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A B S T R A C T

Human serum albumin (HSA) is the most abundant circulating protein in the body and presents an extensive
range of biological functions. As such, it is prone to undergo post-translational modifications (PTMs). The non-
enzymatic early glycation of HSA, one of the several PTMs undergone by HSA, arises from the addition of
reducing sugars to amine group residues, thus modifying the structure of HSA. These changes may affect HSA
functions impairing its biological activity, finally leading to cell damage.

The aim of this study was to quantitate glycated-HSA (GA) levels in the plasma of heart failure (HF) patients
and to evaluate the biological effects of GA on HL-1 cardiomyocytes.

Plasma GA content from HF patients and healthy subjects was measured by direct infusion electrospray
ionization mass spectrometry (ESI-MS). Results pointed out a significant increase of GA in HF patients with
respect to the control group (p < 0.05). Additionally, after stimulation with GA, proteomic analysis of HL-1
secreted proteins showed the modulation of several proteins involved, among other processes, in the response to
stress. Further, stimulated cells showed a rapid increase in ROS generation, higher mRNA levels of the in-
flammatory cytokine interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α), and higher levels of the
oxidative 4-HNE-protein adducts and carbonylated proteins.

Our findings show that plasma GA is increased in HF patients. Further, GA exerts pro-inflammatory and pro-
oxidant effects on cardiomyocytes, which suggest a causal role in the etiopathogenesis of HF.

1. Introduction

Human serum albumin (HSA) is the most abundant circulating
protein in the body. Besides its well-known oncotic function, it has an
extensive range of physiological and pharmacological functions that
may be relevant under physiological circumstances and in disease [1].

It plays an important defensive role in oxidative stress, exerts im-
munomodulatory, anti-inflammatory, and anti-coagulant effects; it is a

crucial part of the endothelial surface, and contributes to the main-
tenance of the normal capillary permeability and endothelial stabili-
zation (reviewed in Ref. [1]). Further, a plethora of drugs has been
determined to bind in specific sites of albumin, so that albumin has a
fundamental drug-carrier role which interferes with drugs efficacy and
availability at target organs [2].

Because of its long half-life (about 21 days) compared with other
proteins and its high concentration in the circulatory system, serum
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albumin is a plasmatic protein that is highly sensitive to post-transla-
tional modifications (PTMs), such as glycation.

Non-enzymatic glycation is indeed one of the underlying mod-
ifications that can modify its native secondary and tertiary structure
[3]. In this process, also known as the Maillard reaction, free amine
groups of albumin are initially attached by glucose or derivatives to
reversibly form a Schiff base product, followed by the formation of a
stable fructosamine residue by Amadori rearrangement. This is the
early glycation process: Schiff's base and fructosamine (Amadori pro-
duct) have been called early glycation adducts. Further modifications in
these early stage glycation products, such as rearrangement, oxidation,
polymerization, and cleavage give rise to irreversible conjugates, called
advanced glycation end products (AGEs) [4].

Non-enzymatic glycation occurs in normal conditions, but HSA is
typically 2–3 times more glycated than the rest of the serum proteins in
hyperglycaemic condition [3].

Several in vitro studies have shown the implication of glycated al-
bumin, mainly AGE-albumin, in cardiovascular diseases (CVD): for
example, platelets are activated by both irreversibly and reversibly
glycated albumin, thus promoting CVD development [5]; in endothelial
cells glycated albumin enhanced ROS production by activating multiple
signaling pathways [6]. Glycated albumin can also trigger damaging
effects in vitro and in vivo on hepatic cells [7], all features that con-
tribute to the increased mortality of diabetic patients [8]. Finally, bo-
vine glycated albumin stimulates cardiomyocyte ROS production,
which results in NF-κB activation and upregulation of atrial natriuretic
factor mRNA suggesting that glycated albumin may play a role in the
development of diabetic heart disease [9].

The relationship between AGEs and cardiovascular diseases is well
known [10]. Elevated levels of AGEs were first associated with diabetes,
where it was thought that AGEs formation was exclusively the result of
increased blood sugar concentrations [11]. However, recent studies
have extended this view and have shown that AGEs accumulation oc-
curs also in pathological situations such as cardiac dysfunction, and
renal failure, independent of diabetes [12–15].

Further, through decreased compliance of the heart and the vascu-
lature, AGE accumulation is considered to be related to the onset and
progression of heart failure (HF) [14,16].

However, the possible effects of early glycation products, such as
the Amadori product, in the cardiovascular system have been less stu-
died than the effects of the irreversible AGEs.

In this study we analyzed the levels of the Amadori product gly-
cated-albumin (GA) in non-diabetic patients with HF and the effects of
this modified protein on cardiomyocytes in vitro.

2. Materials and methods

2.1. Study population

Plasma samples were obtained from a subset of healthy subjects
(controls) and HF patients matched according to their age, sex, and
clinical characteristics, from a previously enrolled population [17]. The
study was approved by the Ethical Committee European Institute of
Oncology and Monzino Cardiologic Center (registration number R205-
CCFM S208/412) [17]. All patients belong to a cohort of HF patients
regularly followed at our HF Unit and underwent our standard HF as-
sessment which included full clinical evaluation, standard laboratory
tests, echocardiography, spirometry, and alveolar capillary diffusion, as
well as cardiopulmonary exercise test. All patients had severe HF, being
in New York Heart Association (NYHA) class III and IV, but were in
stable clinical conditions. Patients with an established diagnosis of
diabetes mellitus or under diabetes treatment were excluded. A detailed
summary of the clinical characteristics, obtained as previously de-
scribed [17], is reported in Table 1.

