
Review Article
The Role of Monocytes and Macrophages in Human
Atherosclerosis, Plaque Neoangiogenesis, and Atherothrombosis

Francesco Moroni ,1 Enrico Ammirati ,2 Giuseppe Danilo Norata ,3,4 Marco Magnoni,1

and Paolo G. Camici1

1Vita-Salute University and San Raffaele Hospital, Milan, Italy
2De Gasperis Cardio Center and Transplant Center, Niguarda Hospital, Milan, Italy
3Department of Excellence for Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
4SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello B, Italy

Correspondence should be addressed to Francesco Moroni; frnmoroni@gmail.com
and Enrico Ammirati; enrico.ammirati@ospedaleniguarda.it

Received 6 February 2019; Accepted 17 March 2019; Published 4 April 2019

Academic Editor: Andreas Ludwig

Copyright © 2019 Francesco Moroni et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Atherosclerosis is one of the leading causes of death and disability worldwide. It is a complex disease characterized by lipid
accumulation within the arterial wall, inflammation, local neoangiogenesis, and apoptosis. Innate immune effectors, in particular
monocytes and macrophages, play a pivotal role in atherosclerosis initiation and progression. Although most of available
evidence on the role of monocytes and macrophages in atherosclerosis is derived from animal studies, a growing body of
evidence elucidating the role of these mononuclear cell subtypes in human atherosclerosis is currently accumulating. A novel
pathogenic role of monocytes and macrophages in terms of atherosclerosis initiation and progression, in particular concerning
the role of these cell subsets in neovascularization, has been discovered. The aim of the present article is to review currently
available evidence on the role of monocytes and macrophages in human atherosclerosis and in relation to plaque characteristics,
such as plaque neoangiogenesis, and patients’ prognosis and their potential role as biomarkers.

1. Introduction

In spite of the great advances in terms of prevention, diagno-
sis, and treatment of cardiovascular diseases (CVD) obtained
in the last decades, diseases affecting the heart and vessels
continue to exact a high toll in terms of morbidity and mor-
tality worldwide [1]. Among CVD, atherosclerosis-related
conditions including acute coronary syndromes (ACS) or
stroke currently dominate mortality and disability statistics
[1]. Atherosclerosis is a chronic, degenerative disease of
large- and medium-sized arteries. The initiation of the
atherosclerotic process, i.e., atherogenesis, involves the depo-
sition of low-density lipoprotein (LDL) cholesterol into the
subendothelium. LDL deposition appears to be more likely
in regions of turbulent flow and low shear stress, which,
through incompletely understood mechanotransduction

pathways, [2] activates endothelial cells towards a proathero-
genic phenotype [3]. Several environmental factors including
high blood pressure or smoking contribute to endothelial
dysfunction and thus support atherogenesis. The discovery
of the pivotal role of LDL in the development of atherosclero-
sis has led to the development and implementation of effec-
tive lipid-lowering strategies, which reduce CVD morbidity
and mortality [4]. Strategies aimed at controlling other
known cardiovascular risk factors such as hypertension or
smoking have led to a decrease in CVD burden [5, 6]. More
recently, the role of inflammation in the process of athero-
genesis has gained increasing interest. Lipid accumulation
into the arterial wall promotes inflammation that involves
the local and systemic activation of innate and adaptive
immune response [7]. Although controlling hypercholester-
olemia by lipid-lowering therapies reduces inflammation,
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[8] the elucidation of the role of immunity in atherosclerosis
has in recent times paved the way for the development of
innovative and effective preventive strategies, the most out-
standing example of which is the use of a pure anti-
inflammatory drug, canakinumab, an anti-interleukin- (IL-)
1beta antibody, in the secondary prevention of ACS [9].
Although the body of knowledge regarding the relation
between atherosclerosis and immunity in humans is growing
rapidly, a relevant proportion of it is derived from studies
carried out in animal models of CVD. The results obtained
therein are, however, not fully transferrable to the human set-
ting due to intrinsic biologic, genomic, and environmental
differences. Therefore, a careful characterization of human
pathological specimens together with a detailed profiling of
peripheral blood subsets is critical to address the potential
role of immune cells in human atherosclerosis. The aim of
the present review is to discuss the evidence supporting the
role of monocytes and macrophages as innate immune
effectors in human atherosclerosis.

