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Abstract. Recently, Poisson noise has become of great interest in many imaging applications.
When regularization strategies are used in the so-called Bayesian approach, a relevant issue is to
find rules for selecting a proper value of the regularization parameter. In this work we compare
three different approaches which deal with this topic. The first model aims to find the root of a
discrepancy equation, while the second one estimates such parameter by adopting a constrained

approach. These two models do not always provide reliable results in presence of low counts
images. The third approach presented is the inexact Bregman procedure, which allows to use an
overestimation of the regularization parameter and moreover enables to obtain very promising
results in case of low counts images and High Dynamic Range astronomical images.

1. Introduction

In many imaging applications (e.g. astronomy, emission tomography) the detected image is
affected by Poisson noise, due to the fluctuation of the incoming photons hitting the recording
electronic device. All the pixels of the detected image g ∈ R

m can be considered as realizations of
independent and identically distributed Poisson random variables Gi, i = 1, . . . ,m; in a Bayesian
approach [12], the unknown object x ∈ R

n is also considered as a realization of a multivalued
random variable X and the a priori information is encoded into a given probability distribution
(prior); an estimate of the source image can be obtained by maximizing the so–called posterior
probability distribution of X or, equivalently, by solving the following minimization problem

min
x≥0

ϕβ(Hx+ b; g) ≡ ϕ0(Hx+ b; g) + βϕ1(x). (1)

Here ϕ0(Hx + b; g) is the fit–to–data functional, which measures the discrepancy between the
detected image g and the unknown image; ϕ1 is the regularization function, which is assumed
to be non–negative and convex, not necessarily differentiable; the problem is constrained since
pixels’ values are non–negative. β ≥ 0 is a real parameter which measures the trade–off between
ϕ0 and ϕ1 and it plays a role similar to that of the regularization parameter in Tikhonov theory.
For an exhaustive treatment of the statistical model, see for example [5]. The imaging matrix
H ∈ R

m×n satisfies the assumptions Hi,j ≥ 0,
∑n

j=1Hi,j > 0; the non–negative term b is a

constant background emission. Under the above assumptions, {x ≥ 0|Hx + b > 0} 6= ∅. Due
to the presence of Poisson noise, a suitable choice for ϕ0 is the generalized Kullback–Leibler

divergence [5] DKL(y; z) =
m
∑

i=1

{

yi log

(

yi
zi

)

+ zi − yi

}

, with y log(y) = 0 for y = 0. This

function is non–negative, convex and coercive on its domain [11].
The quality of the restored image depends strongly on the β value used in (1). Unfortunately,
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in presence of Poisson noise, such a value is very hard to estimate: in recent years several
methods [2, 6] have been developed for this purpose. We mainly focus on the Discrepancy Model

presented in [6, 18] and we will refer to it as Model 1. Several authors [9, 15], pointing out
that such a model can require a considerably high computational effort, developed a Constrained

Model : we will refer to it as Model 2. In [18] a comparison between the two models for some
regularization functionals had been performed.
In presence of low counts images, we observe that both models do not always provide satisfactory
results. A third approach, the Bregman procedure, which allows us to employ an overestimation

of β, has been proposed for the Gaussian case [14]. Then, in [8], it was extended to the Poisson
case; recently, in [3], in order to achieve a reasonable computational cost, an inexact procedure
has been proposed. In this paper the inexact Bregman method is compared with Models 1 and
2 and it is shown that this scheme is very promising in terms of accuracy and efficiency for low
counts images and for High Dynamic Range (HDR) images, when one is interested in detecting
a weak signal close to very bright point sources.
The paper is organized as follows: in section 2 the basic ideas of the three models are recalled,
in section 3 some numerical tests regarding the comparison between such models are presented
together with an application concerning HDR images. Finally, the main conclusions are
presented in section 4.