2.2. Quantitation of glycated albumin (GA) by mass spectrometry

The relative composition of albumin isoforms in human plasma
samples was evaluated, as previously described [18], by direct infusion
using the Xevo TQS micro triple quadrupole mass spectrometer coupled
with the M-Class UPLC system (Waters Corporation, Milford, USA).
Briefly, centrifuged plasma samples at 3000×g for 10min at 4 °C were
diluted 200 folds in 50% ACN containing 0.1% FA. After centrifugation
at 14 000×g for 10min at 4 °C, 5 μl were injected at 5 μl/min and the
spectra were acquired for 6min with the following parameters: positive
ESI mode; mass range 1100–1350 m/z; capillary voltage, 3 kV; cone,
90 V; desolvation temperature 350 °C; source temperature 150 °C. Data
processing for deconvolution was performed with the MaxEnt1 function
on the Masslynx software (Waters Corporation, Milford, USA). Mer-
captoalbumin (native HSA) and GA (+160 ± 2 Da) were detected and
their intensities were used to calculate the relative abundances as
previously described [18] and detailed in Supplementary information.

2.3. Carboxymethyl lysine assay

Plasma levels of carboxymethyl lysine (CML) were measured with a
commercially available ELISA kit (Biosite, Taby, Sweden) according to
the manufacturer's instruction.

2.4. Cell culture and treatment

The HL-1 cardiomyocytes, a kind gift of Prof. W.C. Claycomb, (LSU
Health Sciences Center, New Orleans, LA, USA), were cultured in
complete Claycomb medium supplemented with 10% FBS (Sigma-
Aldrich, Milan, Italy), 2 mmol/L L-glutamine (Thermo Fisher Scientific,
Milan, Italy), and 100 μmol/L norepinephrine (Sigma-Aldrich, Milan,
Italy) according to Prof. Claycomb's instructions [19]. HL-1 cells
(1× 105) were seeded onto a 6-well plate and were grown for 48 h in
complete media. Before stimulation, cells were washed with PBS and
then were incubated with vehicle (control cells), GA (A8301, Sigma,
Milan, Italy, at 100 or 250 μg/mL corresponding to ∼1.5 μmol/L or
∼3.7 μmol/L, respectively), and non-glycated recombinant albumin
(HSA, A9731, Sigma, Milan, Italy, at 250 μg/mL corresponding to
∼3.7 μmol/L) for 8 or 16 h in Claycomb serum free medium. For se-
cretome analysis, the treatment of the cells for 8 h and 16 h with vehicle
or human albumin (GA or non-glycated) was prolonged for additional
24 h after changing the medium with serum- and phenol-free medium

Table 1
Clinical characteristics of subjects categorized in healthy subjects, HF patients
(NYHA class III), and HF patients (NYHA class IV).

Healthy subjects
(n=10)

HF patients NYHA
III (n= 7)

HF patients NYHA
IV (n= 7)

Age 56.27 ± 4.69 67 ± 12.14 67.43 ± 6.24
Gender (m/f) 7/3 5/2 6/1
Hypertension 0/10 5/7 5/7
Dyslipidemia 0/10 4/7 4/7
Smoke 1/10 1/7 3/7
BMI 25.66 ± 3.42 26.68 ± 3.38 27.11 ± 4.81
Glycemia (mg/

dL)
102.4 ± 12.76 105 ± 12.39 120.2 ± 12.01

GA (%) 6.53 ± 0.54 7.38 ± 1.47 8.13 ± 0.77
EF (%) – 39.9 ± 6.57 26.86 ± 11.31
BNP (pg/mL) – 265.14 ± 310.15 967.8 ± 668.6
DLCO (%

predicted)
94.21 ± 21.06 72.09 ± 17.43 65.87 ± 12.21

VO2 peak/Kg
(mL/min/
Kg)

34.58 ± 8.46 15.39 ± 8.95 11.05 ± 2.09

Data are expressed as mean ± SD. BMI, body mass index; GA, glycated human
serum albumin; EF, ejection fraction; BNP, Brain natriuretic peptide; DLCO,
carbon monoxide lung diffusion; VO2, oxygen consumption; m, male; f, female.
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[20].

2.5. MTT assay

The methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was
based on the protocol first described by Mosmann [21]. Briefly, after
treatment for 16 h with GA (100–250 μg/mL) or vehicle in Claycomb
serum-free media as specified above, the cells were washed with PBS
and incubated in serum-free and phenol-free medium for 24 h. After-
ward, cells were incubated for 30min at 37 °C with 0.1 mg/mL of MTT
(Sigma-Aldrich, Milan, Italy), dissolved in serum- and phenol-free
medium. At the end of the incubation, cells were dissolved in DMSO.
Absorbance was recorded at 550 nm using the microplate spectro-
photometer system (Mithras LB940, Berthold Technologies, Bad
Wildbad, Germany). Data are expressed as absorbance values/μg of
proteins.