2. Macrophages Initiate Local Inflammation in
Nascent Atherosclerotic Lesions

The human innate immune system is endowed with
germline-encoded receptors to allow for the surveillance of
exogenous pathogens or cell damage [10]. These receptors
are expressed on the surface of immune cells patrolling the
human organism, including macrophages and dendritic cells,
and are known as pattern recognition receptors (PRR). They
recognize pathogen-associated molecular patterns (PAMPs),
such as lipopolysaccharide, a constituent of Gram-negative
bacteria, or viral nucleic acids, or damage-associated molecu-
lar patterns (DAMPs), expressed by cells in response to nox-
ious stimuli [11]. The inflammatory process initiated by the
activation of PRR generally leads to the removal of the incit-
ing stimulus, which however may occasionally persist and
becomemaladaptive, leading to disease per se [7]. The activa-
tion of PRR in the context of the arterial wall is believed to be
among the initiators of atherogenesis. The molecular pat-
terns underlying the activation of the inflammatory response
are only recently beginning to be elucidated. Infectious
agents may contribute to provoking a response, but a pri-
mary role in atherogenesis is currently considered unlikely
[12]. Other potential antigens, such as heat shock proteins
(HSPs) and cholesterol crystals, have been implied, but as
both require preexisting tissue damage, they likely contribute
to amplify the inflammatory cascade, but not to the inflam-
mation initiation [13, 14]. Currently available evidence
points at epitopes generated by enzymatic and nonenzymatic
oxidation of LDLs within the subendothelial space as major
DAMPs involved in triggering the inflammatory cascade
[15]. These oxidation-specific epitopes are recognized by a
variety of PRR, among which Toll-like receptor 4 (TLR-4)
deserves a special mention [15]. TLR-4 was in fact shown
to be highly expressed in human atherosclerotic plaques,
[16] and its expression was shown to be enhanced by LDLs
[17]. Vice versa, the removal of cholesterol by HDLs has been
shown to decrease TLR4 expression and macrophage acti-
vation [18]. On the other hand, however, the relation of

HDLs and innate inflammation may not be straightforward.
Indeed, HDLs were recently shown to exert a proinflamma-
tory effect on mouse and human macrophages, possibly due
to lipid raft disruption secondary to cholesterol depletion
and subsequent activation of TLRs and protein kinase C
signaling [19, 20]. Circulating monocytes of subjects with
vulnerable atherosclerotic plaques in the coronary arteries
express higher levels of TLR-4 when compared to subjects
with stable coronary artery atherosclerosis [21]. Similarly,
subjects with unstable angina had higher levels of expression
of TLR-4 on circulating monocytes when compared to
asymptomatic subjects with cardiovascular risk factors [22].
Interestingly, population genetics studies have initially sug-
gested that the hypomorphicTLR-4 allele, leading to a blunted
inflammatory activation, Arg299Gly was shown to be associ-
atedwith the reduced risk ofmyocardial infarction [10].How-
ever, a recent meta-analysis including 8299 patients suffering
from acute myocardial infarction (AMI) and 6849 healthy
controls failed to demonstrate any imbalance in the preva-
lence of TLR-4 Arg299Gly polymorphism among AMI
patients [23].

3. Lipid-Laden Macrophages Contribute to the
Development of Atherosclerotic Lesion

Blood monocytes and eventually resident vascular macro-
phages are the leukocytes that are recruited earlier in the
nascent atherosclerotic lesion [24]. Direct evidence concern-
ing the recruitment and activation of monocytes and macro-
phages in humans is currently unavailable, and most of our
knowledge is derived from studies on animal models. Local
activation of inflammation has been shown to induce the
production of cytokines and chemokines, among which
C-C motif chemokine ligand 2 (CCL2), also termed mono-
cyte chemoattractant protein 1 (MCP-1), appears to play a
major role [25–27]. These soluble chemotactic signals recruit
circulating monocytes within the blood vessel wall through
C-C chemokine receptor (CCR)2 and CCR4 [28]. Of note,
studies performed in mouse models of atherosclerosis have
shown that different subsets of monocytes are differentially
recruited into the atherosclerotic plaque. Indeed, monocytes
expressing high levels of surface lymphocyte antigen 6
complex, i.e., Ly6Chi monocytes, appear to be the greatest
contributors to plaque macrophages. The human orthologue
of Ly6Chi monocytes is the CD14+CD16- monocytes,
currently referred also as “classical” monocytes [29]. Their
putative role appears to be proinflammatory [30] and was
shown to be increased in specific dyslipidemic conditions
[31]. While CD14+CD16- monocytes have been initially
reported to predict cardiovascular events, [32] a subsequent
work showed that a different subset with more markedly
inflammatory functions and with no murine counterpart, the
intermediate CD14hiCD16+ monocytes, has been implicated
as a key cell type in the development of atherosclerosis [30].

