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The bulk modulus of many amorphous materials, such as metallic glasses, behaves nearly in

agreement with the assumption of affine deformation, namely that the atoms are displaced just by the

amount prescribed by the applied strain. In contrast, the shear modulus behaves as for nonaffine

deformations, with additional displacements due to the structural disorder which induce a marked

material softening to shear. The consequence is an anomalously large ratio of the bulk modulus to the

shear modulus for disordered materials characterized by dense atomic packing, but not for random

networks with point atoms. We explain this phenomenon with a microscopic derivation of the elastic

moduli of amorphous solids accounting for the interplay of nonaffinity and short-range particle

correlations due to excluded volume. Short-range order is responsible for a reduction of the

nonaffinity which is much stronger under compression, where the geometric coupling between

nonaffinity and the deformation field is strong, whilst under shear this coupling is weak. Predictions of

the Poisson ratio based on this model allow us to rationalize the trends as a function of coordination

and atomic packing observed with many amorphous materials. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4862403]

I. INTRODUCTION

In a disordered solid, every microscopic building block

(atom, molecule, particle) is surrounded by its bonded (near-

est) neighbors which are placed at random around it. As we

apply a deformation to a solid, the atoms tend to affinely fol-

low the macroscopic strain. In so doing, the bonded neigh-

bors transmit forces to their neighbors. Due to the lack of

local inversion symmetry in disordered systems, and in chiral

lattices as well, the forces transmitted by the bonded neigh-

bors do not cancel as they would do in an ordered lattice.

The result is a net force f
i

acting on every atom i during the

deformation, in addition to the effects of an affine strain. To

equilibrate this force such that mechanical equilibrium is

reached, additional nonaffine displacements arise.1–4

Nonaffine displacements induce a significant reduction in the

shear elastic constant of amorphous solids, which are in gen-

eral less rigid than crystalline solids.5–7 For metallic glasses,

it is well documented that the shear elastic constant may be

up to 50% lower than the one of the corresponding crystal of

the same composition.8 In the limit of weak disorder (e.g.,

crystals with defects) other mechanisms may be active, such

as local cancellation of first and second-order terms in the

free energy expansion.9

For a broad class of amorphous materials (e.g., amor-

phous metals), however, the elastic response under compres-

sion appears to be little affected by nonaffinity and in fact

the bulk or compression modulus K of these materials is

comparable to that of the corresponding crystals with the

same composition, thus behaving as if the deformation was

nearly affine.6,10 Such discrepancy was noticed long ago in

numerical calculations of amorphous packings of atoms

interacting via the attractive Morse potential at T¼ 0: an

early model of metallic glasses.10 Already in that study, the

discrepancy was correctly attributed to the bulk modulus

behaving quasi-affinely whereas the shear modulus behaves

nonaffinely. Recently, it has been suggested11 that there

might be a correlation between the density of the packing

and the Poisson ratio �, which is uniquely determined by the

ratio K/G. In particular, a ratio K=G ’ 2:4 is typical of bulk

metallic glasses, with high atomic packing density. This is a

higher ratio compared to the one of the corresponding crys-

tals with the same composition.8,11 For network glasses with

lower packing density, instead, the nonaffine theory for the

random network model (where the atomic radius is much

smaller than the bond length) gives13 K=G ’ 5=3, independ-

ent of the bonding type (whether purely central-force or

covalent), which is in excellent agreement with numerical

random-network simulations of amorphous diamond.12

Finally, also in numerical simulations of Lennard-Jones

glass,16 it has been shown that while the nonaffine correction

to the shear modulus is substantial, leading to the softening

of response with respect to the affine case, the nonaffine cor-

rection to the bulk modulus is negligible.

The mystery, which has to be solved, is then why in

denser atomic packings (where the atomic excluded volume

correlations are stronger) the response to compression tends to

be nearly affine. This question cannot be resolved unless one

sets up a microscopic analytical description where nonaffinity

is taken into account along with a reasonable description of

structural disorder and local atomic packing. This is precisely

what we do here, which leads us to show that the quasi-affinity

of the bulk modulus in amorphous materials is due to excluded

atomic-volume correlations between atoms which lead to a

local short-range order. This reduces the nonaffine displace-

ments significantly under isotropic compression, at the same

time producing a negligible effect on the nonaffinity in shear.