2.6. Cell death analysis

Cytoplasmic histone-complexed DNA fragments (mono- and oligo-
nucleosomes) were quantified as described [22] by using a one-step
sandwich immunoassay (Cell death detection ELISA, Roche Diagnostics,
Mannheim, Germany), according to the manufacturer's instructions.
The data are expressed as absorbance at 405 nm (reference wavelength
490 nm)/μg of proteins.

2.7. Label-free mass spectrometry analysis

Secretome samples for proteomic analysis were desalted, con-
centrated and digested as previously described [20] with minor varia-
tions. Briefly, the cell culture media from each condition were collected
and cell debris was removed by centrifugation. Then, samples were
dialyzed at 4 °C using a 3500 molecular weight cut-off dialysis tubing
(Spectrum Laboratories, Rancho Dominguez, CA, USA) against 5 mmol/
L NH4HCO3 containing 0.01% EDTA, followed by dialysis against
water. After lyophilization, the secreted protein pellets were dissolved
in 25mmol/L NH4HCO3 containing 0.1% RapiGest (Waters Corpora-
tion, Milford, MA, USA), sonicated, and centrifuged at 13 000×g for
10min. Samples (25 μg of protein) were then incubated 15min at 80 °C
and reduced with 5mmol/L DTT at 60 °C for 15min, followed by car-
bamidomethylation with 10mmol/L iodoacetamide for 30min at room
temperature in the darkness. Then, 2 μg of sequencing grade trypsin
(Promega, Milan, Italy) were added to each sample and incubated
overnight at 37 °C. After digestion, 2% TFA was added to hydrolyze
RapiGest and inactivate trypsin. Tryptic peptides were used for label-
free mass spectrometry analysis. Label-free mass spectrometry analysis,
LC-MSE, was performed on a hybrid quadrupole-time of flight mass
spectrometer coupled with a nanoUPLC system and equipped with a
Trizaic source, as previously detailed [20,23].

2.8. Gene ontology analysis

Data were analyzed with the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING 10.5) database [24] as previously
described [25], to identify enriched gene ontology (GO) terms in the
biological process, molecular function or cellular component cate-
gories.

2.9. Intracellular reactive oxygen species (ROS) formation

Generation of intracellular ROS was measured by the oxidative-
sensitive fluorescent probe 2′,7′‐dichlorofluorescein diacetate (DCF-
DA). HL-1 cells were grown in complete media for two days on 96
black-wall clear bottom plates followed by 24 h of starvation in serum-
free and phenol-free media. Cells were incubated with 10 μmol/L
DCFH‐DA (Sigma-Aldrich, Milan, Italy) in serum-free and phenol-free

media for 1 h at 37 °C in the presence of 100 μmol/L ascorbic acid. At
the end of the incubation, cells were washed in PBS and exposed to GA
250 μg/mL, HSA 250 μg/mL or vehicle for the indicated time. The
production of ROS was measured by the intensity of DCF emission at
525 nm (excitation 485 nm), in a multifunctional microplate reader
Tecan Infinite 200 PRO (TECAN, Milan, Italy). Results are expressed as
absolute fluorescence (arbitrary units) of DCF after subtracting blank
readings from all measurements.

2.10. Western blotting

Cell monolayers were harvested in Laemmli buffer (2% SDS, 10%
glycerol and 62.5mmol/L Tris, pH 6.8) containing a protease inhibitor
cocktail (Sigma-Aldrich, Milan, Italy). Cell protein content was mea-
sured using the DC Protein Assay (Biorad Laboratories, Milan, Italy).
Equal amounts of proteins (specifically 35 μg for the detection of HNE-
adducts, 15 μg for the detection of carbonylated proteins, and 10 μg for
the detection of HSP90 beta), from each condition, were separated on
12% SDS-polyacrylamide gel under reducing conditions in running
buffer (25 mmol/L Tris, 3.5 mmol/L SDS, 192 mmol/L glycine) and
transferred to nitrocellulose membranes in Transfer buffer with SDS (25
mmol/L Tris, 192 mmol/L glycine, 20% methanol, and 0.02% SDS) as
previously described [26]. Transferred proteins were stained with
MEMCode staining kit (Thermo Fisher Scientific, Milan, Italy) for
loading control. The membranes were incubated with primary anti-
bodies against 4-HNE-adducts (1:3000, Abcam, Cambridge, UK) or
HSP90 beta (1:5000, Thermo Fisher Scientific, Milan, Italy), and sub-
sequently with anti-rabbit horseradish peroxidase-conjugated sec-
ondary antibody (1:5000, Bio-Rad, Milan, Italy).

For the detection of carbonylated proteins, lyophilized pellets were
suspended in 6% SDS and extracted proteins were derivatized with
20mmol/L DNPH (in TFA 20%) for 15min at room temperature. The
DNPH-derivatized samples were then neutralized with 2mol/L Trizma
buffer containing 30% glycerol and 10% 2-β-mercaptoethanol, and the
proteins were separated by SDS-PAGE and blotted to nitrocellulose
membranes. Immunodetection was carried out using biotinylated anti-
DNP antibody (1:5000, Invitrogen, Milan, Italy) and conjugated avidin-
HRP (1:1000, Biorad, Milan, Italy) [27].

The bands were visualized by means of enhanced chemilumines-
cence (GE Healthcare, Milan, Italy) and analyzed with the QuantityOne
software (Bio-Rad Laboratories, Milan, Italy) for densitometric analysis
including normalization for total protein loading.

