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SCALING TECHNIQUES FOR ε-SUBGRADIENT METHODS∗

S. BONETTINI† , A. BENFENATI† , AND V. RUGGIERO†

Abstract. The recent literature on first order methods for smooth optimization shows that
significant improvements on the practical convergence behavior can be achieved with variable step
size and scaling for the gradient, making this class of algorithms attractive for a variety of relevant
applications. In this paper we introduce a variable metric in the context of the ε-subgradient methods
for nonsmooth, convex problems, in combination with two different step size selection strategies. We
develop the theoretical convergence analysis of the proposed approach in the general framework
of forward-backward ε-subgradient splitting methods and we also discuss practical implementation
issues. In order to illustrate the effectiveness of the method, we consider a specific problem in the
image restoration framework and we numerically evaluate the effects of a variable scaling and of the
step length selection strategy on the convergence behavior.
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1. Introduction. Several models arising in relevant applications such as image
and signal restoration, statistical inference, and data analysis lead to the following
constrained optimization problem

(1.1) min
x∈X

f(x),

where f : Rn → R ∪ {∞} is a convex, proper, lower semicontinuous function and
X is a nonempty, closed, convex subset of Rn contained in the domain of f . We
denote by X∗ the set of solutions of (1.1). We are interested in the case where f is
nondifferentiable and a subgradient or an approximate subgradient of f can be easily
computed. This arises for example in duality and minimax contexts. A well-known
method to solve problem (1.1) is the ε-subgradient projection method

(1.2) x(k+1) = PX

(
x(k) − αku

(k)
)
,

where u(k) ∈ ∂εkf(x
(k)) for some εk ≥ 0, αk is a positive step size, and PX(·) is the

Euclidean projection operator onto the set X . The choice εk = 0 for all k corresponds
to the subgradient method, which has been extensively investigated (see, for example,
the contributions collected in [34, 39, 56, 63]).

The more general case allowing εk > 0 was introduced and developed in [34, 56],
while more recent convergence results under different assumptions are given in [1, 27,
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1742 S. BONETTINI, A. BENFENATI, AND V. RUGGIERO

47, 50, 58, 64]. A typical assumption on the sequence {εk} is that

(1.3) lim
k→∞

εk = 0,

and, in this case, the subgradient and the ε-subgradient methods have very similar
convergence properties. In the following discussion we assume that (1.3) holds.

The ε-subgradient method is interesting in itself since, when the projection onto
X is easy to compute and an approximate subgradient is available, it can be eas-
ily implemented, but it is also a useful tool to analyze the theoretical convergence
properties of a variety of algorithms [16, 35, 55, 58].

We can distinguish different variants of the method (1.2) according to the rule
adopted to select the step size. We list below the most studied step size choices for
subgradient methods which, with minor modifications, could also be applied to the
case εk ≥ 0:

(R1) the constant step size rule αk = α > 0;
(R2) the Polyak rule

αk = ck
f(x(k))− f∗

‖u(k)‖2 or αk = ck
f(x(k))− f∗

max{1, ‖u(k)‖2} , ck ∈ (0, 2),

where f∗ = infx∈X∗ f(x);
(R3) the Ermoliev or diminishing, divergent series step size rule, which includes

any sequences {αk} such that

(1.4) αk > 0, lim
k→∞

αk = 0,

∞∑
k=0

αk = ∞;

(R4) the diminishing, divergent series, square summable step size rule which, in
addition to (1.4), also requires

∑∞
k=0 α

2
k <∞;

(R5) the dynamic or adaptive step size rule

(1.5) αk =
f(x(k))− fk

‖u(k)‖2 or αk =
f(x(k))− fk

max{1, ‖u(k)‖2} ,

where fk is an adaptively computed estimate of f∗; several further variants
of this rule, which can be considered as an approximation of (R2) when f

∗ is
not known, depend on how fk is defined.

Keeping a constant step size as in (R1), only the convergence of a subsequence of
{f(x(k))} to a possibly suboptimal value is established, i.e., lim infk f(x

(k)) ≤ f∗ +
Cα, for some positive constant C [10, 53]; for rules (R3) and (R5) stronger results
have been proved [39, 50, 53], showing that limk→∞ f(x(k)) = f∗ and, if X∗ 	= ∅,
minx∗∈X∗ ‖x∗ − x(k)‖ → 0 (with the assumption εk = 0 for the latter case). Finally,
if X∗ 	= ∅, the convergence of the sequence {x(k)} to a solution of (1.1) can be proved
in the cases (R2) with εk = 0, and (R4) [1, 50].

A number of variants to accelerate the subgradient iteration have been investi-
gated (see, for instance, [45, 46, 55, 31]). Results about an optimal step size choice
to obtain a suboptimal rate of convergence for the subgradient method are reported
in [54]; in [10, section 6.3], a convergence analysis is performed for different step
size choices while in [3] analogous results are obtained with respect to non-Euclidean
metrics.
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A SCALED ε-SUBGRADIENT METHOD 1743

The key property that the step size parameter has to induce on the iterates (1.2)
which is exploited in the standard convergence analysis for subgradient methods is
the quasi-Féjer monotonicity with respect to the set X∗,

‖x(k+1) − x∗‖2 ≤ ‖x(k) − x∗‖2 + ηk ∀x∗ ∈ X∗

for some nonnegative sequence {ηk} such that
∑
ηk <∞ (see [1, 7, 23, 28]).

It is worth noticing that the step size in subgradient methods plays quite a dif-
ferent role than in the smooth case, where an analogous parameter is employed to
ensure the sufficient decrease of the objective function and, in some kind of schemes,
also to accelerate the convergence, for example, by means of the well-known Barzilai–
Borwein rules [6, 30, 38] (see also [2, 37] for recent developments in this field). Thus,
these valid approaches to the step size selection for the smooth case are difficult to
extend to the method (1.2).

On the other side, recent advances in the context of gradient-based methods show
that introducing a variable scaling matrix for the gradient can lead to significant
improvements in the practical performances [5, 18, 12, 41, 65], especially on large
scale and ill-conditioned problems. Variable metric was also introduced in [25] in the
context of monotone operators and in [52, Chapter 5] in the subgradient methods for
unconstrained optimization.

Motivated by this, we propose to introduce a variable scaling matrix for the ε-
subgradient vector in the iteration (1.2) and we analyze the convergence properties
of the resulting method. For the sake of generality, we perform our analysis from the
point of view of a forward-backward ε-subgradient method that includes (1.2) as a
special case. Indeed, we consider the problem

(1.6) min
x∈Rn

f(x) + Φ(x),

where Φ : Rn → R ∪ {∞} is a convex, proper, lower semicontinuous function whose
domain is contained in the domain of f . Problem (1.6) reduces to (1.1) by setting
Φ(x) = ιX(x), where ιX(x) is the indicator function of the set X , i.e.,

ιX(x) =

{
0 if x ∈ X,
+∞ if x /∈ X.

In the frame of problem (1.6), the ε-subgradient projection method (1.2) can be viewed
as a special case of the general forward-backward ε-subgradient scheme
(1.7)

x(k+1) = proxαkΦ,I

(
x(k) − αku

(k)
)
≡ argmin

x∈Rn

(
Φ(x) +

1

2αk
‖x− (x(k) − αku

(k))‖2
)
,

where u(k) ∈ ∂εkf(x
(k)) for some εk ≥ 0, αk is a positive step size, and ‖ · ‖ is the

Euclidean vector norm. We recall that, given a symmetric positive definite matrix
D, proxΦ,D−1(x) is the so-called proximity operator of Φ(x) relative to the metric
introduced by D−1 (see [44, section XV.4]), defined as

proxΦ,D−1(x) = argmin
z∈Rn

(
Φ(z) +

1

2
‖z − x‖2D−1

)
,

where ‖y‖2D−1 = yTD−1y.
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1744 S. BONETTINI, A. BENFENATI, AND V. RUGGIERO

The main contribution of this paper is to provide the convergence analysis, under
standard assumptions, of the following scaled forward-backward ε-subgradient scheme

(1.8) x(k+1) = proxαkΦ,D
−1
k

(
x(k) − αkDku

(k)
)
,

where Dk is a symmetric positive definite matrix with bounded eigenvalues and αk is
chosen either as an a priori selected sequence obeying the diminishing, divergent series,
summable squares step size rule (R4), or with an adaptive rule (R5) of Brännlund’s
type [19, 40, 53].

We point out that the convergence of a forward-backward subgradient method,
named proximal subgradient splitting (PSS) method, is discussed in [28]. Here, we
introduce the use of an ε-subgradient for f in the forward step and a variable metric
in the backward or proximal step. In particular, when αk is chosen as in (R4),
assuming that the set X∗ is nonempty, we prove the convergence of the sequence
{x(k)} to a point x∗ ∈ X∗, providing also a convergence rate estimate, while, for
αk chosen by an adaptive rule, we prove that lim infk→∞{f(x(k))}+Φ(x(k)) is equal
to the optimal value f∗ = minx∈Rn f(x) + Φ(x). When X∗ = ∅, we prove that
lim infk→∞ f(x(k)) + Φ(x(k)) = infx∈Rn f(x) + Φ(x).

A further contribution of the paper is to introduce, as a special case of (1.8) for
problem (1.1) and also as a generalization of the method in [16], a scaled primal–dual
hybrid gradient (SPDHG) method, which applies to the case

(1.9) min
x∈Rn

f0(x) + f1(Ax) + Φ(x),

where f0 and f1 are convex, proper, lower semicontinuous functions and A is a linear
operator.

When f0 is continuously differentiable with Lipschitz continuous gradient, suit-
able splitting and forward-backward methods can be applied to (1.9) [20, 25, 26, 51].
Very recently, in [13] and [29], some variants of forward-backward methods with line-
search techniques were proposed for differentiable f0 without any Lipschitz continuity
assumption on the gradient.

As we will show in section 5, problem (1.9) can be handled also by SPDHG, even
when f0 is nondifferentiable or its gradient is not Lipschitz continuous on dom(f0).

In particular, we provide an especially tailored implementation of SPDHG for the
total variation (TV) restoration of images corrupted by Poisson noise. This problem
is related to several applications such as astronomical imaging, electronic microscopy,
single particle emission computed tomography, and positron emission tomography,
and a variety of specialized methods have been proposed for its solution (see [4, 15,
32, 33, 36, 61] and references therein). For this special case of SPDHG, we devise an
effective strategy to choose the scaling matrix, showing that significant improvements
on the practical convergence speed can be obtained.

The paper is organized as follows. In section 2 we introduce some preliminary
results that will be used in the subsequent sections and we present the complexity
analysis of iteration (1.8). In section 3 we present a convergence analysis for the
scaled forward-backward ε-subgradient method (1.8) when the step sizes are chosen
according to a diminishing, divergent series, square summable step size rule. At the
end of the section our results are also compared to the very recent works [24, 25],
where variable metrics are studied from the point of view of more general operators.

