Periodic light–dark cycles govern the timing of basic biological processes in organisms inhabiting land as well as the sea, where life evolved. Although prominent marine phytoplanktonic organisms such as diatoms show robust diel rhythms, the mechanisms regulating these processes are still obscure. By characterizing a Phaeodactylum tricornutum bHLH-PAS nuclear protein, here named RITMO1, we shed light on the regulation of the daily life of diatoms. Alteration of RITMO1 expression levels and timing by ectopic overexpression results in lines with deregulated diurnal gene expression profiles compared with the wild-type cells. Reduced gene expression oscillations are also observed in these lines in continuous darkness, showing that the regulation of rhythmicity by RITMO1 is not directly dependent on light inputs. We also describe strong diurnal rhythms of cellular fluorescence in wild-type cells, which persist in continuous light conditions, indicating the existence of an endogenous circadian clock in diatoms. The altered rhythmicity observed in RITMO1 overexpression lines in continuous light supports the involvement of this protein in circadian rhythm regulation. Phylogenetic analysis reveals a wide distribution of RITMO1-like proteins in the genomes of diatoms as well as in other marine algae, which may indicate a common function in these phototrophs. This study adds elements to our understanding of diatom biology and offers perspectives to elucidate time-keeping mechanisms in marine organisms belonging to a major, but under-investigated, branch of the tree of life.

Significance

Most organisms experience daily light–dark changes and show rhythms of basic biological processes such that they occur at optimal times of the day. Rhythms are also observed in a multitude of marine organisms, but their molecular foundations are still largely unknown. Here, we report daily oscillations of gene expression and cell fluorescence in the diatom Phaeodactylum tricornutum, which persist in the absence of external timing cues. We demonstrate that the protein RITMO1, encoded by a bHLH-PAS gene, which is widely represented in algal genomes, regulates these rhythms. By demonstrating circadian regulation in the most species-rich algal group in the ocean, this study unveils critical features of diatom biology, thus advancing the field of diurnal and circadian rhythms in marine algae.
plants have been found in the diatom genomes except for cryptochromes and casein kinases (13).

In this work, by characterizing gene transcription and cell fluorescence rhythms in *P. tricornutum*, we uncover the existence of circadian rhythms in diatoms and demonstrate the involvement of the bHLH1-PAS protein bHLH1a, here named RITMO1, in the regulation of these processes. Notably, the bHLH-PAS domains feature in proteins involved in the regulation of rhythmic processes in animals (5). Phylogenetic analyses reveal a wide distribution of RITMO-like homologs in the genomes of diatoms and other marine algae. Thus, RITMO1 represents a key molecular entry point for the identification of the timekeeper components in diatoms and paves the way for a deeper understanding of marine rhythms and their evolutionary and ecological relevance.

Results

Transcriptome Profiling Identifies Potential Regulators of Diurnal Rhythms in *P. tricornutum*. To identify potential regulators of cellular rhythmicity in *P. tricornutum*, a publicly available diurnal transcriptomic dataset (18) was analyzed. One hundred and four genes with robust diel oscillating expression were selected, including eight photoreceptors (19, 25–27), 66 TFs (28), and 30 potential output genes implicated in diel rhythmic processes (pigment synthesis, cell cycle regulation, and photosynthesis) (**SI Appendix**, Table S1). The transcriptional dynamics of the selected genes were further examined in a 16:8-h light:dark (L:D) cycle for 32 h. Hierarchical clustering analysis revealed four main clusters of coexpressed genes, termed I–IV (Fig. 1 A and B). Cluster I phased at dawn, at around Zeitgeber Time 0 h (ZT: hours after illumination), suggesting a transcriptional anticipation of the light onset. This cluster comprised 18 genes including 14 TFs, mostly belonging to the Heat Shock Transcription Factor family (HSF), the two DNA repair enzymes CPD photolyases (CPD2 and CPD3), and one carotenoid synthesis enzyme (PDS1). Cluster II phased around ZT7 and encompassed 36 genes, including the dsCYC2 gene controlling the onset of cell division (19). Cluster II also contained 18 TFs, of which 8 were sigma factors putatively involved in the regulation of chloroplast transcription, three genes implicated in photoprotection (LHCI1, Vld2, and Zpl1), and the chlorophyll synthase PORI gene. Such active transcription of genes involved in chloroplast activity during the light period has been shown previously (18, 29). The blue light sensors *Aurochrome1b* and the cryptochromes *CPF1* and *Cry-like* also belonged to cluster II and showed a strong expression following light onset in accordance with previous observations (26, 30). Cluster III phased around ZT9 and comprised 9 TFs and 10 metabolism-related genes. Finally, cluster IV phased just before dusk, at around ZT15, and included 23 TF genes, likely contributing to preparing cells for light-to-dark transition. Cluster IV also contained the *CPF4* and the far-red light sensing phytochrome (*DPh1*), the peak expression of which at the end of the light period has been observed previously (26, 31).

