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Let us consider the following classical problem of
diffusion-controlled reaction kinetics:1, 2

A + B → B, (1)

where B denotes dilute, mobile spherical traps which irre-
versibly transform the reactant molecules A into the reaction
products, upon collision. In the spherical frame centered on
the trap, the density distribution of A is denoted by ρ(r). Fur-
thermore, the A molecules are spherical and inert with each
other apart from excluded-volume (hard-sphere) repulsion.
Denoting with RS the radius of B and with Rp the radius of A,
we focus on the case where B is a sphere of the same size as A
and the reaction radius is thus equal to the collision diameter
R = RS/2 = Rp/2. Furthermore, we neglect hydrodynamic
interactions,3 which are neglected also in the simulations that
we compare our results with. We are interested in the steady-
state reaction rate κ under the effect of many-particle corre-
lations between A molecules, i.e., at high concentrations of A
in the system. This quantity is important in a number of prob-
lems, from biophysical receptor-ligand reactions in crowded
biological environments,4 to exciton recombination in semi-
conductors, colloidal aggregation,5 and matter-antimatter seg-
regation in cosmology.6

The problem has been studied recently using event driven
Brownian dynamics simulations7 over a broad range of pack-
ing fraction φ = (4π/3)R3

pρ∞ and for several ratios of the
trap to reactant radii, RS/Rp. For moderate values of φ up
to φ = 0.2, the rate increases upon increasing φ due to en-
hanced collective diffusion, while the density profile around
the trap remains monotonic and gradually decreases from the
bulk value to zero at the trap. At high liquid density φ � 0.4,
the rate is slowed down. The slowing down was thought to
be due to the build-up of many-body excluded-volume corre-
lations between A molecules around the trap, which, at high
density, cannot be removed by the local depletion effect cre-
ated by annihilation of A molecules at the trap.7, 8

In Ref. 7, it was found that the simulation data for the rate
can be well represented, omitting numerical prefactors, by the
following expression:

κ � κS

β�(ρ∞)

ρ∞
e−[β�(ρ�)/ρ�]+1, (2)

where κS = 4πD0Rρ∞ is the Smoluchowski diffusion-limited
rate valid in the limit ρ → 0, and ρ� ≡ ρ(r�) is evaluated
at the first coordination shell in the density pair-distribution
function ρ(r) due to mutual excluded volume of A molecules
around the trap. The exponential factor has been interpreted

in Refs. 7 and 8 as an effective Arrhenius factor with a
thermally-activated energy barrier. The latter is connected
with the local build-up of osmotic pressure which a generic
A molecule feels due to the first coordination shell of other A
molecules crowding around B. Although this concept is intu-
itively appealing, there is no formal, first-principles derivation
of Eq. (2) available.

The equilibrium structure of substrate fluid (the A parti-
cles), is perturbed near the trap B due to the removal (deple-
tion) of the A particles upon collision with the trap. Under
dilute conditions such that the probability density distribu-
tion of A is uniform at all length scales, the profile of the pair
distribution function of A particles around B is given by ρ(r)
= ρ∞[1 − (R/r)], which is the Smoluchowski solution to the
steady two-body diffusion describing transport of the A par-
ticle subject to the absorbing boundary condition at contact
with B. At high density of A particles, this profile is further
perturbed by the liquid-like short-range structure induced by
many-body hard-core repulsions.7

The transport of one A particle from the bulk to the trap B
occurs through the inhomogeneous local density profile due to
the many-particle correlations (liquid structure). In the pres-
ence of an inhomogeneous density profile, a Brownian parti-
cle is subjected to a force which acts as to spread the density
profile. Recall that in a system of Brownian particles, � is the
pressure exerted by the system itself. Then −∇� represents
the force per unit volume acting on the system.9 If ρ is the
probability density of particles, it follows that the force act-
ing on average upon a single particle is given by −ρ−1∇�.
Hence, this force is zero whenever the system is spatially ho-
mogeneous, as it ought to be, e.g., for diluted suspensions.
If, however, the distribution of the particles is not homoge-
neous in space, this force is written as F = − 1

ρ(r)∇�(ρ(r)).
It is important to realize that this is a non-conservative force-
field, as it is connected with an irreversible diffusive flux, and
therefore it differs from the usual potential of mean-force of
equilibrium physics.10

The reaction kinetics is governed by the diffusive Fokker-
Planck equation:

∂ρ

∂t
= Dc∇ · (∇ρ − βFρ). (3)

In this problem, many-body correlation effects arise on two
levels. One level is that of collective diffusion contained
in Dc = D0(∂�/∂ρ), reflecting the effect of many-particle
collisions on transport in a dense system.9 The second level
is represented by the inhomogeneous static liquid structure
which gives the spatial modulation of ρ(r), as the solution of
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integral equations, such as, e.g., the Hypernetted Chain Equa-
tion (HNC). The two levels are nonlinearly coupled through
Dc(ρ) and the full formalization of the problem involves the
coupling of the HNC and the Fokker-Planck equations, a
formidable task even for numerics.