Building on this material, in section 4 we propose a generalization to variable
scaling and approximate subgradients of the level algorithm in [40, 53], based on a
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A SCALED ε-SUBGRADIENT METHOD 1745

dynamic step size selection rule, showing that in our more general settings the main
properties still hold. Further, in section 5 we consider problem (1.9) and we present
the SPDHG method, proving its convergence as a special case of an ε-subgradient
scheme. In order to illustrate a practical implementation of SPDHG, in section 6
we describe the problem of deblurring an image corrupted by Poisson noise via the
TV regularization. A suitable scaling for the SPDHG method is discussed and an
algorithm for its computation is detailed. In section 7, we describe some numerical
simulations concerning the considered application, with the aim to evaluate the ef-
fectiveness of the scaling technique in the ε-subgradient method in combination with
the two step size selection strategies analyzed in the previous sections. The numerical
experiments show that a suitable selection of the scaling matrix can also be a very
effective tool to improve the convergence behavior in nonsmooth methods. Finally,
some concluding remarks are given in section 8.

Notations and definitions. In the following, ‖ · ‖ denotes the Euclidean vec-
tor or matrix norm. Given x ∈ R

n and a symmetric and positive definite ma-
trix D of order n, ‖x‖D denotes the energy norm, i.e., ‖x‖D =

√
xTDx. By

dom(f) we indicate the domain of any function f : Rn → R ∪ {∞}, i.e., dom(f) =
{x ∈ R

n : f(x) < ∞}, while diam(X) denotes the diameter of the closed, convex set
X ⊂ R

n, diam(X) = maxx,z∈X ‖x− z‖. The Fenchel dual or conjugate of f is defined
as f∗(y) = supx∈Rn xT y− f(x). Furthermore, we recall that the ε-subdifferential of f
at x ∈ dom(f) for some ε ∈ R, ε ≥ 0, is the set

∂εf(x) = {p ∈ R
n : f(z) ≥ f(x) + pT (z − x)− ε, ∀z ∈ R

n}.
Any vector p ∈ ∂εf(x) is an ε-subgradient of f at x [59, section 23]. For ε = 0 the
standard subdifferential is recovered, i.e., ∂0f(x) = ∂f(x).

If f(x) =
∑n
i=1 βifi(x), where βi ≥ 0, ui ∈ ∂εifi(x), and x ∈ ⋂ni=1 dom(fi), then∑n

i=1 βiui ∈ ∂εf(x), where ε =
∑n
i=1 εi. The proof of this property can be found in

[16, 59].

2. Assumptions and preliminary results. Given a symmetric, positive def-
inite matrix D and the positive parameter γ, we consider the proximity operator of
a convex, proper, and lower semicontinuous function γΦ with respect to the metric
induced by D−1,

(2.1) proxγΦ,D−1(x) = argmin
z

(
Φ(z) +

1

2γ
‖z − x‖2D−1

)
,

and we recall some simple properties.
The operator proxγΦ,D−1 is well-definite, since the solution of the strongly convex

minimization problem in (2.1) exists and is unique. The optimality conditions of this
problem can be written also as

(2.2) D−1 (x− proxγΦ,D−1(x))

γ
∈ ∂Φ(proxγΦ,D−1(x)).

From the previous inclusion combined with the convexity of Φ at proxγΦ,D−1(x), we
obtain that the following inequality holds for any x, z ∈ R

n,

(proxγΦ,D−1(x)− x)TD−1(z − proxγΦ,D−1(x)) ≥ γ(Φ(proxγΦ,D−1(x)) − Φ(z)).

Consequently, it is immediate to verify that the proximal operator is nonexpansive
with respect to the energy norm, i.e., for any x, z ∈ R

n we have

(2.3) ‖proxγΦ,D−1(x)− proxγΦ,D−1(z)‖D−1 ≤ ‖x− z‖D−1 .

D
ow

nl
oa

de
d 

10
/1

7/
19

 to
 1

59
.1

49
.1

92
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1746 S. BONETTINI, A. BENFENATI, AND V. RUGGIERO

Finally, we observe that if L is a positive number such that ‖D‖ = λmax(D) ≤ L and
‖D−1‖ = 1

λmin(D) ≤ L, then, for any z, x ∈ R
n, we can write

(2.4) ‖proxγΦ,D−1(x) − proxγΦ,D−1(z)‖ ≤ L‖x− z‖.
Indeed, since for any vector z ∈ R

n we have

(2.5)
1

L
‖z‖2 ≤ λmin(D

−1)‖z‖2 ≤ ‖x‖2D−1 ≤ λmax(D
−1)‖z‖2 ≤ L‖x‖2,

the inequality (2.4) follows from (2.3).
We now report two technical lemmas: the first one concerns sequences of positive

numbers, while the latter one states a crucial inequality about iteration (1.8) which
will be extensively used in the analysis performed in the next sections.

Lemma 2.1. Let {Lk} be a sequence of positive numbers such that 1 ≤ L2
k ≤ 1+γk,

γk ≥ 0, and define

(2.6) θkj =

k∏
i=j

L2
i and θ̃kj = θkj /Lj.

If
∑∞

k=0 γk < ∞, then there exist two constants, L,M ≥ 1, such that, for all k ≥ 0
we have

1 ≤ Lk ≤ L,

θ̃kj ≤ θkj ≤ θk0 ≤M, 0 ≤ j ≤ k.

Proof. Since
∑∞

k=0 γk < ∞, we have limk→∞ γk = 0, thus the sequence {Lk}
is bounded above by some constant L ≥ 1. Moreover, we observe that, since Lk ≥
1 we have θkj−1 ≤ θkj and θ̃kj ≤ θkj . Finally, the rightmost inequality follows by

observing that θk0 ≤ ∏k
j=0(1 + γj) = exp(log(

∏k
j=0(1 + γj))) ≤ exp(

∑k
j=0 γj) ≤

exp(
∑∞

j=0 γj).

Lemma 2.2. Let {x(k)} be the sequence generated by iteration (1.8), where u(k) ∈
∂εkf(x

(k)) for a given sequence {εk} ⊂ R, εk ≥ 0. Then, for any x ∈ dom(Φ) and for
all k ≥ 0, we have

‖x(k+1) − x‖2
D−1

k

≤ ‖x(k) − x‖2
D−1

k

+ 2αk(f(x) + Φ(x)

− (f(x(k)) + Φ(x(k))) + εk) + α2
k‖u(k) + w(k)‖2Dk

(2.7)

for any w(k) ∈ ∂Φ(x(k)).
Moreover, if there exists a sequence of positive numbers {Lk} such that ‖Dk‖ ≤

Lk, ‖D−1
k ‖ ≤ Lk, it follows that

‖x(k+1) − x‖2 ≤ L2
k‖x(k) − x‖2 + 2αkLk(f(x) + Φ(x)

− (f(x(k)) + Φ(x(k))) + εk) + Lkα
2
k‖u(k) + w(k)‖2Dk

.(2.8)

Proof. From the optimality conditions (2.2) related to the iteration in (1.8), we
have that there exists w̃(k+1) ∈ ∂Φ(x(k+1)), such that

(2.9) w̃(k+1) = D−1
k

x(k) − x(k+1)

αk
− u(k).
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Consequently, we can write

(2.10)

‖w̃(k+1) + u(k)‖2Dk
=

1

α2
k

(x(k) − x(k+1))D−1
k DkD

−1
k (x(k) − x(k+1))

=
1

α2
k

‖x(k) − x(k+1)‖2
D−1

k

.

Then, for any x ∈ dom(Φ), we have

α2
k‖u(k) + w̃(k+1)‖2Dk

+ ‖x(k) − x‖2
D−1

k

− ‖x(k+1) − x‖2
D−1

k

= ‖x(k) − x(k+1)‖2
D−1

k

+ ‖x(k) − x‖2
D−1

k

− ‖x(k+1) − x‖2
D−1

k

= 2(x(k) − x)TD−1
k (x(k) − x(k+1)) = 2αk(x

(k) − x)T (u(k) + w̃(k+1))

= 2αk(x
(k) − x)T u(k) + 2αk(x

(k) − x(k+1))T w̃(k+1) + 2αk(x
(k+1) − x)T w̃(k+1)

= 2αk(x
(k) − x)T u(k) + 2αk(x

(k) − x(k+1))T
(
D−1
k

x(k) − x(k+1)

αk
− u(k)

)
+2αk(x

(k+1) − x)T w̃(k+1)

= 2αk(x
(k) − x)T u(k) + 2‖x(k) − x(k+1)‖2

D−1
k

− 2αk(x
(k) − x(k+1))Tu(k)

+2αk(x
(k+1) − x)T w̃(k+1)

≥ 2αk(f(x
(k))− f(x)− εk) + 2‖x(k) − x(k+1)‖2

D−1
k

+ 2αk(x
(k+1) − x(k))Tu(k)

+2αk(Φ(x
(k+1))− Φ(x))

= 2αk

(
f(x(k)) + Φ(x(k))− (f(x) + Φ(x)) − εk +Φ(x(k+1))− Φ(x(k))

+ (x(k+1) − x(k))Tu(k)
)
+ 2‖x(k) − x(k+1)‖2

D−1
k

≥ 2αk

(
f(x(k)) + Φ(x(k))− (f(x) + Φ(x)) − εk + (x(k+1) − x(k))T (w(k) + u(k))

)
+2‖x(k) − x(k+1)‖2

D−1
k

= 2αk

(
f(x(k)) + Φ(x(k))− (f(x) + Φ(x)) − εk + (x(k+1) − x(k))T (w(k) + u(k))

)
+2α2

k‖u(k) + w̃(k+1)‖2Dk
,(2.11)

where the first inequality follows from the definition of the ε-subgradient of f and from
w̃(k+1) ∈ ∂Φ(x(k+1)), while the second one holds for any w(k) ∈ ∂Φ(x(k)). Finally, we
use (2.10) in the last equality.

Thus, for x ∈ dom(Φ), we can write

‖x(k+1) − x‖2
D−1

k

≤ ‖x(k) − x‖2
D−1

k

+ 2αk(f(x) + Φ(x) − (f(x(k)) + Φ(x(k))) + εk)

+ 2α2
k(u

(k) + w̃(k+1))TDk(w
(k) + u(k))− α2

k‖u(k) + w̃(k+1)‖2Dk

= ‖x(k) − x‖2
D−1

k

+ 2αk(f(x) + Φ(x) − (f(x(k)) + Φ(x(k))) + εk)

+α2
k‖u(k) + w(k)‖2Dk

− α2
k‖w(k) − w̃(k+1)‖2Dk

≤ ‖x(k) − x‖2
D−1

k

+ 2αk(f(x) + Φ(x) − (f(x(k)) + Φ(x(k))) + εk)

+α2
k‖u(k) + w(k)‖2Dk

,

concluding that inequality (2.7) holds for any w(k) ∈ ∂Φ(x(k)). Finally, from (2.5),
we can easily obtain (2.8).
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The previous lemma is analogous to [28, Lemma 2.2], which deals with the
case Dk = I, εk = 0. Similar inequalities are obtained also in [1, Lemma 1] for
ε-subgradient projection methods, i.e., Dk = I, Φ = ιX .