Classical histological studies have shown that monocytes
and resident macrophages undergo local proliferation [33]
and eventually mature and acquire a phagocytic phenotype.
Lineage-tracing studies have indeed found that peripheral
proliferation of macrophages is the dominant mechanism
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for macrophage increase in atherosclerotic lesions [34]. Once
within the vessel wall, macrophages and monocyte-derived
macrophages start scavenging oxidized LDL (OxLDL) [35].
The uptake of OxLDL is mediated by surface scavenging
receptors, including scavenger receptor- (SR-) A1, SR-B2
(also termed CD36), and E1 (also termed lectin-like OxLDL
receptor-1 (LOX-1)) [36]. Interestingly, these receptors seem
to be under the transcriptional control of the nuclear factor-
(NF-)-kB, an inflammatory master switch activated by both
PRR and the effect of proinflammatory cytokines [37]. The
uptake of cholesterol is at least in part counterbalanced by
cholesterol efflux from the macrophages, which is mediated
by the ATP-binding cassette (ABC) transporters A1 and
G1. These transporters mediate the transfer of cholesterol
to a free apolipoprotein A1 or directly to high-density
lipoproteins containing either apoA1 or apolipoprotein E
(high-density lipoprotein (HDL)) [35, 38]. HDLs mediate
the transport of cholesterol towards the liver, a process
known as reverse cholesterol transportation. This mecha-
nism, which is peculiar for innate immune cells, is critical
to control cellular cholesterol metabolism thus linking the
activity of HDL and its components with the immune
inflammatory response [39].

Indeed, an imbalance between cholesterol uptake and
efflux leads to intracytoplasmic accumulation of cholesteryl
lipid droplets [35]. This ultimately leads to the formation of
lipid-laden foam cells, the hallmark of atherosclerosis [40].
The progression of cellular cholesterol loading leads to the
triggering of an unfolded protein response in the endoplas-
mic reticulum, which brings cellular dysfunction. Cholesterol
might precipitate within the cell as crystals and activate the
inflammasome; this might lead to programmed cellular
death, i.e., apoptosis or eventually necrosis [41]. Apoptosis
and secondary necrosis lead to the development of an athero-
sclerotic necrotic core within the arterial lesion [42]. The
necrotic core is mainly composed of cellular debris, [43]
and lipid material [44] and therefore is highly thrombogenic.
It is separated from the bloodstream by a fibrous cap. A dis-
continuation or rupture of the fibrous cap initiates a process
of intraluminal thrombosis leading eventually to acute events
including acute coronary syndromes or stroke. The rupture
of the fibrous cap appears to be more likely when it is thinner
or eventually infiltrated by foam cells [45].

Recent data suggested that lipid loading may begin even
in circulating monocytes, which develop a foamy monocyte
phenotype and subsequently migrate into the nascent athero-
sclerotic plaque. [46] Interestingly, the impairment of reverse
cholesterol transportation, indirectly evaluated with serum
cholesterol acceptor capacity, was shown to be associated to
an increase in terms of cardiovascular death, nonfatal AMI,
nonfatal stroke, or coronary revascularization at 9.4 years in
a free living population of 2924 otherwise healthy subjects
[47]. More recent data confirmed that serum cholesterol
acceptor capacity, measured using cholesterol-loaded human
THP-1 macrophages and patients’ serum as a cellular choles-
terol acceptor, is a strong independent determinant of
cardiovascular morbidity and mortality. In a recent report
on 1609 patients suffering from acute coronary syndrome,
cholesterol efflux was significantly lower in subjects who died

at 1.9 years of follow-up, despite comparable levels of HDL
cholesterol. Indeed, serum cholesterol acceptor capacity was
associated with in-hospital survival (hazard ratio (HR):
0.63, 95% confidence interval (CI): 0.40 to 0.97, p = 0 038)
and lower 30-day mortality (HR: 0.32, 95% CI: 0.13 to
0.78, p = 0 012) after adjustment for cardiovascular risk
factors [48].

