensor product can be explicitly
computed as

A⊗̂RB = lim
←−
n,m

A/In ⊗R B/Jm

One of the crucial example of formal scheme is the one coming from the
completion of a scheme along a closed subscheme.

Definition 6. Let X be a scheme and let Y ⊆ X be a closed subscheme
defined by a quasi-coherent ideal I ⊆ OX . Then (Y,OY ), where OY =
lim
←−
n

(OX/I n)|Y is a formal scheme known as the I -adic completion of X.
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In the case when X = Spec(A) is affine and Y is determined by a finitely
generated ideal I of A, the I-adic completion of Spec(A) coincide with Spf(A).
In order to define Raynaud’s generic fiber, it is useful to introduce some
finiteness conditions on formal schemes.

Definition 7. Let R be a complete and separated adic ring with a finitely
generated ideal of definition I ⊆ R, without I-torsion. A topological R-algebra
A is called

i) of topologically finite type if it is isomorphic to an R-algebra of type
R〈X1, . . . , Xn〉/a with the I-adic topology, where R〈X1, . . . , Xn〉 is the
ring of power series with coefficients in R, whose coefficients tend to 0
for the I-adic topology, and a is an ideal of R〈X1, . . . , Xn〉.

ii) Of topologically finite presentation if, in addition to i), a is finitely
generated.

iii) Admissible if i) and ii) hold true and A does not have I-torsion.

It’s not so difficult to prove that the three conditions in the previous
definition can be checked locally, i.e. over localizations. This means that
these notions generalize to formal schemes.

Definition 8. Let X be a formal scheme over Spf(R), where R is I-adically
complete and separated. Then X is called locally of topologically finite type
(resp. locally of topologically finite presentation, resp. admissible) if it can be
covered with a family of affine open subsets which are of topologically finite
type (resp. of topologically finite presentation, resp. admissible).

1.1.2 Generic Fiber via Rigid Spaces.
It’s clear that for formal schemes the usual notion of generic fiber fails. In fact,
let us consider for example Spf(Zp), where Zp is a p-adic ring. Clearly, since
its topological space is homeomorphic to Spec(Fp), it has no generic points,
so it is not possible to define an object like Spf(Qp). The idea of Raynaud,
suggested by Grothendieck, was to interpret the category of rigid spaces as
the category of generic fibers of formal schemes, when this is possible. We
first recall the notion of rigid spaces, again by first considering their affine
pieces.
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Definition 9. Let K be a field equipped with a non-archimedean absolute
value. Then a K-algebra A is called an affinoid K-algebra if there is an
epimorphism of K-algebras α : K〈X1, . . . , Xn〉 → A, where K〈X1, . . . , Xn〉 is
the ring of power series whose coefficients tend to zero for the topology defined
by the absolute value over K.

This algebraic definition allows to define the affine pieces producing a
rigid space.

Definition 10. Let A be a K-affinoid algebra. We then define the affinoid
K-space associated to A to be the set Sp(A) of maximal ideals of A.

Clearly such a set can be equipped with the Zariski topology, where a
basis of open subsets is given by

Df = {x ∈ Sp(A) | f(x 6= 0)} f ∈ A.

The problem with the Zariski topology is that it is too coarse, and it does
not reflect the topological properties of the field K. In fact, also in order to
build rigid analytic spaces, it is a common procedure to introduce a different
topology, which is the canonical topology.

Definition 11. For any affinoid K-space X = Sp(A), the topology generated
by all subsets of type

X(f ; ε) = {x ∈ X | |f(x)| ≤ ε} f ∈ A and ε ∈ R>0

is called the canonical topology of X.

It’s not difficult to prove that all the subsets of X of type

X(f1, . . . , fn) =
n⋂
i=1

X(fi; 1) f1, . . . , fn ∈ A

give a basis for the canonical topology of X. It’s not so easy to glue affinoid
K-spaces, and this can be done via the notion of Grothendieck’s topology.
We list here the main definitions involved in the construction of rigid spaces.
Again, for an exhaustive description of these objects, we quote as main
references [BGR] and [Bo15].

Definition 12. i) A Grothendieck topology τ consists of a category C and
a set Cov(τ) of families (Ui → U)i∈I of morphisms in C, called coverings,
such that the following hold:
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1) If Φ : U → V is an isomorphism in C, then (Φ) ∈ Cov(τ).
2) If (Ui → U)i∈I and (Vij → Ui)j∈Ji for i ∈ I belong to Cov(τ), then

the same is true fo the compositions (Vij → Ui → U)i∈I,j∈Ji.
3) If (Ui → U)i∈I ∈ Cov(τ), and if V → U is a morphism in C,

then the fiber product Ui ×U V exists in C, and (Ui ×U V → V )i∈I
belongs to Cov(τ).

ii) Let τ be a Grothendieck topology and let D be a category with pullbacks.
A presheaf on τ with values in D is defined to be a contravariant functor
F : C → D. We call F a sheaf if the diagram

F (U)→
∏
i∈I
F (Ui) ⇒

∏
i,j∈I

F (Ui ×U Uj)

is an equalizer for every (Ui → U)i∈I in Cov(τ).

iii) Let X be an affinoid K-space. The strong Grothendieck topology on X
is given as follows:

a) A subset U ⊆ X is called admissible open if there is a covering
U = ⋃

i∈I Ui of U by affinoid subdomains Ui ⊆ X such that for all
morphisms of affinoid K-spaces φ : Z → X satisfying φ(Z) ⊆ U ,
the covering φ−1((Ui))i∈I of Z admits a refinement that is a finite
covering of Z by affinoid subdomains.

b) A covering V = ⋃
j∈J Vj of some admissible open subset V ∈ X by

means of admissible open sets Vj is called admissible if for each
morphism of affinoid K-spaces φ : Z → X satisfying φ(Z) ⊆ V ,
the covering (φ−1(Vj))j∈J of Z admits a refinement that is a finite
covering of Z by affinoid subdomains.

And finally, we give the definition of a rigid space:

Definition 13. A rigid analytic K space is a locally ringed space (X,OX),
where X is a topological space with a strong Grothendieck topology such that
X admits an admissible covering (Xi)i∈I , where Xi is an affinoid K space for
all i ∈ I, and OX is a sheaf of affinoid K-algebras.

Finally, as we mentioned above, it is an idea of Raynaud to see rigid spaces
as generic fibers of formal schemes. In particular, the following holds:
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Theorem 3. Let R be a complete valuation ring of height 1 with field of
fractions K. Then the functor A 7→ A ⊗R K defined on the category of
R-algebras of topologically finite type gives rise to a functor X 7→ Xrig from
the category of formal R-schemes that are locally of topologically finite type,
to the category of rigid K-spaces.

This object, denoted by Xrig is called the rigid generic fiber of the R-formal
scheme X. We remark that, in the affine situation, say X = Spf(A), both
the formal scheme associated to A and its rigid generic fiber can be realized
as subsets of Spec(A). In fact, by definition, Spf(A) is the set of prime ideal
of A which do not contain IA, for I the prescribed ideal of definition of R.
Moreover, (Spf(A))rig coincides with Sp(A⊗RK) which is the set of maximal
ideals of A⊗R K, which is the set of closed points in A⊗K, which gives all
the closed points of the generic fiber of Spec(A). We also point out the fact
that the rigidification functor defined in the Theorem factors through the
category of admissible formal schemes, essentially because tensoring with K
kills all the I-torsion. One interesting feature of rigid and formal geometry
is to describe, given a K-rigid space XK , all the admissible formal schemes
X such that Xrig ∼= XK . The solution of this question has been given, at
least in a particular situation, and lead to the notion of admissible formal
blow up, which will be very important in all that follows. The construction
of Raynaud’s generic fiber has been generalized by Berthelot, and its version
of the generic fiber allows to produce rigid spaces which are understood to be
generic fibers of formal schemes of the kind R[[T1, . . . , Tn]]〈X1, . . . , Xn〉.

1.1.3 Admissible Formal Blowing-up.
The construction of admissible formal blowing-up is crucial in formal and rigid
geometry. In fact, the admissible blowing-up of a formal scheme provide a
class of formal schemes which have the same rigid generic fiber. Moreover, the
notion of admissible blowing-up gives a new way to describe formal models
of the strict neighborhoods of ordinary locus of modular curves. The idea is
clearly to complete locally the usual notion of blowing-up of a scheme.

Definition 14. Let X be a formal R-scheme that is locally of topologically
finite presentation and let A ( OX be a coherent open ideal. Then the formal
R-scheme

XA = lim
−→
n

Proj
( ∞⊕
d=0

A d ⊗OX (OX/I
nOX)

)
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together with the canonical projection XA → X is called the formal blowing-
up of A on X. Any such blowing-up is referred to as an admissible formal
blowing-up of X.

This construction has clearly an algebraic interpretation when we blow
up an affine formal scheme. In fact, if X = Spf(A), it can be proved that the
topological finiteness hypothesis allows to deduce that an ideal A ⊆ OX is
coherent open if and only if it is associated to a coherent open ideal a ⊆ A.
Then it’s easy to prove the following

Proposition 4. Let X = Spf(A) be an affine formal R-scheme of topologically
finite presentation. Furthermore, let A = ã be the coherent open ideal of
OX , which is associated to the coherent open ideal a ⊆ A. Then the formal
blowing-up XA equals the I-adic completion of the scheme theoretic blowing-up
(Spec(A))a of a on Spec(A).

This in particular means that the notion of formal blowup is local, i.e.the
blowing-up of a formal scheme can be realized as a glueing of completions of
scheme theoretic blowing-up’s. In the particular situation when the scheme
we are starting with is admissible, it is also possible to deduce the equations
for the blowing-up and a lot of good properties, like in what follows.

Proposition 5. Let X = Spf(A) be an admissible formal R-scheme that is
affine, and let A = ã be a coherent open ideal in OX associated to a coherent
open ideal a = (f0, . . . , fr) ⊆ A. Then the following assertions hold for the
formal blowing-up XA of A on X:

i) The ideal A OXA
⊆ OXA

is invertible.

ii) Let Ui be the locus in XA where A OA is generated by fi, i = 0, . . . , r.
Then the Ui’s define an open affine covering of XA .

iii) Write

Ci = A

〈
fj
fi
| j 6= i

〉
= A〈Zj | j 6= i〉/(fiZj − fj | j 6= i)

Then the I-torsion of Ci coincides with its fi-torsion, and Ui = Spf(Ai)
holds for Ai = Ci/(I − torsion)Ci.
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Moreover, if X is an admissible formal R-scheme and A ⊆ OX a coherent
open ideal. Then the formal blowing-up XA of A on X is an admissible
formal R-scheme again.

Moreover, admissible blowing-up’s satisfy the following universal property:

Proposition 6. For an admissible formal R-scheme X and a coherent open
ideal A ⊆ OX , the formal blowing-up XA → X is such that any morphism
of formal R-schemes φ : Y → X such that A OY is an invertible ideal in OY

factorizes uniquely through XA .

The main result related to the idea of formal blowing-up’s is the following
theorem due to Raynaud.

Theorem 4. Let R be a complete valuation ring of height 1 with field of
fractions K. Then the functor rig induces an equivalence between the category
of all admissible formal R-schemes that are quasi-paracompact, localized by the
class of admissible formal blowing-up’s and the category of all quasi-separated
rigid K-spaces that are quasi-paracompact.

The previous theorem essentially means two crucial facts. First that an
admissible formal scheme satisfying the properties of the statement and any
of its admissible blowing-up’s have the same rigid generic fiber, and, moreover,
that any rigid space over K admits a formal model, i.e. a formal scheme
whose rigid generic fiber is the given rigid space.

1.2 Adic Spaces.
Here we define the idea of adic spaces and the notion of adic generic fiber of
a formal scheme.

1.2.1 Definition of Adic Space
As we saw in the previous section, formal schemes over a valuation ring and
rigid spaces over its field of fractions are strictly linked by the construction of
rigid generic fiber. This suggests that it should be a good idea to work with a
category which contains both formal schemes and rigid spaces, i.e. a category
such that taking the generic fiber of a formal scheme is an inner operation.
This naturally lead to the notion of adic spaces, which have been introduced
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by Huber. In this section, we follow the treatment of adic spaces as in [Hu1]
and [Hu2]. We want to remark that clearly the notion of adic spaces not only
constructs a category containing both formal schemes and rigid spaces, but
also allows to extend greatly the notion of generic fiber. We start with the
following:

Definition 15. Let A be a topological ring, and let Γ be a totally ordered
monoid which comes from a totally ordered group with a minimal element 0
added. A Γ-valued continuous valuation on A is a map | − | : A → Γ such
that:

i) |1| = 1 and |0| = 0.

ii) For any a, b ∈ A, |ab| = |a||b|.

iii) For any a, b ∈ A, |a+ b| ≤ max{|a|, |b|}.

iv) (Continuity condition) For any γ ∈ Γ the set {a ∈ A | |a| < γ} is open
in A.

Two continuous valuations over a ring A, |− |1 and |− |2 are called equivalent
if for every a, b ∈ A

|a|1 ≤ |b|1 ⇔ |a|2 ≤ |b|2

The following algebraic definition gives the right notion of rings involved
in Huber’s theory of adic spaces.

Definition 16. 1) Let A be a topological ring.

i) A subset S ⊆ A is called bounded if, for all U ⊆ A open neighbor-
hood of 0 there exists an open neighborhood of 0, V , such that

V ·S = {v1s1+. . . vnsn | v1, . . . , vn ∈ V, s1, . . . , sn ∈ S, n ∈ N} ⊆ U

ii) An element a ∈ A is called power bounded if the set of its positive
powers {an | n ∈ N} is bounded. The set of power bounded elements
is denoted A◦.

iii) An element a ∈ A is called topologically nilpotent if its powers
converge to 0 in the topology of A. The set of topologically nilpotent
elements is denoted A◦◦.
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iv) A subring A+ ⊆ A is called a ring of integral elements if A+ ⊆ A◦

is open and integrally closed.
v) A topological ring A is called Huber ring if there is an open subring

A0 ⊆ A which is f-adic. Such a ring is called ring of definition.
A Huber ring is called Tate if it contains a topologically nilpotent
element which is also a unit.

2) A pair (A,A+) which consists of a Huber ring with a ring of integral
elements is called an affinoid ring, or a Huber pair. A morphism
of affinoid rings f : (A,A+) → (B,B+) is a continuous morphism
f : A→ B such that f(A+) ⊆ B+.

To every Huber pair, it is possible to associate a topological space, which
gives the affinoid part of an adic space.

Definition 17. Let (A,A+) be an affinoid ring. Then we define the adic
spectrum Spa(A,A+) to be the set of equivalence classes of continuous valu-
ations | − | such that |A+| ≤ 1, equipped with the topology generated by the
following subsets

{x ∈ Spa(A,A+) | |f(x)| ≤ |g(x)|} for f, g ∈ A

For elements s1, s2, . . . sn ∈ A and finite subsets T1, . . . , Tn ⊆ A such that
TiA ⊆ A is open for all i = 1, . . . , n, we define the associated rational subset
to be

U({Ti/si}) = U
(
T1

s1
, . . . ,

Tn
sn

)
= {x ∈ Spa(A,A+) | |ti(x)| ≤ |si(x)| 6= 0 | ∀ti ∈ Ti}.

Here we denoted by |f(x)| the absolute value x(f).

Proposition 7. Let X = Spa(A,A+) be an adic spectrum and let U ⊆ X be
a rational subset. Then there exists an affinoid ring (OX(U),O+

X(U)) together
with a structure morphism

(A,A+)→ (OX(U),O+
X(U))

such that the corresponding map Spa(OX(U),O+
X(U))→ Spa(A,A+) factors

through U and is universal for all such maps. Moreover, if

a) A admits a Noetherian ring of definition, or
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b) A is Tate strongly Noetherian, i.e. such that A〈X1, . . . , Xn〉 is Noeth-
erian for every n ∈ N,

then the presheaves

OX(V ) := lim
←−

V⊆Urational

OX(U) O+
X(V ) := lim

←−
V⊆Urational

O+
X(U)

where, for a rational subset U
(
{Ti
si
}
)
, these presheaves are defined by the

previous universal property, are sheaves.

Proof. We just want to give the construction of localizations which fit into
the universal property, leaving all the details to [Hu1]. So let Spa(A,A+) be
an affinoid adic space, and choose a ring of definition A0 ⊆ A with a finitely
generated ideal of definition I ⊆ A0, and write U = U

(
{Ti
si
}
)
for the rational

subset U , as above. Then we can define the ring

A0[{Ti/si}] := A0

[
ti
si
| ti ∈ Ti and i = 1, . . . , n

]
and it’s not hard to see that the IA0[{Ti/si}]-adic topology over the localiz-
ations A[1/si] makes A0[{Ti/si}] to be an open subring of the localization.
Take A[{1/si}]+ to be the integral closure of the image of A+[{Ti/si}] inside
A[{1/si}]. Then we define the affinoid ring (OX(U),O+

X(U)) to be the com-
pletion of the couple (A〈{Ti/si}〉, A〈{Ti/si}〉+) with respect to the topology
defined above.

The following definition coming from [Hu1] describes adic spaces.