We now present and discuss the two basic assumptions that we make on the
sequence {u(k)} and {Dk} in iteration (1.8). In particular, except in Theorem 3.2, we
will assume what follows.

A. There exist two positive constants ρu, ρw and a sequence {w(k)}, w(k) ∈
∂Φ(x(k)) such that

‖u(k)‖ ≤ ρu and ‖w(k)‖ ≤ ρw.

The assumption on {u(k)} is satisfied, for example, when diam(dom(f∗)) is finite.
Indeed, it holds dom(f∗) =

⋃
x∈Rn ∂εf(x) for every ε > 0 (see [66, Remark 2]).

Moreover, if diam(dom(f∗)) = M for some M > 0, by definition of ε-subdifferential
we obtain |f(x) − f(z)| ≤ M‖x − z‖ + ε. Since ε is arbitrary, it follows that f is
Lipschitz continuous with constant M .

In order to guarantee the existence of a bounded sequence {w(k)}, w(k) ∈ ∂Φ(x(k)),
in [28] it is assumed that ∂Φ(x) has bounded elements in dom(Φ), i.e., for all x ∈
dom(Φ) there exists w ∈ ∂Φ(x) such that ‖w‖ ≤ ρ for some ρ > 0 independent
of x. This is actually equivalent to assuming that Φ is Lipschitz continuous on its
domain. Indeed, if Φ is Lipschitz continuous with constant C in dom(Φ), then for
all x ∈ dom(Φ) and w ∈ ∂Φ(x) we have ‖w‖ ≤ C [62, Lemma 2.6]. On the other
side, if ∂Φ(x) has bounded elements in dom(Φ), for any x ∈ dom(Φ) we can pick
a subgradient wx ∈ ∂Φ(x) such that ‖wx‖ ≤ ρ. From the definition of subgradient
we obtain Φ(x) − Φ(z) ≤ ρ‖x − z‖ for all x ∈ dom(Φ) and z ∈ R

n. On the other
side, for any z ∈ dom(Φ) there exists wz ∈ ∂Φ(z) such that ‖wz‖ ≤ ρ, yielding
Φ(z) − Φ(x) ≤ ρ‖x − z‖. Therefore, Φ is Lipschitz continuous with constant ρ in
dom(Φ).

Under assumption A, setting {(f +Φ)kbest} as the smallest function value over the
first k iterations,

(2.12) (f +Φ)kbest = min
j=0,...,k

{f(x(j)) + Φ(x(j))},

we can prove the following inequalities, which are analogous to the estimates obtained
in [28, Lemmas 2.2 and 2.3] for the case Dk = I, εk = 0.

Lemma 2.3. Let {x(k)} be the sequence generated by iteration (1.8), where u(k) ∈
∂εkf(x

(k)) for a given sequence {εk} ⊂ R, εk ≥ 0. Let assumption A be satisfied and
assume that there exists a sequence of positive numbers {Lk} such that ‖Dk‖ ≤ Lk,
‖D−1

k ‖ ≤ Lk. If there exists a solution x̃ of (1.6), we have that

(2.13) (f +Φ)kbest− (f(x̃)+Φ(x̃)) ≤ θk0‖x(0) − x̃‖2 + 2
∑k
j=0 θ̃

k
jαjεj + σ

∑k
j=0 θ

k
jα

2
j

2
∑k
j=0 θ̃

k
jαj

,

where θkj and θ̃kj are defined as in Lemma 2.1 and σ = (ρu+ρw)
2. Moreover, defining

the ergodic sequence {x̄(k)} of {x(k)} as

(2.14) x̄(k) =

∑k
j=0 θ̃

k
j αjx

(j)∑k
j=0 θ̃

k
jαj

,
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we also have
(2.15)

(f +Φ)(x̄(k))− (f(x̃) + Φ(x̃)) ≤ θk0‖x(0) − x̃‖2 + 2
∑k
j=0 θ̃

k
jαjεj + σ

∑k
j=0 α

2
jθ
k
j

2
∑k
j=0 θ̃

k
jαj

.

Proof. Let {w(k)} be a sequence of subgradients of Φ as in assumption A. Then,
we have
(2.16)
‖u(k) + w(k)‖2Dk

≤ Lk‖u(k) + w(k)‖2 ≤ Lk(‖u(k)‖+ ‖w(k)‖)2 ≤ Lk(ρu + ρw)
2 ≤ Lkσ.

From (2.8) with x = x̃, we obtain

‖x(k+1) − x̃‖2 ≤ L2
k‖x(k) − x̃‖2 + 2αkLk(f(x̃) + Φ(x̃)

− (f(x(k)) + Φ(x(k))) + εk) + L2
kα

2
kσ.

By repeatedly applying the previous inequality we further obtain

‖x(k+1) − x̃‖2 ≤ θk0‖x(0) − x̃‖2 + 2

k∑
j=0

θ̃kjαjεj + σ

k∑
j=0

θkjα
2
j

+2

k∑
j=0

θ̃kjαj(f(x̃) + Φ(x̃)− (f(x(k)) + Φ(x(k)))).

Rearranging terms and neglecting the negative ones on the right-hand side, the in-
equality above implies
(2.17)

2

k∑
j=0

θ̃kjαj(f(x
(j))+Φ(x(j))−(f(x̃)+Φ(x̃))) ≤ θk0‖x(0)−x̃‖2+2

k∑
j=0

θ̃kjαjεj+σ

k∑
j=0

α2
jθ
k
j .

From definition (2.12), we directly obtain (2.13). Finally, using the convexity of f +Φ
and (2.14) in inequality (2.17), we immediately obtain (2.15).

Here and in the following we will make the following assumption on the matrices
Dk in iteration (1.8):

B. There exists a sequence of nonnegative numbers {γk} such that

(2.18) L2
k ≤ 1 + γk,

∞∑
k=0

γk <∞.

where Lk = max(‖Dk‖, ‖D−1
k ‖).

Under assumption B, we have that Lemma 2.1 holds and this will be extensively
exploited in the proof of our results.

This assumption is closely related to those in [24, 25] and implies that Dk → I
when k diverges. Therefore, we can expect that the asymptotic behavior of the scaled
method is similar to that of the nonscaled one. However, introducing Dk in iteration
(1.8) allows us to design more flexible algorithms, having a further parameter to
better exploit the problem features. Indeed, several papers in the recent literature
propose suitable scaling techniques especially tailored for some relevant problems; see,
for example, the split gradient technique [48, 68], the Barzilai–Borwein affine scaling
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1750 S. BONETTINI, A. BENFENATI, AND V. RUGGIERO

[41] (see also [21] and [42]), and the majorization-minimization approach [22]. All the
mentioned references show that a careful choice of the metric can lead to significantly
better practical performances of the algorithms. In general, the choice of the metric
is problem dependent, i.e., is strongly related to the specific objective function and
constraints structure. For this reason, here and in the following we investigate the
properties of method (1.8) only under assumption B, without focusing on a specific
scaling matrix choice. Indeed, our aim is to develop a theoretical framework for (1.8)
such that different scaling techniques could be included as a special case of it.

We conclude this section with the complexity analysis of iteration (1.8).

2.1. Complexity analysis. We want to estimate the expected error after a
finite number of iterations (1.8) with constant step size αk = α and εk = ε, α, ε > 0.

Setting α/ε = ν and borrowing the ideas in [28, Corollary 2.4], from (2.13) we
obtain

(f +Φ)kbest − (f(x̃) + Φ(x̃)) ≤ θk0‖x(0) − x̃‖2 + 2ν
∑k
j=0 θ̃

k
jα

2 + σ
∑k
j=0 θ

k
jα

2

2
∑k
j=0 θ̃

k
jα

≤ M‖x(0) − x̃‖2 + (2ν + σL)
∑k

j=0 θ̃
k
jα

2

2
∑k
j=0 θ̃

k
jα

.

Notice that for ε = 0 we would obtain an analogous inequality with ν = 0.

Choosing α = ‖x(0)−x̃‖√M
(2ν+σL)

1
2 (

∑k
j=0 θ̃

k
j )

1
2
to minimize the right-hand side we obtain

(f+Φ)kbest−(f(x̃)+Φ(x̃)) ≤
√
M(2ν + σL)

1
2 ‖x(0) − x̃‖

(
∑k

j=0 θ̃
k
j )

1
2

≤
√
M(2ν + σL)

1
2 ‖x(0) − x̃‖

(k + 1)
1
2

,

where the last inequality follows from the fact that θ̃kj ≥ 1. Thus, the scaled iteration

(1.8) has the O(1/
√
k + 1) complexity.

A lower complexity bound for iteration (1.8) can be obtained using the same
arguments as in [54, Theorem 3.2.1], when the scaling matrices Dk are diagonal; thus,
in this case, the O(1/

√
k + 1) complexity obtained above is optimal. For the sake of

completeness we give some details on how to derive the lower complexity bound. We
consider the worst case example Φ = 0, f(x) = γmax1≤i≤k+1 xi +

μ
2 ‖x‖2, γ, μ > 0,

whose subdifferential is given by ∂f(x) = μx + γ{∑i∈I(x) aiei, ai ≥ 0}, where ej is

the jth vector of the standard basis and I(x) = {1 ≤ j ≤ k+1 : xi = max1≤i≤k+1 xi}.
The minimum of f is f∗ = −γ2/(2μ(k + 1)) which is attained at the point x̃

whose components are x̃i = −γ/(μ(k + 1)), i = 1, . . . , k + 1, x̃i = 0, i = k + 2, . . . , n.
Starting from x(0) = 0 and selecting the (ε-)subgradient u(j) = μx(j)+γemin(I(x(j)))

∈ ∂f(x(j)) in (1.8), it is easy to see that, for any diagonal scaling matrix and any

choice of the step size, x
(j)
i = 0 for i = j + 1, . . . , n, j = 0, . . . , k. This implies that

f(x(j)) ≥ 0 for all j = 0, . . . , k, i.e., there are no function improvements in the first k
steps. Following the proof of [54, Theorem 3.2.1], setting γ = C

√
k + 1/(1+

√
k + 1),

and μ = C/(1 +
√
k + 1) · 1/‖x(0) − x̃‖, where C is the Lipschitz constant of f in

the ball centered at x(0) with radius ‖x(0) − x̃‖, it can be shown that f(x(k))− f∗ ≥
C‖x(0) − x̃‖/(2 + 2

√
k + 1).

The above arguments do not apply when the matrices Dk are chosen with nonzero
off diagonal entries. In this case, the O(1/

√
k + 1) complexity estimate could be non-

optimal.
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On the other side, we observe that choosing a nondiagonal scaling matrix in iter-
ation (1.8) could be impractical for large scale problems, since the proximity operator
is associated with its inverse.

3. Convergence analysis with square summable step size sequences. In
this section we show that the method (1.8) with the rule (R4) generates a sequence
of points converging to a solution of (1.6), if any, under standard assumptions on the
error sequence εk and the scaling matrices Dk.