2.11. RNA extraction and real-time reverse transcription polymerase chain
reaction (RT-PCR)

Total cellular RNA was extracted using the Total RNA purification
plus kit (Norgen BioTek, Ontario, Canada) and reverse transcribed at
42 °C for 50min, and at 70 °C for 15min (Bio-Rad Laboratories, Milan,
Italy). For 1 μg of total cellular RNA, we used 200 units of reverse
transcriptase (RT; SuperScript III, Invitrogen, Life Technologies, Monza,
Italy), 3 μg random hexamer primers, 1 mmol/L dNTPs, and 40 units
Rnase inhibitor.

Real-time quantitative PCR (qRT-PCR) was carried out to detect
Nrf2, IL-6, TNF-α, IL-10, PGC1α, and PGC1β mRNA, with GAPDH
mRNA being used for sample normalization. Primers were purchased
from Integrated DNA Technologies (Leuven, Belgium) and the primer
sequences were: mouse GAPDH sense 5′ CGTGCCGCCTGαAACC 3’;
mouse GAPDH antisense: 5′ TGGAAGAGTGGGAGTTGCTGTTG 3’;
mouse Nrf2 sense 5′ GATGCTCATGAAATTTGCCTGC 3′ and mouse Nrf2
antisense: 5′ ACAAGCTTCGGTCTGGATCCA 3’. Primers for IL-6
(QT00098875), TNF-α (QT00104006), IL-10 (QT00106169), PGC1α
(QT02524242), and PGC1β (QT00125272), were purchased from
Qiagen (Milan, Italy). qRT-PCR was carried out as previously described
on the iCycler optical system (Bio-Rad Laboratories, Milan, Italy) [28].
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2.12. Statistical analysis

Clinical data from healthy subjects (control) and HF patients were
analyzed using SAS v9.4 (SAS Institute, Cary, NC, USA) and are ex-
pressed as mean ± standard deviation (SD), subdividing HF patients
according to NYHA class (III vs IV). Univariate analysis was performed
by ANOVA to identify statistically different variables among groups
while Pearson correlation was used to identify a possible correlation
between GA and clinical variables. General linear model (GLM) was
used to highlight the trend of increase of GA with the gravity of the
disease, both as univariate analysis and as multivariate analysis taking
into consideration differences of age and presence of hypertension.

Data obtained from in vitro experiments were expressed as mean
values ± SEM and analyzed with GraphPad Prism v5.03 using ANOVA
for repeated measures, followed by Tukey's test (n= the number of
individual experiments performed in duplicate or triplicate), after
normality assessment by Kolmogorov-Smirnov tests. p values of< 0.05
were considered significant.

3. Results

3.1. Analysis of glycated albumin in heart failure patients

Mass spectrometry analysis of albumin in human plasma samples
allowed us to calculate the fraction of GA with respect to all the al-
bumin isoforms (Fig. 1A). Comparing the percentage of GA between
healthy subjects and HF patients, subdivided according to HF severity
as inferable from the NYHA class (III vs IV), we observed an increase of
GA in the plasma of the patients with respect to the healthy subjects
(6.53 ± 0.54% for healthy subjects, 7.38 ± 1.47% for HF class III,
and 8.13 ± 0.77% for HF class IV, Table 1). The statistical analysis
demonstrated that the percentage of GA was significantly higher in the
patients’ group with the higher degree of HF severity (Fig. 1B), ac-
cording to a univariate ANOVA analysis (p= 0.0075) and GLM analysis
(p= 0.0022). Considering that age and presence of hypertension cor-
relate with GA and are significantly different among groups, a multi-
variate GLM analysis was also performed after adjustment for age and
hypertension revealing a significant association of GA with HF severity
(p=0.0391). Of note, we detected an inverse correlation between GA
and peak VO2/Kg (Fig. 1C), a known index of oxygen consumption
previously associated with HF severity [17].

Analysis of CML levels on the plasma of HF patients and controls did
not reveal any significant changes (Supplementary Fig. 1), thus in-
dicating that in our samples early glycation, not advanced glycation,
was present (data not shown).

3.2. Proteomic analysis of the secretome from HL-1 treated with GA

In order to investigate the effects of GA on HL-1 cardiomyocytes, we
stimulated the cells with the purified commercially available GA. To
this purpose, we first characterized the glycation sites present in the
purified commercially available GA and in the one isolated from plasma
of HF patients by means of mass spectrometry (details are available in
the Supplementary Material). Results showed that 8 out of 9 glycated
residues found in the human albumin from HF patients were also pre-
sent in the purified commercially available GA (Supplementary Fig. 2
and Supplementary Table S1). Additional modified residues were de-
tected only in the purified commercially available GA, although the
majority at a low relative abundance (Supplementary Table S1).

Aiming to elucidate the biological impact of GA on HL-1 cardio-
myocytes, we first determined the influence of GA on cell viability and
apoptosis. The cells were stimulated with GA (100 or 250 μg/mL) for
16 h and then subjected to MTT assay. As reported in Fig. 2A, cells
treated with GA (250 μg/mL) exhibited a slightly decreased in pro-
liferation (−10%, p < 0.05) compared to the control cells. Further,
apoptosis was assessed by means of Cell Death Detection ELISA assay,

which measures cytosolic histone-associated DNA fragments present in
the cell lysates. Results indicated that cell apoptotic responses remained
unchanged after GA treatment (Fig. 2B).