In systems where the atomic size is small with respect to the

range of bonding as in random networks (e.g., network

glasses), this effect is small and in fact the response is strongly
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nonaffine for both the bulk and the shear moduli.12–15 Also, our

theory is able to provide a first analytical explanation of the

trends discussed in Ref. 11 for the dependence of � upon both

the atomic packing and the coordination in bulk metallic glasses.

II. DERIVATION

A. Nonaffine elastic response

We work under the same assumptions that were used in

the numerical simulations of Weaire et al.,10 namely: (i)

T¼ 0; (ii) pairwise central force interatomic potentials. In

addition, since our theory is completely analytical, we use

the harmonic approximation, which is valid at low T where

metallic glasses are known to be relatively harmonic.17

While the importance of directional (e.g., bond-bending or

covalent-like) components of the interatomic potentials is

still an open issue, and the same caveats of Weaire et al.10

apply also here, one cannot exclude that realistic calculations

may be done using our analytical framework in combination

with the pseudopotential theory of metals for the pairwise

interatomic interactions.18

Under these assumptions, the generic elastic constant

Cinjv of an amorphous solid at low T can be written as16,21

Cinjv ¼ CA
injv �

X
i<j

Nin
i ðHij

Þ�1Njv
j ; (1)

where injv label the Cartesian components of the applied

strain field. For a shear deformation c in the xy plane we

would have injv ¼ xyxy. The affine part is the standard

Born-Huang expression22 in terms of a lattice sum over

nearest-neighbors (NN), which in the case of harmonic

bond potential 1
2
jðRij � R0Þ2 takes the form: CA

injv ¼
R2

0
j

2VP
i<jcijn

i
ijn

j
ijn

n
ijn

v
ij, where, in d¼ 2, nij ¼ ðcos/ij; sin/ijÞ is the

unit vector defining the orientation of a bond ij in terms of its

angle /ij. Note that in d¼ 3 there is an additional azimuthal

angle hij which defines the bond orientation. cij is the occupa-

tion matrix (cij¼ 1 for two bonded NN atoms and cij¼ 0 oth-

erwise). Rij ¼ jRj � Rij, and j is the bond stiffness.

CNA
injv ¼

P
i<jN

in
i
ðH

ij
Þ�1Njv

j in Eq. (1) is the nonaffine

correction term. It is positive, which reflects, based on

Eq. (1), the reduction in stored elastic energy due to nonaf-

finity. The Hessian matrix H
ij

is the standard (real-space) dy-

namical matrix of the solid.23 The vector Nin
i measures the

increment of local force f
i

on an atom in response to the de-

formation of its environment (c, in the case of shear). Note

that this definition implies that this driving force for the local

nonaffine relaxation is proportional to the applied affine

strain, f
i
¼ Nxy

i c, for shear in the xy plane. This is in agree-

ment with previous numerical characterizations of the nonaf-

fine displacement field.2 It has been shown that for harmonic

lattices:16 Nxy
i ¼ �R0j

P
jnijn

x
ijn

y
ij. Since the sum runs over

bonds to the nearest-neighbors j of the atom i, it is evident

that in a monoatomic crystal for each bond involving i there

is a mirror-image bond across a reflection plane of the crys-

tal. In this case every bond in the sum cancels with its

mirror-image and Nin
i ¼ 0; 8i in many crystal lattices.

In contrast, in the presence of lattice disorder (or in cer-

tain low-symmetry crystalline lattices), Nin
i 6¼ 0. Let vk be

the k eigenvector of the Hessian, associated with the kth

vibrational eigenmode and with the kth eigenvalue kk. The

set of eigenvectors vk with k ¼ 1:::dN is an orthonormal ba-

sis (ONB) in (dN)-dimensional space and therefore any

(dN)-dimensional vector can be expanded in this basis.