Theorem 3.1. Let {x(k)} be the sequence generated by iteration (1.8), where
u(k) ∈ ∂εkf(x

(k)), for a given sequence {εk} ⊂ R, εk ≥ 0. Assume that A and B
hold and that

lim
k→∞

εk = 0,(3.1)

∞∑
k=0

αk = ∞,(3.2)

∞∑
k=0

α2
k <∞,

∞∑
k=0

εkαk <∞.(3.3)

Setting f∗ = infx∈Rn(f(x)+Φ(x)) (possibly f∗ = −∞) and defining the set X∗ of the
solutions of (1.6), we have

(a) lim infk→∞(f(x(k)) + Φ(x(k))) = f∗;
(b) If {x(k)} is bounded, there exists a limit point of it belonging to X∗;
(c) If X∗ is nonempty, the sequence {x(k)} converges to a solution of (1.6) and

limk→∞(f(x(k)) + Φ(x(k))) = f∗;
(d) If X∗ is empty, the sequence {x(k)} is unbounded.

Proof. (a) Setting f̄ = lim infk→∞(f(x(k)) +Φ(x(k))), we now have to prove that
f̄ = f∗.

Assume, to arrive at a contradiction, that there exists an ε > 0 such that

f̄ − 2ε > f∗.

Then, there exists x̂ ∈ dom(Φ) such that

f̄ − 2ε > f(x̂) + Φ(x̂).

Since f̄ = lim infk→∞ f(x(k)) + Φ(x(k)), there exists k0 such that, for all k ≥ k0, we
have

f(x(k)) + Φ(x(k)) ≥ f̄ − ε.

Summing up the above two relations, for all k ≥ k0 we obtain

(3.4) (f(x(k)) + Φ(x(k)))− (f(x̂) + Φ(x̂)) > ε.

Consider now inequality (2.8) with x = x̂:

‖x(k+1) − x̂‖2 ≤ L2
k‖x(k) − x̂‖2 + 2Lkαk(f(x̂) + Φ(x̂)− (f(x(k)) + Φ(x(k))) + εk)

+Lkα
2
k‖u(k) + w(k)‖2Dk

≤ L2
k‖x(k) − x̂‖2 + 2Lkαk(εk − ε) + σL2

kα
2
k

≤ L2
k‖x(k) − x̂‖2 + 2L2

kαkεk + σL2
kα

2
k − 2αkε,

where the second inequality follows from (2.16) and (3.4) and the third one from
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Lk ≥ 1. By repeatedly applying the same arguments for j = k0, . . . , k we obtain

‖x(k+1) − x̂‖2 ≤ θkk0‖x(k) − x̂‖2 + 2

k∑
j=k0

θkj αjεj + σ

k∑
j=k0

θkjα
2
j − 2ε

k∑
j=k0

αj(3.5)

≤M

⎛
⎝‖x(k) − x̂‖2 + 2

k∑
j=k0

αjεj + σ

k∑
j=k0

α2
j

⎞
⎠− 2ε

k∑
j=k0

αj ,(3.6)

where θkj andM are defined as in Lemma 2.1. Thanks to the assumptions (3.2)–(3.3),
for k sufficiently large we have a contradiction.

(b) Now we assume that {x(k)} is bounded and we show that there exists a
limit point of it belonging to X∗. To this end, we consider a subsequence {x(ki)} of
{x(k)} such that limi→∞ f(x(ki))+Φ(x(ki)) = f∗ (the existence of this subsequence is
guaranteed by part (a) of the theorem). Since {xk} is bounded, {xki} is also bounded
and, without loss of generality, we can assume that {x(ki)} converges to a point x∞

for i → ∞. Then, recalling that f + Φ is lower semicontinuous and that f∗ is its
minimum, we have

f∗ ≤ f(x∞) + Φ(x∞) ≤ lim
i→∞

f(x(ki)) + Φ(x(ki)) = f∗.

Thus, f(x∞) + Φ(x∞) = f∗ and x∞ ∈ X∗.
(c) Now we assume X∗ 	= ∅ and we consider x̃ ∈ X∗. We first prove that

the sequence {x(k)} is bounded. Invoking again inequality (2.8) in Lemma 2.2 with
x = x̃, observing that f(x̃)+Φ(x̃) ≤ f(x(k))+Φ(x(k)) and recalling (2.16) and Lk ≥ 1,
reasoning exactly as in the proof of (3.6), we obtain

‖x(k+1) − x̃‖2 ≤M

⎛
⎝‖x(0) − x̃‖2 + σ

k∑
j=0

α2
j + 2

k∑
j=0

αjεj

⎞
⎠ .(3.7)

Thus, by conditions (3.3), the sequence {x(k)} is bounded.
By part (b) there exists a limit point x∞ of {x(k)} belonging to X∗. We now show

that the whole sequence converges to x∞. Let δ be any positive number; since x∞ is
an accumulation point of {x(k)} and from (3.3), there exists a positive integermδ such
that ‖x∞ − x(mδ)‖2 ≤ δ/(3M),

∑∞
j=mδ

α2
k ≤ δ/(3σM), and

∑∞
j=mδ

αkεk ≤ δ/(6M).
Then, for any k > mδ, using the same arguments as in (3.6)–(3.7), we obtain

‖x(k) − x∞‖2 ≤M

⎛
⎝‖x(mδ) − x∞‖2 + σ

k−1∑
j=mδ

α2
j + 2

k−1∑
j=mδ

αjεj

⎞
⎠

≤M

⎛
⎝‖x(mδ) − x∞‖2 + σ

∞∑
j=mδ

α2
j + 2

∞∑
j=mδ

αjεj

⎞
⎠

≤ δ.

Since δ can be chosen arbitrarily small, then {x(k)} converges to x∞.
It remains to show that limk→∞ f(x(k))+Φ(x(k)) = f∗. We observe that, for any

v(k) ∈ ∂(f +Φ)(x(k)), we have

f(x(k)) + Φ(x(k))− f∗ ≤ (x(k) − x∞)T v(k) ≤ ‖x(k) − x∞‖ · ‖v(k)‖.
Since {x(k)} is bounded and R

n is a finite dimensional space,
⋃
k≥0 ∂(f +Φ)(x(k)) is
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bounded [1, p. 25] (see also Remark 2 to follow). Thus, the right-hand side of the
previous inequality goes to zero as k diverges and this yields the result.

(d) The last claim is a direct consequence of part (b).

We now discuss some further issues about Theorem 3.1, relating our results to
the recent literature, in particular with the papers [24, 25] and [52].

Remark 1. From the inequality (2.7) in Lemma 2.2 with x = x̃, and from
‖w(k) + u(k)‖2

D−1
k

≤ Lkσ ≤ Lσ, observing that

‖x(k+1) − x̃‖2
D−1

k

≥ λmin(D
−1
k )‖x(k+1) − x̃‖2

=
λmin(D

−1
k )

λmax(D
−1
k+1)

λmax(D
−1
k+1)‖x(k+1) − x̃‖2

≥ λmin(D
−1
k )λmin(Dk+1)‖x(k+1) − x̃‖2

D−1
k+1

≥ 1

LkLk+1
‖x(k+1) − x̃‖2

D−1
k+1

,

we obtain

‖x(k+1) − x̃‖2
D−1

k+1

≤ ζk‖x(k) − x̃‖2
D−1

k

+ ξζkα
2
k + 2ζkαkεk,

where ζk =
√
(1 + γk)(1 + γk+1) and ξ = Lσ. By the assumptions made on {γk}, the

sequence {ζk} is bounded. We can also set ζk = 1+ηk with ηk =
√
(1 + γk)(1 + γk+1)−

1, and observe that the series
∑
ηk and

∑
γk have the same behavior, thanks to the

limit limz→0(
√
1 + z−1)/z = 1/2. Then, from the assumption (2.18), we can conclude

that
∑
ηk is a convergent series.

Thus, the sequence {x(k)} is quasi-Fejér monotone with respect to X∗ relative to
{D−1

k }, in the sense of [24, Definition 3.1] and we could apply [24, Proposition 3.2]
(see also [25]) to obtain that {‖x(k) − x̃‖D−1

k
} converges and, thus, {x(k)} is bounded.

Variable metric was introduced also in [52, Chapter 5] in the context of sub-
gradient methods for unconstrained problems (i.e., X = R

n). In this case, set-
ting Dk = BkB

T
k , the scaling matrices are assumed to satisfy ‖B−1

k+1Bk‖ ≥ 1 and∏∞
k=0 ‖B−1

k+1Bk‖2 <∞. Even if the second condition is verified under the assumptions

of Theorem 3.1, we observe that the requirement ‖B−1
k+1Bk‖ ≥ 1 restricts the choice of

the scaling matrix, strictly connecting the metrics adopted in two successive iterates.
Finally, we note that similar results are obtained also in [1, Lemma 1] for ε-

subgradient projection methods, i.e., Dk = I, Φ = ιX , and in [28, Theorem 2.6] for
the case εk = 0 and Dk = I.

3.1. Convergence rate estimate. When the solution set is nonempty, we are
able to provide a convergence rate estimate for method (1.8) with the step size rule
(3.2)–(3.3). From (2.17), recalling that θ̃kj ≥ 1 and θ̃kj ≤ θkj ≤M , we also obtain

k∑
j=0

αj(f(x
(j))+Φ(x(j))−(f(x̃)+Φ(x̃))) ≤ M

2

⎛
⎝‖x(0) − x̃‖2 + 2

k∑
j=0

αjεj + σ

k∑
j=0

α2
j

⎞
⎠ .

By the assumptions (3.2)–(3.3) this implies

∞∑
j=0

αj(f(x
(j)) + Φ(x(j))− (f(x̃) + Φ(x̃))) <∞.
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Then, proceeding as in the proof of [1, Theorem 2] we can also conclude that there
exists a subsequence {x(
k)} of {x(k)} such that

f(x(
k)) + Φ(x(
k))− (f(x̃) + Φ(x̃)) ≤
(


k∑
k=0

αk

)−1

.

The previous inequality gives a quite pessimistic convergence rate estimate: indeed,
when the step length is chosen as αk = O( 1k ), we can only conclude that there exists

a subsequence {f(x(
k)) + Φ(x(
k))} of {f(x(k)) + Φ(x(k))} such that

f(x(
k)) + Φ(x(
k))− (f(x̃) + Φ(x̃)) ≤ 1

log(�k)
.

However, in spite of this poor theoretical estimate, the practical performances of the
method (1.8) can be significantly improved by introducing a variable metric, as shown
in the toy example presented in the following subsection.

3.2. Scaling matrix impact: An illustrative example. Consider, for sim-
plicity, problem (1.1), i.e., choose Φ = ιX in (1.6). Iteration (1.8) with Dk = I
then coincides with (1.2) and corresponds to the solution of the following quadratic
subproblem, related to matrix 1

αk
I:

(3.8) min
x∈X

f(x(k)) + (x− x(k))Tu(k) +
1

2αk
‖x− x(k)‖2

with u(k) ∈ ∂εkf(x
(k)). In practice, a simple quadratic model approximates the func-

tion f at x(k). This model is motivated by the fact that −(x(k) − x̃)Tu(k) ≤ εk with
εk decreasing to 0 as k increases. Then, −u(k) is an approximate descent direction
for the function ‖x − x̃‖2 at x(k) [54]. Introducing a variable metric as in (1.8), any
iteration is a solution of

(3.9) min
x∈X

f(x(k)) + (x− x(k))Tu(k) +
1

2αk
‖x− x(k)‖2

D−1
k

.