For the proteomic analysis, HL-1 cells were pre-treated for 8 h or
16 h with GA (100 or 250 μg/mL) in serum-free Claycomb medium and
then incubated for 24 h, in serum-free phenol-free medium in the ab-
sence of GA, in order to collect secreted proteins without the con-
tamination of the exogenously added GA. Then, employing a label-free
mass spectrometry based method (LC-MSE) [20], we compared the se-
cretome after GA treatment at the two different time points (8 h and
16 h) and identified those proteins that were differently abundant.

This approach allowed us to identify a total of 216 and 246 proteins
in cells incubated for 8 h or 16 h, respectively, as reported in
Supplementary Tables S2 and S3. After treatment with GA for 8 h, eight
proteins were less abundant after treatment with 250 μg/mL GA, and
only one was released at higher extent (Table 2). At 16 h, six proteins
were more abundant after treatment with 250 μg/mL GA, while eight
were more abundant in the secretome of control cells (Table 3).

The lists of differentially abundant proteins were analyzed with
STRING for evaluation of protein-protein interactions and gene on-
tology analysis in order to find out the enriched biological processes. As
shown in Fig. 3, considering only the proteins that were modulated
after 8 h, no significantly enriched biological process was detected,
while among proteins modulated after 16 h of treatment some biolo-
gical processes, including response to organic substance and response to
stress, were significantly enriched.

Of note, three proteins (Heat shock protein HSP90 beta, Nucleolin
and Heat shock protein HSP90 alpha) belonging to these biological
processes were commonly modulated at 8 h and 16 h, as shown in the
Venn diagram in Fig. 4.

Thus, in order to verify the proteomic results, we confirmed by
immunoblotting that treatment with GA significantly reduced the re-
lease of Heat shock protein HSP90 beta (Fig. 5). This modulation was
not observed when cells were stimulated with non-glycated HSA
(250 μg/mL) (Supplementary Fig. 3A).

3.3. Effects of GA on protein oxidation and lipoxidation

In view of the statistically significant enrichment of the GO term
related to response to stress, we next assessed the capacity of GA to
cause oxidative damage.

Exposure of HL-1 cells to GA resulted in the rapid intracellular
generation of ROS, assessed by DCF fluorescence (Fig. 6). When cells
were in presence of non-glycated HSA no increase in ROS levels was
observed (Supplementary Fig. 3B).

Subsequently, we investigated whether GA mediated downstream
oxidative damage to proteins. We evaluated, by means of western blot,
intracellular 4-hydroxynonenal-protein adducts and carbonylated pro-
tein levels, both biomarkers of protein oxidation and lipoxidation.
Levels of adducted proteins with 4-hydroxynonenal (4-HNE) after 8 h
and 16 h of cell treatment with GA are shown in Fig. 7A and C, and
Supplementary Figs. 4B and 4C. Densitometric analysis revealed that 4-
HNE-protein adduct levels increased dose-dependently at 8 h, being
statistically significant when the cells were incubated with GA (250 μg/
mL) (Fig. 7B). 4-HNE-protein adducts formation after 16 h of cell
treatment with GA did not change with respect to the control cells
(Fig. 7D).

Carbonylated protein levels of cells treated with GA were detected
after DNPH derivatization of the carbonyl groups using an anti-DNP
antibody (Fig. 8A and C, Supplementary Figs. 4D and 4E). Densito-
metric analysis unveiled that cells treated with GA showed a significant
increase in protein carbonylation in comparison with control cells at
16 h (Fig. 8B and D). Cells treatment with non-glycated HSA (250 μg/
mL) did not show differences in the levels of carbonylated proteins with
respect to the control cells (Supplementary Figs. 3C and 3D).

Additionally, it was also investigated if GA could modulate mRNA
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expression levels of nuclear factor (erythroid-derived 2)-like 2 (Nrf2).
Our results showed a significant increase of Nrf2 mRNA when the cells
were treated with 250 μg/mL GA, either after 8 h and 16 h (Fig. 9). This
effect was not observed when the cells were treated with non-glycated
HSA (Supplementary Fig. 3E).

3.4. Effects of GA on inflammation and mitochondrial biogenesis mediators

Further, our results highlighted a significantly enhanced IL-6 mRNA
production only after 8 h of treatment with GA (100 or 250 μg/mL)
(Fig. 10A and E). The levels of IL-6 mRNA were not significantly

Fig. 1. Glycated albumin (GA) in heart failure patients. A) Representative deconvoluted ESI-MS spectrum of albumin from plasma of a HF patient. Arrows indicate
the mercaptoalbumin (native HSA), the cysteinylated (Cys-HSA), and the glycated (GA) albumin isoforms characterized by a mass shift of 119 ± 2 and 162 ± 2Da
with respect to the native HSA, respectively. ESI-MS spectra were acquired in positive ion mode and setting a scan range of m/z 1100–1350. B) The percentage of GA
with respect to the total amount of albumin has been analyzed by mass spectrometry in healthy subjects (controls) and HF patients divided in NYHA class III and class
IV. Observed GA percentage values were 6.53 ± 0.54%, 7.38 ± 1.47%, and 8.13 ± 0.77% for healthy subjects, HF class III, and HF class IV, respectively. Values
are represented as mean ± SEM. *p < 0.05 vs controls. C) Correlation between the percentage of GA and peak VO2/Kg. HSA, human serum albumin.