To explore transcription dynamics in the absence of light inputs, the expression of these rhythmic genes was further analyzed in cells exposed to continuous darkness (D:D) for 30 h. The analysis of transcript profiles revealed that around 20% of the analyzed genes showed persistent oscillating expression in D:D, although some profiles displayed reduced amplitudes and/or shifted phases of expression compared with the L:D condition (**SI Appendix**, Fig. S1). In particular, we identified 18 genes, including putative TFs, pigment-related enzymes, and cell cycle-related genes, showing the highest amplitudes of expression in both L:D and D:D. Conversely, the other 80% of the analyzed expression profiles did not have persistent oscillating patterns in darkness and instead had strongly reduced amplitudes or altered expression timing compared with the L:D condition (**SI Appendix**, Fig. S2).

Rhythmic bHLH1a and bHLH1b Expression Is Adjusted in a Photoperiod-Dependent Manner and Persists in Continuous Light and Continuous Dark Conditions. Our analysis identified two TFs—*bHLH1a* (Phatr3_J44962) belonging to cluster IV and *bHLH1b* (Phatr3_J44963) belonging to cluster III—which each have a Per-ARNT-Sim (PAS) domain in conjunction with a bHLH DNA-binding domain. Because bHLH-PAS proteins have been shown to be involved in the regulation of rhythmic processes in animals (5), the expression profiles of *bHLH1a* and *bHLH1b* were further examined in *P. tricornutum* cells grown under different photoperiods, *bHLH1a* expression peaked at ZT8 in the 12L:12D photoperiod and at ZT12 in the 16L:8D photoperiod, 4 h before the end of the light period in both cases, and then gradually decreased to below detection limits at ZT0 (Fig. 1C). Transcription of *bHLH1b* appeared to start earlier than that of *bHLH1a*. In cells entrained in 12L:12D cycles, *bHLH1b* expression peaked at ZT8, whereas it peaked between ZT8 and ZT12 in 16L:8D photoperiods (Fig. 1C). Rhythmic expression was maintained in continuous light (L:L), although amplitude was reduced and phase delay of 4 h occurred for both genes. In D:D (Fig. 1C), *bHLH1a* and *bHLH1b* showed an increase in relative transcript abundance during the subjective day that was comparable to that observed in L:D, but the decrease during the subjective night was less pronounced (Fig. 1C and **SI Appendix**, Fig. S1). Because iron metabolism is diurnally regulated in *P. tricornutum* and iron starvation strongly affects rhythmic gene expression (32), we further examined the *bHLH1a* and *bHLH1b* expression profiles in cells grown in iron replete and deplete conditions by using public transcriptome datasets (32). In this analysis, *bHLH1a* and *bHLH1b* showed similar expression patterns in both control and iron starvation conditions, with peak expression at ZT9 in cells grown in 12L:12D photocycles (**SI Appendix**, Fig. S3). Together, these results demonstrate the robust control of *bHLH1a* and *bHLH1b* expression timing. Of these proteins, we decided to further investigate the possible involvement of *bHLH1a* in the regulation of *P. tricornutum* rhythms.