As pointed out in section 6, there are a number of applications where the structure of
the feasible set and of the objective function suggests simple rules to devise a scaling
matrix Dk [8, 11, 14, 49, 57, 65, 68].

In order to give a visual example of the different behaviors of the ε-subgradient
method in the scaled and nonscaled case, we consider this simple problem

(3.10) min
x1≥0,x2≥−1

f(x) ≡ 0.5 log

(
0.5

x1

)
+ x1 + 2x2 − 0.5 + |x1|+ |x2|.

An ε-subgradient of f at x(k) can be obtained as

u(k) = (1 − 0.5

x
(k)
1

+ y
(k+1)
1 , 2 + y

(k+1)
2 )T ,

where y(k+1) is an ε–subgradient of |x1|+|x2| at x(k) computed as explained in section 5
with the rule (5.2).

Following the ideas proposed in [9, 11, 48], the presence of bound constraints
suggests setting the scaling matrix Dk as the diagonal matrix whose entries are given

by (Dk)ii = max(min(d
(k)
i ,

√
1 + γk), 1/

√
1 + γk), where

d(k) =

(
x
(k)
1 /(1 + max(0, y

(k+1)
1 ))

(x
(k)
2 + 1)/(2 + max(0, y

(k+1)
2 ))
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Fig. 1. Path generated by methods (1.2) (left) and (1.8) (right) on the example (3.10). The
starting point is (0.05, 0.7)T for both methods; blue lines are contours of the objective function.

and γk are such that condition (2.18) is met. This kind of choice is motivated by the
structure of the constraints since, as a simple computation shows, when αk ≤ 1 and

x(k) is feasible, then the point whose components are x
(k)
i − αkd

(k)
i u

(k)
i , i = 1, 2, is

still feasible.
Figure 1 shows the paths followed by the methods (1.2) (left) and (1.8) (right),

starting from x(0) = (0.05, 0.7)T and with αk = 0.3/(k + 1).
We observe that the trajectory corresponding to the scaled method, as a con-

sequence of the scaling matrix choice, approaches the solution, which is located at
(0.25,−1), from the interior of the feasible region, while the points generated by (1.2)
lay on its boundary.

Moreover, in this example, 221 iterations of the scaled method are enough to ob-
tain an approximation of the solution with an error equal to 0.009, while 500 iterations
(1.2) provide an error equal to 0.041.

This improvement of the convergence behavior observed in the scaled case can be
due to its better capability to capture the local features of the problem. Figure 2 is
a close up of the first iteration of methods (1.2) (left) and (1.8) (right). The contour
lines of the quadratic models (3.8) and (3.9) are drawn in black. It can be observed
that (3.9) better approximates locally the contour lines of the objective function.

3.3. Convergence analysis with normalization of the direction. In this
subsection we consider the following variant of iteration (1.8):

(3.11) x(k+1) = proxαkΦ,D
−1
k

(
x(k) − αk

max(1, ‖u(k) + w(k)‖Dk
)
Dku

(k)

)
,

where w(k) is an arbitrary element of ∂Φ(x(k)).
The convergence of the method (3.11) can be analyzed as follows, without any

assumption on the boundedness of the ε-subgradients of f and of the subgradients
of Φ.

Theorem 3.2. Let {x(k)}k∈N be a sequence satisfying (3.11). Let assumption
B and conditions (3.1)–(3.3) be satisfied. Then, lim infk→∞(f(x(k)) + Φ(x(k))) =
infx∈Rn(f(x) + Φ(x)) = f∗. Moreover, if the set of the solutions of (1.6), X∗, is
nonempty, the sequence {x(k)} converges to a solution of (1.6) and limk→∞(f(x(k))+
Φ(x(k))) = f∗, while if X∗ is empty, the sequence {x(k)} is unbounded.
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Fig. 2. First iteration of methods (1.2) (left) and (1.8) (right) on the example (3.10), starting
from x(0) = (0.05, 0.7)T and u(0) = (−8.985, 2.21)T ∈ ∂0.602f(x(0)). The blue lines are contours of
the objective function; the black lines are contours of the two quadratic models (3.8) (left) and (3.9)
(right). The magenta square is the minimum point.

Proof. Let us define ᾱk = αk

max(1,‖u(k)+w(k)‖Dk
)
. We have

(3.12) ᾱk ≤ αk and ᾱ2
k‖u(k) + wk‖2 ≤ α2

k.

Assume that there exists a point x̂ such that (3.4) holds for all k ≥ k0 for some ε ≥ 0.
By applying (2.8) to iteration (3.11) with x = x̂ we obtain

‖x(k+1) − x̂‖2 ≤ L2
k‖x(k) − x̂‖2 + 2Lkᾱk(f(x̂) + Φ(x̂)− (f(x(k)) + Φ(x(k))) + εk)

+Lkᾱ
2
k‖u(k) + w(k)‖2Dk

≤ L2
k‖x(k) − x̂‖2 + 2Lkᾱk(εk − ε) + L2

kα
2
k(3.13)

≤ L2
k‖x(k) − x̂‖2 + 2L2

kαkεk + L2
kα

2
k.

By repeatedly applying the same arguments for j = k0, . . . , k we obtain

(3.14)

‖x(k+1) − x̂‖2 ≤ θkk0‖x(k) − x̂‖2 + 2

k∑
j=k0

θkjαjεj +

k∑
j=k0

θkjα
2
j

≤M

⎛
⎝‖x(k) − x̂‖2 + 2

k∑
j=k0

αjεj +
k∑

j=k0

α2
j

⎞
⎠ ,

where θkj and M are defined as in Lemma 2.1. Thus, by assumption (3.3), we

can conclude that {x(k)} is bounded. As a consequence of this and of assumption
(3.1), since we are in a finite dimensional space, we have that there exist two pos-
itive constants ρu and ρw such that

⋃
k≥0 ∂εkf(x

(k)) ⊆ {u ∈ R
n : ‖u‖ ≤ ρu} and⋃

k≥0 ∂Φ(x
(k)) ⊆ {u ∈ R

n : ‖u‖ ≤ ρw} [1, p. 25]. This implies ‖u(k) + w(k)‖2Dk
≤ Lσ,

where σ = (ρu + ρw)
2 and, therefore,

∞∑
k=0

ᾱk ≥ 1

max(1, Lσ)

∞∑
k=0

αk = ∞.
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Now, from (3.13) it follows that

‖x(k+1) − x̂‖2 ≤M

⎛
⎝‖x(k) − x̂‖2 + 2

k∑
j=k0

αjεj + σ

k∑
j=k0

α2
j

⎞
⎠− 2

ε

max(1, Lσ)

k∑
j=k0

αj .

The previous inequality is analogous to (3.6), while (3.14) is analogous to (3.7). Based
on these remarks, the rest of the proof can be obtained by the same arguments em-
ployed for Theorem 3.1.

We remark that the convergence rate estimate in section 3.1 also holds for iteration
(3.11), with very minor modifications.

Remark 2. Similar results can be found also in [1, Theorem 1] and [50, Theo-
rem 10] for the ε-subgradient projection method and for the forward-backward sub-
gradient algorithm in [28, section 2.1]. When dealing with infinite dimensional Hilbert
spaces, to get the same results stated in Theorems 3.1 and 3.2, it could be assumed
that ∂εf and ∂Φ are bounded on bounded sets on the domain of Φ, i.e., ∪x∈B∂εf(x)
and ∪x∈B∂Φ(x) are bounded for any ε > 0 and any bounded closed subset B of
dom(Φ) [1, 28].

The results in this section can be exploited for the practical implementation of
the methods (1.8) and (3.11), since they indicates how to choose the sequence {αk},
and they are employed also in the convergence analysis of (3.11) equipped with an
adaptive step size rule, as the one described in the following.

4. Convergence analysis with dynamic step size rule. A critical point for
the implementation of the methods (1.8) and (3.11) is how to select the sequence
{αk}; a practical strategy to obtain good performances is still an open problem, since
they are, in general, quite sensitive to this choice [16]. Borrowing the ideas of [19] and
[40], in this section we describe a level algorithm that allows us to adaptively compute
a dynamic step size αk in the iteration (3.11).

The resulting algorithm is detailed in Algorithm 1, whose underlying assumption
is that, for any given εk ≥ 0, we are able to provide an element u(k) of the set
∂εkf(x

(k)) and a subgradient w(k) ∈ ∂Φ(x(k)) such that assumption B holds.
In Algorithm 1, we have f reck = mini=0,...,k(f(x

(i))+Φ(x(i))), while l is the number
of times that the value f lev has been updated and k(l) is the iteration where the lth
updating occurred. Finally, σk is the cumulative path length between two successive
updates of f lev.

Steps 2–5 aim to provide in f levk an estimate of the optimal function value at
the iterate k, which is used as the target level for the successive iterates until the
objective function value is sufficiently close to it or the iterates move through a long
path without approaching it. In the first case, i.e., when the inequality at Step 3
is satisfied, f levk is reduced at Step 5 by subtracting the positive quantity δl to the
best value obtained so far, f rec. In the other case, when the inequality at Step 4
is satisfied, the estimated difference from the optimal value δl is reduced and, as a
consequence of Step 5, the target level f levk is increased.

One of the main differences between the step size computed by Algorithm 1 and
the square summable sequence considered in the previous section is that the former
one does not necessarily converge to zero.

In the rest of this section we prove that lim infk→∞{f(x(k))+Φ(x(k))}, where x(k)
is computed by Algorithm 1, is equal to the infimum of f+Φ, using similar techniques
as in [53].
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Algorithm 1 Scaled forward–backward ε-Subgradient Level Algorithm (SSL)

Choose B > 0, ν1, ν2 ∈ (0, 1), f rec−1 = ∞; k = 0, l = 0, k(l) = 0, δ0 > 0; choose

x(0) ∈ X .
For k = 0, 1, 2, . . .
Step 1. Computation of f(x(k)) + Φ(x(k)).
Step 2. If f(x(k)) + Φ(x(k)) < f reck−1, then f reck = f(x(k)) + Φ(x(k)) else

f reck = f reck−1.

Step 3. If f(x(k))+Φ(x(k)) < f reck(l)−ν1δl, then k(l+1) = k, σk = 0, δl+1 = δl,
l = l + 1 and go to Step 5.

Step 4. If σk > B, then k(l + 1) = k, σk = 0, δl+1 = ν2δl, l = l+ 1.
Step 5. Set f levk = f reck(l) − δl.
Step 6. Update the step size and compute the new iterate

αk =
f(x(k)) + Φ(x(k))− f levk
max(1, ‖u(k) + w(k)‖Dk

)
,

(4.1) x(k+1) =proxαkΦ,D
−1
k

(
x(k) − αkDk

u(k)

max(1, ‖w(k) + u(k)‖Dk
)

)
,

where w(k) ∈ ∂Φ(x(k)).
Step 7. σk+1 = σk + αk and go to Step 1.