Fig. 2. Effects of GA on HL-1 cell pro-
liferation and apoptosis. A) HL-1 cells were
stimulated with GA (100 or 250 μg/mL) for
16 h and then cultured in serum-free
phenol-free medium for additional 24 h.
Cell proliferation assay was performed em-
ploying the MTT colorimetric method. Data
are expressed as the means ± SEM of ab-
sorbance values/μg of proteins from 3 in-
dependent experiments. *p < 0.05 com-
pared to control cells. B) Analysis of
apoptosis. Cells were stimulated with GA
for 16 h. Cell lysates were collected to

measure apoptosis after 24 h of incubation in serum-free and phenol-free by means of Cell Death Detection ELISA Plus assay. Data are expressed as the means ± SEM
of absorbance values/μg of proteins from 3 independent experiments.
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affected when the cells were treated for 8 h with non-glycated HSA
(250 μg/mL) (Supplementary Fig. 3F). Additionally, a significant in-
crease of TNF-α mRNA levels was observed in cells treated with GA
(250 μg/mL), but not with non-glycated HSA, for 8 h (Fig. 10B and
Supplementary Fig. 3G). The anti-inflammatory cytokine interleukin-10
(IL-10) mRNA was not detectable even after stimulation with GA (data
not shown).

We next investigated the effects of GA on the expression of per-
oxisome proliferator-activated receptor gamma coactivator 1-alpha and
beta (PGC1α and PGC1β respectively), two genes involved in the mi-
tochondrial biogenesis. As regards PGC1α, no significant modulations
were observed either after 8 h or 16 h of treatment (Fig. 10C and F). By
the contrary, PGC1β mRNA levels raised after 8 h of treatment with GA

(Fig. 10D and G).

4. Discussion

In this study, we found an increased amount of glycated albumin,
measured by quantitative mass spectrometry, in the plasma of HF pa-
tients, and we took advantage of a proteomics-based approach to assess
the effects of GA in in vitro cultured cardiomyocytes. Further, a func-
tional interpretation of the identified proteins, obtained by searching
the Gene Ontology (GO) annotations for over-represented terms, re-
vealed that GA is a potential mediator of the response to stress.

Among proteins decreased after GA treatment, we found HSP90, one
of the most abundant cellular HSPs that contributes intracellularly to

Table 2
List of differentially abundant proteins in the secretome of HL-1 cells treated with GA for 8 h identified by LC-MSE and analyzed with Progenesis QIP.

Accession Description Peptide count/Unique
peptides

Scorea Anova (p) Max fold change Highest mean
condition

Lowest mean condition

P14869 60S acidic ribosomal protein P0 6/3 32.6 2.67E-06 1.422 CTRL 250
P09405 Nucleolin 7/5 38.4 1.55E-13 1.413 CTRL 250
P26350 Prothymosin alpha 3/2 25.4 2.86E-05 1.397 CTRL 250
P14131 40S ribosomal protein S16 4/3 26.0 0.000763 1.312 CTRL 250
P11499 Heat shock protein HSP90 beta 37/18 266.4 5.77E-09 1.263 CTRL 250
P02301 Histone H3.3C 14/10 79.3 0.243 836 1.239 CTRL 250
Q03265 ATP synthase subunit alpha,

mitochondrial
13/6 70.4 6.63E-06 1.236 CTRL 250

P07901 Heat shock protein HSP90 alpha 25/7 160.9 1.73E-06 1.205 CTRL 250
P68037 Ubiquitin-conjugating enzyme E2 L3 3/3 19.6 0.077 822 1.258 250 CTRL

a Confidence score for protein identification from Progenesis QIP; CTRL, control; 250, GA concentration (μg/mL).

Table 3
List of differentially abundant proteins in the secretome of HL-1 cells treated with GA for 16 h identified by LC-MSE and analyzed with Progenesis QIP.

Accession Description Peptide count/Unique
peptides

Scorea Anova (p) Max fold
change

Highest mean
condition

Lowest mean
condition

P51881 ADP/ATP translocase 2 5/2 30.1 0.0298 2.029 CTRL 100
P09405 Nucleolin 11/5 65.6 0.0049 1.764 CTRL 250
P11499 Heat shock protein HSP90 beta 37/13 297.9 0.0006 1.678 CTRL 250
P63158 High mobility group protein B1 4/2 21.7 0.0233 1.511 CTRL 250
P08113 Endoplasmin 11/2 57.6 0.0044 1.403 CTRL 250
P07901 Heat shock protein HSP90 alpha 31/10 218.6 0.0500 1.301 CTRL 250
Q9CS84 Neurexin-1 2/2 8.9 0.0035 1.247 CTRL 250
P14211 Calreticulin 11/6 89.2 0.0399 1.222 CTRL 250
O89086 RNA-binding protein 3 5/2 39.6 0.0001 1.467 250 CTRL
Q8CGC7 Bifunctional glutamate/proline–tRNA ligase 18/8 96.4 0.0013 1.336 250 CTRL
Q7TMK9 Heterogeneous nuclear ribonucleoprotein Q 9/4 48.1 0.0017 1.243 250 CTRL
P05201 Aspartate aminotransferase, cytoplasmic 25/17 196.7 0.0000 1.234 250 CTRL
P63017 Heat shock cognate 71 kDa protein 44/20 449.6 0.0007 1.223 250 CTRL
Q99JF5 Diphosphomevalonate decarboxylase 2/2 10.9 0.0425 1.204 250 CTRL

a Confidence score for protein identification from Progenesis QIP; CTRL, control; 100 or 250, GA concentration.