Cellular Localization of bHLH1a Protein. To examine *bHLH1a* cellular localization, we generated transgenic lines expressing HA-tagged *bHLH1a* under the Lhcf2p promoter, which drives expression 3 h after the light onset (33). Immunoblot analysis performed at ZT7 and ZT12 in a 16L:8D regime revealed three independent *bHLH1a-HA* overexpressing lines, hereafter named OE1, OE2, and OE3 (Fig. 2B). The ectopic protein was detected at ZT7 and ZT12 in these lines. Analysis of *bHLH1a* total transcripts, both endogenous (*bHLH1a*) and transgenic (*bHLH1a-HA*) mRNAs, also showed earlier expression in the OE lines compared with the wild type (WT) (Fig. 2 C and D).

To investigate the effect of *bHLH1a* deregulation on diel gene expression, WT and OE lines were grown in 16L:8D photocycles and sampled for RNA analysis. The expression of selected genes exhibiting a diurnal rhythmic expression pattern (Fig. 1) was analyzed in WT and OE1 sampled every 3 h over 24 h (Fig. 2 C and **SI Appendix**, Fig. S44). As described above, total *bHLH1a* transcript levels were higher in the OE line compared with the WT (Fig. 2 C and D), but a decrease in endogenous *bHLH1a* transcripts was also observed (Fig. 2 C and D). A similar pattern was also reported for the *bHLH1b* gene while *bHLH3* showed earlier expression in OE1 compared with the WT (Fig. 2 C and D). In addition to the *bHLH* genes, altered expression patterns in OE1 were also found for other putative TF genes and cell cycle regulators (**SI Appendix**, Fig. S44). To test a possible function of *bHLH1a* in the maintenance of diurnal rhythms in the absence of light inputs, the expression of genes found to be rhythmic in the WT in D:D (**SI Appendix**, Fig. S1) was analyzed also in OE1. Ten
of 11 genes displayed reduced amplitudes and shifts in the phase of expression in OE1, compared with WT (Fig. 2E and SI Appendix, Fig. S4B). Analysis of bHLH1a, bHLH1b, and bHLH3 in OE2 and OE3 at ZT7 and ZT12 in L:D (Fig. 2D) and at DD7 and DD12 in D:D (Fig. 2F) suggested a similar deregulation of gene expression in independent transgenic lines.

The Ectopic Overexpression of bHLH1a Results in Altered Circadian Rhythms. We next questioned if, beside gene expression, other physiological rhythms were regulated by bHLH1a. With this aim, daily cellular fluorescence was analyzed using the flow cytometry channel FL3-A that estimates chlorophyll a cellular content (8, 29). Cellular fluorescence displayed strong oscillations in 16L:8D grown cultures with a periodicity of ∼24 h (Fig. 3A and SI Appendix, Table S2). Cell fluorescence in WT cultures increased during daytime to phase around ZT12 (Fig. 3A) and then started to decrease before night onset. Fluorescence progressively declined during the night period, reaching a trough in the early morning at ZT0 (Fig. 3A). In synchronized cells, the increase of FL3-A fluorescence is concomitant with the increase in the proportion of G2/M cells, and a decrease in the FL3-A relates to an increase in cell concentration (29) (SI Appendix, Fig. S5), likely reflecting chloroplast partitioning to daughter cells during cell division. Despite maintaining period rhythmicity in the cellular fluorescence dynamics, all three OE lines displayed synchronized fluorescence oscillations from LL33, with a period of ∼27 h. These rhythms lasted to at least the fifth day of continuous light (Fig. 3C), supporting the hypothesis that they are self-sustained by an endogenous clock. Patterns of cell fluorescence oscillations in L:L were strongly altered in all three OE lines compared with WT (Fig. 3 A and D and SI Appendix, Figs. S8 and S9) although similar growth rates were observed (SI Appendix, Fig. S10). Analysis via the Fast Fourier Transform Nonlinear Least Squares (FFT-NLLS) method showed that all lines maintained residual rhythmicity, but with a strong phase shift compared with the WT (Fig. 3 C and D) and a reduced amplitude, with the OE2 being the less affected for the latter one (Fig. 3D and SI Appendix, Figs. S8 and S9 and Table S3). Additionally, OE lines also presented shorter periods than the WT, although OE1 lines lacked a significant difference most likely due to the variability introduced by the replicates with high relative amplitude error (SI Appendix, Supplementary Methods, Figs. S8 C and D, and Table S3). Fluorescence oscillations were similar between WT and an independent transgenic line expressing only the antibiotic resistance cassette (SI Appendix, Fig. S11), excluding a generic alteration of rhythmicity due to transgenesis. Based on these results, we named bHLH1a “RITMO1” (Italian word for “rhythm”) after its role as regulator of diatom diel rhythms.