End

Before giving the main result, whose proof also exploits the results of the previous
section, we recall the following technical lemma. We omit the proof, since it runs as
that of [53, Lemma 2.2].

Lemma 4.1. Let assumption A be satisfied and assume that there exists a sequence
of positive numbers {Lk} such that ‖Dk‖ ≤ Lk, ‖D−1

k ‖ ≤ Lk, with 1 ≤ Lk ≤ L for
some positive constant L for all k ≥ 0. Given B > 0 and {εk} such that εk → 0 as
k → ∞ in Algorithm 1, we have l → ∞ and lim infk≥0(f(x

(k)) + Φ(x(k))) = −∞ or
δl → 0 as l → ∞.

The following theorem can be considered as a generalization of [53, Proposi-
tion 2.7], which only deals with the case Dk = I, εk = 0 for all k.

Theorem 4.1. Let assumptions A and B be satisfied. Then, for SSL we have
f̄ = lim infk≥0(f(x

(k)) + Φ(x(k))) = infk≥0(f(x) + Φ(x)) = f∗. If

X∗ 	= ∅, lim inf
k≥0

(f(x(k)) + Φ(x(k))) = f(x∗) + Φ(x∗), x∗ ∈ X∗.

Proof. The first part of the proof aims to show that
∑

j αj = ∞ and runs as [53,
Proposition 2.7]. For the sake of completeness, we report below the detailed derivation
of the result.

From the previous lemma, if liml→∞ δl > 0, we have lim infk≥0(f(x
(k))+Φ(x(k))) =

−∞.
Now, we assume that δl → 0 as l → ∞. Let S be given by

S = {l ∈ {1, 2, . . .}, δl = ν2δl−1}.
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Then, from Steps 4 and 6 of Algorithm 1, we obtain

σk = σk−1 + αk−1 =

k−1∑
j=k(l)

αj ,

so that k(l + 1) = k and l + 1 ∈ S whenever
∑k−1

j=k(l) αj > B at Step 4. Hence

k(l)−1∑
j=k(l−1)

αj > B ∀l ∈ S

and since the cardinality of S is infinite, we have

(4.2)

∞∑
k=k(l)

αk ≥
∑

l≥l,l∈S

k(l)−1∑
j=k(l−1)

αj >
∑

l≥l,l∈S
B = ∞.

Now in order to obtain a contradiction, assume that f̄ > f∗, so that for some ỹ ∈ R
n

and some η > 0

(4.3) f̄ − η ≥ f(ỹ) + Φ(ỹ).

Since δl → 0 and εk → 0, there are large enough l and k such that, for all l ≥ l and
k ≥ k, we have δl < η/2 and εk < η/2 ; then for all k ≥ k̃ = max(k(l), k),

f levk − εk = f reck(l) − εk − δl > f̄ − η ≥ f(ỹ) + Φ(ỹ).

From this inequality, by (2.7) in Lemma 2.2 with αk ≡ αk

max(1,‖u(k)+w(k)‖Dk
)
, the

definition of ε-subgradient, and the definition of αk, we obtain

‖x(k+1) − ỹ‖2
D−1

k

≤ ‖x(k) − ỹ‖2
D−1

k

− 2
αk

max(1, ‖u(k) + w(k)‖Dk
)
(f(x(k)) + Φ(x(k))− f(ỹ)− Φ(ỹ)− εk)

+ α2
k

≤ ‖x(k) − ỹ‖2
D−1

k

− 2
αk

max(1, ‖u(k) + w(k)‖Dk
)
(f(x(k)) + Φ(x(k))− f levk ) + α2

k

≤ ‖x(k) − ỹ‖2
D−1

k

− α2
k.

In view of (2.5) and Lk ≥ 1, we can write

(4.4) ‖x(k+1) − ỹ‖2 ≤ L2
k‖x(k) − ỹ‖2 − α2

k.

By repeatedly applying the previous inequality we obtain

‖x(k+1) − ỹ‖2 ≤ θk
k̃
‖x(k̃) − ỹ‖2 −

k∑
j=k̃

θkj+1α
2
j ,

where θkj = L2
j · · · · ·L2

k, θ
k
k+1 = 1; since θkj ≤ θk0 ≤M , where M is a positive constant

(see Lemma 2.1) and θkj ≥ 1 we have

∞∑
k̃

α2
j ≤M‖x(k̃) − ỹ‖2
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and consequently
∑∞

k=k̃ α
2
k <∞. Then αk → 0 as k → ∞ and, from (4.2),

∑∞
k=k̃ αk =

∞.
Now we show that

∑
αkεk < ∞. Indeed, since εk → 0 as k → ∞, there exists

k̄ such that 2εk < η for k ≥ k̄, where η is such that (4.3) holds. We consider the
inequality
(4.5)

‖x(k+1)−ỹ‖2
D−1

k

≤ ‖x(k)−ỹ‖2
D−1

k

+α2
k−2

αk
max(1, ‖u(k) + w(k)‖Dk

)
(u(k)+w(k))T (x(k)−ỹ).

For the convexity of f +Φ, the inequality (4.3), and 2εk < η, we have

f(x(k)) + Φ(x(k)) + (u(k) + w(k))T (ỹ − x(k))− εk

≤ f(ỹ) + Φ(ỹ) ≤ f̄ − η ≤ f(x(k)) + Φ(x(k))− 2εk.

Then we have

(u(k) + w(k))T (ỹ − x(k)) ≤ −εk.

Using this inequality in (4.5), we obtain

‖x(k+1) − ỹ‖2
D−1

k

≤ ‖x(k) − ỹ‖2
D−1

k

+ α2
k − 2

αkεk
max(1, ‖u(k) + w(k)‖Dk

)
.

Using the same arguments as above, we obtain

‖x(k+1) − ỹ‖2 ≤ L2
k‖x(k) − ỹ‖2 + L2

kα
2
k − 2

αkεk
max(1, L

√
σ)
,

where σ = (ρu + ρw)
2. By repeatedly applying the previous inequality we have

‖x(k+1) − ỹ‖2 ≤ θkk̄‖x(k̄) − ỹ‖2 + θkk̄

k∑
j=k̄

α2
j −

2

max(1, L
√
σ)

k∑
j=k̄

αjεj

≤M

⎛
⎝‖x(k̄) − ỹ‖2 +

k∑
j=k̄

α2
j

⎞
⎠− 2

max(1, L
√
σ)

k∑
j=k̄

αjεj .

Then we have

∞∑
j=k̄

αjεj ≤ M

2
max(1, L

√
σ)

⎛
⎝‖x(k̄) − ỹ‖2 +

∞∑
j=k̄

α2
j

⎞
⎠ <∞.

According to Theorem 3.2 we have f̄ = f∗ which contradicts (4.3).

Clearly, since f reck = (f + Φ)kbest is monotone nonincreasing, Theorem 4.1 guar-
antees that its limit is f∗.

Further generalizations of Algorithm 1 could be included in the analysis of the
previous theorem following [53, p. 122], where the authors suggest some modifications
of Steps 2, 3, and 4 allowing a variable path bound B and different strategies to
update the parameter δl. For the sake of simplicity we omit these details here.
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5. SPDHG. The aim of this section is to present a concrete example of the
method (1.8) for the problem

(5.1) min
x∈Rn

f0(x) + f1(Ax) + Φ(x),

where A ∈ R
m×n, f0(x), f1(x),Φ(x) are convex, proper, lower semicontinuous func-

tions such that diam(dom(f∗
1 )) is finite, and f

∗
1 (y) is the Fenchel dual of f1. Clearly,

(5.1) is a special case of (1.6). We propose the following SPDHG method for the
solution of (5.1),

y(k+1) = proxτkf∗
1 ,I

(y(k) + τkAx
(k)),(5.2)

u(k) = d(k) +AT y(k+1),(5.3)

x(k+1) = proxαkΦ,D
−1
k
(x(k) − αkDku

(k)),(5.4)

where d(k) ∈ ∂μk
f0(x

(k)) for some μk ≥ 0, and {τk}, {αk} are the dual and primal
step length sequences, respectively. Method (5.2)–(5.4) is a special case of the scaled
forward-backward ε-subgradient method (1.8), where f = f0 + f1 ◦A. The key point
of this interpretation is that AT y(k+1) is an ε-subgradient of f1 ◦ A at x(k) as stated
in the following lemma.

Lemma 5.1 (see [16, Lemma 1]). Let y(k+1) defined as in (5.2). Then, y(k+1) ∈
dom(f∗

1 ) and, thus, A
T y(k+1) ∈ ∂ψk

(f1◦A)(x(k)), where ψk = f1(Ax
(k))+f∗

1 (y
(k+1))−

y(k+1)TAx(k). Moreover, if there exists a positive number D such that diam(dom(f∗
1 )) ≤

D, then ψk ≤ (2τk)
−1D2.

Thus, recalling the additivity of the ε-subgradient, we can conclude that

(5.5) u(k) = d(k) +AT y(k+1) ∈ ∂εkf(x
(k)), εk = μk + ψk.

Motivated by the previous observation, building on the material developed in sec-
tions 3 and 4, we discuss two step size selection strategies for the method (5.2)–(5.4),
providing two different SPDHG implementations. In the first case, we assume that
{τk}, {αk}, {γk} are prefixed sequences.

The following corollary shows a proper setting of these parameters and states the
convergence properties of the corresponding algorithm.

Corollary 5.1. Let {x(k)} be the sequence generated by iteration (5.2)–(5.4).
Assume that d(k) ∈ ∂μk

f0(x
(k)) and that there exists ρ > 0 such that ‖d(k)‖ ≤ ρ for

all k. Assume also that there exists a sequence {w(k)}, w(k) ∈ ∂Φ(x(k)), such that
‖w(k)‖ ≤ ρw for some ρw > 0. Define Lk = max(‖Dk‖, ‖D−1

k ‖) and assume that
Lk ≤ √

1 + γk for some nonnegative sequence of parameters {γk}. Let the step length
sequences {τk}, {αk}, and {γk} satisfy

(5.6) αk = O
(

1

kp

)
, τk = O(kp), γk = O

(
1

kq

)
,

1

2
< p ≤ 1, q > 1.

Moreover, assume that μk converges to zero at least as 1
τk
. If diam(dom(f∗

1 )) is finite,
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1762 S. BONETTINI, A. BENFENATI, AND V. RUGGIERO

lim infk→0 f(x
(k)) + Φ(x(k)) = f∗; if, in addition, the set of the solutions of (1.1) is

nonempty, the sequence {x(k)} converges to a solution of (5.1) and limk→∞ f(x(k))+
Φ(x(k)) = f∗.

Proof. Since diam(dom(f∗
1 )) is finite, we can apply Lemma 5.1 obtaining ψk ≤

(2τk)
−1D2 in (5.5). By the assumption (5.6) on τk and μk we obtain that εk = O ( 1

kp

)
and, as a consequence, αkεk = O ( 1

k2p

)
. Since 1

2 < p ≤ 1 and q > 1, all assumptions
of Theorem 3.1 are satisfied and we obtain the result.