2. Descriptions of the models

In this section Model 1, Model 2 and the Bregman procedure are recalled; all the technical
details can be found in the references listed in the text. We denote by x∗ the true source image
corresponding to the detected data g and by xβ ≥ 0 the minimizer of (1) for a given β.

Model 1. In [17, 6] it is proved that when the expected value of each Poisson random
variable Gi, i = 1, . . . ,m is sufficiently large, the expected value for DKL(g;Hx

∗+b) is m/2. By
defining the discrepancy function as DH(x; g) = (2/m)DKL(g;Hx + b), the Discrepancy Model
consists in finding a value for β such that

DH(xβ; g) = η (2)

with η close to one. For several regularization functions, the minimizer of (1) exists and it is
unique, and since DH(xβ ; g) is an increasing function of β, equation (2) admits one and only
solution (see [6, 18]).

Model 2. The Constrained Model consists in solving the problem

min
x≥0

ϕ1(x) subject to DH(x; g) ≤ τ (3)

for a given τ > 0. In this case, only one minimization is required. Model 2 was firstly
proposed in [15]. This formulation is linked with the estimation of β since one can write (3) as
minx≥0 ϕ1(x)+λ (DH(x; g)− τ), where, following [6, 17], τ = η: for a convenient value of λ (i.e.
λ = m(2β)−1), (3) and (2) have the same solutions. Indeed, in [18] under suitable assumptions
on ϕ1, it is proved that the two models provide the same parameter estimation, even in presence
of non–negative data g, a very common situation in practical cases such as microscopy and
astronomy.

Inexact Bregman Procedure. The main idea of the Bregman procedure [14, 8] consists
in substituting ϕ1 with its Bregman distance; the proposed inexact scheme [3] uses, in case
of non differentiable regularization term, the ε–subgradients in computing such a distance,
introducing the inexact Bregman distance. If ϕ is a convex function, its inexact Bregman

distance from x to y is ∆ξ
εϕ(x, y) = ϕ(x) − ϕ(y) − 〈ξ, x − y〉 + ε with ξ ∈ ∂εϕ(y), ε ≥ 0,

where ∂εϕ(y) is the ε–subdifferential of ϕ at the point y. For differentiable regularization
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term, ε = 0 and the subdifferential is the differential. The inexact Bregman scheme is an
iterative procedure which at each step determines the approximate solution of the function

ψβ(x;x
k) ≡ ϕ0(Hx + b; g) + β∆ξk

εkϕ1(x, x
k), where ξk ∈ ∂εkϕ1(x

k). The key idea of the
procedure is to solve inexactly the minimization problem minψβ(x;x

k), stopping the inner
iterative method when ‖ηk+1‖2 ≤ µk+1 and εk+1 ≤ νk+1, with ηk+1 ∈ ∂εk+1

ψβ(x;x
k), µk and

νk such that
∑∞

i=1 µi <∞,
∑∞

i=1 iνi <∞. Under suitable assumptions [3, Proposition 4], the
scheme converges to a minimizer of ϕ0. For inverse problems, such as image restoration, the
Bregman procedure (exact and inexact version) has the typical semiconvergence behaviour of
the iterative methods. Thus, this procedure, coupled with an early stopping criterion, can be
used as a regularization technique, without requiring an exact estimation of β. Indeed, a wide
experimentation on low and high counts image confirms that an overestimation of β provides
reliable results, with an enhancement of the contrast in the restored images and at the same
time with a reasonable computational cost, in view of the inexact version of the procedure. This
approach seems particularly efficient also in case of HDR images [4], when the Model 1 and the
Model 2 do not always provide satisfactory results.

3. Numerical Experiments

In the following we describe a set of test-problems. For each problem, the optimal value βopt is
determined by trials, solving (1) for values of β uniformly distributed in an interval [βmin, βmax];
we define βopt as the value corresponding to the minimum relative reconstruction error.