RITMO1-Like Proteins Are Widely Represented in the Genome of Marine Algae. The bHLH-PAS proteins were thought to be restricted to the animal (Opisthokonta) lineage (35) until various sequencing projects revealed bHLH-PAS family members in microalgae (diatoms and Nannochloropsis) (36). Diatom proteins show peculiar features including a single predicted PAS domain, whereas animal bHLH-PAS proteins have two and an N-terminal extension that is absent in their animal counterparts (Fig. 4A). Through searching transcriptomic and genomic databases from Archeplastida, Cryptophyta, Stramenopila, Alveolata, and basal Opisthokonta organisms (SI Appendix, Table S4), we discovered about 90 bHLH-PAS proteins. With one exception, the identified
proteins showed a single predicted PAS domain, short C-terminal extensions, and N-terminal regions of variable length, similar to the predicted structure of diatom bHLH-PAS (Fig. 4A). Notably, we identified the first Archaeplastida bHLH-PAS that possesses two PAS domains like the animal proteins in *Galdieria sulphuraria* (Rhodophyta).

All of the identified sequences, including selected bHLH-PAS from Opisthokonta lineages, were used to perform a detailed phylogenetic analysis of the protein family using the bHLH and PAS domains. This analysis revealed that the majority of microalgal bHLH-PAS proteins fall into three separate clades, the first containing 9 TFs from diatoms and *Ectocarpus siliculosus*, the second comprising RITMO1 together with 35 proteins from diatoms and Alveolata (Dinoflagellata), and the third comprising 41 proteins from Alveolata (Ciliophora and Dinoflagellata) and diatoms, including bHLH1b (Fig. 4B). Interestingly, domain organization and branching positions of proteins from basal Opisthokonta (*Monosiga brevicollis*) and secondary endosymbiotic microalgae [*Guillardia theta* (Cryptophyta) and *Nannochloropsis* species (Stramenopila)] (Fig. 4B) support a possible common origin for this TF family from a heterotrophic ancestor (37) featuring single bHLH and PAS domains. However, the basal position and domain organization of the *G. sulphuraria* bHLH-PAS protein hint at a more complex scenario possibly involving endosymbiotic (horizontal) gene transfer, gene duplication/loss, and convergent evolution in the diversification of this family.

Discussion

This study shows that diatoms integrate light signals from the environment as well as from an endogenous circadian clock to tightly regulate diel cellular activities. It also unveils the *P. tricornutum* RITMO1 protein of the bHLH-PAS transcription factor family as the first regulator of circadian rhythms to be found in these algae. RITMO1 displays robust diel expression patterns, which are adjusted in a photoperiod-dependent manner and are unaffected by iron deficiency. As for other circadian clock-regulated genes in algae (24), the rhythmic expression of RITMO1 persists in cells exposed to continuous blue light, a dominant waveband in the ocean (27). However, RITMO1 transcription shows reduced oscillation amplitude in constant darkness, likely due to the lack of critical light time setting signals and alteration of metabolism due to the fact that photosynthesis is not dispensable in *P. tricornutum*. Thus, the RITMO1 expression timing is tightly regulated and likely subjected to multiple levels of control from different input regulators, conceivably blue light photoreceptors (27) and metabolism, as already observed for other clock genes in plants and animals (3, 4).