Definition 18. i) An affinoid ring (A,A+) is called sheafy if the structure
presheaf OX on X = Spa(A,A+) is a sheaf. For any sheafy affinoid
ring (A,A+) the adic space associated to (A,A+) is the topological
space Spa(A,A+) together with the structure sheaf OX and the induced
valuation | − |x on the stalk OX,x.

ii) Let (V ) denote the category whose objects are triples (X,OX , |−(x)|x∈X),
where X is a topological space, OX a sheaf of complete topological rings,
and, for each x ∈ X, | − (x)| is an equivalence class of valuations on
OX,x, and whose morphisms between two objects (X,OX , | − (x)|x∈X)
and (Y,OY , | − (y)|y∈Y ) are maps of locally topologically ring spaces
with the obvious compatibility condition with the valuations on the
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stalk. The full subcategory of adic spaces in (V ) consists of objects
(X,OX , (| − (x)|)x∈X) which admit an open covering by spaces Ui such
that the triple (Ui,OX |Ui , (|− (x)|)x∈X) is isomorphic to an affinoid adic
space.

iii) Let X be an adic space. A point x ∈ X is called analytic if there
exists an open neighborhood U of x such that OX(U) is Tate. The open
subspace of X consisting of all analytic points are denoted by Xa. If
Xa = X, we call X analytic.

1.2.2 Adic Generic Fiber.
There is a way to attach to a formal scheme a different notion of generic fiber,
coming from Huber’s theory of adic spaces. In particular, this construction
extends, in a meaning that will be clear soon, the Berthelot’s construction
of rigid generic fiber of a formal scheme. First, the following results are the
main content of [Hu2]:

Theorem 5. i) (Formal Geometry) Let X be a locally noetherian formal
scheme. Then there exists an adic space Xad and a morphism of locally
and topologically ringed spaces π : (Xad,O+

Xad)→ (X,OX) such that for
every adic space Z and for every morphism of locally and topologically
ringed spaces f : (Z,O+

Z )→ (X,OX), there exists a unique morphism
of adic spaces g : Z → Xad making the following diagram commute:

(Z,O+
Z ) (X,OX)

(Xad,OXad)

f

π

Moreover, the (−)ad-construction defines a fully faithful functor from
the category of locally noetherian formal schemes to the category of adic
spaces. Finally, over any locally noetherian formal scheme X, there is
a functor F 7→ F ad from the category of OX-modules to the category
of OXad-modules which is fully faithful when restricted to the category
of coherent OX-modules.
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ii) (Rigid Geometry) Let K be a field which is complete wrt a valuation
of rank 1. Let K0 be the subring of its power bounded elements. Then
for every rigid analytic variety V over K, there exists an adic space
V ad and a morphism π : (V ad,OV ad)→ (V,OV ) of ringed sites, where
the right-hand side is the site equipped with the strong Grothendieck
topology introduced above, such that V ad is locally of finite type over
Spa(K,K0) and satisfies the following universal property. If Z is a
locally of finite type adic space over Spa(K,K0) and g : (Z,OZ) →
(V,OV ) is a morphism of rigid analytic varieties, then there exists
a unique morphism g : Z → V ad such that the following diagram
commutes:

(Z,OZ) (V,OV )

(V ad,OV ad)

f

π

Moreover, this gives a fully faithful functor from the category of rigid
analytic varieties over K to the category of adic spaces.

Notice that the Theorem says precisely that we can view schemes, formal
schemes and rigid analytic varieties as subcategories of the same category, the
one of adic spaces. In particular, it is possible to define also in the context of
adic spaces, the generic fiber of a locally noetherian formal scheme. In order
to construct the adic generic fiber, we need a notion of fiber product in the
category of adic spaces. This notion doesn’t behave very well. In fact, for
general adic spaces, the fiber product is not well-defined. By the way, it is
possible to construct it in some useful situations.
Definition 19. Let f : X → Y be a morphism of adic spaces. Then f is
called locally of finite type if for every x ∈ X there exists an open affinoid
neighborhood U = Spa(B,B+) of x in X and an open affinoid subspace
V = Spa(A,A+) of Y with f(U) ⊆ V such that the induced morphism of
complete Huber pairs (A,A+)→ (B,B+) is topologically of finite type, i.e. if
it factors through an isomorphism of Huber pairs

B ∼= A〈X1, . . . , Xn〉T1,...,Tn/a

for some n ∈ N, finite subsets T1, . . . , Tn ⊆ A with Ti · A open in A, and a a
closed ideal.
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Here the notation A〈X1, . . . , Xn〉T1,...,Tn denotes the ring of formal power
series with coefficients definitely contained in the product T1 · Tn. For details
about this ring, we refer to Chapter 3 of [Hu2].

Proposition 8. Let f : X → Y and g : Z → Y . Then the fiber product
X ×Y Z exists in the category of adic spaces if f or g is locally of finite type.

This allows to construct the generic fiber of a locally noetherian formal
scheme. Let now O be a complete discrete valuation ring with uniformizer $,
field of fractions K and residue field k. Then, the adic space S = Spa(O,O)
attached to Spf(O) consists of an open point η and a closed point s, with
κ(η) = K and κ(s) = k. The canonical morphism Spa(K,O) → Spa(O,O)
is an open immersion onto the open point, and it is a morphism of adic
spaces locally of finite type. Now, let us consider a formal scheme X which is
locally formally of finite type over Spf(O), i.e. X is such that for every point
x ∈ X there exists an open affinoid neighborhood Spf(A) such that there is
a continuous open surjective homomorphism O[[T1, . . . , Tn]]〈X1, . . . , Xm〉 →
A, where the topology of O[[T1, . . . , Tn]]〈X1, . . . , Xm〉 is given by the ideal
($,T1, . . . , Tn). Then the adic generic fiber of X is defined as

Xad
η := Xad ×Spa(O,O) Spa(K,O)

It can be proved, see chapter 4 of [Ka], that the adic generic fiber is isomorphic
to the adification of the Berthelot’s generic fiber. This means that, given a
formal scheme X, there is an isomorphism of adic spaces:

Xad
η
∼= (Xrig)ad

where Xrig is the Berthelot’s rigid generic fiber of X.
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Chapter 2

The Spectral Halo.

In this first chapter, we follow the main constructions of [AIP]. Essentially
nothing new appears in this chapter, which only recalls the foundational
material about the halo conjecture. In this chapter, we organize the ma-
terial contained in [AIP] following first the “characteristic 0”, and then the
“characteristic p” construction, and we finish with the very beautiful glueing
construction in [AIP]. In order to get a self-contained exposition, we also
recall the proofs of the main results.

2.1 The Weight Space.
Since p-adic modular forms can be seen as functions over the Igusa tower
attached to the modular curve with an associated p-adic weight, the first
object to discuss when one speaks about families of p-adic or overconvergent
modular forms is the space where weights live. This is a kind of base space
over which the modular curve is fibered, and parametrizes all the possible
weights, integer or not, associated to modular forms. In Coleman’s work, the
weight space is a rigid analytic space à la Tate, while in [AIP] the authors
prefer to work with Huber’s analytic adic spaces. The main advantage of
Huber’s geometry is that it allows to talk about formal schemes and their
generic fiber without changing the category. Moreover, the use of Huber’s adic
spaces allows to treat both “characteristic 0” and “characteristic p”-points.
This improvement is fundamental in the construction of the boundary of
weight space which is a completely new object introduced in [AIP].
Convention. From now on, for all this essay, we assume that p denote an
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odd prime. Most of the constructions are possible also in characteristic 2
with suitable modifications, but we choose to avoid the even prime in order
to simplify the statements.

2.1.1 Compactification of the Weight Space.
Let Λ := Zp[[Z×p ]] be the Iwasawa algebra associated to the group Z×p , and
let W := Spf(Λ) be the associated formal scheme, where the topology on
Λ is (p, T )-adic. The rigid analytic generic fiber of W is the weight space
considered by Coleman.

Lemma 1. W is a union of p− 1 connected components isomorphic to copies
of Spf(Zp[[T ]]).

Proof. The map Zp[[Z×p ]] → Zp[(Z/pZ)×][[T ]] given by sending exp(p) to
1 + T is a topological isomorphism, hence we get the decomposition.

In particular, every connected component parametrizes characters of
1 + pZp, with a fixed finite character. Notice that every connected component
is the formal spectrum of a regular local ring of dimension 2 with maximal
ideal (p, T ).

Associated to the formal schemeW, one can define, via the Huber’s functor
in [Hu2], the adic space Wad = Spa(Λ,Λ), whose points are equivalence
classes of continuous valuations over Λ. This space is equipped with a sheaf
of topological algebras, denoted OWad , and, for every point x ∈Wad, there
exists a valuation vx over the stalk of OWad,x. The space Wad contains all the
points of W, but we are interested precisely in points not appearing in W.
The following Lemma clarifies the meaning of this remark, but first we have
to recall the notion of analytic point.

Definition 20. Let (A,A+) be an affinoid algebra, and let x ∈ Spa(A,A+).
We call support of x the prime ideal of A of elements a ∈ A whose valuation
associated to x is zero. We say that x ∈ Spa(A,A+) is analytic if its support
is not open.

Using the definition it is easy to prove the following characterization of
non analytic points of Wad.

Lemma 2. Non-analytic points of Wad are in bijection with W.
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We then define W to be the open given by analytic points of Wad. It’s
not hard to see that W is quasi-compact but not affinoid. By the way it is
possible to produce affinoid subspaces ofW simply by a comparison, for every
point x ∈ W of the valuation of p and T attached to x. In particular, we can
state the following definition:

Definition 21. Let r
s
∈ Q be a rational number. Then define:

W≤ r
s

:= {x ∈ W | |T r|x ≤ |ps|x 6= 0} W≥ r
s

:= {x ∈ W | |ps|x ≤ |T r|x 6= 0}
W≥0 :=W W≤∞ :=W

W≤0 := {x ∈ W | |T |x = 0} W{∞} := {x ∈ W | |p|x = 0}

Then, let I = [a, b], with a, b ∈ Q>0 ∪ {∞} and define:

WI :=W≤b ∩W≥a

For every I of this kind, properly contained in [0,∞], WI is affinoid, and
notice that if I = [0, t] with t ∈ Q≥0, the topology over the ring of functions
of WI is p-adic, and p is a topologically nilpotent unit, while if I is of the
form [t,∞], the topology is T -adic and T is a topologically nilpotent unit.
In particular, in both situations, the ring of functions of WI is a Tate ring.
Moreover, if we consider I = [a, b], with rational a and b, we see that the T
and p-adic topologies coincide and both p and T are topologically nilpotent
units. This means that the choice of I parametrizes a kind of glissando of
the topology, from p to T -adic. In particular, if t ∈ [0,∞), then W[0,t] is
a finite union of balls centered in 0 and with radius p− 1

t . So, if we denote
Wrig :=W[0,∞), then this is the adic space associated to Berthelot’s generic
fiber of W.

So let us have a look to W{∞} which can be interpreted, at least set
theoretically, as a kind of “boundary” of the weight space, in fact we may
write the heuristic equality:

W{∞}” = ”W −Wrig

The equality is not precisely an equality, since the right-hand side might not
have the structure of an adic space. So we now define which is its structure.
Notice that W{∞} has an interpretation in terms of characteristic p-points.
In fact, consider a point x ∈ Spec (Fp[(Z/pZ)×]((T ))). It corresponds to a
morphism:
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x : Fp[(Z/pZ)×]((T ))→ Fp((T ))

and it’s easy to see that every point of W{∞} is given by composing the
mod-p reduction of Λ with the morphism given by x, with the T -adic valuation
of Fp((T )). This says that W{∞} is affinoid, given by

W{∞} = Spa(Fp[(Z/pZ)×]((T )),Fp[(Z/pZ)×[[T ]]). (2.1)

We introduce now another notation. We denote byW0 := Spa(Zp[[T ]],Zp[[T ]])an

the analytic adic space given by the closed subspace of W corresponding to
the trivial character of (Z/pZ)×. We also denote by W0

I =W0 ∩WI for any
interval I. This provides a decomposition of the weight space into product of
W0

I with the finite character part.
We want to end this section recalling how to produce integral models of

the adic spaces introduced above. From now on, we essentially restrict our
considerations to the connected component given by trivial finite character.
For a given interval I, denote by BI = H0

(
WI ,O

+
WI

)
. Then we define:

W0
I := Spf(BI) (2.2)

Notice that W0
I is just an admissible blowup of the formal weight space W.

In fact, in the most useful cases, we have:

I = [pk, pk′ ] BI = Zp[[T ]]〈u, v〉/(T pkv − p, uv − T pk
′−pk)

I = [pk,∞] BI = Zp[[T ]]〈u〉/(p− uT pk)
I = {∞} BI = Fp[[T ]]
I = [0, 1] BI = Zp[[T ]]〈v〉/(T − vp)

and we can see that each BI is the coordinate ring of a blowup.

2.1.2 Analyticity of the universal character.
Clearly, we have a universal character κun : Z×p → Λ×, simply given by the
inclusion of Z×p inside the Iwasawa algebra. This character gives a pairing of
presheaves:

W × Z×p −→ G+
m
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where Z×p is the constant sheaf of value Z×p . The pairing is defined, for
(A,A+)-points, as:

(κ, x) 7→ κ(x).
The main fact is that, if we restrict κun to certain opens inside weight space,
then the character becomes locally analytic, i.e. it is possible to extend it
to a character of the group Z×p (1 + pnG+

a ) ⊆ G+
m. We reprove the following

result which will be useful in what follows:

Lemma 3. For every n ≥ 1, we have

κun(1 + qpn−1Zp)− 1 ⊂ (T pn−1
, T p

n−2
p, . . . , pn−1T )Λ.

Proof. First, we choose once and for all the non canonical isomorphism
Zp[[Z×p ]] ∼= Zp[Z/qZ×][[T ]] sending the topological generator exp(q), with
q = p if p is odd and q = 4 if p = 2, to 1 + T . Moreover, exp(q) is
a topological generator of 1 + Zp, hence we may compute κun(exp(qpn−1)).
Remember that the p-adic valuation of the binomial coefficient Ck

pn is n−vp(k).
We then have:

κun(exp(qpn−1)) = (1 + T )pn−1 =
pn−1∑
k=0

Ck
pn−1T k = 1

modulo (T pn−1
, T p

n−2
p, . . . , pn−1T ).

This allows to prove the local analytic behaviour of the universal character.

Proposition 9. For every n ≥ 1, the universal character gives a pairing :

W[0,pnq−1] × Z×p (1 + qpn−1G+
a ) −→ G+

m

which restricts to a pairing:

W[0,pnq−1] × (1 + qpn−1G+
a ) −→ 1 + qG+

a .

2.2 Modular Curves.
Now that we discussed the weight space, we are ready to present the general
procedure used in [AIP] to produce formal models for strict neighborhoods of
the ordinary locus of modular forms. Since in all the construction, the Hasse
invariant and Hodge ideal play a crucial role, we first recall their general
definition, and then we pass to the construction in [AIP].
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2.2.1 Hasse invariant and Hodge ideal.
We define the Hodge ideal and the Hasse invariant at the level of generality
that we need here. We first briefly recall the construction of Illusie’s cotangent
complex. For any ring R and a set S, we denote by R[S] the polynomial
algebra with coefficients in R and variables xs with s ∈ S. It’s easy to
see that the functor S 7→ R[S] is left adjoint to the forgetful functor from
R-algebras to sets, and this in particular means that for any R-algebra B, we
have a canonical surjective map fB : R[B]→ B. Iterating this map, we get a
simplicial R-algebra, usually denoted P•B/R, which admits an augmentation
over B and which looks like:

P•B/R := (. . . R[R[B]] ⇒ R[B])→ B

This map is a resolution of B in a suitable category of R-algebras and it is
called the canonical simplicial R-algebra resolution of B.

Definition 22. For any map R → B of commutative ring, we define its
cotangent complex LB/R, which is a complex of B-modules as

LB/R := ΩP•/R ⊗P• B

where P• is a simplicial resolution of B by polynomial R-algebras

It is clear that the zeroth cohomology of the cotangent complex gives the
sheaf of Kahler differentials of the given map. Moreover, this idea can be
clearly globalized to schemes, simply by working locally and then glueing.
Once we define the cotangent complex, we can give another definition.

Definition 23. Let H → Spec(R) be a group scheme. We define its co-Lie
complex to be lH/R := e∗(LH/R), the pullback of the cotangent complex along
the counit of H. Finally, we define its conormal sheaf to be:

ωH = H0(lH/R)

Notice that, in the case when the group scheme is smooth, then the
cotangent complex is only concentrated in degree 0, and so the definition of
conormal sheaf gives back the usual one.

Now, if R is a characteristic p-ring, and G is a truncated Barsotti-Tate
group over R, we have Frobenius and Verschiebung morphisms, and we
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can consider the co-Lie complex of the kernel of the Verschiebung, which is
represented by the complex:

[ωG
HW (G)−→ ωG(p)]

where HW (G) is called the Hasse-Witt matrix. Then, its determinant is
what we call the Hasse invariant. Again notice that in the particular case
of the Barsotti-Tate group attached to an elliptic curve, the definition gives
back the usual one, where the Hasse invariant is constructed via the kernel of
Verschiebung.

Moreover, if R is a p-adically complete ring, we call Hodge ideal of
G, and we denote it by Hdg(G) the inverse image inside R of the ideal
Ha(G)(ΛdωG)⊗(1−p) ⊂ R/pR, where d is the dimension of G.

Proposition 10. The Hodge ideal Hdg(G) is locally for the Zariski topology
generated by two elements. Moreover, if p ∈ Hdg(G)2, then Hdg(G) is an
invertible ideal, locally generated by a lifting of the Hasse invariant.

Proof. Up to replacing Spec(R) by a Zarisky open, we can suppose that
the ideal Ha(G)(ΛdωG)⊗(1−p) ⊂ R/pR is principal. If we denote by H̃a
a lifting of the Hasse invariant to R, then the Hodge ideal is given by
(p, H̃a). If p ∈ Hdg(G)2, then p = H̃au + p2v, for suitable u, v ∈ R, and so
p(1− pv) = H̃au, and since 1− pv is invertible, we conclude that Hdg(G) is
generated by H̃a.