Using this fact and applying the eigenvalue equation for the

Hessian Hvk ¼ kkvk, after some manipulation one obtains16

Cinjv ¼ CA
injv �

1

V

XdN

k

ðNin � vkÞðNjv � vkÞ
kk

: (2)

The presence of the eigenvalue at the denominator goes back

to the fact that the inverse of the Hessian is used. The sum

over modes does not include the zero-energy rigid-body

translations for which k ¼ 0, which ensures that the Hessian

is invertible and the sum does not diverge.16

Each (dN)-dimensional eigenvector of the dynamical

matrix can be decomposed as vk ¼ ai � ea, that is, into a

direct product of a N-dimensional vector ai ði ¼ 1:::NÞ with

a d-dimensional vector ea ða ¼ x; y; :::Þ, the latter taken to be

the unit vector basis of the Euclidean space. Rigorously, one

should first evaluate the sum in Eq. (2) and then take the av-

erage over the disorder. Since this is not possible analyti-

cally, we first calculate the averages and then we sum, with a

typical mean-field approach. Then the nonaffine contribu-

tion, as shown in Appendix A, becomes

CNA
injv ¼

j2R2
0

V

X
i<j;p<q

aiapcijcpq

X
a

hna
ijn

i
ijn

n
ijn

a
pqnj

pqnv
pqi

ki;a
: (3)

In Eq. (3), the effect of microscopic structure is

contained in the average over orientational disorder:

hna
ijn

i
ijn

n
ijn

a
pqnj

pqnv
pqi where h:::i¼

Ð 2p
0

Ð 2p
0
:::f ð/ij;/pqÞd/ijd/pq

for d¼2 denotes the average over bond orientations accord-

ing to an appropriate orientation distribution function

f ð/ij;/pqÞ for the angles /ij and /pq of the two bonds ij and

pq, respectively. This distribution function contains the in-

formation on all possible correlations between ij and pq, i.e.,

the local short-range order. In the absence of any orienta-

tional correlations as in the random network model, the

angles /ij and /pq are independent. Then, the double integral

factorizes into the product of two integrals, both of the type:
1

2p

Ð 2p
0

na
ijn

i
ijn

n
ijd/ij¼0, vanishing by symmetry. Hence, in the

random network model, the only terms which survive are

those for which either ij ¼ pq or ij ¼ qp.

B. Short-range order and local packing

In the presence of excluded-volume repulsion between

atoms, such as in metallic glasses6,10,11 or colloids,24 it is still

realistic that two distinct bonds ij and pq have uncorrelated ori-

entations (leading to vanishing contributions to the sum) pro-

vided that the two bonds have no atom in common. If,

however, i ¼ p and j 6¼ q in the sum of Eq. (3), the two par-

ticles j and q cannot be placed independently at random around
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the particle i ¼ p, due to their mutual excluded volume. This

situation is depicted in Fig. 1.

The extent of the excluded volume correlations is con-

trolled by the ratio r=R0, where r is the hard-core cross sec-

tion, i.e., the minimum distance at which the atoms can be

without feeling a very large repulsion. In the limit

r=R0 ! 1, this is equivalent closely-packed particles of di-

ameter R0. In the limit r=R0 ! 0 we recover the random net-

work model and there are no excluded volume correlations.

We proceed by first deriving the theory for the limit of dense

packings r=R0 ¼ 1 which will be extended later to get a for-

mula valid for arbitrary r=R0.

To account for the excluded-volume correlations in the

limit r=R0 ¼ 1, we consider that whenever two bonds share

one particle as in Fig. 1, the angular range where the second

bond/particle can be placed with random likelihood is no

longer 2p (in d¼ 2) but it is given by 2p minus twice the

angle occupied by the first bond/particle. If we denote by /iq

the angle defining the orientation of the second bond, and

/iq ¼ /ij þ 2w, it follows that the angle w can take any value

with the same likelihood only in the range sin�1ðr=2R0Þ
< w < p� sin�1ðr=2R0Þ. Upon setting w� � sin�1ðr=2R0Þ,
the angular average of these terms is given by

hna
ijn

i
ijn

n
ijn

a
iqnj

iqnv
iqi

¼
ð2p�w�

w�
dwqðwÞ

ð2p

0

d/ijqð/ijÞna
iqnj

iqnv
iqna

ijn
i
ijn

n
ij ; (4)

with the orientation distribution functions defined as

qðwÞ ¼ 1

2p� 2w�
; qð/ijÞ ¼

1

2p
: (5)