Furthermore, the observed down-regulation of the endogenous *RITMO1* transcription shows reduced oscillation amplitude in constant darkness, likely due to the lack of critical light time setting signals and alteration of metabolism due to the fact that photosynthesis is not dispensable in *P. tricornutum*. Thus, the RITMO1 expression timing is tightly regulated and likely subjected to multiple levels of control from different input regulators, conceivably blue light photoreceptors (27) and metabolism, as already observed for other clock genes in plants and animals (3, 4).

RITMO1 is involved in the transcriptional regulation of diel rhythms, as supported by consistent deregulation of transcript diurnal oscillations for several genes in RITMO1 OE lines in L:D, this pattern being accentuated in D:D. These results suggest, on one hand, that multiple light-driven processes participate in the regulation of daily gene expression, partially masking RITMO1’s contribution to this process in cyclic environments and, on the other hand, reveal a key role for RITMO1 in the maintenance of rhythms in the absence of light–dark inputs. Furthermore, the observed down-regulation of the endogenous *RITMO1* transcription in OE lines compared with the WT may reflect negative feedback regulation of RITMO1 controlling its own transcription. This would be compatible with this gene being part of a transcriptional feedback loop operating over the daily cycle (2). We also report robust oscillations of diatom cellular fluorescence in L:D cycles, as observed for gene expression. These rhythms persisted for at least five subjective days in LD, supporting the existence of a circadian clock regulating diatom physiology. The oscillations in L:D have a period slightly longer than 24 h under free running conditions, a common feature in circadian clock-regulated processes (1, 2). The deregulation of
RITMO1 expression in transgenic lines shifts the phase of fluorescence rhythms in L:D compared with the WT. In constant blue light (L:L), all of the independent OE lines showed altered rhythmicity if compared with the WT and a transgenic control line, with a strongly altered phase, reduced amplitude, and the period also being remarkably perturbed. Although multiple factors may account for the slight phenotypic differences observed between OE lines (e.g., chromosomal position effects on the transgenes, deregulation of other genetic or epigenetic processes due to the overexpression), the consistent deregulation of rhythmicity is coherent with a role of RITMO1 in the regulation of circadian rhythms. Because all of the OE lines show a normal growth rate compared with WT, the observed altered rhythmicity is likely due to a defect in retrieving synchrony in chloroplast ontogeny and cell cycle progression, which are closely coupled in diatoms (20).

Together, our results support the hypothesis that RITMO1 is one component of the still-uncategorized endogenous circadian clock in diatoms. RITMO1 contains bHLH and PAS protein domains that are also present in the CLOCK and BMAL proteins, components of the mammalian central circadian oscillator (2, 5, 38). Interestingly, previous studies have shown that the P. tricornutum animal-like blue light sensor Cpf1 can repress the transcriptional activity of these proteins in a heterologous mammalian cell system (25), suggesting at least partial conservation in the regulatory program generating rhythmicity in animals and diatoms.

Fig. 3. bHLH1a overexpression alters circadian rhythms of cellular fluorescence. (A) Diurnal oscillation of chlorophyll fluorescence (FL3-A parameter) in WT and OE lines entrained under 16L:8D over 3 d (n ≥ 8). (B) Phase-time calculation of the FL3-A value in WT and OE lines (mean ± SD, n ≥ 8, **P < 0.01, ***P < 0.001, t test). (C) Circadian oscillation of chlorophyll fluorescence in representative WT and OE lines under continuous blue light (L:L) over 4 subjective days (n = 8). (D) Plot of phase against period estimates in L:L (n = 15). Dots of different color indicate independent replicate cultures. White and gray regions represent light and dark periods; black dashed regions represent subjective nights. Brown lines in plots represent the fitted curves (loess fit) of the average FL3-A.