2.2.2 An Admissible Blowup of the Modular Curve.
In this section we will recall the construction of formal strict neighborhoods
of the ordinary locus. In fact, they are not really open subspaces of the
modular form, since here everything is integral, and so all the formal schemes
appearing here are blowup, living in different spaces. The idea is that, using
Huber’s theory of generic fiber, if we compute their adic analytic fiber, we
find that the blowup becomes an inclusion of open subspace, which can be
really thought as open neighborhoods of the ordinary locus. In this section
we will introduce all the notation used in the following. We try to follow
as much as possible the exposition and notation of [AIP]. Let N ≥ 4 be an
integer coprime with p, and let X → Spec(Zp) be the compactified modular
curve of level Γ1(N) parametrizing generalized elliptic curves with level N
structure. Let us denote X the formal scheme over Spf(Zp) given by p-adic
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completion of X. We write E for the universal generalized elliptic curve over
X. We let ωE := e∗(ΩE/X) to be the conormal sheaf of E . Clearly it is an
invertible sheaf. We also take Hdg(E) ⊆ OX the Hodge ideal generated by p
and a lifting of Ha(E)ω1−p, where Ha ∈ H0

(
X, ωp−1

E ⊗Zp Fp
)
.

Now, let us consider BI , the ring introduced in the first section, for
I ⊆ [1,∞]. It is p-adically complete, so we can base change X to XI , via the
structure map Spf(BI)→ Spf(Zp). This produces a modular curve which is
fibered over a suitable region of the weight space. In particular, it means
that a suitable class of functions defined over XI should represent p-adic
families of modular forms. Notice that, when we base change to BI , the
topology shifts to the T -adic one. Now, we want to construct p-adic families of
overconvergent modular forms, and so we need to introduce a formal scheme
which parametrizes formal neighborhoods of the ordinary locus. First, we
recall that, said H̃a a lifting of the Hasse invariant, the ordinary locus is
defined as the formal subscheme where H̃a is invertible.

Definition 24. For every integer r ∈ N, let Xr,I be the functor which asso-
ciates to any T -adically complete BI-algebra without T -torsion, the set of
equivalence classes of couples

(
f : Spf(R)→ X, η ∈ H0

(
Spf(R), f ∗ω(1−p)pr+1

))
such that

Hapr+1
η = T mod p2 (2.3)

where two couples (f, η) and (f ′, η′) are equivalent if f = f ′ and η =
η′
(
1 + p2

T
u
)
for some u ∈ R.

Proposition 11. The functor Xr,I is representable by a formal scheme without
T -torsion which is an open inside an admissible blowup of XI .

Proof. We can work locally over affine open formal subschemes of XI , where
ωE is trivial. We choose Spf(B) to be such an open, we identify Ha with a
scalar and we denote by H̃a ∈ B a lifting of the Hasse invariant. Then, the
inverse image of Spf(B) inside Xr,I is Spf B〈X〉/(H̃ap

r+1
X − T ), which is an

open inside the blowup along (H̃a, T ).

Notice that the advantage of working with Xr,I is that the Hodge ideal is
locally free over it, since T ∈ Hdg. Moreover, the theory of canonical subgroup,
as it is developed in appendix A of [AIP] allows to state the following

Proposition 12. Let k ∈ Z≥0, and assume that p ∈ T pkBI . Then:
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i) Over Xr,I , for every n ≤ k + r, there exists a canonical subgroup
Hn ⊆ E [pn], and Hn ⊆ Hn′ for n ≤ n′.

ii) Hn is locally free of rank pn and it lifts the kernel of F n, where F
denotes Frobenius, modulo pHdg(E)−

pn−1
p−1 .

iii) Let E ′ := E/Hn. Then Hdg(E ′) = Hdg(E)pn, E ′ is equipped with a
canonical subgroup H ′k+r−n of echelon r + k − n and we have an exact
sequence

0 −→ Hn −→ Hr+k −→ H ′k+r−n −→ 0.

iv) Let ED be the dual of E. Then Hdg(E) = Hdg(E ′), and for every
n ≤ k + r, the Weil pairing E [pn] × E [pn]D → µpn induces an exact
sequence:

0 −→ Hn −→ E [pn] −→ HD
n −→ 0

v) E [pn]/Hn is étale over Spec(R[1/T ]), locally isomorphic to Z/pnZ.

The existence of canonical subgroup allows to construct a lifting of suitable
powers of Frobenius. In particular, the following is Proposition 3.3 in [AIP]:

Proposition 13. The isogeny “divide by the canonical subgroup”, E 7→ E/H1
induces a finite flat morphism of degree p, φ : Xr,I → Xr−1,I , for every r ≥ 1.
This morphism lift the relative to BI Frobenius modulo p

Hdg , and it verifies
φ∗(E|Xr−1,I ) = (E|Xr,I )/H1.

Before passing to the next section, we also recall the following result:

Proposition 14. The formal scheme Xr,I is normal

This result, which is Proposition 3.4 in [AIP], is crucial in what follows,
since it allows to define the partial Igusa tower over Xr,I by normalizing a
moduli space which can be defined only over the adic analytic fiber.

2.2.3 Partial Igusa Tower.
The existence of canonical subgroup of level n, allows to introduce Galois
covering of the modular curve, which parametrize trivializations of the dual
canonical subgroup. The general strategy is to introduce these coverings
generically, and then to take the normalization. This can be done since we
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saw that the modular curve Xr,I is normal. First we associate to Xr,I , the
analytic adic space Xad

r,I given by adification as in [Hu1]. Then we associate
to it its adic generic fiber, defined as:

Xr,I := Xad
r,I ×Spa(BI ,BI) Spa(BI [1/T ].BI [1/T ]+). (2.4)

Then, if T pk |p, for every r ≤ r + k, there exists a canonical subgroup
Hn ⊆ E [pn] of echelon n. Moreover, by Proposition 12, we know that the
dual of this canonical subgroup is locally isomorphic to Z/pnZ. Then we can
consider the finite étale covering IGn,r,I → Xr,I which parametrizes choices of
a generator Z/pnZ→ HD

n . Due to a lack of reference, we give here a proof of
the existence of such an object.

Proposition 15. Let S be a connected locally Noetherian scheme (resp.
connected locally Noetherian formal scheme) and let G be a finite étale abelian
group scheme over S of order n. Then the functor sending an S-scheme (resp.
an S-formal scheme) to the set of trivializations of GT over T is representable
by a finite étale scheme (resp. formal scheme).

Proof. We prove the result for schemes. The situation for formal schemes is
exactly the same. As G is étale, we can take a finite étale Galois cover of S,
say S ′, with Galois group Γ such that GS′ is a constant group scheme, write
GS′ = H, where H denotes a finite abstract group. By the classification of
finite abelian groups, we know that H can be written in an essentially unique
way as a finite product of prime torsion subgroups. Hence it is enough to
prove the Proposition when H = Z/lnZ for l a prime number, and n ∈ N.
Now notice that Γ acts on H. Now let J := {φi}i ∈ I be the set of all possible
trivializations of H. Notice that

|J | = |Aut(Z/lZ)| = ln−l(l − 1)

Now, Γ acts on J simply by sending φi to φi ◦ γ for every γ ∈ Γ, we can write
the action more succintly in this way:

γ · φi = φγ(i).

Now consider the scheme S̃ := ⊔
i∈I S

′. It clearly represents the functor which
sends an S ′-scheme T ′ to the set of trivializations of GT ′ . Moreover, we have
an action of Gamma over S̃ which permutes the component, i.e. it sends a
point x ∈ S ′i (we now write S ′i simply to keep track of the component, but
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S ′i = S ′ for all i) to a point γ(x) ∈ Sγ(i). There is also a universal trivialization
over S̃ equipped again with an action of the group Γ. As we are taking a
finite number of components in the disjoint union, we clearly have that the
structure morphism S̃ → S is finite étale and Γ-invariant. Then the quotient
Y := S̃/Γ defines a finite étale scheme over S which fits into the following
Cartesian diagram:

S̃ S ′

Y S

Analogously, the quotient of the universal trivialization defines a trivialization
of GY and its base change to S̃ defines the disjoint union of trivializations.
Now, the scheme Y represents the functor which sends an S-scheme T to
the set of trivializations of GT . In fact, given an S-scheme T , if we denote
T ′ := T ×S S ′, we have Aut(T ′/T ) ∼= Γ, and T ′/Γ = T . Hence, a T -point of
Y is equivalent to an S-morphism T ′ → X, which is Γ-invariant, hence it is
also equivalent to a Γ-invariant S-morphism T ′ → X×S S ′, which is the same
as choosing a trivialization of GT ′ over T ′ which is equipped with an action
of Γ which is compatible with the action over T ′. But then, simply taking
the quotient under the action of Γ, we find the trivialization over T .

Hence the proposition says that the analytic adic space parametrizing
trivializations of the dual canonical subgroup exists over the generic fiber,
and it is a finite étale Galois cover with Galois group isomorphic to (Z/pnZ)×.
The point is that we need a formal scheme defined over Xr,I . As Xr,I is normal,
a good idea would be to take the normalization of Xr,I inside IGn,r,I . The
problem is that one has to be sure that such a normalization exists, i.e. one
has to ensure that the affinoid parts given by normalization can be glued.
This is proved in [AIP], and it’s Lemma 3.2. Hence we get a formal scheme
IGn,r,I for suitable n which is the normalization of the analytic adic space
parametrizing trivializations of the dual canonical subgroup. Notice that,
the bigger r is, the bigger n can be. Moreover, the group (Z/pnZ)× again
acts over IGn,r,I via the composition with the morphism Z/pnZ→ HD

n which
generically gives the trivialization.
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2.3 Analytic Modular Forms.
In this section, we recall the construction of overconvergent modular forms in
characteristic zero. This construction is possible over regions of the weight
space where the topology is p-adic, i.e. when I = [0, 1], or I = [pk, pk′ ], with
k′ < ∞. In the second case, as we remarked above, the T -adic topology is
equivalent to the p-adic one. We only treat this situation in this exposition,
even if all possible situations are considered in [AIP]. The construction
strongly relies on the map dlog, whose definition and main properties are
recalled in the next subsection.

2.3.1 The map dlog.
We recall the definition of the dlog map in a more general situation.

Definition 25. Let A0 be a Zp-algebra which is an integral domain, let
α ∈ A0 \ {0} be an element such that A0 is α-adically complete and such
that the structure morphism Zp → A0 is continuous. Let R be an α-adically
complete, without α-torsion, A0-algebra. Let G be a truncated Barsotti Tate
group of level n, height h and dimension 1. Let λ ∈ A0 be such that λ2u = p
with u topologically nilpotent. Suppose that λ mod p ∈ Ha(G)(ωG)⊗(1−p).
Let Hn be the canonical subgroup of G of level 1. We then define the morphism
of fppf sheaves:

dlogn : HD
n −→ ωHn (2.5)

on points by the following procedure. Let S be a scheme and let x ∈ HD
n (S) be

a point of Hn. Then, x, being a point of HD
n , defines a morphism of schemes

x : Hn,S → µpn,S. We finally put:

dlogn(x) = x∗
(
dX

X

)

where X is the local coordinate of µpn,S.

In our situation, A0 will be BI , with the assumption of considering a
bounded interval I, α will be T . R is the ring of functions of an affine open
inside Xr,I , and G = E [pn], where now E denotes the base change of the
universal generalized elliptic curve to Xr,I . Finally, λ = Hdg−

pn−1
p−1 , and Hn is

the canonical subgroup of level n. Clearly, varying n, we get a compatible
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system of maps dlog and, in principle, if the canonical subgroup exists for
every n, we can consider the projective limit, which gives a dlog map for
every n. Moreover, we can precompose the dlog map with the projection
E [pn]→ HD

n , extending the dlog morphism to all E [pn]. This trivial remark
will be useful in the following.

2.3.2 The torsor.
In this section, we recall the construction of the torsor Fn,r,I , whose functions
transforming under a suitable law give the sheaf of overconvergent modular
forms in characteristic 0. Fix an interval I = [pk, pk′ ], so that the canonical
subgroup Hn exists for n ≤ r + k. Let IGn,r,I be the partial formal Igusa
tower of level n, and let gn : IGn,r,I → Xr,I be the structure morphism. Notice
that the inclusion Hn ⊆ E induces a map of invertible sheaves ωE → ωHn .

Lemma 4. The kernel of the morphism ωE → ωHn is pnHdg−
pn−1
p−1 .

Proof. We have an exact sequence

0 −→ Hn −→ E [pn] −→ E [pn]/Hn −→ 0

which induces an exact sequence

0 −→ ωE[pn]/Hn −→ ωE[pn] −→ ωHn −→ 0

Now, since by definition, ωE[pn]/Hn reduces to the kernel of Verschiebung to
the power n modulo pHdg−

pn−1
p−1 , we get that it is annihilated by Hdg

pn−1
p−1 ,

and so, by Nakayama, we conclude that the kernel is pnHdg−
pn−1
p−1 .

Then, using the previous exact sequence, we get that the map ωE → ωHn

factors through an isomorphism ωE/p
nHdg−

pn−1
p−1 ∼= ωHn . We then get a

diagram of fppf-abelian sheaves:

ωE

HD
n ωHn ωE/p

nHdg−
pn−1
p−1

dlog ∼=
(2.6)
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Moreover, if we consider all this situation over IGn,r,I , we have, generically,
a trivialization of the dual of the canonical subgroup, so in particular we
can consider P ∈ HD

n which is the image of 1 via the universal morphism
Z/pnZ→ HD

n . Then, the image of P generates a submodule Hdg
1
p−1ωHn of

ωHn .

Definition 26. We denote by fn : Fn,r,I → IGn,r,I the 1 + pnHdg−
pn

p−1Ga-
torsor defined on points by:

Fn,r,I :=
{

(ω, P ) ∈ ωE × IGn,r,I | ω = dlog(P ) inside ωE/pnHdg−
pn−1
p−1

}
(2.7)

Clearly, over this torsor, we have a compatible action of Z×p which lifts the
action of Z/pnZ over the partial Igusa tower. This action is simply defined
by multiplying both the differential and the point P . Putting everything
together, we get a torsor:

Fn,r,I
fn−→ IGn,r,I

gn−→ Xr,I (2.8)

over which the group Z×p
(

1 + pnHdg−
pn

p−1Ga
)

acts compatibly. Explicitly,
the map fn forgets the differential and sends the couple (ω, P ) to P , which
generates the canonical subgroup and so describes completely the morphism
Z/pnZ→ HD

n , while gn projects to the elliptic curve fibered over Xr,I . This
torsor has been generically constructed also in [Pil], but the advantage of the
construction of [AIP] is that here the construction is integral, and so the au-
thors provided a model for the sheaf giving Pilloni’s families of overconvergent
modular forms.

2.3.3 The Sheaf of Families of Overconvergent Modu-
lar Forms.

Now we have all the information to define the sheaf of overconvergent modular
forms. We want to point out that this definition strictly depends on the
fact that the universal character is locally analytic. This says that the
construction in characteristic p must follow a different strategy, since over
there the character is no more locally analytic. By Proposition [9], we see
that there is a pairing:

W0
I × Z×p (1 + pk

′+1Ga) −→ Gm
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If we assume that n ≥ k′+ 2, we get a character κ : Z×p (1 + pnHdg−
pn

p−1Ga)→
Gm of group schemes defined over IGn,r,I which comes from the universal
pairing. Then
Definition 27. We define wn,r,I := (gn ◦ fn)∗OFn,r,I [κ−1], which is the sheaf
of functions over the Pilloni’s torsor which transforms via the character κ−1

under the action of Z×p (1 + pnHdg−
pn−1
p−1 Ga)

Notice that the analiticity of the universal character is necessary to extend
the action of Z×p to an action of Z×p (1 + pnHdg−

pn−1
p−1 ), which clearly fails over

the boundary.
Now we can state the main theorem of Chapter 5 in [AIP] which completely

characterizes the properties of wn,r,I .
Theorem 6. Assume that r ≥ 1 and r + k ≥ k′ + 2. We then have an
invertible sheaf wI over Xr,I which satisfies the following properties:

i) Let Xr,I be the adic generic fiber of Xr,I , over Qp. Then the sheaf generic
fiber of wI is the sheaf of families of overconvergent modular forms over
Xr,I constructed in [Pil] and [AIS].

ii) We have a Frobenius operator:

ι∗wI
∼= φ∗wI (2.9)

where ι : Xr+1,I → Xr,I is the inclusion morphism and φ : Xr+1,I → Xr,I

is the Frobenius.

iii) The construction is functorial under the operation of changing the
interval I, i.e. if I ′ ( I and if ιI′,I : Xr′,I → Xr,I is the natural
morphism, then ι∗I′,IwI

∼= wI′.

Notice that in the Theorem we didn’t specify the n. This comes from
the fact that it is proved in [AIP] that the definition does not depend on n,
which means that, if we change n, we get a sheaf which is isomorphic to the
first one. Moreover, notice that we did not specify the radius of convergence,
r. In fact, it is also proved that the operation of changing r does not affect
the sheaf. This result is the formal counterpart of the following, which is
purely adic analytic. We want to point out that formally we can only get the
modular sheaf for characters with trivial finite part, while in the adic analytic
setting, also the other connected component of the weight space can be taken
into account. In particular, the following holds:
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Theorem 7. For every r ≥ 3 we have an invertible sheaf ωκ[0,∞) over the adic
analytic fiber of Xr,[0,∞), call it Mr,[0,∞) and a subsheaf ωκ,+[0,∞) of O+

Mr,[0,∞)
-

modules satisfying the following properties:

i) The restriction of the subsheaf ωκ,+[0,∞) to the component W0
[0,∞) given by

the trivial character is an invertible sheaf of O+
Xr,[0,∞)

-module.

ii) For every character χ · k : Z×p → C×p locally algebraic, with χ a finite
character and k ∈ Z identified to a point κ of Wrig, ω[0,∞)|{χ·k} = ωk(χ)
is the usual sheaf of modular forms of weight k and nebentypus χ.

iii) The Frobenius morphism φ :Mr+1 →Mr and the inclusion ι :Mr+1 →
Mr induce integral isomorphisms φ∗ωκ,+[0,∞)

∼= ι∗ωκ,+[0,∞).