Fig. 3. Gene ontology analysis of secreted
proteins modulated by GA visualized with
STRING. A) Protein network obtained with
proteins modulated after 8 h of treatment
with GA. B) Protein network obtained with
proteins modulated after 16 h of treatment
with GA in which enriched biological pro-
cesses are highlighted. In B, proteins asso-
ciated with the GO term response to stress
are colored in blue (p=0.0229), while
proteins associated with the response to
organic substances are colored in red
(p=0.000222).
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cell survival and protection by regulating the folding and stability of a
wide range of key cellular proteins, including survival and apoptotic
factors [29]. HSP90 efficiently ameliorates myocardial IR-induce
myocardial dysfunction in ischemic condition [30] and exerts an anti-
apoptotic effect on cardiomyocytes subjected to hypoxia [31], whereas
the inhibition of HSP90 markedly diminishes the protective effects of
hypoxic pre-conditioning against prolonged hypoxia/reoxygenation-
induced injury in H9C2 cardiac cells [32]. On the other hand, extra-
cellular HSP90 predisposes vascular smooth muscle cells to a pro-in-
flammatory phenotype by IL-8 elevation in the stressed vasculature
[33]. Additionally, the association of extracellular HSP90 with trans-
forming growth factor β receptor I (TGCβRI) at the surface of cardiac
fibroblast plasma membrane is critical in collagen production during
fibrotic processes [34].

The role of HSPs in the glycated bovine serum albumin mediated
effects has been previously observed in cultured β-cells in which a
HSP60-correlated signaling pathway was hypothesized to contribute to
the AGEs-RAGE axis-induced β-cell hypertrophy and dysfunction under
diabetic hyperglycemia [35].

Nevertheless, there is still limited information with respect to the
HSPs extracellular role on cardiomyocytes and their relationship with
the pathogenesis of HF.

Moreover, we found that exposure of cardiomyocytes to GA resulted
in oxidative modifications, in terms of carbonylation or lipoxidation
adducts, of a multitude of cellular proteins. We indeed observed that
GA significantly enhances ROS production, which is in agreement with

Fig. 4. Proteomic analysis of HL-1 secre-
tome after treatment with GA. A) Venn
diagram of the modulated proteins after 8 h
and 16 h of incubation with GA. B–C)
Graphical representation of the intensity of
one of the 3 proteins that are modulated at
both time points, Heat shock protein 90
beta (HSP90 beta), obtained by label free
MS analysis after treatment with GA for 8 h
(B) or 16 h (C). *p value < 0.05 vs control
cells.

Fig. 5. Immunoblotting analysis of HSP90
beta in HL-1 secretome after treatment with
GA. A) Representative image of im-
munoblotting analysis of HSP90 beta in the
secretome from HL-1 cells treated with GA
for 16 h. B) Densitometric analysis of HSP90
beta from 3 independent experiments. Data
were normalized for total protein loading
visualized with the MEMcode staining
(Supplementary Fig. 4A). *p < 0.05 vs
untreated cells.

Fig. 6. Intracellular generation of reactive oxygen species (ROS) mediated by
GA. HL-1 cells were loaded with 10 μmol/L DCF-DA and stimulated with GA
(250 μg/mL) for different times. Data shown represent the averages of three
independent experiments (mean ± SEM). *p < 0.05 vs untreated cells.

A. Martinez Fernandez, et al. Free Radical Biology and Medicine xxx (xxxx) xxx–xxx

7



Fig. 7. Effect of GA on protein lipoxidation.
Immunoblotting were performed using an-
tibody against 4-HNE for the detection of 4-
HNE-protein adducts. A) Representative
western blot showing 4-HNE-protein ad-
ducts after treatment with 100 or 250 μg/
mL GA for 8 h, and C) for 16 h. B)
Densitometric analysis of western blots
corresponding to 4-HNE immunoreactivity
after 8 h and D) 16 h of treatment with GA.
Data were normalized for total protein
loading visualized with the MEMcode
staining. Values are representative of 8 ex-
periments and are expressed as
mean ± SEM. *p < 0.05 compared to
control cells.

Fig. 8. Effect of GA on protein oxidation.
Immunoblotting were performed using an-
tibody against DNP for the detection of
carbonylated proteins. A) Representative
western blot showing carbonylated protein
signal after treatment with 100 or 250 μg/
mL GA for 8 h and C) 16 h. B) Densitometric
analysis relative to carbonylated protein
levels after 8 h and D) 16 h of incubation
with GA. Values are representative of at
least 8 experiments and are expressed as
mean ± SEM. *p < 0.05 compared to
control cells.
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previous works [36], and modulates the expression of Nrf2, a master
transcription factor that becomes upregulated in response to oxidative
stress [37]. The observed increase in protein carbonylation and 4-HNE-
protein adduct formation can be a downstream effect of the oxidative
stress mediated by GA, where excessive ROS may either oxidize pro-
teins directly or modify them indirectly through the adduction of small
breakdown products of lipid peroxidation such as 4-HNE [38]. The
increase in the levels of 4-HNE modified proteins at 8 h, but not later, is
suggestive of their removal by the proteasomal system, as reported by
Griesser et al. [39].