Fig. 4. bHLH-PAS protein family structure and phylogeny. (A) bHLH-PAS protein domain schematic architecture in eukaryotes. Dotted line indicates possible absence of the second PAS in some Opisthokonta species; gray patterns represent the variations in N-terminal and C-terminal length in different groups. (B) Maximum likelihood (ML) phylogenetic tree of the bHLH-PAS family (outgroup: the Opisthokonta clade) midpoint rooted. Numbers refer to bootstrap values of the basal nodes using ML (RAxML, 1,000 bootstraps) and Bayesian inference (MrBayes). Symbols indicate the position of P. tricornutum RITMO1 and bHLH1b (arrows) and T. pseudonana bHLH1 (square).
We have reported several other putative TFs showing altered diel expression patterns in RITMO1 OE cells (i.e., bHLH1b, bHLH3, bZIP7, HSFlg, HSFl4-7b), which represent direct or indirect targets of RITMO1 activity and possibly additional components of the network generating circadian rhythms. RITMO1 might also act downstream of signal transduction cascades activated by the diatom photoreceptors (27). Therefore, RITMO1 now represents a key molecular entry point for the identification of other diatom timekeeper components and the input–output pathways interacting with the clock.

Biological rhythms are still poorly understood at the molecular level in many phyla of marine algae such as Stramenopila. Our phylogenetic analysis revealed a wide distribution of RITMO1-like bHLH-PAS proteins in diatoms, as well as in other algae. The similarities in the timing of expression between RITMO1 and its homolog in the diatom *T. pseudonana* (TpHHL1) (17) suggest that these proteins may play a similar role in the regulation of cellular rhythmicity. Regulators such as RITMO1 may have played a critical role for diatom prominence in marine ecosystems by synchronizing cellular activities in optimal temporal programs and maximizing the diatoms’ ability to anticipate and adapt to cyclic environmental variations.

bHLH-PAS RITMO-like proteins might have independently acquired a function in rhythm regulation by convergent evolution (6). However, the existence of this function in an ancient heterotrophic marine ancestor that subsequently acquired plastids via endosymbiosis events (12) and before colonization of land cannot be excluded. Thus, further characterization of RITMO1-like proteins is expected to provide insights into the evolution of biological rhythms and their significance for the life in the marine environment.

Methods

Culture Conditions. WT *P. tricornutum* (Ptl 8.6) cells and transgenic lines were grown in F2 Guillard media, as described in *SI Appendix*.

Gene Expression Analyses. To select genes with rhythmic expression, we used data from (18, 39). Total RNA was extracted as described in ref. 31 and analyzed by qRT-PCR and nCounter analysis as described in *SI Appendix*. Proteins were analyzed as previously described (25).

Generation of the bHLHTa Transgenic Lines. Diatom cell lines overexpressing bHLHTa-HA and bHLHTa-YFP were obtained by cotransformation of the Nourseothricin resistance plasmid (pNAT) together with the pDEST-C-HA-bHLHTa and the pDEST-C-YFP-bHLHTa plasmids, respectively. Details of vectors and transformation are provided in *SI Appendix*.

Microscopic Analysis. Images were produced with the confocal laser scanning microscope Leica SP8x as described in *SI Appendix*.

Data Mining, Protein Sequence, and Phylogenetic Analysis. Detailed information about data mining, protein sequence, and phylogenetic analysis is provided in *SI Appendix*.

ACKNOWLEDGMENTS. We thank J. Maubert, L. De Veylder, R. Dorrell, and P. Oliveri for critical suggestions; D. Petroutsos and G. Finazzi for support in monitoring cell physiology; G. Benvenuto for assistance in microscopy; and the Institute of Biologie Paris-Seine imaging core facility for help with flow cytometry. This work was funded by Human Frontier Science Program Grant RGY0082/2010; the Gordon and Betty Moore Foundation Grant GBMF 4966; the European Union H2020 EMBC Grant G. 654008; and the Fondation Bettencourt Schueller (A.F.). M.I.J.H. is currently an employee of the European Research Council Executive Agency. The views expressed are purely those of the writer and may not in any circumstances be regarded as stating an official position of the European Commission.