2.4 Overconvergent Modular Forms in Char-
acteristic p.

In chapter 4 of [AIP], the authors construct directly families of overconvergent
modular forms in characteristic p. In characteristic p the situation is very
different than in characteristic 0. In fact the characteristic 0 construction is
related to the local analiticity of the universal character, a property which
is no more satisfied in characteristic p. However, in characteristic p the
Frobenius isogeny is well-defined, hence the canonical subgroup of each level
is well-defined, and so the Igusa tower is easily constructed, at least over the
ordinary locus. The main difficulty in characteristic p in fact is to show that
the natural sheaf given by Chapter IV of [Ka73] overconverges over the weight
space. Let us be more specific about this direct construction in characteristic
p.

First of all, the idea is that the characteristic p construction appears
as a boundary phenomenon, where the adic weight space is described as
Spa(Fp[(Z/pZ)×]((T )),Fp[(Z/pZ)×][[T ]]). Again, it is possible to describe the
construction over the connected component of the trivial finite character, and
then to extend to arbitrary finite characters, hence let us fix here the formal
model for the connected component of the trivial character

W0
{∞} = Spf(Fp[[T ]]).
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If X̄ is the compactified modular curve over Spec(Fp) of level Γ1(N) and X̄ord
is the ordinary locus which is locally defined by the invertibility of the Hasse
invariant, we can construct the formal schemes

X = X̄ ×Spec(Fp) W
0
{∞} and Xord = X̄ord ×Spec(Fp) W

0
{∞}

and, thanks to Proposition 11 also the formal scheme Xr,{∞} → X{∞} whose
generic fiber is defined locally by the equation

|Ha|pr+1 ≥ T

inside the generic fiber of X{∞}. As we remarked above, since we are working in
characteristic p, we can construct Frobenius isogenies, which define morphisms

φ : X{∞} → X{∞}

φ : Xord → Xord

φ : Xr+1,{∞} → Xr,{∞}

where we used the same notation since they are all defined as the quotient of
the parametrized elliptic curve over the kernel of Frobenius.

Now, over the ordinary locus, the dual of the canonical subgroup is
trivialized, and so the Igusa curve ¯IGnord is defined to be the moduli space of
trivializations of HD

n . Then the Igusa tower over the ordinary locus is defined
to be:

¯IG∞,ord := lim
←−
n

¯IGn,ord

Now, via the monodromy representation over a geometric point of X̄ord induced
by the Igusa tower, one can construct, for every character κ̄χ : Z×p → Fp[[T ]]×,
an invertible sheaf via the following procedure. One defines

IGn,ord := ¯IGn,ord ×Spec(Fp) W
0
{∞}

and then considers the sheaf

wκ̄χ := OIG∞,ord[κ̄−1
χ ]

This is an invertible sheaf such that φ∗wκ̄χ ∼= wκ̄χ .
Now, the idea developed in [AIP] is to show that this construction overcon-

verges, i.e. that this sheaf may be defined over Xr,I instead of Xord. The point
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is that now the Igusa curve is defined as in section 2.2.3 as IGn,r,{∞} which is
the formal model of the adic space parametrizing generic trivializations of the
dual canonical subgroup. Again, since the canonical subgroup of any level
is trivially defined in characteristic p, we can take the projective limit and
define the T -adic formal scheme

IG∞,r,{∞} := lim
←−
n

IGn,r,{∞}

Now, given the universal character κ̄ for the connected component of the
trivial finite character, it is again possible to define a sheaf

w{∞} := OIG∞,r,{∞} [κ̄
−1]

as the sheaf of functions defined over the Igusa tower which transform under
the action of Z×p via the inverse of the character κ. Then the following
Theorem is proved:

Theorem 8. The sheaf w{∞} is an invertible sheaf over Xr,{∞} for every
r ≥ 3. Moreover, denoted by i : Xr+1,{∞} → Xr,{∞} there is an isomorphism
i∗w{∞} ∼= φ∗w{∞}.

which means precisely that the sheaf w{∞} extends the Katz’s sheaf beyond
the ordinary locus.

2.5 The Gluing Construction.
Now we are ready to describe the perfectified construction, which allows to
give a global definition of overconvergent modular forms. We provide as many
details as possible in this section, since the object which we introduce here are
the ones over which we will work in the main sections of this thesis. Fix an
interval I = [pk, pk′ ] contained in [1,∞], where we also admit k′ to be infinity.

2.5.1 The Infinite Igusa Tower.
By the previous construction, we know that for every r, there exists at
least the first canonical subgroup, which says that we can define a finite flat
Frobenius morphism:

φ : Xr+1,I → Xr,I
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which sends the universal generalized elliptic curve to its quotient over the
canonical subgroup. In this way, as the morphisms are finite, and so in
particular, affine, we can compute the projective limit under Frobenius, and
call it the anticanonical tower:

X∞,I := lim
←−
φ,r

Xr,I (2.10)

This is a T -adic formal scheme whose affine open are formal schemes given
by completions of inductive limits along Frobenius. Moreover, recall that,
for any n ≤ r + k, the partial Igusa tower IG,n,rI is defined by taking
the normalization of the Galois covering parametrizing trivializations of the
dual of the canonical subgroup. Moreover, we know that there exists a
Frobenius morphism defined over the partial Igusa tower, which commutes
with the Frobenius at the level of modular curves. As an example, in the case
I = [1,∞], all these formal schemes organize in this commutative diagram:

IG4,4,I . . .

IG3,3,I IG3,4,I . . .

IG2,2,I IG2,3,I IG2,4,I . . .

IG1,1,I IG1,2,I IG1,3,I IG1,4,I . . .

X1,I X2,I X3,I X4,I . . .
φ φ φ φ

φ φ φ φ

φ φ φ

φ φ

φ

(2.11)
The bigger is r, the higher is the tower, so if we fix n, we get a projective

system where the transition morphisms are given by Frobenius. By taking
the limit, we get for every n a T -adic formal scheme:

IGn,∞,I := lim
←−
φ

IGn,r,I (2.12)
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All these formal schemes exist over X∞,I , and they exist for every n. Again,
these perfectified Igusa towers organize in a projective system, and so we can
take the limit, getting finally a formal scheme:

IG∞,∞,I := lim
←−
n

IGn,∞,I (2.13)

fibered over X∞,I . Since the group (Z/pnZ)× acts on each IGn,∞,I , over the
infinite Igusa tower acts a copy of Z×p .

2.5.2 Ramification of the Igusa tower.
In this section, we show how ramification of the Igusa tower changes when we
pass from finite to infinite level. First, the morphism h : IGn,r,I → IGn−1,r,I
which forgets the trivialization of the n-th canonical subgroup, is finite étale
over the generic fiber by definition of Igusa cover. Moreover, the group
(Z/pnZ)× is the Galois group of IGn,r,I , and so it acts over the normalization
IGn,r,I . In particular, the following hold:
Lemma 5. For every n ≥ 2,(

(hn)∗OIGn,r,I

)1+pn−1Z/pnZ
= OIGn−1,r,I

Moreover, (
(h1)∗OIG1,r,I

)
= OXr,I

Proof. This clearly holds generically, since the covering is Galois. So the
conclusions follow by normalization.

This allows us to define a Trace morphism Tr : (hn)∗OIGn,r,I → OIGn−1,r,I

which is defined in this way. Let Spf(R) ⊆ IGn−1,r,I be an open affinoid, and
let f ∈ Spf(R). If Spf(R′) is the preimage of Spf(R) inside IGn,r,I , then we
define:

Tr(f) =
∑

σ∈1+pn−1Z/pnZ
σ(f)

As usual, the trace takes care of the ramification of the covering. In particular,
the main result is the following.
Proposition 16. For every n ≥ 2, we have

Hdgpn−1
OIGn−1,r,I ⊆ Tr((hn)∗OIGn,r,I )

Moreover, for n = 1, TrIG1,r,I (h∗OIG1,r,I ) = OXr,I
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Proof. In the case n = 1 the proposition is trivial, in fact the degree of the
first Igusa curve over Xr,I is p− 1, and so the morphism is surjective. Simply
take one element in OXr,I and take its trace. Then you get the same element
multiplied by p− 1, which is invertible in Zp. Now, let Spf(R) be an affine
of Xr,I , which trivializes Hdg. Assume it is generated by H̃a. Let Spf(Bn)
and Spf(Bn−1) be the fibers of HD

n and HD
n−1 over Spf(R), and let Spf(C)

be the fiber of the fppf quotient (Hn/Hn−1)D over Spf(R). Let us consider
DBn/Bn−1 and DC/R the different of the morphisms Bn−1 → Bn and R→ C.
The equality

DBn/Bn−1 ⊗Bn−1 Bn = DC/R ⊗R Bn

holds as an equality of Bn ⊗Bn−1 Bn = C ⊗R Bn-modules. Moreover, by
the relation between different and discriminant, we conclude that DC/R =
Hdgpn−1

C. Then, since the morphism HD
n → HD

n−1 is an homogeneous space
under the action of (Hn/Hn−1)D for the fppf topology, we can apply faith-
fully flat descent and conclude that DBn/Bn−1 = Hdgpn−1

Bn. Moreover, we
have an isomorphism D−1

Bn/Bn−1
∼= HomBn−1(Bn, Bn−1) given by the morph-

ism sending x to TrBn/Bn−1(·x). Then it remains to prove that the ideal
TrBn/Bn−1(D−1

Bn/Bn−1
) ⊆ Bn−1 is the whole Bn−1. Since this property is local

for the Zariski topology over Spec(Bn−1), we may assume that Bn is free
over Bn−1. Then there exists a surjective morphism Bn → Bn−1 of Bn−1-
modules, which can be written as TrBn/Bn−1(·x) for x ∈ D−1

Bn/Bn−1
, and

so TrB−n/Bn−1(D−1
Bn/Bn−1

) = Bn−1. Consequently, one can find an element
dn ∈ Bn such that TrBn/Bn−1(dn) = H̃ap

n−1
. Finally, using the normality of

IGn,r,I , one can conclude that there exist also sections dn which verify the
same equality integrally.

The previous proposition completely characterize the ramification of Hodge
ideal along the Igusa tower. The situation is very different over the antica-
nonical tower, where the ramification is killed by the fact that we consider an
object which is preperfectoid. In fact, the following holds:

Proposition 17. We have HdgrOIGn−1,∞,I ⊆ TrIG(OIGn,∞,I ) for every r ∈
Z≥1, where Hdgr is the Hodge ideal associated to the r-th universal generalized
elliptic curve.

Proof. We know that Hdgpn−1

r OIGn+1,r,I ⊆ Tr(OIGn,r,I ), and for every r ≥ n,
Hdgr−n+1 = Hdgpn−1

r ⊆ Tr(OIGn,∞,I ).
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2.5.3 Modular forms at infinity.
The existence of the full Igusa tower at infinity, allows to define the sheaf of
overconvergent modular forms over the perfection, i.e. over X∞,I . In fact, it
is possible to copy the definition in characteristic p
Definition 28. The sheaf of perfectified overconvergent modular forms is:

wperf
I := OIG∞,∞,I [κ−1] (2.14)

i.e. it is the sheaf of functions defined over the Igusa tower which transform
via the inverse of universal character under the action of Z×p , which acts over
the tower by normalization.

As in the purely characteristic p and the purely characteristic 0 situations,
it is possible to prove:
Proposition 18. The sheaf wperf

I is an invertible sheaf.
Proof. This is Proposition 6.4 in [AIP].

Moreover, it is possible to prove that in the case I = [pk, pk′ ], the sheaf
wI which is defined in characteristic 0, descends wperf

I . What is difficult, but
really interesting, is the fact that also in the case I = [p,∞], descent happens.
In fact, we now recall the proof of the following
Theorem 9. If r ≥ 3, the sheaf wperf

I descends to an invertible sheaf wI over
Xr,I , and wI can be characterized by the property of being the unique coherent
subsheaf of OXr,I -modules of wperf

I which is compatible with the restriction
maps induced by J ⊆ I.

We just want to point out that, considering a different interval J ⊆ I,it is
possible to define a restriction map, which is induced by the generic inclusion
of weight spaces WJ ⊆ WI . The proof of this Theorem requires a Lemma
which compares the functions defined when the interval I is [p,∞] to the
cases when the interval is bounded.
Lemma 6. There exists an isomorphism of sheaves over Xr,I :

OXr,I = lim
←−

k+1≥k′≥k≥1

OX
r,[pk,pk′ ]

(2.15)

Moreover, there is also an isomorphism of sheaves over X∞,I

OX∞ = lim
←−

k+1≥k′≥k≥1

OX∞,[pk,pk′ ] (2.16)
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We can now recall the proof of the Theorem.

Proof. First, Andreatta, Iovita and Pilloni, propose a candidate for the
descent. Inspired by the previous Lemma, they put:

wI = lim
←−

k+1≥k′≥k≥1

w[pk,pk′ ] (2.17)

Now, we prove it is an invertible sheaf which descends wperf
I . In fact, it is

enough to prove it in the case r = 3, which is the smallest possible r in the
statement. For bigger r, this can simply be verified by pullback. First, fix
Spf(A) ⊆ X which is an affinoid open which trivializes the sheaf ωE , and
consider Spf(B) its inverse image inside X3,I . Clearly, since the sheaf of
invariant differentials is trivialized, also the Hodge ideal is trivialized, and we
say it is generated by H̃a3. Now, using the Trace map that we introduced in
the previous section, it is not so hard to prove that there exist

c0 = 1 ∈ OIG0,3,I (Spf(B))

c1 = 1
p− 1 ∈ OIG,1,3I(Spf(B))

. . .

cn ∈ H̃a
− p

n−p
p−1 OIG,n,3I(Spf(B))

for n ≤ 3, and cn ∈ H̃a
−p3

3 OIGn,∞,I (Spf(B)) for n ≥ r + 1 of elements such
that TrIg(cn) = cn−1. Now, the idea is to construct explicitly the generator of
wI . They do this by posing:

bn =
∑

σ∈(Z/pnZ)×
κ(σ̃)σ.cn

where σ̃ is a lifting of σ to Z×p . Clearly, bn − bn−1 ∈ T n−1H̃a
−p3

3 , hence the
sequence converges T -adically, so the element b∞ = limn→∞ bn exists inside
OIG,∞,∞I(Spf(B)), and it is not difficult to prove that b∞ = 1 modulo TH̃a−p

3
,

which implies that b∞ is a generator of wperf
I over Spf(B).

Moreover, if J = [pk, pk+1] with k ≥ 1 and consider the following commut-
ative diagram:
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IG∞,∞,I IG∞,∞,J Fk+3,3,J

IGk+3,∞,I IGk+3,∞,J IGk+3,3,J

X∞,I X∞,J X3,J
hr

Let Spf(C) to be the preimage of Spf(B) inside Xr,I , and let s ∈ OFk+3,3,J (Spf(C))

to be a section which transforms under κ−1(σ) for every σ ∈ (1+pk+3Hdg
− p

k+3
p−1

3 Ga),

and s = 1 modulo p. Then, for every 0 ≤ n ≤ 3+k, let c′n ∈ H̃a
− p

n−p
p−1

3 OIGn,3,J (Spf(C))
to be elements such that TrIg(c′n) = c′n−1, and c′n = cn if n ≤ r. We then
denote:

f =
∑

σ∈(Z/pk+3Z)×
κ(σ)σ.c′3+ks

which is a generator of wJ over Spf(C) by Lemma 5.4 of [AIP]. Now, since
the following hold:

T p
k |p

H̃ap
4

3 |T

inside C, we finally get that

pH̃a−p
3+k

3 = (pT−pk)(TH̃a−p
4

3 )pk−1
T p

k−pk−1

Since, modulo p ˜Ha−p3+k we have f = ∑
σ∈(Z/pk+3Z)× κ(σ̃)σ.c′3+k, the same holds

modulo T 2, and it is not difficult to prove, by descending recurrence, that
this holds for every 3 ≤ n ≤ 3 + k. Finally, it is also easy to prove, using
the Trace, that Tr3(b∞) is a generator of wJ over Spf(C), but then, using the
Lemma, we get that

wI(Spf(B)) = Tr3(b∞) lim
←−

k+1≥k′≥k≥1

OX
r,[pk,pk′ ]

(Spf(B)) = Tr3(b∞)B
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which shows that wI is an invertible sheaf. Moreover, by the fact that
lim
←−

k+1≥k′≥k≥1

wperf
[pk,pk′ ] = wperf

I , which implies that hr,∗wI = wperf
I , which is the

descent. The unicity is easy.

Now, this sheaf is the sheaf which is useful to compare all the constructions.
In fact, it is defined over Xr,I , and so it can be base changed to the boundary
or the center of the weight space. It is proved again in [AIP] that both
the base change give the modular sheaves that we introduced before. In
particular, considering its restriction to the boundary of weight space, we
get modulo p overconvergent modular forms, while base changing it to a
region not containing the boundary, we get the usual analytic families of
overconvergent modular forms.