4. Monocytes and Macrophages Contribute to
Atherosclerotic Plaque Neoangiogenesis

The formation of a lipid-rich necrotic core within the arterial
wall in the course of atherogenesis necessarily brings the
formation of a hypoxic environment. The physiological
response to hypoxia is a complex biological process leading
to the formation of new blood vessels, i.e., neoangiogenesis
[49]. Interestingly, intense neoangiogenesis takes place
within the atherosclerotic plaque [50]. Of note, highly
neovascularized plaques appear more prone to rupture and
eventually give rise to acute atherothrombotic complications
[51]. Indeed, intraplaque hemorrhage is a well-established
process leading to the progression from stable atherosclerotic
lesions to unstable, high-risk plaques [52]. Red blood cells
within the plaque provide excess cholesterol and phospho-
lipids within the plaque, causing the expansion of the
necrotic core and fostering further activation of inflamma-
tion [52]. Inflammation per se has been shown to play a fun-
damental role in the process of neoangiogenesis, [53] and
macrophages in particular have been shown to be pivotal in
the formation of new blood vessels [54, 55]. Locally, innate
immune cells secrete proangiogenic growth factors, such as
vascular endothelial growth factor (VEGF) and basic fibro-
blast growth factor (bFGF) [56]. Furthermore, they secrete
matrix metalloproteinases, which assist new vessel sprouting
by degrading and remodeling the extracellular matrix and
eventually activating or degrading growth factors [57, 58].
The resulting blood vessels appear inherently dysfunctional,
thus allowing for blood leakage, fostering plaque expansion,
new hypoxia, and further angiogenesis [51]. Indeed, the asso-
ciation between hypoxia, macrophage plaque infiltration,
and neoangiogenesis has been demonstrated in human
through histological studies [59]. Indeed, in a groundbreak-
ing study by Sluimer et al., hypoxia was demonstrated in
human carotid artery atherosclerotic plaques of 7 subjects
undergoing carotid endarterectomy through the use of pimo-
nidazole assay [59]. The detection of hypoxia strongly corre-
lated with the presence of CD68-expressing macrophages
and the presence of neoangiogenesis and of thrombus appo-
sition on the plaque [59]. In addition, atherosclerotic plaque
neovascularization can be directly visualized in vivo in large
arteries in humans, i.e., the carotid arteries. This is made pos-
sible through the use of dedicated echographic techniques
employing microbubble-based contrast media or using dedi-
cated magnetic resonance imaging (MRI) protocols [60–62].
Microbubbles are strictly intravascular; therefore, the visual-
ization of a contrast material within the plaque core implies
the presence of neovessels. On the other hand, dedicated
MRI protocols allow the detection of paramagnetic contrast
media into the plaque, allowing the indirect visualization of
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the leaky neovessels [62]. To the best of our knowledge, only
two studies have analyzed the relation between monocyte
subpopulations in vivo and the identification of plaque neo-
vessels in the carotid arteries using contrast-enhanced ultra-
sound (CEUS). In a study by Jaipersad and colleagues on 160
subjects, the CD14+CD16-CCR2+ subset was associated with
a more severe plaque and more abundant neovascularization
[63]. A subsequent study by our group on the other hand,
including 55 patients with an intermediate carotid artery ste-
nosis with overall 255 carotid lesions, showed that patients
with evidence of a more intense carotid artery plaque neovas-
cularization had lower overall levels of circulating monocytes,
whichwasmainly due to a reduction ofCD14hiCD16- classical
monocytes [64]. This pattern suggested a potential redistribu-
tion of inflammatory cells within highly active, neovascular-
ized plaques. Indeed, in a subsequent proof of a principle
study including 9 subjects with intermediate carotid artery
plaques and no current indication to carotid revasculariza-
tion, we were able to show that in subjects with atherosclerosis
and reduced circulating CD14hiCD16- monocytes, carotid
plaques are indeed enriched with activated macrophages,
which indeed supports our redistribution hypothesis [65]. A
study on 32 subjects undergoing comprehensive carotid
plaque evaluation using hybrid Positron Emission Tomo-
graphy/Computed Tomography (PET/CT) imaging with
15F-fluorodeoxyglucose (FDG) and MRI showed a linear
correlation in terms of FDG uptake, an imaging marker
of inflammation, and neovascularization [62]. Interestingly,
in the subset of patients undergoing carotid endarterec-
tomy, the amount of neovascularization strongly correlated
with plaque macrophage infiltration and plaque major
histocompatibility complex (MHC) II, a marker of plaque
inflammation [62].