With these correlation terms, the overall orientation average

of the nonaffine term becomes

hna
ijn

i
ijn

n
ijn

a
pqnj

pqnv
pqi ¼ dipð1� djqÞAa;injv � diqð1� djpÞAa;injv

þ ðdipdjq � diqdjpÞBa;injv

¼ ðdip � diqÞAa;injv

þ ðdipdjq � diqdjpÞðBa;injv þ Aa;injvÞ;
(6)

where we defined Aa;injv � hna
ijn

i
ijn

n
ijn

a
iqnj

iqnv
iqi and Ba;injv

� hna
ijn

i
ijn

n
ijn

a
ijn

j
ijn

v
iji. The first term in the r.h.s. of Eq. (6)

accounts for the terms with i ¼ p and j 6¼ q. The minus sign

in the second term on the r.h.s. (which accounts for the terms

with i ¼ q and j 6¼ p) is due to frame-inversion in the second

triplet: hna
ijn

i
ijn

n
ijn

a
iqnj

iqnv
iqi ¼ �hna

ijn
i
ijn

n
ijn

a
pin

j
pin

v
pii ¼ �Aa;injv.

Overall, the B coefficients are the same encountered in the

random network model13 and include only those terms for

which ij ¼ pq or ij ¼ qp. The coefficients A are zero in the

random network model and include all terms where there is

one particle in common between two bonds.

III. RESULTS AND DISCUSSION

A. Elastic constants

Upon substituting Eq. (6) into Eq. (3) and evaluating the

sum over the modes in mean-field approximation, after some

algebra which is listed in Appendix B, we arrive at the

expression for the nonaffine contribution in the presence of

excluded atomic-volume correlations

CNA
injv ’ jR2

0d
N

V

Xd

a

ðAa;injv þ Ba;injvÞ: (7)

The coefficients due to correlations are evaluated using the

integral in Eq. (4) which in d¼ 2 give

Ax;xyxy ¼ Ay;xyxy ¼ �0:0129

Ax;xxxx ¼ �0:116; Ay;xxxx ¼ �0:0129

Ax;xxyy ¼ Ay;xxyy ¼ �0:0387:

(8)

The fact that Aa;injv < 0; 8 a implies that the excluded-

volume correlations act as to decrease the nonaffinity. This

consideration is very important as it indicates that particle

short-range correlations reduce the nonaffinity by increasing

the likelihood, stochastically, of having bonds that are dia-

metrically opposed across a common bonded neighbor at the

center. As a result, there is a higher likelihood that some of

the NN forces which contribute to f
i

(the driving force for

the nonaffine motion) cancel mutually due to this effect,

resulting in a decreased f
i
, and thus in a decreased nonaffin-

ity. This effect critically depends upon the degree of geomet-

ric coupling between the imposed deformation and the

structure, as discussed below. We also note that the A coeffi-

cients have their maximum absolute value in the limit

r=R0 ¼ 1 and their value decreases to zero in the limit

r=R0 ! 0, where only the B coefficients survive, which are

not affected by the r=R0 ratio.

The orientation-averaged affine contribution is

CA
injv ¼ jR2

0
zN
2V hni

ijn
j
ijn

n
ijn

v
iji, where h:::i ¼

Ð 2p
0

1
2p :::d/ij, in

d¼ 2, since the bond ij can have any orientation in the solid

angle with the same likelihood 1=2p. We should also recall

that Bx;xxxx ¼ 5=16; By;xxxx ¼ 1=16; Bx;xyxy ¼ By;xyxy ¼ 1=16;
Bx;xxyy ¼ By;xxyy ¼ 1=16. Then, we obtain the following esti-

mates for the shear modulus and the bulk modulus of

densely-packed amorphous solids ðr=R0 ! 1Þ in d¼ 2

G ¼ 1

16
jR2

0

N

V
½ðz� 4Þ þ 0:05� ¼ 1

16
jR2

0

N

V
ðz� 3:95Þ

K ¼ 5

48
jR2

0

N

V
½ðz� 4Þ þ 2:6� ¼ 5

48
jR2

0

N

V
ðz� 1:41Þ:

(9)
FIG. 1. (a) Illustration of the excluded-volume angle w� between two bonds

ij and iq shared by one atom i ¼ p when r=R0 ¼ 1. (b) The same bonds with

a smaller but non-zero excluded volume, r=R0 < 1. At r! 0 the exclusion

w� ¼ 0.
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This is the most important result of this work; it should be

discussed in comparison with the analogous result for ran-

dom networks ðr=R0 ¼ 0Þ, where both the shear modulus

and the bulk modulus are / ðz� 4Þ, i.e., vanish exactly

when z¼ 2d. With excluded volume we have shown that the

effect of correlations is to decrease the nonaffine correction

to the moduli for both the shear modulus and the bulk modu-

lus. However, whilst this correction is so small for the shear

such that practically it cannot be assessed in simulations, the

situation is very different for the bulk modulus. Here the

nonaffinity is strongly suppressed by the excluded-volume

correlations and K � G, because KNA 	 GNA.