2.6 Up-operator and the Eigencurve.
In this section, we briefly recall the construction of the Up-operator, and the
property of the spaces of overconvergent modular forms to be Banach spaces,
which is proved in the last chapter of [AIP].

2.6.1 The definition of Up-operator
The Up-operator is defined as usual using correspondences. In fact, in the
previous sections, we recalled the construction of formal neighborhoods of the
ordinary locus, which come with two morphisms, one which generically is an
inclusion of open neighborhoods of the ordinary locus:

ι : Xr,I −→ Xr−1,I

and the other one, which is a lifting of Frobenius:

φ : Xr,I → Xr−1,I .

Moreover, we know that Frobenius is finite and flat, and so in particular it
admits a Trace morphism. Hence, for a given I ⊆ [1,∞], we can define the
Up-operator as:

H0(Xr,I ,mI)→ H0(Xr−1,I , ι
∗wI) ∼= H0(Xr−1,I , φ

∗wI)
1
p

Trφ
→ H0(Xr,I ,wI).

(2.18)
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The same definition can be given generically, where it is proved in [AIP] that
the spaces of overconvergent modular forms are Banach spaces. In particular,
the following result holds:

Theorem 10. The T -adic Banach BI [1/T ]-space H0(Mr,I , ω
κ
I ) for I = [p,∞]

is a projective Banach space, hence it admits an orthonormal basis.

Once we know how to define the Up-operator, we can prove that it is
compact, and we can apply the machinery of the usual construction of
Eigenvarieties, getting at the end a spectral variety and an eigencurve, defined
as the zero locus of the Fredholm determinant of Up.

57



Chapter 3

A construction of a Mahler
basis.

The aim of this part is to construct a Mahler basis for more general functions
than in Mahler’s Paper. Our main reference for this construction is [DS]. We
carefully follow the various steps in the proof of the existence of Mahler basis
for Cont(Zp,Qp), and we adapt the proof to our new situation. In particular,
we want to prove the following.

Proposition 19. Let R be a Zp-Banach Algebra, i.e. a complete normed
ring equipped with a ring homomorphism Zp → R which is norm decreasing.
Then the normed R-module Cont(Zp, R) of continuous R-valued functions on
Zp admits a Mahler basis, i.e. every continuous function f : Zp → R can be
written as a series:

f(z) =
∞∑
n=0

an(f)
(
z

n

)

where {an(f)}n∈N is a sequence of elements of R converging to 0.

We split the proof in several Lemmas. In each Lemma, we assume the
notation of the last proposition. Moreover, with a little abuse of notation,
we write r ∈ Zp for an element r ∈ R, meaning its image under the structure
morphism of R as a Zp-algebra. Finally, during the proof, we have to deal
with two different norms. First we have the p-adic norm on Zp, induced by
the p-adic valuation, which we denote |−|p, and then we have the own norm
of R, which we simply denote by |−|. The first results are easy computations
which are useful during the proof.
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Lemma 7. Let x ∈ Zp. Then, for every n ∈ N, we define the binomial
coefficient formally to be(

x

n

)
= x(x− 1)(x− 2) . . . (x− n+ 1)

n! .

We then have
(
x
n

)
∈ Zp.

Proof. This is clear because if x belongs to Z, also
(
x
n

)
is an integer. Then

the Lemma follows by continuity.

Lemma 8. Let n ∈ N, and define the function
(
z
n

)
: Zp → R to be the

composition of the usual binomial coefficient function from Zp to Zp with
the structure morphism of R as a Zp-Banach Tate Algebra. Then

(
z
n

)
is a

continuous function.

Proof. This is clear since the binomial coefficient is essentially a polynomial
function.

Lemma 9. Let {an}n∈N be a sequence of elements of R converging to 0. Then
the series ∑n≥0 an

(
r
n

)
converges for all r ∈ Zp.

Proof. By the assumption on the structure morphism of R as a Zp-algebra,
we have, for every r ∈ Zp, ∣∣∣∣∣

(
r

n

)∣∣∣∣∣ ≤
∣∣∣∣∣
(
r

n

)∣∣∣∣∣
p

≤ 1

where the last inequality comes from Lemma 7. This implies the thesis, as∣∣∣∣∣an
(
r

n

)∣∣∣∣∣
p

≤ |an|

which goes to 0 by the hypothesis. Therefore the sequence an
(
r
n

)
goes to zero,

and so the series ∑n≥0 an
(
r
n

)
converges.

Lemma 10. Let {an}n∈N be a sequence of elements of R converging to 0.
Then the function f : Zp → R defined by

f(z) =
∑
n≥0

an

(
z

n

)

is continuous.
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Proof. Let z0 ∈ Zp, we want to prove that f is continuous at z0, then, by
the arbitrarity of z0, we will conclude that f is continuous over Zp. First,
we know that the sequence an of elements of R converges to 0, from which
we conclude that for every ε > 0, there exists N > 0, depending on ε such
that |an| < ε for all n ≥ N . Moreover, by the Lemma 8, we know that all
the functions

(
z
n

)
are continuous everywhere, for all n between 0 and N − 1.

In particular, they are all continuous in z0. Hence, for every n and for every
εn > 0, there exists δn > 0, depending both on n and on εn, such that for
every z ∈ Zp with |z − z0|p < δn, we have:∣∣∣∣∣

(
z

n

)
−
(
z0

n

)∣∣∣∣∣ < εn

In particular, by choosing a suitable minimal δ > 0, we can say that there
exists a δ > 0 such that for every z ∈ Zp with |z − z0|p < δ, we have:∣∣∣∣∣

(
z

n

)
−
(
z0

n

)∣∣∣∣∣ < ε

for every natural number n between 0 and N − 1. Now, if z ∈ Zp is close to
z0, we conclude that:

|f(z)− f(z0)| =

∣∣∣∣∣∣
∑
n≥0

an

(
z

n

)
−
∑
n≥0

an

(
z0

n

)∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∑
n≥0

an

((
z

n

)
−
(
z0

n

))∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∑

n∈{0,...,N−1}
an

((
z

n

)
−
(
z0

n

))
+
∑
n≥N

an

((
z

n

)
−
(
z0

n

))∣∣∣∣∣∣ ≤
≤ max

n∈{0,...N−1}
|an|

∣∣∣∣∣
(
z

n

)
−
(
z0

n

)∣∣∣∣∣+ max
n≥N
|an|

∣∣∣∣∣
(
z

n

)
−
(
z0

n

)∣∣∣∣∣
Now, if n ≥ N , we use the decreasing property of norm and Lemma 7 to
conclude that

max
n≥N
|an|

∣∣∣∣∣
(
z

n

)
−
(
z0

n

)∣∣∣∣∣ ≤ max
n≥N
|an|

∣∣∣∣∣
(
z

n

)
−
(
z0

n

)∣∣∣∣∣
p

≤ max
n≥N
|an| < ε,
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while for n ∈ {0, . . . , N − 1}, we use the following:

max
n∈{0,...,N−1}

|an|
∣∣∣∣∣
(
z

n

)
−
(
z0

n

)∣∣∣∣∣ ≤ max
n∈{0,...,N−1}

|an| ε

which says that, up to changing ε with a suitable ε′, we get:

|f(z)− f(z0)| ≤ ε′

for every ε′ > 0 if |z − z0|p < δ, which is the continuity of f in z0.

Now we go on by defining the usual discrete difference operator occurring
in the original proof of the existence of Mahler basis.

Definition 29. Let f : Zp → R be any function. We define the n-th discrete
derivative of f to be the function ∆nf : Zp → R defined by the iterated
procedure: 

(∆0f)(z) = f(z)
(∆1f)(z) = f(z + 1)− f(z)
(∆nf)(z) = (∆(∆n−1f)(z)

The following result is crucial in the rest of the proof, as it gives an explicit
description of the coefficients of Mahler expansion.

Lemma 11. If {an}n is a sequence of elements of R converging to 0 and
f(z) = ∑

n≥0 an
(
z
n

)
is the continuous function from Zp to R of the previous

Lemma, we have the equality

an = (∆nf)(0)

Proof. We first compute:

∆
(
z

n

)
=
(
z + 1
n

)
−
(
z

n

)
=
((

z

n− 1

)
+
(
z

n

))
−
(
z

n

)
=
(

z

n− 1

)

which in particular implies that ∆
(
z
0

)
= 0. Now we apply the discrete
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derivative operator to a function f as in the statement. We have:
(∆f)(z) = f(z + 1)− f(z) =

=
∑
n≥0

an

(
z + 1
n

)
−
∑
n≥0

an

(
z

n

)
=

=
∑
n≥0

an

((
z + 1
n

)
−
(
z

n

))
=

=
∑
n≥1

an

(
z

n− 1

)
=

=
∑
n≥0

an+1

(
z

n

)

This says that the effect of applying the discrete derivative k-times is to move
the index on the right of k-positions, hence, evaluating (∆kf) in zero, one
gets the value ak.

In order to prove our main result, we need a more explicit formula for the
n-th discrete derivative of a function f . In particular, the following holds:
Lemma 12. Let f : Zp → R be any function. Then, for every n ≥ 0 and for
every z ∈ Zp the following equality holds:

(∆nf)(z) =
n∑
i=0

(−1)n−i
(
n

i

)
f(x+ i).

Proof. We prove the result by induction. When n = 0, there is nothing to
prove. So we prove that the case n implies the case n+ 1. Assume that the
formula is true for some n ∈ N and for every z ∈ Zp. Then we have:
(∆n+1f)(z) = (∆(∆nf))(z) =

= (∆n(f))(z + 1)− (∆nf)(z) =

=
n∑
i=0

(−1)n−i
(
n

i

)
f(z + 1 + i)−

n∑
i=0

(−1)n−i
(
n

i

)
f(z + i) =

=
n∑
i=0

(−1)n−i
(
n

i

)
f(z + (i+ 1)) +

n∑
i=0

(−1)n−i+1
(
n

i

)
f(z + i)

=
n+1∑
i=1

(−1)n−(i−1)
(

n

i− 1

)
f(z + i) +

n∑
i=0

(−1)n−(i−1)
(
n

i

)
f(z + i)

Now we take a look to the different terms appearing in the two formulas.
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• The term appearing in the first sum when i = n+ 1 is:

(−1)0
(
n

n

)
f(z + n+ 1) = f(z + n+ 1)

• The term appearing in the second sum when i = 0 is

(−1)n+1
(
n

0

)
f(z) = (−1)n+1f(z)

• The remaining terms run over the same set of indices, and they sum
into the following:

n∑
i=1

(−1)n−(i−1)
((

n

i− 1

)
+
(
n

i

))
f(z+i) =

n∑
i=0

(−1)n−(i−1)
(
n+ 1
i

)
f(z+i)

where we used the famous Pascal’s identity to sum binomial coefficients.

But now notice that we can write the first two terms in this very useful way:

• The first term:

f(z + n+ 1) = (−1)n−(n+1−1)
(
n+ 1
n+ 1

)
f(z + (n+ 1))

• The second one:

(−1)n+1f(z) = (−1)n−(0−1)
(
n+ 1

0

)
f(z)

which fit into the previous sum respectively as the term i = n+ 1 and i = 0.
This says that:

(∆n+1f)(z) =
n+1∑
i=0

(−1)n+1−i
(
n+ 1
i

)
f(z + i)

which is the formula we wanted to prove.
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Notice that this proof is purely combinatorial, nothing related to continuity
is needed to prove it, but the point is that, even if the explicit formula can
be proved for any function from Zp to R, the expansion result only holds for
continuous functions, as there are counterexamples to the general situation.
Moreover, notice that this formula is really crucial into the proof. In fact,
it essentially involves the values of f at every non-negative integer, which
is enough to determine an expansion of f , since, combining the density of
N in Zp whith the assumption of continuity, this says that the function is
completely described by its value on integers elements of Zp.

We now recall with proof some basic facts about p-adic orders of factorials
and binomial coefficients. The first Lemma we use is the so called Legendre
Formula, which can be written in many different ways. We choose the one
which is more useful for our intent.

Lemma 13. Let n be a positive integer, and let p be a prime. Then the
following formula for the p-adic order of n! holds:

ordp(n!) = n− sp(n)
p− 1

where sp(n) is the sum of the valuations of the digits in the p-adic expansion
of n (which is finite since n is integer).

Proof. Write n in base p (clearly such a writing exists unique):

n =
N∑
l=0

nlp
l

where N is the maximal exponent of p appearing in the expansion of n. Then
we clearly have: ⌊

n

pi

⌋
=
{∑N

l=i nlp
l−i if i ≤ N

0 otherwise
Now notice that, since n! is the product of all the integers between 1 and
n, we obtain at least one factor of p in n! for each multiple of p in the set
{1, . . . , n}, and those are precisely

⌊
n
p

⌋
. Argueing in the same way, we have

that p2 contributes with an additional factor of p, and the same is for p3 and
so on. In this way, we clearly get:

ordp(n!) =
∞∑
j=1

⌊
n

pj

⌋
.
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which is the original statement of Legendre’s formula. But then, using the
previous equation, we get:

ordp(n!) =
N∑
j=0

⌊
n

pj

⌋
=

=
N∑
j=0

N∑
l=j

nlp
l−j =

=
N∑
l=1

l∑
j=1

nlp
l−j =

=
N∑
l=1

nl
pl − 1
p− 1 =

= 1
p− 1

(
N∑
l=0

nlp
l −

N∑
l=0

nl

)
=

= n− sp(n)
p− 1

which is the formula.

Lemma 14. For any 1 ≤ i ≤ pk, the p-adic order of
(
pr

i

)
is k − ordp(i).

Proof. Let i ≥ 1 and let x ∈ N. Then the following equation clearly holds by
definition: (

x

i

)
= x

i

(
x− 1
i− 1

)

If we now set x = pk, we get:

(
pk

i

)
= pk

i

(
pk − 1
i− 1

)
.

We now show that
(
pk−1
i−1

)
is not divisible by p, which says that the p-adic

order of
(
pk

i

)
is precisely k−ordp(i), which is the Lemma. Now, using Lemma
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13, we get:

ordp
((

pk − 1
i− 1

))
= ordp

(
(pk − 1)!

(i− 1)!(pk − i)!

)
=

= pk − 1− sp(pk − 1)
p− 1 − i− 1− sp(i− 1)

p− 1 − pk − i− sp(pk − i)
p− 1 =

= sp(i− 1) + sp(pk − i)− sp(pk − 1)
p− 1 .

Showing that
(
pk−1
i−1

)
is not divisible by p is the same as showing that the

numerator of the previous fraction is zero. Now, if i = pk, there is nothing to
prove, so assume 1 ≤ i ≤ pk − 1, and write the minimal p-adic expansion of i,
i.e. i = cmp

m + . . .+ ck−1p
k−1 with cm 6= 0, in such a way that i is the p-adic

order of i. Then we have

i− 1 = (p− 1) + . . .+ (p− 1)pm−1 + (cm − 1)pm + cm+1p
m+1 + . . .+ ck−1p

k−1

pk − i = (p− cm)pm + (p− 1− cm+1)pm+1 + . . .+ (p− 1− cm−1)pk−1

pk − 1 = (p− 1) + (p− 1)p+ . . .+ (p− 1)pk−1

and we finally get:

sp(i− 1) + sp(pk − i) = ((p− 1)m+ sp(i)− 1) + (1 + (p− 1)(k −m)− sp(k)) =
= (p− 1)k =
= sp(pk − 1)

proving that the numerator is zero.

We are now ready to prove the main result, i.e. Proposition 19.

Proof. Let f : Zp → R be a continuous function and we let:

an(f) := (∆n)f(0) =
n∑
i=0

(−1)n−i
(
n

i

)
f(i)

We first show that an(f) converges to 0 in R. First notice that the following
obvious inequality holds:

|(∆nf)(0)| ≤ max
z∈Zp
|(∆nf)(z)| =: ||(∆nf)||
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But then, for each n and z,

|(∆n+1f)(z)| = |(∆(∆nf))(z)| =
= |(∆nf)(z + 1)− (∆nf)(z)| ≤
≤ max

z∈Zp
(|(∆nf)(z + 1)|, |(∆nf)(z)|) ≤

≤ ||∆nf ||

This says that ||∆mf || ≤ ||∆nf || when m ≥ n, and so it implies that we can
prove ||∆n(f)|| → 0 using a particular diverging sequence of positive integers.
In particular, we can choose a sequence given by powers of p, i.e. we prove
that ||∆pkf || → 0 as k → +∞. So, let now n be an integer greater than 0,
and let z ∈ Zp. We have:

(∆nf)(z) =
n∑
i=0

(−1)n−i
(
n

i

)
f(z + i)

=
n∑
i=0

(−1)n−i
(
n

i

)
(f(z + i)− f(z))

where we used the fact that
n∑
i=0

(−1)n−i
(
n

i

)
f(z) = f(z)

n∑
i=0

(−1)n−i
(
n

i

)
=

= f(z)(1− 1)n = 0

Now, notice that the term with i = 0 is:

(−1)n(f(z)− f(z)) = 0

so we can rewrite the previous sum as

(∆nf)(z) =
n∑
i=1

(−1)n−i
(
n

i

)
(f(z + i)− f(z))

We now reduce to our subsequence, setting n = pk, and we get:

(∆pkf)(z) =
pk∑
i=0

(−1)pk−i
(
pk

i

)
(f(z + k)− f(z))
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Now, we want to show that for every ε > 0, for every z ∈ Zp and for all
suitable large k, |(∆pkf)(z)| < ε. By the previous formula,

|(∆pkf)(z)| ≤ max
1≤i≤pk

∣∣∣∣∣
(
pk

i

)∣∣∣∣∣ |f(z + i)− f(z)| ≤

≤ max
1≤i≤pk

∣∣∣∣∣
(
pk

i

)∣∣∣∣∣
p

|f(z + i)− f(z)|

But now, we know that
∣∣∣(pk

i

)∣∣∣
p
≤ 1, for every 1 ≤ i ≤ pk and, by definition,

|f(z + i)− f(z)| ≤ ||f ||. Now, by Lemma 14, we know that∣∣∣∣∣
(
pk

i

)∣∣∣∣∣
p

= pordp(i)−k = 1
pk|i|p

which says that
∣∣∣(pk

i

)∣∣∣
p
|i|p = 1

pr
. This implies that∣∣∣∣∣

(
pk

i

)∣∣∣∣∣
p

≤ 1√
pk

or |i|p ≤
1√
pk

Moreover, since f is continuous, for every ε > 0, there exists δ > 0 such
that |f(x) − f(y)| < ε if |x − y|p < δ. If we now take M large enough to
ensure 1/

√
pM < min(δ, ε), we get, if we choose m ≥M and 1 ≤ i ≤ pm, the

following two options:
• If

∣∣∣(pm
i

)∣∣∣
p
≤ 1/√pm, then∣∣∣∣∣

(
pm

i

)∣∣∣∣∣
p

|f(z + i)− f(z)| ≤ ||f ||√
pm
≤ ε||f || < ε

(
||f ||+ 1

2

)
.