5. Circulating Monocyte Subsets in
Human Atherosclerosis

Several human studies have tried to identify a polarization of
a circulating monocyte subpopulation, mainly through the
characterization of the expression of cell surface markers
using flow cytometry. A high number of circulating mono-
cytes were per se shown to be associated to a higher risk
of cardiovascular events in subjects with known coronary
artery disease [66]. A recent study by Justo-Junior and col-
leagues on 100 subjects showed that individuals with unsta-
ble angina had a higher number of circulating intermediate
CD14hiCD16+ monocytes [22]. In addition, intermediate
monocytes of these patients expressed higher surface concen-
tration of chemokine receptors, including CCR2, and of PRR,
in particular TLR-4 [22]. Again, a study by Zhuang et al. on
79 patients undergoing coronary angiography for acute coro-
nary syndromes compared with 33 subjects with no evidence
of coronary artery disease showed that the patients had
higher circulating numbers of intermediate CD14hiCD16+

monocytes [67]. In addition, patients with a thin cap
fibroatheroma were shown to have the largest number of
circulating CD14hiCD16+ monocytes [67]. In a recent study
by Ozaki et al. on 65 subjects undergoing coronary multide-
tector computed tomography, the proportion of circulating

CD14hiCD16+ monocytes expressing TLR-4 was shown to
be higher in subjects with plaque features of vulnerability
[21]. However, a prospective study involving 191 subjects
with chronic kidney disease was unable to demonstrate any
association between the number of CD14+TLR-4+ mono-
cytes and incident cardiovascular events [68]. A large study
comprising 1546 asymptomatic subjects taking part in the
Atherosclerosis Risk in Community Carotid Magnetic
Resonance Imaging study found that circulating monocytes
from patients with larger plaques expressed higher levels of
TLR-2, while monocytes from patients with smaller plaques
expressed higher quantities of CD14, TLR-4, and myeloper-
oxidase [69]. This observation might represent an indirect
evidence that different cell types are involved at various
stages of the atherosclerotic process [69]. A recent study
assessed whether monocytes expressing osteogenic markers
could also be associated with atherosclerosis [70]. Indeed,
myeloid cells expressing osteogenic markers have been
shown to contribute to calcium deposition in peripheral
tissues and eventually the development of vascular calcifica-
tions [71]. Interestingly, the number of osteocalcin and bone
alkaline phosphatase expressing monocytes was higher in
subjects with plaque features of vulnerability on virtual
histology. Moreover, an enrichment of these cells in the cor-
onary blood was found in subjects in which a large necrotic
core could be demonstrated [70]. In a recent study involving
175 subjects undergoing carotid endarterectomy for asymp-
tomatic, severe carotid stenosis, however, the total count of
circulating monocytes was not found to correlate with plaque
features of vulnerability, including thin cap atheroma, large
necrotic core, intraplaque hemorrhage, or high neovessel
density [72]. The lack of association with plaque vulnerability
features was also confirmed when monocyte subpopulations,
based on CD14 and CD16 surface expression, were evalu-
ated. Interestingly, monocyte subpopulations were not asso-
ciated to the occurrence of major adverse cardiovascular
events after at 3 years of follow-up [72]. Table 1 summarizes
the above-mentioned studies. Figure 1 provides a graphical
overview of the available evidence.