On the other side, the SSL procedure for dynamically computing the primal step
size αk can also be implemented. For the sake of simplicity we assume μk = 0. In
this case, we have to provide a sequence of the scaling matrix bounds {γk} and of the
dual step size τk, while αk is computed by Steps 2–5 of Algorithm 1.

The following corollary establishes the convergence properties of this implemen-
tation of method (5.2)–(5.4).

Corollary 5.2. Let {x(k)} be the sequence generated by Algorithm 1, where u(k)

in (4.1) is given by (5.3), d(k) ∈ ∂f0(x
(k)). Assume that that there exists ρ > 0 such

that ‖d(k)‖ ≤ ρ for all k. Assume also that there exists a sequence {w(k)}, w(k) ∈
∂Φ(x(k)), such that ‖w(k)‖ ≤ ρw for some ρw > 0. Define Lk = max(‖Dk‖, ‖D−1

k ‖)
and assume that limk→∞ τk = ∞, Lk ≤ √

1 + γk, γk = O ( 1
kq

)
with q > 1, and that

there exists ρ > 0 such that ‖d(k)‖ ≤ ρ. If diam(dom(f∗
1 )) is finite, then we have

lim infk→∞ f(x(k)) + Φ(x(k)) = f∗.

Proof. Since d(k) ∈ ∂f0(x
(k)), by Lemma 5.1 we have u(k) ∈ ∂εkf(x

(k)), where

εk = f1(Ax
(k)) + f∗

1 (y
(k+1)) − y(k+1)TAx(k). Since diam(dom(f∗

1 )) is finite, we can
apply the second part of Lemma 5.1 obtaining εk ≤ (2τk)

−1D2 for a positive constant
D such that diam(dom(f∗

1 )) ≤ D. Since limk→∞ τk = ∞, we have limk→∞ εk = 0 and
by Theorem 4.1 we obtain the result.

We conclude this section by observing that the complexity analysis in section 2
applies also to SPDHG. We also point out that in [43] the authors prove a O(1/k)
complexity result for the ergodic sequence generated by iteration (5.2)–(5.4) with
Dk = I and f0 = 0 under the assumption that Φ is strongly convex.

6. Application: Edge preserving deblurring of Poisson images. In this
section we further specialize the SPDHG method, by focusing on a specific application
in the image restoration context. Our aim is to suggest a strategy to compute a suit-
able scaling matrix Dk, fully defining the algorithm; as observed by several authors,
this choice should be driven according to the specific problem features, such as the
structure of the constraints and objective function [18, 48, 68].

For these reasons, we describe first some details of the image reconstruction prob-
lems which, in the Bayesian framework, can be formulated as constrained convex
minimization problems of the form (5.1). For these problems, the function f0(x) mea-
sures the data discrepancy and should be chosen according to the noise statistics: in
particular, when the data suffer from Poisson noise, the maximum likelihood principle
leads to the generalized Kullback–Leibler divergence

(6.1) f0(x) =

n∑
i=1

gi log
gi

(Hx)i + b
+ (Hx)i + b − gi,

where g ∈ R
n is the observed image, H ∈ R

n×n represents the blurring operator,
while b ∈ R is a nonnegative background term. Standard assumptions on H are that

D
ow

nl
oa

de
d 

10
/1

7/
19

 to
 1

59
.1

49
.1

92
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A SCALED ε-SUBGRADIENT METHOD 1763

it has nonnegative entries and HT e > 0, where e ∈ R
n is the vector of all ones.

Function (6.1) is convex (see [36] and [17] for the explicit expression of its Hessian
and gradient) and when b = 0 its gradient is not Lipschitz continuous.

Since the entries of the unknown vector x represent the image pixels, a meaningful
solution is obtained by defining the constraint set as the nonnegative orthant, i.e.,
X = {x ∈ R

n : xi ≥ 0}.
On the other side, f1(Ax) plays the role of a regularization term enforcing suitable

properties on the solution of (5.1). Typically, to preserve the edges in the solutions
of (5.1), f1(Ax) can be chosen as

(6.2) f1(Ax) = βTV (x), TV (x) =

n∑
i=1

‖Aix‖, Ai ∈ R
2×n,

where TV (x) is the discrete, nonsmooth, TV functional, β is a positive regularization
parameter, and Ai ∈ R

2×n is defined such that Aix represents the discrete gradient
of the image x at the pixel i. In these settings, the matrix A is defined by blocks as

A =
(
AT1 AT2 · · · ATn

)T ∈ R
2n×n.

In order to simplify the notation, we assume that x ∈ R
n is an N × N image,

i.e., n = N2 and we will indicate the component x
, � = 1, . . . , n, also as xi,j , i, j =
1, . . . , N , with the correspondence j = �(�− 1)/N�+1, i = �−�(�− 1)/N� ·N , where
�·� denotes the integer quotient. With this notation, the �th discrete gradient of the
image x can be written as

A
x =

(
xi+1,j − xi,j
xi,j+1 − xi,j

)
,

where some boundary conditions are assumed.
The minimization of the nonsmooth TV functional is especially relevant since

it allows us to preserve the sharpness of the edges in the reconstructed image. It
is well known that the same effects cannot be obtained by means of a Tikhonov
regularization, i.e., by squaring the gradient norm (see, for example, [60]), then this
image reconstruction problem has to be handled with nonsmooth optimization tools.

The problem to be solved has the structure (5.1), where Φ(x) = ιX(x). In this
case, since f0 is differentiable, we define d(k) = ∇f0(x(k)) in (5.4), so that μk = 0 for
all k in Corollary 5.1. Moreover, the evaluation of the proximity operators in (5.2)
and (5.4) consists of a simple Euclidean projection onto the set B×B×· · ·×B ⊂ R

2n,
where B = {z ∈ R

2 : ‖z‖ ≤ 1}, and in a projection onto the nonnegative orthant with
respect to the norm induced by D−1

k , respectively.
In order to devise a suitable scaling matrix Dk for SPDHG, we adapt to our

case the split gradient strategy proposed in [9, 48] for nonnegatively constrained dif-
ferentiable problems, which demonstrated to be very effective in several applications
[8, 14, 57, 65, 68].

The key point of this approach consists in finding a subgradient decomposition
of the form u(k) = V (x(k))− U(x(k)) with V (x(k)) > 0 and U(x(k)) ≥ 0 for all k and
then defining Dk in (5.4) as a diagonal scaling matrix whose entries are the projection

of x
(k)
i /Vi(x

(k)) onto the set [1/
√
1 + γk,

√
1 + γk].

This strategy has the advantage to agree with the nonnegativity constraints and
strongly depends on the form of the subgradient u(k).

For a practical implementation of this strategy, we have to find a decomposition
of the vector u(k) = ∇f0(x(k))+βAT y(k+1) as the difference of two nonnegative terms.
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As concerns the first term, the gradient of f0 has the natural decomposition
∇f0(x) = HT e − HT v(x), where v(x) denotes the vector with entries vi(x) =
gi/(Hx + b)i; by the assumptions on H , we have HT e > 0 and HT v(x) ≥ 0 for
all x ≥ 0.

Thus, it remains to find a decomposition of the vector AT y(k+1) in (5.4). To this
end, we compute the explicit expression of it as a function of x(j), j = 0, . . . , k. We

first observe that, if the dual variable is partitioned as y =
(
yT1 yT2 · · · yTn

)T
,

yi ∈ R
2, the updating rule (5.2) can be written as

ỹ(k) = y(k) + τkβAx
(k),

y(k+1) = Skỹ
(k),

where Sk is a diagonal 2n× 2n matrix with the following diagonal entries

(6.3) (Sk)2i−1,2i−1 = (Sk)2i,2i =
1

max{1, ‖ỹ(k)i ‖}
, i = 1, . . . , n.

If the method is initialized with y(0) = 0, the dual variable can be written as

y(0) = 0,

y(1) = βτ0S0Ax
(0),

y(2) = βS1(τ0S0Ax
(0) + τ1Ax

(1)),

y(3) = βS2(τ0S1S0Ax
(0) + τ1S1Ax

(1) + τ2Ax
(2)),

...

y(k+1) = β

k∑
j=0

τj S̃
k
jAx

(j),

where we set

S̃kj = SkSk−1 . . . Sj =

k∏
i=j

Si.

As a consequence, the ε-subgradient of f1 ◦A employed in (5.4) can be expressed as

(6.4) βAT y(k+1) = β2
k∑
j=0

τjA
T S̃kjAx

(j).

The following simple lemma, which directly follows from the definition of A, indicates
a possible decomposition of each term in the summation at the right-hand side of
(6.4) as the difference between a positive and a nonnegative term.

Lemma 6.1. Every matrix–vector product of the form ATSAx, where S is a 2n×
2n diagonal matrix with positive entries such that S2
,2
 = S2
−1,2
−1 = s
, � =
1, . . . , n, x ≥ 0, can be decomposed as

ATSAx = VSx− USx,

where

(VSx)i,j = (2si,j + si,j−1 + si−1,j)xi,j ≥ 0,

(USx)i,j = si,j(xi+1,j + xi,j+1) + si,j−1xi,j−1 + si−1,jxi−1,j ≥ 0

with the correspondence s
 ≡ si,j, j = �(� − 1)/N�+ 1, i = � − �(�− 1)/N� ·N .
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Algorithm 2 SPDHG

Choose the starting point x(0) ∈ X and set y(0) = 0, p(−1) = q(−1) = r(−1) = 0.
Choose the sequences {αk}, {τk}, {γk}.
For k = 0, 1, 2, . . . do the following steps:

Step 1. Compute ỹ(k) = y(k) + βτkAx
(k);

Step 2. Compute s
(k)

 = 1

max{1,‖ỹ(k)
� ‖} , � = 1, n; (Sk)2i−1,2i−1 = (Sk)2i,2i =

1

max{1,‖ỹ(k)
i ‖} .

Step 3. Dual update: y(k+1) = Skỹ
(k).

Step 4. Auxiliary vectors update for the decomposition:

p
(k)
i,j = (p

(k−1)
i,j + β2τkx

(k)
i,j )s

(k)
i,j ,(6.5)

q
(k)
i,j = (q

(k−1)
i,j + β2τkx

(k)
i,j )s

(k)
i−1,j ,(6.6)

r
(k)
i,j = (r

(k−1)
i,j + β2τkx

(k)
i,j )s

(k)
i,j−1(6.7)

for i, j = 1, . . . , N.

Step 5. Compute the positive part of the decomposition:

V (x(k)) = HT e+ (2p(k) + q(k) + r(k)).(6.8)

Step 6. Compute the scaling matrix:

(Dk)
,
 = min

{
(1 + γk)

1
2 ,max

{
(1 + γk)

− 1
2 ,

x
(k)



V (x(k))


}}
.

Step 7. Primal update: x(k+1) = P≥0(x
(k)−αkDk(∇f0(x(k))+βAT y(k+1))).