• If |i|p ≤ 1/√pm, then |i|p < δ, and so for every z ∈ Zp, we have
|(z + i)− z|p < δ, which implies |f(z + i)− f(z)|p < ε, and so:∣∣∣∣∣

(
pm

i

)∣∣∣∣∣
p

|f(z +m)− f(z)| ≤ |f(z +m)− f(z)| < ε

Now, recalling that ||f || < ∞, since f is continuous, Zp is compact,
and so f is bounded, we conclude that for every ε > 0, there exists an
M > 0 such that for every m ≥M ,

||∆pmf || ≤ εmax
(
||f ||+ 1

2 , 1
)
.

Putting everything together, we conclude that ||∆nf || goes to zero.
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This is not the thesis yet, since we have to prove that this fact implies
the Proposition, i.e. we still have to show that for every z ∈ Zp, we can write

f(z) =
∞∑
n=0

an(f)
(
z

n

)

Now, by Lemma 10, we know that the right-hand side defines a continuous
function, so, in order to prove that f admits this expansion, it is enough
to prove that these two functions coincide on the dense subset of positive
integers. Let k ∈ N, then

∞∑
n=0

an(f)
(
k

n

)
=

k∑
n=0

(
n∑
d=0

(−1)n−d
(
n

d

)
f(d)

)(
k

n

)
=

=
k∑
d=0

(
k∑

n=d
(−1)n−m

(
n

d

)(
k

n

))
f(d)

Now, we can write:(
n

d

)(
k

n

)
= n!
d!(n− d)!

k!
n!(n− k)! =

= k!
d!(n− d)!(k − d)!

= k!
d!(k − d)!

(k − d)!
(n− d)!(k − n)!

=
(
k

d

)(
k − d
n− d

)

This allows us to write the previous formula as follows:

∞∑
n=0

an(f)
(
k

n

)
=

k∑
d=0

(
k∑

n=d
(−1)n−d

(
k

d

)(
k − d
n− d

))
f(d) =

=
k∑
d=0

(
k∑

n=d
(−1)n−d

(
k − d
n− d

))(
k

d

)
f(d) =

=
k∑
d=0

(
k−d∑
n=0

(−1)n
(
k − d
n

))(
k

d

)
f(d)
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Now, the inner sum is nothing but the Newton’s expansion for (1 − 1)k−d,
which is zero for d < k and is 1 for d = k, so we see that

∞∑
n=0

an(f)
(
k

n

)
=
(
k

k

)
f(k) = f(k)

which proves the equality for every integer, now continuity do the rest.

The following is a Corollary of Proposition 19 which computes what we
called ||f || for a continuous function.

Corollary 1. For a continuous function f : Zp → R with Mahler expansion∑∞
n=0 an(f)

(
z
n

)
,

||f || = max
n≥0
|an(f)|

Proof. For every z ∈ Zp,

|f(z)| =
∣∣∣∣∣
∞∑
n=0

an

(
z

n

)∣∣∣∣∣ ≤ max
n≥0

∣∣∣∣∣an(f)
(
z

n

)∣∣∣∣∣ ≤ max
n≥0
|an(f)|

Therefore ||f || = maxz∈Zp |f(z)| ≤ maxz∈Zp |an(f)|.
For the reverse inequality, we use the explicit formula we found for the

coefficient an(f) as (∆nf)(0):

|an(f)| =

∣∣∣∣∣∣
n∑
j=0

(−1)n−j
(
n

j

)
f(j)

∣∣∣∣∣∣ ≤
≤ max

0≤j≤n

∣∣∣∣∣
(
n

j

)
f(j)

∣∣∣∣∣ ≤
≤ max

0≤k≤n
|f(k)| ≤ ||f ||.

which ends the proof.

The next Corollary comes trivially from the Proposition.

Corollary 2. Let R be a Banach normed ring with structure morphism which
is norm decreasing. Then:

Cont(Zp,Zp)⊗̂ZpR
∼= Cont(Zp, R)

where Cont(Zp,−) are the continuous functions from Zp.
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Proof. In fact, both sides admit an orthonormal basis. The right-hand side
admits the orthonormal basis that we constructed here, while the left hand
side admits the basis given by

{(
z
n

)
⊗̂1
}
n∈N

. But then the two rings trivially
coincide.
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Chapter 4

The construction of Ψ.

4.1 Notations.
In what follows, we adopt the following notations.

• All schemes will be denoted by capital letters, like X, Y, Z, . . ..

• All formal schemes will be denoted by italic letters, like X,Y,Z, . . ..

• All adic spaces will be denoted by calligraphic letters, like X ,Y ,Z, . . ..

• From now on, B = Zp2 [[T ]]〈u〉/(T pu− p) will be the blowing up of the
connected component of the trivial finite character corresponding to
the interval [p,+∞]. Hence, we fix I = [p,+∞] in what follows.

• X is the p-adic completion of the modular curve X1(N)/Spec(Zp2)
of level Γ1(N) for some N ≥ 4 and (p,N) = 1. Notice that here our
notation is a bit different from [AIP], because the authors don’t consider
any base change to Zp2 . We work over this extended base as we need
to consider supersingular points which admit a canonical structure over
Zp2 . We also denote by XI the T -adic formal scheme defined by base
change of X along the map Spf(B)→ Spf(Zp2). Here we maintain the
I in the notation in order to be coherent with [AIP].

• Xr,I will be the formal scheme defined by the open formal subscheme
of the admissible blowup of X along the Hodge ideal, defined by the
condition that H̃apr+1 generates the Hodge ideal.
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• Xr,I is the adic generic fiber of Xr,I . It is defined as Xad
r,I ×Spa(B,B)

Spa(B[1/T ], B+) and it comes equipped with an open immersion in-
side the adic generic fiber of X which identifies it with a strict open
neighborhood of the ordinary locus of X .

• We denote by Er the universal elliptic curve living over Xr,I . It is
obtained by base change of the universal elliptic curve over X via the
blowin up universal morphism. We notice that it is a formal scheme,
but when we base change it over an affine formal scheme Spf(R), it
gives a real elliptic curve over Spec(R) as it is proper.

• Hn ⊆ Er is the canonical subgroup (when it exists) of level n. It lifts
the kernel of Frobenius morphism modulo p

H̃apr+1

• IGn,r,I is the adic space over Xr,I which parametrizes trivializations of
the dual canonical subgroup H∨n , which is étale over the generic fiber.

• IGn,r,I is the normalization of Xr,I inside IGn,r,I . We denote again by
φr the Frobenius morphism IGn,r,I → IGn,r−1,I induced by the one over
the modular curve.

4.2 A perfection of weight space.
Here we want to define a ring which will be crucial for the definition of Ψ.
As the idea is to define a valuation map for modular forms over supersingular
points, we first construct the points over which our modular forms will be
evaluated.

4.2.1 Supersingular points.
Here we want to choose a supersingular point of Xr,I , hence we have to
say how to construct such a supersingular point. We start by choosing
a supersingular point x ∈ X1(N)(Fp), which corresponds to a morphism
x : Spec(Fp)→ X1(N).

Proposition 20. Every supersingular elliptic curve over Fp admits a natural
structure over Fp2, i.e. if E/Fp is a supersingular elliptic curve, then there
exists an elliptic curve E ′/Fp2 such that E is the base change of E ′ along the
inclusion Fp2 ⊆ Fp.
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Proof. The proof comes essentially from chapter V of [Sil]. Elliptic curves
over Fp are completely classified by their j-invariant. We recall that, if E is
defined (over any field K) by a Weierstrass equation y2 = x3 + Ax+B, its
j-invariant is the element of K defined as

j(E) = 1728 4A3

4A3 + 27B2 .

Now, a supersingular elliptic curve over Fp is, by definition, an elliptic curve
such that the endomorphism defined by multiplication by p is trivial, i.e.
E[p] = 0. If we decompose the multiplication by p using Frobenius, we get

[p] = φ̂ ◦ φ

where φ̂ is the dual isogeny. Then φ̂ : E(p) → E has trivial kernel and must
be inseparable of degree p. By the theory of isogenies of elliptic curves, see
chapter 2 of [Sil] we can decompose φ̂ as φ̂ = φ̂sep ◦ φ, where φ̂sep is an is an
isomorphism from E(p2) to E. But then we get

j(E) = j(E{(p2)) = j(E)p2

which says that the j-invariant of E satisfies the equation Xp2−X = 0, which
means that it’s defined over Fp2 .

In particular, the previous Proposition says that we can look for all
supersingular points of X1(N) simply by taking morphisms x : Spec(Fp2)→
X1(N).

As we are now interested in taking deformations of supersingular elliptic
curves, we recall a bit about Deformation Theory, and we then explain how to
use it to produce the points we are interested in. We remind the well-known
notation W (k) which denotes the ring of Witt vectors attached to a field k.

Definition 30. Let k be a field and let C be the category of complete local
Noetherian W (k)-algebras whose residue field is k. Let E0/k be an elliptic
curve. We then call functor of deformations of E0 the functor

DefE0/k : C → Set

which sends R ∈ C to the set of couples (E, ι), where E is an isomorphism
class of elliptic curves over R and

ι : E ×Spec(R) Spec(k) ∼= E0
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is an isomorphism. If f : R→ R′ is a morphism in C, then

DefE0/k(f) : DefE0/k(R)→ DefE0/k(R′)

is the map sending (E, ι) to (E ×Spec(R) Spec(R′), ιR′).

The interesting fact is that the previous functor is represented by the
completed stalk of the modular curve, once we fix a level N -structure.

Proposition 21. Let k be a field and y = (E0, P0) ∈ X1(N)(k) be a point
corresponding to an elliptic curve E0 over k with the level N -structure P0. Let
C be the category of complete local Noetherian W (k)-algebras whose residue
field is k. Let DefE0/k,N : C → Set be the functor sending an object R ∈ C
to the couple (DefE0/k(R), P ), where DefE0/k(R) is as in Definition 30 and
P is a level N structure over E/R. Then DefE0,N is prorepresented by the
completed local ring ÔX1(N),y.

Proof. We start by proving the Proposition in the case when R ∈ C is Artinian,
i.e. we let R be a complete local Noetherian W (k)-algebra with maximal
ideal mR which is nilpotent and such that R/mR

∼= k. We prove that

DefE0/k,N(R) ∼= HomW (k)(ÔX1(N),y, R)

Let (E/R, ι, P ) ∈ DefE0/k,N(R) be given. Then this triple corresponds by
definition to a morphism

Spec(R) X1(N)

Spec(k) {y}

But the morphism Spec(R)→ X1(N) localizes to a morphism of local W (k)-
algebras OX1(N),y → R, where R coincide with its stalk as it is a local ring.
By completing, and noting that the maximal ideal of R is nilpotent, we get a
morphism ÔX1(N),y → R.
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Vice versa, if we have a continuous morphism ÔX1(N),y → R in particular
it is local, hence it defines a diagram:

Spec(R) Spec(ÔX1(N),y)

Spec(k) {y}

which gives by composition a morphism Spec(R)→ X1(N) compatible with
the reduction. But this, by definition, gives the triple (E/R, ι, P ).

Now, for a general object R ∈ C we have R = lim
←−
n

R/mn
R. Then a triple

(E/R, ι, P ) corresponds to a compatible family of such triples over R/mn
R,

which means that we have a compatible family of local morphisms of W (k)-
algebras ÔX1(N),y → R/mn

R, which corresponds uniquely to a continuous
morphism ÔX1(N),y → R.

We only mention that it is possible to study deformations of elliptic curves
via a careful study of deformations of p-divisible groups attached to such
elliptic curve. In particular, the Serre Tate theorem states the very useful
fact that the deformation theory of an elliptic curve is essentially the same as
the deformation theory of its p-divisible group. We recall the statement of
the result even if we decided to follow another point of view.

Theorem 11. Let R be a ring, I and ideal of R and p a prime number.
Assume that I + (p) is a nilpotent ideal, and write R0 = R/I. Let Ellr denote
the category of elliptic curves over R. Let AR denote the category of triples
(E0/R0, G, ι), where E0/R0 is an elliptic curve, G/R is a p-divisible group
and

ι : E0[p∞] ∼→ G⊗R R0

is an isomorphism of p-divisible groups over R0. A morphism between two
triples (E0, G, ι) and (E ′0, G′, ι′) is a pair (f0, f) which satisfies the obvious
compatibility condition. Then the functor EllR → AR sending E/R to the
triple (E ⊗R R0, E[p∞], Id) is an equivalence of categories.

Now, we are interested in using these results to deform the point x :
Spec(Fp2)→ X1(N) to a point, x : Spec(Zp2)→ X1(N). In particular, when
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we consider X1(N), we see that the stalk has a particularly easy form, as the
modular curve is smooth over Spec(Zp2), and so its completed stalk at every
point is a complete regular local ring of relative dimension 1, for which the
following structure theorem holds.

Lemma 15. Let (A,m) be a complete regular local ring of dimension 2, which
is a Zp-algebra such that p /∈ m2. Then A is a formal power series ring over
a field or over a complete p-ring, i.e. a complete DVR with maximal ideal
generated by p. Moreover, in the equal characteristic case, A is isomorphic to
a power series ring in n variables, while in the unequal characteristic case, it
is isomorphic to a power series ring in n− 1-variables.

Proof. This proof comes from [Mat]. Let R be a coefficient ring of A, i.e. a
complete Noetherian local subring of A with maximal ideal generated by p
and such that A = R + m. We know it exists by the discussion following
Theorem 29.2 in [Mat]. In the case of A being equal characteristic, we also
know that R is a field and we can choose x1, . . . , xn to be a minimal set of
generators of m. Then we get A ∼= R[[x1, . . . , xn]] by Theorem 29.4 of [Mat].
In the case where A is unequal characteristic with residue characteristic p,
R is a complete p-ring and we can choose {p, x2, . . . , xn} to be a minimal
set of generators for m, since p ∈ m−m2, where, by regularity, n coincides
with the Krull dimension of A. Then R[[x2, . . . , xn]] is a power series ring in
n− 1-variables.

In our case, since the Witt vectors over Fp2 are given by Zp2 , which is the
ring of integers in the degree 2 unramified extension of Qp, we get:

ÔX1(N),x ∼= Zp2 [[Y ]].

and so a deformation of x to Zp2 is completely described via a continuous
morphism Zp2 [[Y ]]→ Zp2 , i.e. by the choice of an element inside pZp2 .

Notice that, by definition, we can consider the formal scheme given by
the p-adic completion of X1(N), which we denoted by X. Now, the point
x determines uniquely a Spf(Zp2)-point of X, in fact the completed stalk of
X1(N) at x can be identified with the completion wrt its maximal ideal, of
the stalk of X at the point given by the image of x. We then have a morphism:

x : Spf(Zp2)→ Spf(Zp2 [[Y ]]) ∼= Spf(ÔX,x)→ Spf(OX,x)→ X

Up to choosing a small enough neighborhood Spf(A) of x in X, we can
trivialize a lifting of the Hasse invariant over Spf(A), and so in particular, we
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can assume that inside Zp[[Y 2]] there is a scalar which trivialize a lifting of
the Hasse invariant, which we still denote H̃a. Then the following result gives
a more explicit characterization of the point x.
Lemma 16. H̃a is congruent to uY modulo p inside Zp2 [[Y ]], where u is a
unit in Zp2 [[Y ]].
Proof. By Igusa’s Theorem, we know that Hasse invariant has simple zeroes
modulo p around a supersingular point, see Theorem 12.6.1 of [KM85]. This
says that, modulo p, the reduction of the Hasse invariant gives a uniformizer
of Fp2 [[Y ]], which means that x∗(H̃a) = uY for some unit u ∈ Fp2 [[Y ]]. This
says that, up to changing Y with uY , where u is now a unit inside Zp2 [[Y ]],
Y is congruent to x∗(H̃a) modulo p.

But then, up to a change of coordinates, the point x is uniquely determined
by the image of the lifting of Hasse invariant through the morphism Zp2 [[T ]]→
Zp2 . In particular, from now on, we write Zp2 [[H̃a]] for the ring Zp[[Y ]], where
H̃a is in fact treated as a variable.