6. Plaque Macrophages in Atherosclerosis

Macrophages exert an essential role in terms of phagocytic
killing of pathogens and antigen presentation, therefore
triggering an adaptive immune response. However, they
also exert a primary tissue homeostasis function, including
removal of cellular debris and adaptive remodeling of
extracellular matrix [73]. Indeed, macrophages respond to
environmental stimuli to acquire a proinflammatory or a
homeostatic phenotype [73]. On this basis, macrophages
have been traditionally subdivided into the M1 inflammatory
subset and M2 protissue subset [74]. While this distinction
fails to adequately comprise the entire macrophage biological
complexity, it provides a general scheme to classify macro-
phage function. Early histological studies hinted at a strong
activation of inflammatory pathways of macrophages within
human atherosclerotic plaques, pointing at a M1 polarization
[75]. On the other hand, more recent studies suggest lower
levels of M2 macrophages within vulnerable plaques [76].
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Interestingly, M1 macrophages were shown to be enriched in
the areas pf plaque more prone to rupture, while M2 on the
stable adventitial side of the plaque [77]. Indeed, also, the
anatomical site of the plaque appears to influence the
M1/M2 proportion, with carotid artery plaque containing a
larger percentage of M1 macrophages with respect to femoral
artery plaques [78]. On the other hand, a recent study analyz-
ing 110 human aortic plaques showed that both M1 and M2
subtypes are associated to progressive atherosclerosis and
vulnerable plaques, which underlines the fact that the
dichotomic M1/M2 distinction may be over simplistic [79].

Few clinical data are available on the impact of plaque
macrophage infiltration on cardiovascular outcome. They
are mainly derived from carotid artery samples, due to the
widespread indication of carotid endarterectomy for primary
or secondary stroke prevention. The level of macrophage
infiltration within the carotid plaque of 1640 patients under-
going carotid endarterectomy for secondary stroke preven-
tion was shown to directly correlate with the clinical stroke
risk profile [80]. On the other hand, patients with a more

marked macrophage infiltration within a carotid artery pla-
que were shown to have a lower risk of 1-year restenosis after
carotid endarterectomy in a prospective cohort including 500
subjects [81]. However, macrophage infiltration within ath-
erosclerotic plaques was not shown to predict cardiovascular
outcomes after 2.3 years of follow-up in a cohort of 818 sub-
jects [82]. Interestingly, in the same cohort, plaque neovascu-
larization and intraplaque hemorrhage were the strongest
plaque-associated predictors of future cardiovascular events
[82]. A more recent cohort of 286 patients undergoing
carotid endarterectomy followed up for 3 years showed that
the proportion of MMP12+ macrophages, not of overall
macrophage infiltration, could predict the incidence of
future adverse cardiovascular events [83]. Of note, the cur-
rent advanced vascular imaging approaches allow for
direct in vivo visualization of intraplaque macrophages [60].
In particular, hybrid imaging with computed tomography
and positron emission tomography (CT-PET) using the
macrophage-specific ligand PK11195 allowed the demonstra-
tion in vivo that recently symptomatic carotid artery plaques

Intermediate CD14hiCD16+

monocytes
CD14

CD14
BAP

OCN

Endothelial layer

Intima
TLR4

OxLDL

HDL

SR-A1
ABCA1

LOX-1 CD36

Intraplaque neovessel

NF-kB
CD68

Media

LDL

Figure 1: Summary of the main findings of human studies concerned with monocytes and macrophages and atherosclerosis. In subjects with
high risk plaques, intermediate CD14hiCD16+ monocytes are enriched in the circulation. Less evidence is available for osteogenic biomarker
expressing CD14+BAP+OCN+monocytes, which appear to be enriched in the peripheral blood of subjects with large necrotic cores within the
plaque. On the other hand, in subjects with highly neovascularized plaques, classical CD14hiCD16- monocytes are reduced in the circulation,
possibly due to the redistribution into the plaque. Monocytes are activated by OxLDL acting through pattern recognition receptors (PRR).
The PRR most frequently implicated in human cardiovascular disease is TLR4. Monocytes locally differentiate into macrophages, which
take up OxLDL by means of scavenging receptors. Cholesterol is then transported outside the cell through specialized transporters,
including ABCA1. ABCA1 transports cholesterol to nascent HDLs. When cholesterol loading exceeds macrophage efflux capability, the
macrophage turns into a foam cell. Human plaques are enriched with NF-kB-expressing macrophages.
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Table 2: Summary of currently available clinical studies on human plaque macrophages.