End

The ε-subgradient of f in (5.4) can be decomposed as

u(k) = ∇f0(x(k)) + βAT y(k+1) = V (x(k))− U(x(k)),

where

(6.9) V (x(k)) = HT e+ β2
k∑
j=0

τjVS̃k
j
x(j).

Even if it seems quite complicated, the term

V R(x(k)) = β2
k∑
j=0

τjVS̃k
j
x(j)

can be easily computed in a recursive way, by introducing three auxiliary vectors, as
described in Algorithm 2. We also notice that, since the scaling matrix Dk is diagonal
and the constraint set X is the nonnegative orthant, the projection with respect to
the norm induced by D−1

k reduces to the usual Euclidean projection P≥0(·) (see Step
7).
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By induction it can be shown that the computation of V (x(k)) in (6.8) actually
gives (6.9). For the sake of simplicity, we limit ourselves to show that this is true for
k = 0, 1. Indeed, from Lemma 6.1 and from (6.5)–(6.7) we have

V R(x(0))i,j = β2τ0(VS0x
(0))i,j

= β2τ0(2s
(0)
i,j + s

(0)
i−1,j + s

(0)
i,j−1)x

(0)
i,j

= 2p
(0)
i,j + q

(0)
i,j + r

(0)
i,j ,

V R(x(1))i,j = β2τ0(VS0S1x
(0))i,j + β2τ1(VS1x

(1))i,j

= β2τ0(2s
(0)
i,j s

(1)
i,j + s

(0)
i−1,js

(1)
i−1,j + s

(0)
i,j−1s

(1)
i,j−1)x

(0)
i,j

+ β2τ1(2s
(1)
i,j + s

(1)
i−1,j + s

(1)
i,j−1)x

(1)
i,j

= 2(β2τ0s
(0)
i,j x

(0)
i,j + β2τ1x

(1)
i,j )s

(1)
i,j

+(β2τ0s
(0)
i−1,jx

(0)
i,j + β2τ1x

(1)
i,j )s

(1)
i−1,j

+(β2τ0s
(0)
i,j−1x

(0)
i,j + β2τ1x

(1)
i,j )s

(1)
i,j−1

= 2(p
(0)
i,j + β2τ1x

(1)
i,j )s

(1)
i,j + (q

(0)
i,j + β2τ1x

(1)
i,j )s

(1)
i−1,j + (r

(0)
i,j + β2τ1x

(1)
i,j )s

(1)
i,j−1

= 2p
(1)
i,j + q

(1)
i,j + r

(1)
i,j .

Algorithm 2 can be adapted for both the step size selection strategies described in
sections 3 and 4. In the first case, three prefixed sequences {αk}, {τk}, and {γk}
satisfying the assumptions of Corollary 5.1 have to be provided.

In the other case, the SSL procedure for dynamically computing the primal step
size αk can be included in Algorithm 2. Here, only the sequences {τk}, and {γk}
should be given such that limk→∞ τk = ∞ and

∑
γk <∞.

7. Numerical experience. The aim of our numerical experience is twofold:
first, we are interested in evaluating the effect of the scaling on the convergence be-
havior of the ε-subgradient method. Second, we compare the two step length selection
strategies presented in sections 3–4.

To this end we consider four different versions of the method (5.2)–(5.4):

PDHG corresponds to the choices Dk = I and αk chosen as an a priori diminish-
ing, divergent series, square summable sequence in (5.4). It actually consists in the
method in [16];

SPDHG is Algorithm 2 with αk chosen as an a priori diminishing, divergent series,
square summable sequence;

SL is the ε-subgradient level method given in Algorithm 1 with Dk = I and
u(k) = ∇f0(x(k)) + βAT y(k+1), where y(k+1) is updated as in (5.2);

SSL is the same as above but with the scaling matrix Dk defined as at Step 6 of
Algorithm 2.

The numerical experiments described in this section have been performed in the
MATLAB environment (R2015a) on a PC equipped with an Intel Core i7-3517U
processor 1.9 GHz, 8 GB RAM.

In our experiments, we consider problem (5.1), where f0, f1 are defined in (6.1)–
(6.2) and H represents the convolution operator with a given point spread function
(psf). Thus, assuming periodic boundary conditions, the matrix–vector products
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involving H can be computed by the fast Fourier transform and, by a simple normal-
ization of the psf, we also have HT e = He = e; moreover, in our experiments, H is
nonsingular, although very ill-conditioned, and g > 0, so that problem (5.1) has a
unique solution [36]. This problem can be solved also by the PSS method in [28] with
positive exogenous sequences of step sizes, whose iteration for this application can be
expressed as

x(k+1) = Px≥0

(
x(k) − αk

max(1, ‖∇f0(x(k)) + u(k)‖) (∇f0(x
(k)) + u(k))

)

with u(k) ∈ ∂(f1 ◦A)(x(k)).
We consider a set of three test problems generated as in [61], where the data g

are obtained with the following procedure: the selected original image x̄ is rescaled so
that the maximum pixel intensity is a specified value Imax. Then, the rescaled image
is convolved with the psf and the background b is added. Finally, Poisson noise is
introduced by the MATLAB imnoise function and the simulated data g are obtained
after scaling back again by Imax.

For each test problem, the regularization parameter β has been empirically se-
lected by computing the solution of (5.1) for different values of β and choosing that
for which we observed the minimum l2 relative distance with respect to x̄.

The features of each test problem are specified below.
cameraman: the 256 × 256 original image is the “cameraman” available in the

MATLAB package, while the psf is a Gaussian function, with standard deviation 1.3,
truncated at the 9 × 9 central pixels. The other parameters are Imax = 1000, b = 0,
β = 0.005; the l2 relative distance between x̄ and g is 0.1209, while gi ∈ [4, 250].

micro: the original image is the confocal microscopy phantom of size 128 × 128
described in [67], scaled by 10; the psf is the one in [67] truncated at the 9× 9 central
pixels. Here we set Imax = 1, b = 0, β = 0.0477; the original image pixels are in the
range [10, 690], the l2 relative distance between x̄ and g is 0.1442, while gi ∈ [1, 778].

phantom: the original image x̄ is the 256× 256 Shepp–Logan phantom, generated
by the MATLAB function phantom, scaled by a factor 1000, while the psf is a Gaussian
function, with standard deviation 3, truncated at the 9× 9 central pixels. In this case
we set Imax = 1, b = 10, and β = 0.00526. The values of the original image are in the
range [0, 1000], the l2 relative distance between x̄ and g is 0.4643, while gi ∈ [1, 934].

For all test problems we compute the solution x∗ of the minimization problem
(5.1) by running 50000 iterations of the PIDSplit method [61]. Then, we evaluate the
progress toward this solution at each iteration in terms of the l2 relative error from
the minimum point and the relative difference from the optimal value,

ek =
‖x(k) − x∗‖

‖x∗‖ , fk =
f(x(k))− f(x∗)

f(x∗)
.

Following the assumptions of Corollaries 5.1 and 5.2 and those in [28] for PSS, we
choose the sequences of parameters as follows:

τk = t1 + t2k, αk =
1

t3 + t4k
, γk =

t5
k1+t6

.

In order to illustrate the effectiveness of the methods, the values ti have been manually
optimized for each test problem to obtain a faster decrease of ek (see Table 1).

Moreover, for the initialization of both SL and SSL, we adopt the rule δ0 =

0.9 f(x(0)), while the other parameters are ν1 = ν2 = 0.5, B = 0.9‖u(0)‖‖D0‖
1
2∞. The
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Table 1

Parameter settings.

PDHG SPDHG
τk αk τk αk γk

Cameraman 0.9 + 10−2k (0.05 + 10−5k)−1 0.5 + 5 · 10−3k (0.5 + 10−6k)−1 1013k−2

Micro 0.9 + 10−3k (0.05 + 10−5k)−1 0.4 + 10−3k (0.5 + 10−7k)−1 1013k−2

Phantom 0.9 + 10−3k (0.01 + 10−5k)−1 0.5 + 10−4k (0.5 + 10−6k)−1 1013k−2

PSS SL SSL
αk τk τk γk

Cameraman (0.004 + 10−6k)−1 0.5 + 5 · 10−2k 0.7 + 5 · 10−2k 1013k−2

Micro (0.002 + 10−6k)−1 0.9 + 10−1k 0.9 + 10−2k 1013k−2

Phantom (0.002 + 10−6k)−1 0.9 + 10−2k 0.9 + 10−2k 1013k−2

0 10 20 30 40 50 60
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Fig. 3. Image deblurring results. Upper row: plots of the relative minimization error ek. Lower
row: plots of the relative difference from the optimal function value fk. Left column: cameraman.
Middle column: micro. Right column: phantom. All plots are with respect to the computational
time in seconds and use a logarithmic scale on the vertical axis.

plots in Figure 3 have been obtained by running 3000 iterations of the algorithms,
reporting the errors ek, fk with respect to the computational time in seconds.

From the numerical experience we observe that the presence of the scaling can
help to accelerate the progress towards the solution, with both step size selection
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strategies. As concerns the scaling matrix bounds, the best results are obtained by
selecting large initial values for γk (see Table 1) and, thus, for Lk, allowing more
freedom to choose the scaling matrix especially at the first iterations.

It is also interesting to observe that the adaptive computation of αk combined
with the proposed scaling technique in SSL seems to work quite well, leading to
performances that are, in some cases, close to the “best” ones obtainable by manually
tuning the step size sequences in PDHG, SPDHG, and PSS. Indeed, the performances
of algorithms depending on exogeneous sequences of step sizes are sensitive to the
choice of these parameters, making it difficult to devise a general rule to select them.

Comparing the first and the second rows in Figure 3, we also observe that a faster
approach to the solution x∗ does not always correspond to a faster decrease of the
objective function: we suppose that this phenomenon is due to the ill-conditioning
of problem (5.1). For completeness, we experimentally observed that too large initial
values of the primal step size αk in PDHG and SPDHG may produce an unbounded
sequence {u(k)} and, as a consequence, the algorithms fail to converges: this indicates
that the assumption on the ε-subgradient boundedness is crucial.

8. Conclusions. In this paper we proposed a generalization of the ε-subgradient
method with variable scaling matrix for nonsmooth, convex optimization, developing
the related convergence analysis when the step size parameters are either provided
as a priori selected sequences or dynamically computed by an adaptive procedure.
Exploiting the duality principle, we described a special case of the proposed method
which applies to the minimization of the sum of two convex functions with a compos-
ite term. For a specific problem of this form in the image restoration framework, we
fully detailed the algorithm, also suggesting a strategy to compute the scaling ma-
trix. The numerical experience shows that the presence of a suitable variable scaling
matrix can accelerate the progress of the iterates towards the solution. Moreover, the
results obtained combining the variable scaling with the adaptive procedure for the
computation of the step size parameter are encouraging.

Future work will be addressed to further investigate dynamic choices of the step
size and of the scaling matrix, with the aim to devise effective “black–box” algorithms
which are able to handle practical applications with a minimum of user supplied pa-
rameters.

Acknowledgment. We thank the anonymous reviewers for their careful reading
and their many insightful comments and suggestions which stimulated us to improve
our paper.
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