• spacecraft: the original image is a 256 × 256 image with sharp details, with values
lying in [0, 255] and the background b is 1; the imaging matrix is taken from
www.mathcs.emory.edu/~nagy/RestoreTools. The ℓ2 relative error from the detected
data and the original image is 0.709139, βopt is equal to 1.63 · 10−3.

• cameraman: a 256× 256 image with values in [0, 3000]. The imaging matrix derives from
a Gaussian PSF with σ = 1.3; b is 0 and the ℓ2 relative distance of g from x∗ is 0.116422;
βopt is equal to 6.716 · 10−3.

• micro: a confocal microscopy phantom of size 128 × 128 described in [16], with values
in [0, 69]; the H matrix is the same used in [16]; b is 0. The relative ℓ2 relative distance
between the x∗ and g is 0.190869; βopt is 4.77 · 10

−2.

For all the three models, ϕ0 ≡ DKL and ϕ1 is the Hyper Surface (HS) potential: ϕ1(x) =
√
∑

i ‖∇ix‖+ δ2, where ∇i is the discrete gradient at the i–th pixel and δ > 0 (see [17] and
references therein).
Model 1 and inexact Bregman method use as inner solver the Scaled Gradient Projection method
[7]. Model 2 is implemented by an Alternating Directions Method of Multipliers, as specified in
[15]. An adaptive rule for the selection of the parameter of this method is used (see [18]). In
Table 1 the numerical results are reported. For cameraman, an high counts image, the three
methods are equivalent, while for micro and spacecraft (low counts images) Model 1 and Model
2 do not achieve good results. Figure 1 shows the obtained restored images.

A common problem rising in astronomical imaging is the restoration of HDR images, i.e.
images composed by very bright point sources of known position and faint diffuse objects around
such sources. A suitable approach is to consider the signal as the sum of two terms [10], namely
the point component xp and the diffuse component xd: x = xp + xd. Then, the restored image
is obtained by regularizing the diffuse component only (see [4, 13] for details)

min
x≥0

DKL(g;Hx+ b) + βϕ1(xd). (4)

The problems to which this strategy is applied are listed below. The evaluation of the models is
done by computing the relative reconstruction error only on a window of interest of the diffuse
component, located around the sources: this error is denoted by ρw.
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Table 1. Comparison of the three models. In column–wise order: test problem, model, number of
external iterations, total number of inner iterations, estimation of β, relative reconstruction error and
time in secs. In the Bregman case, β = 10βopt. The asterisk denotes that the maximum number of
iterations allowed is reached.

Test problem Model kext ktot βk err time(s.)

Model 1 8 815 6.689 · 10−3 8.562 · 10−2 16.67
cameraman Model 2 451 − 6.699 · 10−3 8.535 · 10−2 30.28

Bregman 6 3906 − 8.730 · 10−2 109.14

Model 1 11 1458 3.374 · 10−3 1.658 · 10−1 9.77
micro Model 2 *5000 − 7.637 · 10−3 1.294 · 10−1 94.41

Bregman 9 4615 − 8.370 · 10−2 45.81

Model 1 41 3731 1.000 · 10−41 1.000 · 100 258.73
spacecraft Model 2 *5000 − 1.501 · 10−4 5.098 · 10−1 360.20

Bregman 9 27480 − 3.780 · 10−2 972.14
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Figure 1. Visual inspection of the comparison. In column–wise order: original signal, blurred noisy
images g, restored images by Model 1, Model 2 and inexact Bregman procedure, respectively.

• YSO: a 256×256 image of a single point source surrounded by a jet of circumstellar material.
The imaging matrix is generated by means of Software Package CAOS [1], the relative ℓ2
distance of g from x∗ is 21.0254, b is 3.73 · 103. The source’s intensity is 1.0184 · 109, while
the maximum intensity on the xd component is 2.3318 · 106 (see [4, 13]).

• Binary Stars: a 1024 × 1024 image with two point sources situated in a black disk at
the centre of the diffuse component. H simulates the imaging matrix of a telescope. The
ℓ2 relative distance of g from x∗ is 0.9823, b is 101.4. The point sources’ intensities are
3.1411 · 106 while in the diffuse component the maximum value is 1.5200 · 103.

