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†Universitá degli Studi di Milano, Via Golgi 19 20133 Milano, Italy

‡Chalmers University of Technology, Department of Physics, SE-412 96 Gothenburg,

Sweden

¶Department of Chemistry and Molecular Biology, University of Gothenburg, Kemig̊arden

4, SE-41296 Gothenburg, Sweden

E-mail: michael.busch@chem.gu.se

1



Abstract

Cu2O has been considered as candidate material for transparent conducting oxides

and photocatalytic water splitting. Both applications require suitably tuned band

gaps. Here we explore the influence of compressive and tensile strain on the band gap

by means of density functional theory (DFT) modeling. Our results indicate, that

the band gap decreases under tensile strain while it increases to a maximum under

moderate compressive strain and decreases again under extreme compressive strain.

This peculiar behavior is rationalized through a detailed analysis of the electronic

structure by means of density of states (DOS), density overlap region indicators (DORI)

and crystal overlap Hamilton populations (COHP). In contrary to previous studies we

do not find any indications that the band gap is determined by d10—d10 interactions.

Instead, our analysis clearly shows that both the conduction and valence band edges

are determined by Cu−O antibonding states. The band gap decrease under extreme

compressive strain is associated with the appearance of Cu 4sp states in the conduction

band region.
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Introduction

Storage of excess energy from renewable sources is a central requirement to facilitate the

transformation to a sustainable and CO2 neutral society.1,2 A promising possibility for energy

storage is the photoelectrochemical splitting of water into H2 and O2. One of the first

discovered semiconductors for this purpose and nowadays one of the most studied materials

is Cu2O.3,4 It can posses p-type semiconducting properties together with a direct band gap

of 2.17 eV.5 Furthermore it is easy to prepare through a multitude of different techniques

ranging from thermal oxidation6 to electrochemical deposition7–13 and sol-gel techniques14–16

and displays suitably placed conduction band (CB) and valence band (VB) edges.17 This

renders Cu2O a promising choice as photocathode.4 Besides its use in photoelectrochemical

water splitting, Cu2O has also been considered as candidate for other applications such as

in solar cells,18 transparent conductive oxides18–20 or optoelectronics.18

All these applications have the requirement of suitable band gaps in common. For ex-

ample, in the case of transparent conducting oxides a large band gap is required to avoid

absorption of visible light.18,19 For photoelectrochemical water splitting on the other hand,

the band gap should be close to 1.6 eV to maximize the use of the solar spectrum.21,22 A

possibility to tune the band gap in oxides is the addition of dopants.21,23 Upon doping, the

band gap is affected by two parameters, the dopant size24 and the interactions between the

electronic structure of the dopant and Cu2O.25,26 Differences in the ion size are thought to

introduce structural modifications in the Cu2O network which in turn modifies the Cu-Cu

interactions.27 These interactions have been reported to dominate the CB or VB.24,25 In the

case of a dopant smaller than Cu+, the band gap is narrowed while it becomes wider upon

addition of larger ions.24,25 Interactions between the electronic structure of Cu2O and the

dopant on the other hand can result in the appearance of interband states28–31 or in the case

of inert ions in the disturbance of the Cu-Cu interactions.25

Similar changes in the band gap have also been obtained indirectly by placing Cu2O

on a support material which can introduce a 2-dimensional (2D) strain through a lattice
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mismatch. This effect has been observed for Cu2O placed onto a gold support.32,33 However,

under these circumstances the situation is no longer that clear since other effects such as

the composition of the interface between the support and the Cu2O film or the generation

of defects could also affect the band gap.11,12,20 Similarly also Cu2O placed onto a graphene

oxide34 has been studied. Both supports have a significant influence on the performance

of the Cu2O photocatalyst. To which extent these differences are due to the presence of

a lattice mismatch which induces a strain into Cu2O or electronic effects is still unknown.

:::::
Band

:::::
gap

:::::::::::::
engineering

::::
has

:::::
also

::::::
been

:::::::::::::
investigated

::::
for

::::::
other

:::::::::
systems

::::::
such

:::
as

::::::::::::::
graphene35,36

:
,

::::::::::
SnO2

37,38,
::::::::
FeS2

39
::::
and

::::::::::::::::::::::::::
poly(phenyl)germanes40.