Interestingly, the short-range order due to excluded vol-

ume, which breaks the statistically isotropic symmetry of the

random network, induces a jump in G at z¼ 2d and changes

the order of the rigidity transition from the second-order of

random networks12 to a first-order transition where both

moduli are finite at z¼ 2d (recall19,20 that in packings there

is a discontinuous jump in z which falls to zero below

z¼ 2d). The qualitative predictions of the theory are illus-

trated in Fig. 2 for the two limiting cases of r=R0 ¼ 0 (ran-

dom networks, left) and r=R0 ¼ 1 (dense packing, right).

The reason why the effect of excluded volume correla-

tions is much stronger for compression than for shear lies in

the fact that under compression the deformation field is

always aligned with the bond vectors, if we consider one par-

ticle surrounded by its neighbors. Hence, when any two par-

ticles around a common neighbor happen to be one the

mirror image of the other, as a result of the excluded volume

correlations, it is clear that the forces they communicate to

their common neighbor must vanish, because, just like the

bond vectors, they have the same orientation but opposite

direction. Hence they give a zero contribution to the overall

force f
i
driving the nonaffinity of their common neighbor i.

In the case of shear, the orientations of the two particles

that are the mirror image of each other cannot coincide with

the orientations of the forces they transmit because the latter

are dictated by the shear geometry which is strongly aniso-

tropic. Indeed, the forces f
i

from the neighbors j causing

nonaffinity of any atom i are proportional to nijn
i
ijn

j
ij, and it is

evident that they depend on the coupling between the defor-

mation field (encoded in the Cartesian labels) and the bond

vectors nij. Hence, in the case of shear, NN forces driving

the nonaffinity of an atom i cannot have the same orientation

even when the two bond vectors do, because of the coupling

to the anisotropic shear field. As a result, the cancelation of

forces contributing to f
i
is much smaller in shear.

B. Poisson ratio

As a final illustration of this physical picture, we provide

predictions for the Poisson ratio. In d¼ 2, based on the ten-

sorial nature of stress and strain, and on dimensionality, the

Poisson’s ratio can be inferred25 as � ¼ ½ðK=GÞ � 1�=
½ðK=GÞ þ 1�. As a first-order interpolation in the small pa-

rameter r=R0, our theory gives

K=G 
 5

3
þ 5

3

ðz� 1:41Þ
ðz� 3:95Þ �

5

3

� �
r
R0

: (10)

FIG. 2. (a) Qualitative predictions of the bulk and shear moduli dependence on z near the stability threshold for the limiting case of random networks,

r=R0 ! 0, see Ref. 13. (b) Predictions of the theory in the limiting case of packings, r=R0 ! 1, Eq. (9). (c) Dependence of the Poisson ratio on the coordina-

tion z for r=R0 ¼ 1; 0:2 and 0.05, labeled on the plot. (d) Dependence of the Poisson ratio on the atomic packing parameter r=R0 for z¼ 4, 5, and 8.
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Substituting this formula in the definition of � given above,

predictions are obtained as a function of z and of the packing

density parameter r=R0 and plotted in Figs. 2(c) and 2(d). �
is predicted to monotonically decrease as a function of the

coordination number z, and to monotonically increase as a

function of the atomic packing ratio r=R0. Remarkably, both

these 2d-model predictions seem to capture trends observed

experimentally with many different amorphous materials, cf.

Figs. 3 and 4(a) in the review.11 The dimensionality appears

not to have a dramatic effect on this mechanism.