Now, we can choose the point x of X as one of the points of X lifting
x. In order to deal with families, we are in fact interested in B-points of
XI . Then, we can base change the point x, along the structure morphism
Spf(B)→ Spf(Zp2), getting a point:

xI : Spf(B)→ XI

which is still entirely described by the image of the Hasse invariant inside B.
Actually we want to work with points living inside Xr,I for some r ∈ N, so
we have to change Spf(B) in order to get a point which maps into Xr,I . The
idea is to use the following result:
Lemma 17. Let A be an I-adically complete ring, and let C be an adic
A-algebra. Then there is a bijection between the set of continuous morphisms
g : A[[X]]→ C and the ideal

√
IC.

Proof. Clearly every morphism g : A[[X]] → C is determined by the value
of g(X). By continuity, (I,X)n ⊆ g−1(IC) for some n ≥ 0. But this implies
that g(X)n ∈ IC, and so g(X) ∈

√
IC. The converse is clear.

Comparing with the notations of the Lemma, we have A = C = B,
I = (T ),

√
I = (T ), so, looking at the equation which locally defines Xr,I ,

which is:
XH̃ap

r+1

= T
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we see that a good idea to factor the point x through some Xr,I is to add to
B some roots of T , as it is done in chapter 6 of [AIP]. So defining

Bp−k = B[T
1
pk ] (4.1)

we see that, by choosing the image of H̃a to be, up to unit, T
1

pr+1 , we have a
well-defined point:

xr,I : Spf(Bp−(r+1))→ Xr,I .

We want to finish this section by giving a more explicit and almost obvious
characterization of the operation of adding pk-th roots of T .

Lemma 18. Using now the notation the notation of [AIP], the map BpkI →
BI,p−k defined by sending T to T

1
pk is an isomorphism.

Proof. First, it is well-defined, as the element T p2+k
u− p goes to(

T
1
pk

)p2+k

u− p = T 2u− p = 0

Then surjectivity and injectivity are obvious.

4.2.2 Points of the Anticanonical Tower.
We start the construction of the map by first recalling a bit about the
anticanonical tower of modular curves. The object we are considering is the
T -adic formal scheme given by the inverse limit

X∞,I := lim
←−
φ,r

Xr,I (4.2)

which indeed defines a formal scheme as Frobenius morphisms are finite, and
hence affine. If Spf(R) ⊆ X is an affine open, and Spf(Rr) is its preimage
inside Xr,I , then the preimage inside X∞,I is given by the T -adic completion
of the direct limit R∞ = lim

−→
r

Rr. Moreover, by definition, we may base

change each universal elliptic curve Er to the anticanonical tower X∞,I via the
universal map given by inverse limit. In this way we clearly get a universal
system of elliptic curves {Er}, where Er−1 is the image of Er under the
isogeny given by the lifting of Frobenius constructed in Proposition 3.3 of
[AIP].
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Over X∞,I , we see that an infinite Igusa tower is defined. In fact, over
each Xr,I the formal scheme IGn,r,I is defined as the normalization of the
generic partial Igusa tower which parametrizes trivialization of the dual of
the n-th level of the canonical subgroup, under suitable numerical conditions
on n. Moreover, a Frobenius morphism is well-defined also at the level of
partial Igusa towers, and all possible diagrams commute, hence, fixing n, one
can construct the T -adic formal scheme

IGn,∞,I := lim
←−
r

IGn,r,I .

Finally, it is possible to take the limit over n, getting finally the infinite Igusa
tower

IG∞,∞,I = lim
←−
n

IGn,∞,I .

According to our intent, we need a moduli interpretation of all these spaces,
at least far from the cusps. This is not completely possible, working with the
category of T -adically complete and separated BI-algebra which are T -torsion
free, while a moduli interpretation can be given if we add the hypothesis of
choosing normal rings. This is not a big problem, since in the following, we
will construct a normal ring over which we will evaluate the anticanonical
and the Igusa tower.

Proposition 22. Let R be a complete and separated B-algebra which is T -
torsion free and normal. Then there is a bijection between X∞,I(R)−{cusps}
and the set of quadruples (E,ψN , η,D∞), where

i) E is an elliptic curve over Spec(R);

ii) ψN is an N-th level structure over E;

iii) η ∈ H0(Spf(R), ωp
r(1−p)
E ) is a section such that ηH̃ap = T modulo p2;

iv) D∞ is a p-divisible subgroup of E[p∞] of height 1 such that, called
En := E/Dn, En admits a level n canonical subgroup and Dn splits
generically the exact sequence of the pn-torsion of En.

Proof. Let us start with a point Spf(R)→ X∞,I . By the definition, this object
corresponds to a sequence:

E = (ψN , (E0, η0), (E1, η1), (E2, η2) . . .)
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such that (Er, ηr, ψN) ∈ Xr,I(R), Er = Er+1/H1(Er+1) and ηr is the unique
section such that ηr+1 = φ∗(ηr), see Prop.3.3 of [AIP]. We want to point out
that each Er is really an elliptic curve over Spec(R). In fact, if we have a
morphism f : Spf(R)→ Xr,I , we get a formal elliptic curve by base changing
the universal elliptic curve over Xr,I along f . But now recall that a formal
elliptic curve is a proper formal scheme, and so it is algebraizable by formal
GAGA theorem. Hence f describes an elliptic curve over Spec(R). We then
define the quadruple:

E = (E0, ψN , η0, D∞ = {Dn}n∈N) with Dn = ker((φn)D : E0 → En).

We claim that Dn satisfies the property in the statement. Clearly, Dn has
rank pn, since it is the kernel of the dual n-th Frobenius isogeny. Then, by
definition, the family of Dn’s form a p-divisible group, as it is clear that each
Dn is identified with the p-torsion of Dn+1. Moreover, (φn)D is an isogeny,
hence E0/Dn

∼= En, hence E0/Dn admits level n canonical subgroup. We
have to show that Dn splits generically the exact sequence:

0→ Hn(En)→ En[pn]→ En[pn]/Hn(En)→ 0

This is clear, as generically the quotient D2n/Dn splits this exact sequence,
since it realizes a subgroup of En[pn] which is identified with the quotient
En[pn]/Dn. But as the group D∞ is p-divisible, we have the identification
(which in fact also holds integrally)

Dn
∼=
D2n

Dn

which says exactly that Dn splits the torsion sequence. So, starting with E,
we constructed the quadruple (E0, ψN , η0, D∞).

Vice versa, if we have a quadruple (E0, ψN , η0, D∞) as in the statement,
we define

En := E0/Dn ηn = φ∗(η0)
where Frobenius exists by the hypothesis on the quadruple, since En ad-
mits level n canonical subgroup. We have to show that the family E =
(ψn, (E0, η0), (E1, η1), . . .) is Frobenius compatible. First notice that the prop-
erty of splitting the exact sequence of the pn-torsion identifies generically
Dn with the dual of Hn(En). Hence, generically, the compatibility under
Frobenius holds true. But now notice that generically for every n, we get an
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R
[

1
T

]
point xn of X(Γ1(N)∩ Γ0(pn)), which parametrizes elliptic curves with

tame level N and the choice of a subgroup of order pn. But, by hypothesis,
R is normal, hence the morphism Spec

(
R
[

1
T

])
→ X(Γ1(N)∩ Γ0(pn)) lifts to

a morphism from Spec(R) to the integral model of X(Γ1(N) ∩ Γ0(p)), which
exists by [DR]. But then this morphism identifies Dn with the dual of the
canonical subgroup of level n of En, hence we get the desired compatibility
also integrally.

Now, this suggests a moduli interpretation of the infinite level Igusa tower.

Proposition 23. Let R be as above. Then there is a bijection between
IG∞,∞,I(R) over point distinct from the cusps, and the set of quintuples
(E,ψN , η,D∞, β), where (E,ψN , η,D∞) ∈ X∞,I(R), and β : TpD∞ → Zp is a
morphism of sheaves, which becomes an isomorphism generically.

Proof. This is clear, since we identify the p-divisible group D∞ with the
p-divisible group given by the dual canonical subgroup, hence we get the
complete trivialization by the very definition as each finite level IGn,r,I(R)
gives a morphism Z/pnZ→ Dn, which becomes an isomorphism generically.

Now we still have to change the ring we are using to construct the
point. First of all we base change Bp−(r+1) (see 4.1 for the definition of this
ring) along the natural inclusion of Zp2 into Zp2 [ζ

1
p∞ ]. This corresponds to

choose a compatible set of pn-th roots of unit. We tacitly assume this base
change without keeping track of it in the notation. Now, we have a point
xr,I : Spf(Bp−(r+1))→ Xr,I , but we will need a point of the total Igusa tower,
and we cannot be sure that such a point exists with coefficients in Bp−(r+1) .
In order to solve this problem, we introduce the following rings.

Definition 31. We call B(s)
x the ring given by the pullback of the point xr,I

along the s-th power of Frobenius, i.e. B(s)
x is the ring which makes the

following diagram cartesian:

Spf(B(s)
x ) Spf(Bp−(r+1))

Xr+s,I Xr,I

φs
xr,I
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We remark that in the previous definition, we erased the dependence on
the interval I, and we inserted the dependence on the starting point x, which
is more important from what follows. We also point out that, according to
the notation, we have the tautological equality Bp−(r+1) = B(0)

x This is the
main ingredient to define a point of the Igusa tower. In fact, we can state the
following:

Definition 32. We call Bperf
x,a the ring given by the T -adic completion of

lim
−→
s

B(s)
x . We also call Bperf

x the normalization of the base change of Bperf
x,a along

the morphism IG∞,∞,I → X∞,I .

We used the a in the notation for anticanonical, since the ring Bperf
x,a is

constructed as a point of the anticanonical tower.
Remark. All these rings are well-defined since Frobenius morphisms are
affine, and so their base changes are affine.

As we introduced a lot of notations, we want to fix all of them here.

• We denote B = Zp2 [[T ]]
〈
p
T p

〉
;

• We denote Bp−k = B[T
1
pk ] for every natural integer k. In particular,

we constructed a morphism Spf(Bp−(r+1)) → Xr,I associated with the
supersingular point x.

• We denote again Bp−k the base change of Bp−k to Zp[ζp∞ ] which is the
pn-th cyclotomic ring over Zp. As we assume to always work over it,
the notation is not misleading.

• We denote B(s)
x the ring of functions of the base change of the morphism

Spf(Bp−(r+1)) → Xr,I along the s-th power of Frobenius isogeny φs :
Xr+s,I → Xr,I .

• We denote by Bperf
x,a the ring defined as the T adic completion of the

direct limit of the B(s)
x . This ring depends on r, but we assume to work

with a fixed r, hence the notation does not miss anything.

• We finally denote Bperf
x the normalization of the ring of functions of the

base change of Spf(Bperf
x,a )→ X∞,I along the morphism IG∞,∞,I → Xr,I .
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Lemma 19. Let R be a ring of characteristic p and let Rperf := lim
−→
φ

R be the

perfection of R, where the limit is computed along Frobenius. Then R is a
perfect ring, i.e. Frobenius is an isomorphism.

Proof. In fact, by definition, a direct limit of rings can be characterized as a
set as

lim
−→
φ

R =
⊔
R/ ∼

where the equivalence relation identifies two elements in the following way:

x ∼ y ⇔ ∃k, j ∈ N such that φk(x) = φj(y)

Then φ is clearly injective as, if x ∈ Rperf is such that φ(x) = 0, then it means
that x ∼ 0 in the relation defining the direct limit, hence x = 0. Moreover, it
is also surjective as any element in the direct system is equivalent to all of its
images.
Lemma 20. The ring Bperf

x / p

H̃a
Bperf
x contains all the pn-th roots of T .

Proof. In fact φ is the classical Frobenius morphism modulo p

H̃a
and the point

xr,I is defined by mapping the Hasse invariant to a root of T . In particular,
there is an injection Fp[T ] ⊆ Bp−k/

p

H̃a
Bp−k and the map given by the pullback

under Frobenius acts as the absolute Frobenius over the image of Fp[T ]. This,
using Lemma 19 and the exactness of the direct limit, says that Bperf

x contains
all the pn-th roots of T modulo p

H̃a
.

Notice that we also know that Frobenius is finite and flat of rank p, hence
we can conclude that, modulo p

H̃a
each B(s)

x is generated over B(s−1)
x by the p

elements given by the p-th roots of the p(s−1)-th roots of T .
Remark. These rings define in a natural way morphisms from Bperf

x,a (resp.
Bperf
x ) to X∞,I (resp. IG∞,∞,I). Those morphism do define points which admit

a moduli interpretation. In fact, all these rings are chosen to be normal, and
this motivates the choice of working with normalizations instead of working
with non normal rings.
Definition 33. We finally denote by

x∞,I : Spf
(
Bperf
x

)
→ IG∞,∞,I

the point of IG∞,∞,I coming from xr,I via all the previous pullbacks and
normalization of Bperf

x inside Bperf
x

[
1
T

]
.
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The choice of a point with values in a normal ring allows to use the
Proposition 23 to describe what the point is. Finally, we state the following
moduli interpretation of a perfect modular form.

Proposition 24. A perfect modular form f ∈ H0(X∞,I ,wperf) is a function
which associates to

i) A T -adically complete and separated Bperf
x -algebra R which is T -torsion

free and normal.

ii) A character κ defined by the morphism Spf(R)→Wcycl
I .

iii) An elliptic curve f : E → Spf(R) equipped with a level N -structure ψN .

iv) A section η ∈ H0(Spf(R), f ∗(ωp(1−p))) such that ηĤap = T mod p2.

v) A p-divisible group D∞ of height 1 as in Proposition 22.

vi) A morphism β : Tp(E) → Zpa ⊕ Zpb which becomes an isomorphism
generically.

an element f(E,ψN , η,D∞, β) ∈ R such that

f(E,ψN , η,D∞, γβ) = κ(γ)−1f(E,ψN , η,D∞, β)

for every γ ∈ Z×p , which acts over the quintuple by changing the generator of
Tp(D∞).

4.3 The map ψx.
Now that we have a moduli interpretation of perfect modular forms, we can
construct the function which should translate the situation from modular
forms to continuous functions. The construction of the map ψ essentially
depends on two maps, one is purely defined over continuous p-adic functions,
and the other one is constructed in a real geometric fashion. The role of the
first map will be clear later, when we will construct the Up-operator which
acts on p-adic functions.
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4.3.1 A truncation morphism.
We consider here a map which truncates and reorder a p-adic number. The
following Lemma is a triviality, but we need it to define the map.

Lemma 21. Every element λ ∈ Zp can be written uniquely in the form

λ =
∞∑
i=0

λip
i

where 0 ≤ λi ≤ p− 1 for every i.

Proof. First, let us start with λ ∈ Zp and n ≥ 1. Since Q is dense inside Qp,
we can find a rational number a

b
such that

∣∣∣∣λ− a

b

∣∣∣∣
p
≤ p−n < 1

But notice that ∣∣∣∣ab
∣∣∣∣ ≤ max

{
|λ|,

∣∣∣∣λ− a

b

∣∣∣∣} ≤ 1

which says that a
b
∈ Zp. Moreover, we can always choose a

b
to be between

0 and pn − 1. In particular, there is always a sequence of integers αn ∈ Z
converging to λ which satisfy 0 ≤ αn ≤ pn − 1 and αn ≡ αn+1 modulo pn.
Now, all these integers can be written in base p, getting

α0 = b0

α1 = b0 + b1p

α2 = b0 + b1p+ b2p
2

. . .

where 0 ≤ bi ≤ p− 1 for every i. But then we get

λ = b0 + b1p+ b2p
2 + . . .+ bnp

n + . . .

where the equality is clear since each reduction modulo pn of the right-hand
side is just αn and a series converges if and only if the sequence of its partial
sums converges. Finally, unicity is clear by elementary congruence theory.
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Definition 34. Let λ ∈ Zp, and write it in the unique form

λ =
∞∑
n=0

λip
i

Define, for every n ∈ N the map

σn : Zp → Zp

sending λ to σn(λ) = ∑n−1
i=0 λn−1−ip

i, with the convention that σ0(λ) = 0.

Remark. We remark that σn is not an endomorphism of Zp, in fact it is not
compatible as it is easy to show. Hence σn is just a function from Zp to itself.

Lemma 22. The function σn : Zp → Zp is continuous for every n ∈ N.

Proof. Clearly σ0 is continuous, so let us put n ≥ 1. We fix ε > 0, which we
can assume to be a negative power of p, say ε = p−k for some k ≥ 0. Let
λ = ∑∞

i=0 λip
i and µ = ∑∞

i=0 µip
i be two p-adic integers such that

|σn(λ)− σn(µ)| =
∣∣∣∣∣
n−1∑
i=0

(λn−1−i − µn−1−i)pi
∣∣∣∣∣ < ε

Now, ∣∣∣∣∣
n−1∑
i=0

(λn−1−i − µn−1−i)pi
∣∣∣∣∣ = p−i

where i is the lowest integer between 0 and n− 1 such that λn−1−i − µn−1−i
is different from 0, if it exists. If such an i does not exist, then λi = µi in
the expansion for every 0 ≤ i ≤ n, which means that λ ≡ µ modulo pn. This
means that the ball

B(λ, p−n) = {z ∈ Zp such that |z − λ| < p−n}

satisfies the continuity condition for every ε, hence σn is continuous.

4.3.2 A fundamental isogeny.
Now we define a geometric map.
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Notation. From now on, we denote an R-point of IG∞,∞,I , for R a T -adically
complete and separated B-algebra which is T -torsion free and normal by the
symbol Ea,b, meaning, via Proposition, that we are considering a quintuple
(E,ψN , η,D∞, β) with β defining the basis {a, b} of the generic Tate module
of E.