:

In what follows we will evaluate the influence of the lattice mismatch and the influence

of differences in the ion size between dopants and Cu+ on the electronic structure of Cu2O

by means of density functional theory (DFT) calculations. In order to isolate the changes

associated with strain and remove any electronic effects, the geometric effects are mimicked

by introducing 2D and 3D lattice strain. Our calculations indicate, that the presence of strain

greatly affects the band gap. Interestingly, both tensile and compressive strain can result

in a reduction of the band gap. This finding is taken as a basis to explore the mechanism

behind the strain induced changes in the band gap of Cu2O.

Computational Details

All calculations were performed with the Vienna Ab-initio Simulation Package (VASP ver-

sion 5.4.1). Structures were converged using the generalized gradient approximation (GGA)

PBE41 functional in combination with a plane wave cut-off of 450 eV and a smearing

of 0.1 eV. Structural convergence was assumed when the forces on all atoms were be-

low 0.05 eV/Å. Band gaps, density of states (DOS) and density overlap region indicators

(DORI)42 were obtained from single-point calculations at the converged GGA-PBE struc-

tures with the HSE0643,44 range-separated hybrid functional. Valence electrons were treated
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explicitly while core-electrons were approximated within the projector augmented wavefunc-

tions (PAW) method.45 The explicitly modeled valence shell consisted of the 2s22p4 electrons

for O and of the 4s13d10 electrons for Cu.

All PBE and HSE06 calculations were performed using the minimal Cu2O unit cell con-

sisting of 4 Cu and 2 O atoms with a 5x5x5 k-point set. The obtained lattice parameters

(a=b=c=4.296 Å) are in excellent agreement with experiment.46 Strain was induced by ex-

tending or compressing the unit cell by up to±10%.
::::::::::::::::
Experimentally

::
it

::
is

:::::
easy

::
to

::::::::
obtain

::::::
strain

::
of

:::
at

:::::
least

::::::
3%47

:
.
:::::::::::

However,
:::::
also

::::::
more

:::::::::
extreme

:::::::
values

:::::
were

::::::::::
included

:::
to

::::
test

:::::
the

::::::::::::
hypothesis.

Both 3D strain, where lattice parameters were varied along the x,y and z axis and 2D strain,

where the lattice parameters were only varied within the xy-plane, were considered. The

relative positions of the CB and VB edges were extracted from the eigenvalues.

Results and Discussion

Assuming unstrained Cu2O, our calculations indicate a direct band gap of 1.95 eV, which is

in fair agreement with experiment.5 In order to evaluate the influence of strain on the band

gap, two situations are considered, 3D strain along the x, y and z-axis and 2D strain along

the xy-plane. The former can be achieved through doping with ions of different size24 while

the latter can be introduced through a lattice mismatch between Cu2O and a support.32,33,47

Our computations indicate a uniform decrease of the band gap under 3D tensile strain from

1.95 eV to only 1.36 eV (Figure 1). Upon compressing the oxide, the band gap increases from

1.95 eV to a maximum of 2.22 eV at -3% compressive strain. When compressing the oxide

further the band gap again decreases to 1.14 eV at -10 % strain. An equivalent behavior has

already been reported earlier for Cu2O doped with alkaline earth metal ions48 and for other

materials such as FeS2
39 and poly(phenyl)germanes.40 Identical trends are also observed

when applying 2D strain (Figure 1).

In order to understand the anomalous behavior of the band gap under compressive strain
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Figure 1: Summary of the influence of 2D (green circles) and 3D (black squares) strain on
the band gap.

we decided to extract the positions of the CB and VB edges by using the 1s core states as

reference. These states are placed within the pseudopotential and are therefore not affected

by the external strain. In Figure 2, the relative positions of the CB and VB are summarized.

Considering the VB, we find a monotonous
:::::::::::
monotonic, almost linear decrease of the relative

band edge energy. Similarly also the relative CB edge position decreases with the decrease

of compressive strain or under tensile strain. However, the changes are no longer described

by a single slope. Assuming a compressive strain larger than -3 %, the CB edge energy

increases linearly but is significantly less affected by the compressive strain than the VB.

Accordingly, the band gap decreases when compressing Cu2O. A second slope appears under

less compressive or even tensile strain. In this regime, the CB edge is, similar to the VB,

strongly affected. Both slopes meet at -3 % compressive strain which also corresponds to

the point with the highest band gap. Due to net differences in the reaction to the strain

again a decrease of the band gap is observed with increased tensile strain. The presence of

two very different regimes in the CB may be interpreted as a first indication that different

bands determine the CB in the two regions.