Authors Year Sample size Main finding Reference

Brand et al. 1996 18 subjects

Atherosclerotic lesion in the aorta and
carotid arteries contains a large
proportion of NF-kB-positive

macrophages (i.e., M1 macrophages)
when compared to healthy arterial

segments

[75]

Johnson et al. 2014 79 CEA specimens
Vulnerable lesions with a large necrotic
core contained less MMP14loTIMP3hi-M2

macrophages
[76]

Stöger et al. 2012
22 ruptured carotid atherosclerosis

specimens and 22 adjacent stable controls

In carotid plaques, CD68+HLA-DP/Q/R+
M1 macrophages are enriched near the
rupture-prone shoulder. On the other

hand, M2 macrophages were enriched on
the adventitial side of the vessel

[77]

Shaikh et al. 2012
32 carotid endarterectomy specimens, 25
femoral artery endarterectomy specimens

Carotid artery plaques have a larger
necrotic core and contain more M1

macrophages when compared to femoral
artery plaques

[78]

van Dijk et al. 2016 110 human perirenal aortic plaques
M2 and M1 macrophages are both
enriched within progressive and
vulnerable atherosclerotic plaques

[79]

Howard et al. 2015
1640 carotid artery plaques from patients
undergoing CEA for secondary stroke

prevention

CD68+ macrophage plaque content was
associated with a 5-year stroke risk based

on the ECST patient database
[80]

Hellings et al. 2008 500 carotid endarterectomy specimens
A high macrophage infiltration was

associated with a high risk of ipsilateral
carotid restenosis

[81]

Hellings et al. 2010 818 carotid endarterectomy specimens

Macrophage infiltration did not predict
the 3-year risk of cardiovascular death or
nonfatal stroke or nonfatal myocardial
infarction. On the other hand, plaque
neovascularization was associated with

the relevant outcomes

[82]

Scholtes et al. 2012
236 subjects undergoing carotid

endarterectomy for secondary stroke
prevention

The proportion of MMP12+ macrophages
was associated with major adverse

cardiovascular events and stroke at 3 years
[83]

Gaemperli et al. 2012
9 patients with stroke due to carotid
atherosclerosis and 27 subjects with
asymptomatic carotid atherosclerosis

In vitro imaging of plaque macrophage
infiltration using the macrophage-specific
tracer PK11195 allowed to discriminate
symptomatic vs. asymptomatic subjects

[84]

M1: proinflammatory M1 macrophages; M2: homeostasis-promoting M2 macrophages; CEA: carotid endarterectomy; MMP: matrix metalloproteinase;
TIMP: tissue inhibitor of matrix metalloproteinase.

Table 3: Summary of the main findings on the relation between monocytes/macrophages and human atherosclerosis.

Monocyte/macrophage population Cardiovascular events
Imaging features
of vulnerability

Histologic features
of vulnerability

Neovascularization

Total monocytes + NA NA +

Circulating CD14hiCD16- NA NA NA ++

Circulating CD14hiCD16+ + + NA NA

TLR4+ monocytes — NA NA NA

M1 macrophages ++ + +++ NA

M2 macrophages NA NA ++ NA

A plus (+) represents a strong clinical evidence in favor of the association, while a minus (-) represents the failure of a well-designed study to establish an
association. NA: not available.
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are more infiltrated by macrophages when compared to
asymptomatic carotid artery plaques [84]. Given that it is
now established that the simple distinction between M1 and
M2does not recapitulate the “real” functional status ofmacro-
phages in the atherosclerotic plaque, the investigation of spe-
cific macrophage signatures, by single cell analysis, will
represent the next step to characterize macrophage function.

Table 2 summarizes the evidence on macrophages and
human plaques. Table 3 schematizes the available evidence
concerned with monocytes and macrophages in human ath-
erosclerosis. Figure 1 provides a graphical overview of the
available evidence.

7. Conclusions

Monocytes and macrophages have a pivotal role in athero-
sclerosis initiation and development. While the majority of
currently available data are currently derived from animal
studies, a growing body of evidence is elucidating the role
of monocytes and macrophages in human CVD. While both
cell types may be amenable for targeted treatment to abate
cardiovascular disease in the future, the current data also
support the use of monocyte and macrophage subpopula-
tions as markers for an increased cardiovascular risk.
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