Definition 35. Let n ∈ N be an integer, and let λ ∈ Zp be a p-adic integers
whose p-expansion has non zero digits only in the first n terms. Then define
the map:

πn,λ : IG∞,∞,I
(
Bperf
x

)
→ IG∞,∞,I

(
Bperf
x

)
sending an element Ea,b to the element Ea, b+λa

pn
.

In order to state a meaningful definition, we have to say what Ea, b+λa
pn

is.
In fact, at the moment, the map is just defined via the generic inclusion of
Tate modules:

Tp

(
Ea, b+λa

pn

)
→ Tp(Ea,b)

induced by the matrix

An,λ =
(

1 −λ
0 pn

)
We have to prove that this map induces an isogeny of elliptic curves of degree
pn.

Proposition 25. Given Ea,b = (E,ψn, η,D∞, β), for every n ∈ N and for
every λ as in the previous definition, πn,λ induces an isogeny of elliptic curves
over Bperf

x , which we call $n,λ. Moreover, $ has degree pn. In particular, the
map $n,λ is described by the quotient of E modulo a subgroup Hnλ ⊆ E[pn]
of order pn, and πn,λ sends the quintuple Ea,b to the quintuple Ea, b+λa

pn
=

(E/Hn,λ, ψN , $n,λ∗(η), $n,λ∗D∞, πn,λ ◦ β).

Proof. First, we can reduce to the case when n = 1. In fact, if λ ∈ Zp has
non zero digits only in the first n terms, then we can write it as λ = ∑n

i=0 λip
i

for some 0 ≤ λi ≤ p − 1. But then the matrix which realizes the inclusion
can be written as

An,λ =
n∏
i=0

(
1 −λi
0 p

)
Hence, we prove that the morphism induces an isogeny at integral level for
n = 1 and then we iterate the procedure.
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Fix 0 ≤ λ ≤ p − 1 and consider the mod p reduction of the previous
morphism:

Fpa⊕ Fpb ↪→ Fpa⊕ Fp
b+ λa

p

induced by the reduced matrix

An,λ =
(

1 −λ
0 0

)

In order to define an isogeny of degree p, we need to construct a finite flat
subgroup scheme Hλ ⊆ E[p] such that the map is described as the quotient
over this subgroup. Clearly, the kernel of this morphism is the subgroup
generated by the element λa + b, which induces generically a subgroup of
the p-torsion, which we denote by Hλ[ 1

T
]. Hence, generically the morphism

which realizes the inclusion in the quotient over this subgroup. Notice that
this subgroup, for every choice of λ is disjoint from the canonical subgroup
and the quotient over Hλ

[
1
T

]
preserves the canonical subgroup as the image

of a is a itself. This subgroup corresponds to a morphism

ρ′λ : Spec
(
Bperf
x [1/T ]

)
→ X(Γ0(p) ∩ Γ1(N))Bperf

x [1/T ],a

where X(Γ0(p) ∩ Γ1(N))a is the modular curve over Bperf
x [1/T ] which para-

metrizes elliptic curve with level N -structure equipped with a subgroup of
order p disjoint from the canonical subgroup. This modular curve admits a
model over Bperf

x by [DR], which is a smooth scheme, hence normal, denoted
simply by X(Γ0(p) ∩ Γ1(N)). In particular, this model parametrizes elliptic
curves over Bperf

x equipped with a level N structure and a level p subgroup
disjoint from the canonical subgroup over Bperf

x . Moreover, since this model is
normal and Bperf

x is normal too, there is a morphism

ρλ : Spec
(
Bperf
x

)
→ X(Γ0(p) ∩ Γ1(N))a

which defines a subgroup scheme Hλ of E over Bperf
x which has trivial inter-

section with the canonical subgroup. Moreover, this subgroup has order p
since Spec(Bperf

x ) is connected and the generic order is p. Hence we conclude
that the isogeny we were looking for is the quotient map E → E/Hλ.

Remark. The isogenies $n,λ are all the possible isogenies of order pn of E,
except the Frobenius one. In fact the isogenies of order pn correspond to finite
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flat subgroup schemes of E[pn] of order pn, and letting λ vary between 0 and
pn we describe pn subgroups of E[pn], which are all distinct, hence describe
all possible subgroups except the canonical subgroup.

Hence, we constructed a family of isogenies.

Corollary 3. The isogeny $n,λ induces an isomorphism of level n-canonical
subgroup Hn.

Proof. This is implicit in the proof of Proposition 25 by the characterization
of the subgroup which realizes the isogeny.

4.3.3 The map.
We now define the following map:

Definition 36. Let x ∈ IG∞,∞,I
(
Bperf
x

)
be a supersingular point correspond-

ing to a quintuple Ea,b. For every n ∈ N we define the following function:

ψn,x : H0(X∞,I ,wperf)⊗̂BIBperf
x → Cont

(
Zp,Bperf

x

)
by the rule

ψn,x(f)(λ) = π∗n,σn(λ)(f)(Ea,b)
for every λ ∈ Zp.

We now denote all the spaces of modular forms by H0(X∞,I ,wperf) leaving
implicit the base change to Bperf

x . More explicitly given a modular form
f ∈ H0(X∞,I ,wperf) and for every λ ∈ Zp:

ψn,x(f)(λ) = f
(
E
a,
b+σn(λ)a

pn

)
A priori, it is not clear why such a map should define a continuous function
from Zp to Bperf

x , but notice that the truncation given by σn tells precisely that
if two p-adic integers are equal modulo pn, then their images under ψn,x(f)
are the same for every f , which means that ψn,x(f) is continuous for every n.

Moreover, recall that there is a canonical way to see modular forms over
Xr,I inside H0(X∞,I ,wperf). In fact, by Theorem 6.4 of [AIP], we have an
isomorphism of invertible sheaves:

h∗r(wr,I) ∼= wperf
I
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where wr,I is the sheaf of modular forms over Xr,I and hr : X∞,I → Xr,I is the
canonical projection given by the inverse limit. This implies that there exists
a map

h∗r : H0(Xr,I ,wr,I)→ H0(X∞,I ,wperf).

This map is clearly injective, so we will identify modular forms over Xr,I

with a submodule of the module of perfect modular forms. In particular, the
following result holds:

Proposition 26. For every n ∈ N and for every f ∈ H0(Xr,I ,wr,I), the map
ψn,x(f) factors as a function

ψn,x(f) : Z/pnZ→ B
(n)
I,p−(r+1)

Proof. Clearly the map ψn,x(f) factors through the reduction Zp → Z/pnZ,
as the truncation induced by σn tells exactly that two p-adic integers which
are congruent modulo pn have the same image under ψn,x(f). Moreover, if
we start with f ∈ H0(Xr,I ,wr,I), we compute, for every λ ∈ Zp:

ψn,x(f)(λ) = ψn,x(h∗rf)(λ) =
= π∗n,σn(λ)(h∗rf)(Ea,b) =
= π∗n,σn(λ)(h∗r+n((φn)∗f))(Ea,b) =

= (h∗r+n(φn)∗(f))
(
E
a,
b+σn(λ)a

pn

)
=

= (φn)∗(f)
(
E
an,( b+σn(λ)a

pn )
n

)

where we used Proposition 6.7 of [AIP] for the last equality, and we denoted
by E

an,( b+σn(λ)a
pn )

n

the elliptic curve E
a,
b+σn(λ)a

pn
where we forget the terms in the

trivialization of Tate module greater than n. Now, this means exactly that the
effect of computing ψn,x(f) is to lift the modular form f to H0(Xr+n,I ,wr+n,I)
and to compute its value on a truncated trivialization of the Tate module.
This, by the construction of Bperf

x as an inverse limit along Frobenius says
exactly that the value of the modular form (φn)∗(f) belongs to B(n)

x,p(−r+1) ,
which is the thesis.

We are now ready to state the main definition of this work, which is the
definition of the map which should realize the correspondence.
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Definition 37. Let r ≥ 5 be fixed and let x ∈ IG∞,∞,I
(
Bperf
x

)
be a supersin-

gular point corresponding to a quintuple Ea,b. We define the morphism:

ψx : H0(Xr,I ,wr,I)⊗̂BIBperf
x → Cont

(
Zp,Bperf

x

)
via the formula

ψx(f)(λ) =
∞∑
n=0

ψn,x(f)(λ)T
n

pr+1

Remark. We want to point out that a priori the image of ψx does not live
inside Bperf

x . In fact, we know that each ψn,x(f) maps into B(n)
p−(r+1) , and we

also know that B(n)
x,p−(r+1) admits a canonical map to Bperf

x which is given by
the direct limit. Hence we see the image of ψn,x(f)(λ) inside Bperf

x via this
map.

Lemma 23. The map ψx is well-defined, i.e. for every f ∈ H0(Xr,I ,wr,I),
ψx(f) defines a continuous function from Zp to Bperf

x .

Proof. We have to prove that, for every f ∈ H0(Xr,I ,wr,I), the function
ψ(f) : Zp → Bperf

x is continuous. This means that for every λ0 ∈ Zp and
for every N ∈ N, we can always choose a sufficiently small ball around λ0
such that the image of this ball is contained inside TNBperf

x . So for fixed N ,
choose the ball B(λ0, p

−Npr+1). Then the image only depends on ψh(f)(λ)
for 0 ≤ h ≤ Npr+1. But we know from Proposition 26 that ψh(f) factors
through Z/phZ, hence we are done.

4.3.4 The map Ψ.
What we have done till now clearly works for any supersingular point of the
modular curve. In particular, we can consider a version of the map ψ which
sums over all the possible supersingular points. First of all we notice that
this sum is well-defined as:

Proposition 27. For every prime p there is only a finite number of super-
singular elliptic curves over Fp.

Proof. This is clear thanks to Proposition 20. In fact we know that over Fp
elliptic curves are completely characterized by their j-invariant and, since the
j-invariant of an elliptic curve must be an element of Fp2 , we know that there
are only finite possible supersingular j-invariants.
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This easy result allows to state the last definition:

Definition 38. Let {xi}i∈SS be a set of points of IG∞,∞,I which lift different
supersingular points modulo p. Call Bperf := ⊕

x∈SS Bperf
x . Then for every

r ≥ 3 we define the following map

Ψ : H0(Xr,I ,wr,I)⊗̂BBperf →
⊕
i∈SS

Cont(Zp,Bperf
x )

as the function sending a modular form f to the sum

Ψ(f) :=
∑
x∈SS

ψx(f)

where each ψx is constructed as in Definition 37, associated to the correspond-
ing supersingular point x.

In particular, the map Ψ, which is defined as the finite direct sum of the
maps ψx takes into account the behaviour of the modular form f at every
supersingular point of the given modular curve. This definition is strictly
related to the definition of the maps realizing the first instance of Jacquet-
Langlands correspondence in [Se96]. Moreover, this map realizes a kind of
translation between the world of modular forms and the world of p-adic
continuous functions, exactly in the same way as in [LWX]. We just want to
point out here that the map Ψ is not the zero map, since modular forms are
global sections of an invertible sheaf, and if we reduce each component ψx
of Ψ modulo a suitable root of T , we see that, up to changing the starting
point, the reduction cannot be zero, as we are working with overconvergent
modular forms.

4.4 The Up operator.
In this section we study the Up-operator. First we give a description via
correspondences which allows to split its effect on modular forms into the
sum of p elementary operators. In the second part we compute the action
of Up on the image of Ψ, where Up is the translation of Up under the map
Ψ itself. In this way we get, like in [LWX] an operator acting on spaces of
p-adic continuous functions, with a very explicit description.
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4.4.1 Geometry of the Up operator.
Following Section 6.9 of [AIP], we see that the Up operator acts on modular
forms via the correspondence:

Xr+1,I

Xr,I Xr,I

i φ

and its action on global sections can be described via the notion of Tate
trace introduced in Corollary 6.3 of [AIP] as

Up : H0(Xr,I ,wr,I) i∗→ H0(Xr,I , i
∗wr,I) ∼= H0(Xr+1,I , φ

∗wr,I)
φ∗→

φ∗→ H0(Xr, φ∗φ
∗wr,I)

1
p

Trφ
→ H0(Xr,I ,wr,I)

Proposition 28. The Up operator can be written as a sum of p operators uµ,
where each uµ acts on f ∈ H0(Xr,I ,wr,I) via the formula

uµ(f)(Ea,b) = f(Ea, b+µa
p

)

Proof. By Proposition 3.3 of [AIP], we have the following cartesian diagram

Er+1/H1(Er+1) Er

Xr+1,I Xr,I
φ

When we consider a point x ∈ X∞,I(Bperf
x,a ), it then defines a Bperf

x,a -point in
Xr,I simply forgetting part of the p-divisible group associated to x. This says
that in order to compute φ∗(x) we need to compute all possible elliptic curves
(in fact they must be p as Frobenius has degree p) in IG∞,∞,I(Bperf

x ) whose
image via Frobenius is the given point x. Working as in Proposition 25, we
can characterize these elliptic curves by computing the action of Frobenius
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over the trivialization of Tate module. In particular, if we denote Eµ one of
the p preimages of E, we see that the matrix representing Frobenius must be:

Aµ =
(
p µ
0 1

)

where µ ∈ {0, . . . , p− 1}. In fact the mod p reduction of Aµ admits precisely
the vector space over Fp generated by the image of a as kernel. This says
that the points of IG∞,∞,I(Bperf

x ) whose image via Frobenius is a given curve
Ea,b are all the curves Ea

p
,b−µpa

p
, hence we can write:

φ∗(Ea,b) =
p−1⊔
µ=0

Ea
p
,b−µpa

p

Now, recalling that the Trace map acts on a modular form simply as a sum
of the modular form evaluated in all the preimages of a given elliptic curve,
we get:

Up(f)(Ea,b) = 1
p
Trφ(φ∗(f))(Ea,b) = 1

p

p−1∑
µ=0

f
(
Ea, b+µa

p

)
Now, simply define

uµ(f)(Ea,b) := f
(
Ea, b+µa

p

)
Then

Up = 1
p

p−1∑
µ=0

uµ

4.4.2 Numerology of the Up operator.
By the previous section, we know that the Up operator splits in a sum of
p operators Up = ∑p−1

µ=0 uµ. We now want to investigate the action of each
elementary operator uµ under the map ψ. In particular, we define the operator:

Definition 39. Given µ ∈ {0, . . . , p− 1}, we call uµ the operator acting on
ψx(H0(Xr,I ,wr,I)⊗̂BBperf

x ), defined by the rule:

uµ(ψx(f)) = ψx(uµ(f)).
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Theorem 12. We have:

uµ(g)(λ) = 1
T

(g(µ+ pλ)− kg) .

where kg is a constant depending only on g.

Proof. In fact we have:

ψn,λ(uµ(f)) = π∗n,σn(λ)(uµ(f))(Ea,b) =

= uµ(f)
(
E
a,
b+σn(λ)a

pn

)
=

= f

E
a,

b+σn(λ)a
pn

+µa
p

 =

= f
(
E
a,
b+σn(λ)a+pnµa

pn+1

)
=

= f

(
E
a,
b+σn+1(µ+pλ)a

pn+1

)
=

= π∗n,σn+1(µ+pλ)(Ea,b) =
= ψn+1,µ+pλ(f)

where the fifth equality holds true as if λ = ∑∞
i=0 λip

i, then

pλ =
∞∑
i=0

λip
i+1

from which

σn+1(µ+ pλ) = σn+1(µ+
∞∑
i=0

λip
i+1) =

= λn−1 + λn−2p+ λn−3p
2 + . . .+ λ0p

n−1 + µpn =
= σn(λ) + pnµ

which proves the equality. But then, denoting uµ the operator acting on
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Cont(Zp, Bperf
I ) corresponding to uµ, we get:

uµ(ψ(f))(λ) =
∞∑
n=0

uµ(ψn,λ(f))T n =

=
∞∑
n=0

ψn+1,µ+pλ(f)T n =

=
∞∑
n=1

ψn,µ+pλ(f)T n−1 =

= 1
T

(ψ(f)(µ+ pλ)− ψ0(f)(λ))

We point out that the term ψ0(f)(λ) in fact does not depend on λ. In fact
we know that by definition σ0(λ) = 0, hence the term ψ0(λ) is simply the
valuation of f on the point Ea,b, which only depends on f , since the point is
fixed. Hence, denoting kf := ψ0(f)(λ) we end the proof.
Corollary 4. The action of the Up operator corresponds to the action of the
Up operator on Cont(Zp,Bperf

x ) described by the formula

(Up(g))(λ) =
p−1∑
µ=0

1
T

(g(µ+ pλ)− kg)

where kg is a constant depending on g.
In this way, we proved our main result, which is the following:

Theorem 13. Let X/Zp be the compactified modular curve over Zp of tame
level Γ1(N). Then there exist, for r large enough, and for every supersingular
point x of the special fiber of X, a T -adically complete, separated and norm
decreasing Zp-algebra Bperf

x and an homomorphism of Bperf := ⊕
x∈SS Bperf

x -
orthonormalizable Banach modules

Ψ : H0(Xr,wr)⊗̂BBperf → Cont(Zp,Bperf)

where SS is the set of supersingular points of the special fiber of X. Moreover,
the operator Up, associated to Up via the map Ψ which acts on the image of
the map Ψ, splits into a sum of p− 1 operators, and its action over a function
g which belongs to the image of ψx is described by the following rule:

Up(g)(λ) =
p−1∑
µ=0

(g(pλ+ µ) + kg)

where kg is a constant depending only on g.
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Proposition 29. Let Up be the operator acting on the image of the map Ψx.
Then Up splits into a sum of p− 1 operators, and its action over a function g
which belongs to the image of ψx is the following:

Up(g)(λ) =
p−1∑
µ=0

(g(pλ+ µ) + kg)

where kg is a constant depending only on g.
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