In order to obtain additional insights on the effect of strain on the CB and VB, we decided

to perform a detailed analysis of the chemical bonding. Generally it is thought, that the

band gap in Cu2O is determined by weak d10—d10 interactions between Cu ions.24,25,27,49
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Figure 2: Relative position of the CB (magenta squares and green diamonds) and VB (black
circles) edges with respect to the VB position in unstrained Cu2O. Linear or quadratic fits
have been added as guide for the eye.

Figure 3: Density overlap region indicator (DORI) analysis of the Cu-O and Cu-Cu bond.
The scale ranges from 0 (red) to 1 (blue). Color-code: Red - O; brown - Cu.

A possibility to qualitatively evaluate the existence and changes in the Cu−Cu metal bond

offers the density overlap region indicator (DORI).42 Mathematically, DORI corresponds

to the self-referenced Laplacian of the local wave vector.42 Thus, it does not contain any

information regarding the strength of the interactions but the shape of the basin (blue

regions in Figure 3) between the atoms contains information regarding the presence and

type of chemical bonds.42,50 Originally DORI was developed to distinguish covalent and

non-covalent van-der-Waals interactions in organic molecules but recently it was shown that

this tool can also be used to distinguish covalent from metallic or ionic bonds in solids.50

The DORI obtained for the Cu−O bond is shown in Figure 3. Independent of the presence

of strain three qualitatively identical plots are obtained. In all cases a localized blue basin is
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Figure 4: The crystal overlap Hamilton population (COHP) of the Cu-Cu (a) and Cu-O (b)
bonds are depicted.

observed between Cu and O. This is a typical sign of a purely covalent bond.42,50 The high

degree of covalency is in line with previous work.25,51 Interestingly, no corresponding signs

of covalent interactions are observed between the adjacent Cu ions (Figure 3). Thus, DORI

does, in disagreement with previous work,24,25,27,49 not support the existence and importance

of d10—d10 interactions between adjacent Cu ions in Cu2O.

Nevertheless it must be kept in mind that DORI is only a qualitative tool that has not

been used extensively to interpret chemical bonding in solids. Thus, the lack of Cu—Cu

interactions in DORI can only be considered as a first indication and further proof from

the analysis of the partial density of states (PDOS) and crystal overlap Hamilton projector

(COHP) is required. Buljan et al.25 suggested, that d10—d10 interactions occur between

Cu dz2sp orbitals which determine the CB and VB. These interactions should be visible in

the COHP analysis of the Cu−Cu bond displayed in Figure 4a. In line with the DORI

analysis we only observe relatively weak Cu—Cu interactions far away from the Fermi level.
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Figure 5: The projected density of states (PDOS) of pristine Cu2O and under ±10% strain
(a) and the band structure of Cu2O under -10% compressive strain (b) are depicted. σ∗ an-
tibonding states with relevance to the band gap width in the VB and CB regions are marked
in blue and green, respectively. Cu 4sp states forming the CB under extreme compressive
strain are marked in magenta.

Thus, it appears unlikely that the position of the CB and VB edges is determined by a

Cu-Cu bond. On the other hand, clear signs of antibonding Cu-O states are observed in the

COHP analysis (see Figure 4b). The absence of a direct Cu-Cu bond is also in line with

prior studies on Cu(Phenyl) and Cu(Alkyl) tetramer and pentamer complexes52 which are

isolobal to the Cu-O-Cu substructure.a These complexes display only indirect interactions

between the Cu ions through 2 electron 3 center bonds between Cu−C−Cu fragments.52

Equivalent interactions can also be expected in Cu2O between Cu-O-Cu units.

This is further supported by our PDOS analysis which shows clear signs of strong covalent

interactions between Cu 3d and 4sp and O 2sp3 states in the VB and CB regions (green and

blue regions in Figure 5a). Considering also the COHP analysis (see Figure 4), the VB

is clearly determined by three degenerate Cu dz2sp states forming a purely antibonding σ∗

aAccording to the isolobal principle equivalent chemical bonding between fragments must be expected if
the geometry, energy and symmetry of the frontier orbitals and the number of valence electrons is equivalent.
A detailed description of the isolobal principle can be found in references53 and52
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bond with oxygen sp3 hybrid orbitals. A similar fully antibonding situation between Cu

dz2sp and O sp3 states is also observed for the CB. Both the VB and CB are fully delocalized

over the crystal structure which indicates, in agreement with the metal organic complexes,52

the presence of a delocalized multicenter bond. Pure Cu 4sp states, which could be involved

in d10—d10 interactions or Cu-Cu metal bonds, are only found far away from the Fermi

level (see violet region in Figure 5a). Thus, it is unlikely that Cu—Cu interactions have a

significant influence on the band gap in unstrained Cu2O.