IV. CONCLUSION

In summary, we have shown that nonaffine displacements

may get strongly reduced in the compression of amorphous

solids as soon as one includes short-range order due to the

atomic mutual excluded volume, as is the case in metallic

glasses.6,26–32 The extent of the nonaffinity reduction is highly

dependent on the geometry of deformation, in particular on the

coupling between the deformation field and the nearest-

neighbor orientations. This coupling is maximum for hydro-

static compression, where the nonaffinity is strongly reduced,

whereas it is small, but finite, for shear. We also showed that

short-range order changes the order of the rigidity transition

from the second-order of random networks12 to first-order.

Further, this theory provides a theoretical explanation for the

trends observed in the Poisson ratio of many different materials

upon varying the coordination and the atomic packing.11 Our

theory is currently limited to harmonic interactions and it can

be expanded in future studies to include more realistic details

of the interatomic potentials of materials. Furthermore, the rela-

tive softness of shear transverse modes with respect to longitu-

dinal modes predicted by our theory may found a connection

with the dominance of shear modes in the anomalous Boson

peak seen in the vibrational density of states of glasses.33 In a

related context, it appears34 that the Poisson ratio and the ratio

K/G might play a role in determining the fragility of super-

cooled liquids, i.e., the temperature dependence of the viscosity

close to the glass transition. Our work might lead to a more mi-

croscopic understanding of the relation between fragility, elas-

ticity, and short-range correlations in supercooled liquids.
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APPENDIX A: DERIVATION OF EQ. (3)

The non-affine contribution to the elastic constants,

CNA
injv ¼

1

V

XdN

k

ðNin
i � vkÞðN

jv
i � vkÞ

kk
; (A1)

is a sum over the k ¼ 1:::dN eigenmodes of the dynamical

matrix of the lattice. The dN�dN dynamical matrix for har-

monic lattices is given, in components, by

Hab
ij ¼ dij

X
s

jcisn
a
isn

b
is � ð1� dijÞjcijn

a
ijn

b
ij: (A2)

This equation follows from replacing the harmonic potential

UðrijÞ ¼ 1
2
jðrij � R0Þ2 in the definition of the dynamical ma-

trix: Hab
ij � @2U=@ra

i @rb
j . R0 is the rest length of the bonds

and j the bond spring constant. vk and kk in Eq. (A1) are

eigenvectors and eigenvalues of the dynamical matrix,

respectively. The inner product ðNin � vkÞ is the projection of

the affine force field Nin (i.e., the force field exerted on every

atom by the affine motions of its neighbors) on the eigenvec-

tor vk. The analytical form of the affine fields is given by16

Na
i;jv ¼ �R0

P
jjcijn

a
ijn

j
ijn

v
ij. Thus, the evaluation of the

non-affine term in the elastic moduli reduces to the task of

evaluating the eigenmodes of the dynamical matrix, vk ¼
ai � wa where i ¼ 1:::N and a ¼ x1; :::; xd denotes Cartesian

components. In general, there are no analytical routes to

evaluate the eigenvectors. Nevertheless, as we will show

below, an analytical calculation is still possible if one has

wa ¼ ea where ea is the standard Cartesian basis of Rd. Let

us now justify the admissibility of this choice.

As is well known in algebra, if vk are the eigenvectors of

a matrix A, the same eigenvectors are also eigenvectors of any

matrix which commutes with A. Let us consider the matrix
~H

ab
ij ¼ j

d dij

P
jcij � ð1� dijÞcij

� �
dab, where dab is the

Kronecker’s delta. This matrix is obtained from the dynamical

matrix by taking the isotropic angular average of its

orientation-dependent terms. As one can easily verify by

inspection, this matrix commutes with the dynamical matrix

which implies that its eigenvectors are also eigenvectors of the

dynamical matrix. Furthermore, the eigenvectors of this

orientation-averaged matrix ~H
ab
ij are of the form: vk ¼ ai � ea.

From the commutation of the two matrices, it follows that

these are eigenvectors of Hab
ij as well. Hence the eigenvalue

equation for the dynamical matrix can be written as:

ð ~H � IÞða� eÞ ¼ kkða� eÞ, where ~H � j
d dij

P
jcij

�
�ð1�

dijÞcijÞ and I denotes the d� d identity matrix. Then the inner

products of the affine fields with the eigenvectors become13

ðN in
i � viÞðNjv

p � vpÞ

¼ j2R2
0

X
i<j

aicijn
a
ijn

i
ijn

n
ij

 ! X
p<q

apcpqna
pqnj

pqnv
pq

 !