The first approximation is to assume a superimposed liq-
uid structure ρS(r) as given, e.g., by the HNC or from ex-
periments, assumed independent of the two-particle density
function ρ(r) of the two annihilating particles, to effectively
decouple the structure from the transport. The second ap-
proximation is to reformulate the many-body transport prob-
lem as a homogeneous collective diffusion problem in the
superimposed field of the nonequilibrium, inhomogeneous
mean-force F(ρS(r)) introduced above. This amounts to lin-
earizing the transport problem, while keeping the nonequi-
librium effect of the diffusion through an inhomogeneous
structure via F(ρS(r)). This further reduction step leads to
replacing Dc in Eq. (3) with Dc, ∞.

The steady-state solution of the Fokker-Planck equation
for the flux is κ = 4πr2Dc(∇ρ − βFρ). Upon integrating with
the condition ρ = ρ∞ at r = ∞, we obtain the steady-state
solution as

ρ = ρ∞e
∫

drβF + κe
∫

drβF

4πDc,∞

∫ r

∞

1

r2
e− ∫

drβF dr. (4)

The integrated annihilation rate is given using the absorbing
boundary condition at the trap, ρ = 0 at r = R, as

κ = 8πDc,∞ρ∞∫ ∞
R

r−2e− ∫
βFdrdr

. (5)

Let us consider the indefinite integral

−
∫

βFdr = β

∫
1

ρ

d�

dr
dr = β

∫
1

ρ
d�. (6)

Practically, this integral is non-zero only about the first co-
ordination shell where the inhomogeneity is the strongest. �

is a series expansion of ρ with positive integer powers 1, . . . ,
N, and we recall that a high-density liquid equation of state
such as the Hall equation of state11 can be reduced to this
form. Upon inverting the relation, the dependence of ρ on
� is controlled by ∼�1/N, where N is the largest power ex-
ponent in the series. For example, with N = 7, the depen-
dence goes as ∼�1/7. Since this is a very slowly varying
function of � in the region which contributes to the integral,
we can write

−
∫

βFdr � 1

ρ
β� + C. (7)

The integration constant C, has to be such that the structural
mean-force F is zero for a homogeneous and ideal system,
hence C = −1. With these identifications, the rate becomes

κ � 4πDc,∞ρ∞

[
R

∫ ∞

R

r−2e(β�/ρ)−1dr

]−1

. (8)

The integral is dominated by the region in r-space where
β�/ρ > 1. Since � is a monotonically increasing polyno-

mial function of ρ(r), to a peak in ρ(r) there corresponds
an even sharper peak in �(r). At high density, the spatial
behavior of ρ(r) is the same as the radial distribution func-
tion, with the largest peak corresponding to the first coor-
dination shell of A particles. The presence of such a peak
around the trap has been confirmed by simulations also for
the annihilation (absorption) boundary condition at high pack-
ing of A particles.7 The exponential evaluated at the peak
represents the dominant contribution to the integral. In the
simplest approximation, we schematize the peak as a square
barrier of height β�(ρ�)/ρ� − 1, where ρ� is evaluated
at r� which is the coordinate of the peak, that is, the po-
sition of the first coordination shell along r. Hence, upon
recalling the form of the Smoluchowski rate valid in the
ideal limit, κS = 4πD0Rρ∞, we arrive at the following
result:

κ � κS

(
dβ�

dρ

)
ρ∞

e−[β�(ρ�)/ρ�]+1. (9)

This result, obtained using the nonequilibrium mean-force
F accounting for the transport through the inhomogeneous
short-range structure of dense liquids, can be compared with
Eq. (2) that was obtained by fitting simulation data.7 The two
equations differ only in the prefactor, where in Eq. (2), we
have β�(ρ∞)/ρ∞ instead of (dβ�/dρ)ρ∞ . It is important to
note that the two prefactors have the same dependence on ρ∞,
as could be appreciated by writing �(ρ) as a virial expansion.
This indicates that our analytical solution is qualitatively cor-
rect overall, and the approximations proposed here may af-
fect only the numerical prefactor. This approximation works,
at least qualitatively, possibly because the neglected ρ depen-
dence of Dc, is by definition less nonlinear in ρ than the de-
pendence of � which survives through the approximation and
controls the final outcome.

We have shown that the diffusion-controlled rate of an-
nihilation reactions in dense hard-sphere liquids with di-
lute mobile traps can be reformulated as a two-body Smolu-
chowski problem in a locally inhomogeneous, crowding
mean-force field. This compact, effective two-body formu-
lation of the many-body problem can be used in other reac-
tion kinetics problems in dense phases, in alternative to or in
combination with more rigorous, but more involved, field-
theoretic approaches.12
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