Upon applying 10 % tensile strain, a significant decrease of the band gap is observed.

This coincides with a shift of the bonding Cu—Cu interactions closer to the Fermi level (see

Figure 4a). Despite this shift, these states are still too far below the VB to contribute to

the changes in the band gap. Additionally, the Cu-O σ∗ antibonding Cu 3d and 4sp and O

sp3 states forming the CB are shifted closer to the Fermi level which results in the observed

decrease of the band gap. Under -10 % compressive strain on the other hand, the Cu-O

antibonding orbitals are destabilized (see green region in Figure 5a). Thus, an increased

band gap could be expected. However, the Cu 4sp states, which previously were far above

the Fermi level (see violet region in Figure 5a) are now shifted close to the Fermi level and

form the new CB. Additionally a second new state at 1.8 eV consisting of Cu 3d and Cu

4sp states is observed. These states are fully delocalized over the Cu2O crystal as indicated

by the significant dispersion of the CB in the band structure computed at -10% strain (see

Figure 5b). Thus, they may be interpreted as an unoccupied contribution to a Cu-Cu metal

bond formed between Cu 4sp states. Naturally, a weak Cu-Cu bond formed between highly

dispersed Cu 4sp state is significantly less affected by compressive strain compared to the

Cu−O bond. This results in the significantly lower slope of the CB observed in Figure 2

which in turn results in a decrease of the band gap.

10



Conclusions

In line with previous work,48 we have shown that Cu2O is strongly affected by external

strain. Our calculations indicate, that the band gap decreases under tensile strain while it

increases under weak compressive strain. Beyond a compressive strain of -3%, the band gap

decreases again. The detailed analysis of the bonding situation indicates that, the turning

point under compressive strain can be associated with a change of the CB. In contrast to

earlier work,25 we do not find any indications for d10—d10 interaction close to the Fermi

level. Instead, the CB and VB are, under weak compressive or tensile strain, determined by

Cu-O antibonding states. Under extreme compressive strain delocalized Cu 4sp states which

form Cu-Cu metal bonds, are shifted close to the Fermi level and determine the CB.

Acknowledgements

Calculations were performed at C3SE through a SNIC grant. A.Visibile is grateful to Uni-
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(45) Blöchel, P. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

(46) Hafner, S.; Nagel, S. The electric field gradient at the position of copper in Cu2O and

electronic charge density analysis by means of K-factors. Phys. Chem. Miner. 1983, 9,

19–22.

(47) Borie, B.; Sparks Jr., C.; Cathcart, J. Epitaxially Induced Strains in cu2O Films on

Copper Single Crystalls—I X-Ray Diffraction Effects. Acta Metallurgica 1962, 10, 691–

702.

(48) Nie, X.; Wei, S.; Zhang, S. First-principles study of transparent p-type conductive

SrCu2O2 and related compounds. Phys. Rev. B 2002, 65, 0751111–0751118.

(49) Caballero-Briones, F.; Palacios-Padros, A.; Calzadilla, O.; Moreira, I.; Sanz, F. Disrup-

tion of the Chemical Environment and Electronic Structure in p-Type Cu2O Films by

Alkaline Doping. J. Phys. Chem. C 2012, 116, 13524–13535.

16



(50) Busch, M.; Wang, R.; Hellman, A.; Rossmeisl, J.; Grönbeck, H. The Influence of Inert

Ions on the Reactivity of Manganese Oxides. J. Phys. Chem. C 2018, 122, 216–226.

(51) Laskowski, R.; Blaha, P.; Schwarz, K. Charge distribution and chemical bonding in

Cu2O. Phys. Rev. B 2003, 67, 075102.

(52) Elschenbroich, C. Organometallics, 3rd ed.; Wiley-VCH: Weinheim, 2006.

(53) Hoffmann, R. Building Bridges Between Inorganic and Organic Chemistry (Nobel Lec-

ture). Angew. Chem. Int. Ed. 1982, 21, 711–724.

17