¼ j2R2
0

X
i<j;p<q

aiapcijcpqna
ijn

i
ijn

n
ijn

a
pqnj

pqnv
pq; (A3)

where the sum runs over two pairs of NN atoms at the time,

ij and pq. Upon taking the orientational average of the resid-

ual orientation-dependent factors in the previous equation

we immediately recover Eq. (3).

APPENDIX B: DERIVATION OF EQ. (7)

Let us now evaluate the various terms separately within

the sum in Eq. (6) of the main article. We shall first consider

the term ðdip � diqÞAa;injv. Upon replacing it in Eq. (3),

we get Aa;injv
P

pa2
p � Aa;injv

P
papaqcpq ¼ Aa;injv � Aa;injvP

p<qapaqcpq, where clearly the second term is smaller than
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the first because the mutual projection of the modes of two

distinct particles is smaller than 1 (it is equal to 1 only when

the two particles coincide, by orthonormality). To leading

order, the term Aa;injv thus gives a contribution to the nonaf-

fine term which is equal to

j2R2
0

V

XdN

i;a

Aa;injv

ki;a
’ j2R2

0

V
ðdN=�kÞ

Xd

a

Aa;injv; (B1)

where ki;a are the eigenvectors of the dynamical matrix and
�k is the average eigenvalue, with the average taken over

the disorder. The dynamical matrix averaged over the

orientational disorder is given by ~H
ab
ij ¼ j

d dij

P
jcij

�
�ð1� dijÞcijÞdab, and the d-fold degenerate eigenvalues of

this matrix are also eigenvalues of the dynamical matrix. To

find the mean eigenvalue we only need analyze the spectrum

of eigenvalues ~ki of the N�N matrix ~Hij ¼ j
d dij

P
jcij

�
�ð1� dijÞcijÞ, since ~ki;x ¼ ~ki;y ¼ ::: ¼ ~ki. The average value

of the eigenvalue spectrum is defined as: �k ¼ 1
N

PN
i

~ki. From

the trace definition we have that Trð ~HijÞ ¼
PN

i
~ki. Hence,

we get �k ¼ 2ðj=dNÞ
P

i<jcij. The factor
P

i<jcij is a sum of

independent binary (Bernoulli) random variables, hence it is

itself a binary random variable characterized by the number

of trials (which is equal the number of terms in the sum):

Q¼ N(N–1)/2, and by the probability P ¼ z/(N � 1) which is

the probability of a successful trial (cij ¼ 1 with success

probability P ¼ z/(N � 1)). P represents the probability of

picking two particles that are nearest neighbors when picking

two particles at random in the solid. The expectation value is

then
P

i<jcij ¼ PQ. Clearly this is an averaging taken over

the realizations of positional disorder encoded in the binary

occupancy variable cij. Using this, we obtain:

�k ¼ 2j
dN

PQ ¼ 2j
dN

z

N � 1

NðN � 1Þ
2

¼ jz

d
: (B2)

The variance around the mean can also be calculated as for a

binomial distribution, and is given by Varð�kÞ
¼ ð2j

dNÞ
2QPð1� PÞ ¼ 2j2

d2N ðz� z2

N�1
Þ. In the thermodynamic

limit N !1, the variance is therefore zero (which is a

reflection of the self-averaging principle) and in that limit we

can write

j2R2
0

V

XdN

i;a

Aa;injv

ki;a
’ jR2

0

N

V

d

z

Xd

a

Aa;injv: (B3)

By putting ðdip � diqÞAa;injv ’ dipAa;injv, we overestimate

this contribution and write, in good approximation

CNA
injv ’ jR2

0d
N

V

Xd

a

ðAa;injv þ Ba;injvÞþjR2
0

N

V

d

z

Xd

a

Aa;injv:

(B4)

The second term in the r.h.s. of Eq. (B5) is smaller than

the other term by at least a factor 1/z, if not even smaller.

Hence, in a further approximation, to leading order we can

write

CNA
injv ’ jR2

0d
N

V

Xd

a

ðAa;injv þ Ba;injvÞ; (B5)

which is Eq. (7) in the main article.
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