The first evidence of a connection between GA and oxidative stress
was the suppression of GA-induced cell apoptosis by antioxidants in

bovine retinal pericytes [40]. In macrophages, GA activates ERK-de-
pendent increases in TGF-β1 production, through oxidative stress and
NF-κB induction [41]. An accumulation of oxidatively modified pro-
teins, mainly structural proteins (i.e. ACTB and Annexin A2), was ob-
served in human mature adipocytes incubated with GA [42]. Further,
GA induces lipid infiltration in mice aorta independently of diabetes
and of renin-angiotensin system local modulation by inducing lipid
peroxidation and inflammation [43].

We also analyzed the expression levels of the transcriptional coac-
tivator peroxisome proliferator-activated receptor γ coactivator-1 α
(PGC-1α) and β (PGC-1 β), which, beyond their role as ‘master reg-
ulator’ of mitochondrial biogenesis, have been identified as inducer of

Fig. 9. Effect of GA on Nrf2 at mRNA level.
Transcript expression levels analyzed by
RT-qPCR were measured after A) 8 h and B)
16 h of treatment with 100 or 250 μg/mL
GA. Gene expression was normalized re-
lative to the expression of the glycer-
aldehyde-3-phosphate dehydrogenase
(GAPDH). Results are based on 3 in-
dependent analysis and data are presented
as mean ± SEM. *p < 0.05 vs control.

Fig. 10. Effect of GA on the mRNA levels of IL-6, TNF-α, PGC1α, and PGC1β. mRNA levels of A) IL-6, B) TNF-α, C) PGC1α, and D) PGC1β after 8 h of treatment with
100 or 250 μg/mL of GA were analyzed by RT-qPCR. mRNA levels of E) IL-6, F) PGC1α, and G) PGC1β were evaluated after 16 h or treatment with 100 or 250 μg/mL
GA. Gene expression was normalized relative to the expression of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Results are based on 10 independent
experiments for IL-6, PGC1α, and PGC1β genes and on 3 independent experiments for TNF-α. Data are presented as mean ± SEM. *p < 0.05 vs control cells,
**p < 0.01 vs control cells, ***p < 0.001 vs control cells.
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many antioxidant-detoxifying enzymes [44–46]. Downregulation of
PGC-1α causes indeed an increase of intracellular ROS levels and car-
bonylated proteins and a decrease of antioxidant enzymes [47]. Ad-
ditionally, mitochondrial activity and ROS scavenging in skeletal
muscles of PGC-1β deficient mice can be enhanced by PGC-1β [46]. In
our study we observed an early increase in the expression of PGC-1β but
not of PGC-1α, suggesting that they cannot completely counteract the
pro-oxidant effects of GA.

We also found that GA increased the expression of the pro-in-
flammatory cytokines IL-6 and TNF-α. Previous studies have indeed
shown that GA upregulates several inflammatory mediators through the
NF-κB and AP-1 signaling pathways in smooth muscle cells and en-
dothelial cells [48,49]. Of interest, GA stimulates cell growth and mi-
gration in smooth muscle cells and fibroblasts [48,50], suggesting that
GA may play a role in atherogenesis by inducing both inflammatory
mediators in the vessel wall, as well as proliferative and migratory ef-
fects. By contrast, in cardiomyocytes GA slightly reduced cell viability
thus supporting the hypothesis that GA plays a role in cardiac dys-
function [51].

In conclusion, this study shows that GA, measured by mass spec-
trometry, is elevated in the plasma of patients with HF, and it is highest
in subjects with the most severe HF, thus expanding previous ob-
servations obtained by means of an enzymatic assay [52]. Specifically,
Selvin et al. found a significant association of GA with cardiovascular
outcomes (new cases of coronary heart disease, ischemic stroke, HF,
and deaths), even after adjustment for traditional cardiovascular risk
factors, in 11 104 participants with and without diabetes, during two
decades of follow-up of in the community-based Atherosclerosis Risk in
Communities (ARIC) Study.

Further, the findings that GA exerts pro-inflammatory and pro-oxi-
dant effects on murine HL-1 cardiomyocytes, highlight a causal role in
the etiopathogenesis of HF. However, some limitations need to be ac-
knowledged. Indeed, other factors rather than only HF may contribute
to increase the GA levels in this population studied. Further, due to the
small sample size, we did not study patients with moderate HF or pa-
tients at high risk of HF, so that the progressive role of GA in the de-
velopment of HF is still unknown, albeit the correlation between GA
levels and peak VO2 suggests it. Finally, our results could provide a
mechanistic base for a possible use of the new antidiabetic drugs (DPP-4
inhibitors) in non-diabetic HF patients due to their favourable effect in
reducing glycated proteins, specifically haemoglobin [53].

This study also highlights the role of mass spectrometry for the
detection and quantitation of specific protein modifications, and con-
tributes to strengthen the value of GA measurement over that of HbA1c
which has important limitations: it does not change rapidly in response
to changes in treatment, and a number of conditions affect the validity
of the test result (eg, anemia, altered red cell lifespan, transfusion,
kidney disease, liver disease, and abnormal forms of hemoglobin).
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