5th International Workshop on New Computational Methods for Inverse Problems IOP Publishing
Journal of Physics: Conference Series 657 (2015) 012011 doi:10.1088/1742-6596/657/1/012011

4



 

 

−1500 −1000 −500 0

 

 

−1500 −1000 −500 0

 

 

−1500 −1000 −500 0

 

 

−1500 −1000 −500 0

 

 

−1500 −1000 −500 0

Figure 2. YSO reconstructions (particular). From left to right: x∗, g, Bregman procedure with
Tikhonov regularization with L = I, L = ∇ and L = ∇2 respectively. The highlighted square refers to
the window on which ρw is computed. The images are displayed in a reverse square root scale.

For YSO problem, the Tikhonov regularization is used: ϕ1(x) = 1/2‖Lx‖2, with L = I (identity
matrix), L = ∇ (discrete gradient) or L = ∇2 (discrete Laplacian). The optimal value for
β is 1.6 · 10−10, 5.0 · 10−11 and 1.0 · 10−11, respectively. In case of the Binary Stars, the HS

regularization is used, βopt is 5 · 10
−6. The solver used is SGP.

Table 2. YSO numerical results. ϕ1 is the regularization function, βest is the computed estimate,
kext the number of external iterations, ktot the total number of inner iterations and ρw is the relative
reconstruction error of the window of interest. In the Bregman case, the β value denotes the value used
in the procedure.

Model 1 Inexact Bregman

ϕ1 βest kext ktot ρw β kext ktot ρw

L = I 3.0 · 10−9 11 6286 0.69 2.0 · 10−9 20 3590 0.3292
L = ∇ 1.4 · 10−9 10 5828 0.23 0.4 · 10−9 16 5287 0.3368
L = ∇2 5.3 · 10−10 9 4064 0.47 3.3 · 10−10 63 10071 0.2547

Table 2 shows the numerical results regarding the YSO problem. We observe that Model 1
can not achieve the optimal value for β, and does not provide reliable results. On the other
hand, the inexact Bregman procedure allows to obtain satisfactory results even with a raw
overestimation of the regularization parameter (Figure 2).
Finally, in Figure 3 the restoration of the image regarding the Binary Stars is presented. We
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Figure 3. Binary star, window of interest. From left to right: x∗, g, restored image by SGP with βopt,
restored image at the 32th external iteration by Bregman procedure with 10βopt. The final panel is the
superposition plot of the 513th line of xd. The black dashed line is the original object, the red one refers
to SGP reconstruction while the blue one refers to inexact Bregman reconstruction.

compare the results of Bregman procedure with the reconstruction obtained by solving (4) with
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SGP method with β = βopt. In such a way, the restored image shown in Figure 3 (3rd panel) is
obtained in 178 iterations with a reconstruction relative error of 0.0941. Using the same method
as inner solver in the inexact Bregman procedure, after 32 external iterations and 362 total
inner iterations we obtain the reconstruction shown in Figure 3 (4th panel) where ρw = 0.0822:
this result is achieved by setting β = 10βopt. From the superposition plot of the line of diffuse
data xd related to the two stars (Figure 3, 5th panel), we can observe that the inexact Bregman
procedure can reach the bottom of the central disk more precisely than the minimization of
DKL+βoptϕ1: this is due to the enhancing contrast feature of the inexact Bregman procedure.

4. Conclusions

In this work, the inexact Bregman procedure is compared with two different approaches for the
estimate of the regularization parameter in presence of Poisson noise. It is shown that in case of
high counts images the three models have a very similar behaviour, while for low counts images,
and for HDR images, Model 1 and Model 2 do not provide satisfactory results. The Bregman
procedure, instead, allows to treat such images and moreover permits to use an overestimation
of the regularization parameter and at the same time to have a contrast enhancing.
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