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We propose a simple route to analytically evaluate the average coordination of model disordered
solids with maximally homogeneous distribution of the particles in space. The model yields the
average number of contacts �z� as a function of volume fraction ��� of a hard-sphere connected
system and recovers the critical jamming point of hard spheres �z=6 at �=0.64�. Numerical
simulations of Lennard-Jones glasses with a varying attraction range are used to investigate the
volume fraction dependence of the average coordination in the presence of attraction. It is observed
that upon decreasing � below 0.6, structural heterogeneity is reflected in values of the coordination
number which are higher than those predicted by the model for a statistically homogeneous
distribution of particles in space due to the attraction-induced local aggregation. Thus the model can
be usefully employed as a quantitative reference to assess the degree of structural heterogeneity in
glasses in terms of a directly accessible structural parameter such as the mean number of
contacts. © 2010 American Institute of Physics. �doi:10.1063/1.3284786�

I. INTRODUCTION

Dynamical arrest in amorphous condensed and soft con-
densed matter represents an open problem where the arising
of rigidity is closely associated with subtle structural
changes.1–3 Therefore, it is essential to define measures in
order to properly describe the structure as well as to follow
its transformations. The simplest topological parameter,
which is used to describe the structure of amorphous con-
densed matter, is the mean coordination number.1 Its defini-
tion does not gather general consensus and highly depends
upon the system under consideration. From the experimental
viewpoint, structural information can be obtained by either
radiation scattering or by optical �e.g., microscopy� tech-
niques �which can be applied, for example, to colloidal and
granular systems�. While scattering provides structural infor-
mation in Fourier space, microscopy and direct imaging give
quantitative, real space information about the local coordina-
tion. A practical way to define a mean coordination number
is to identify it with the mean number of contacts, i.e., count-
ing the number of particles physically touching a tagged
one.4 Some uncertainty may still arise as to the degree of
“touching” between particles, so that some arbitrariness is
unavoidable.4 From the theoretical standpoint, most theories
of condensed matter structure produce as a result the familiar
radial distribution function �rdf�, g�r�.5 Integrating g�r� over
a value of shell width around the tagged particle gives the
most likely number of particles to be found within that radial
distance. Also in this case, however, different choices are
possible for the integration boundary and this introduces
again a substantial degree of arbitrariness in the characteriza-
tion of the local structure.5

Besides these problems, there is the issue of characteriz-
ing the structure of amorphous systems at a more coarse-
grained level, where the appearance of structural heterogene-
ity usually plays an important role.2 This has been done, for
example, in terms of the statistics and structure of the voids,
including remoteness and the void size distribution, which
have been usefully employed in simulation studies of fractal
colloidal aggregates and gels as well as colloidal glasses.6,7

In this work we suggest the possibility to give a description
of structural heterogeneity in terms of the mean coordination
number, which is a more accessible quantity. We also use the
mean coordination number to assess the effect on structure
�and structural heterogeneity� of different microscopic inter-
action potentials �attractive rather than merely repulsive�.

To this aim, we focus our attention on amorphous model
�colloidal8 and Lennard-Jones� systems. We start by propos-
ing an analytic formula to estimate the mean number of con-
tacts �z� in purely hard-sphere connected �jammed� systems
with homogeneous spatial distribution of the particles. Then
we consider the arising of structural heterogeneity as due to
the addition of an attractive component of interaction in
simulated Lennard-Jones glasses. In both cases, we estimate
z via the number of neighbors at different volume fractions �
and compare it with the theoretical predictions for the homo-
geneous system. On the basis of such comparisons we pro-
pose a criterion to indirectly assess the presence of structural
heterogeneity in terms of the deviation of the measured z���
from the theoretical prediction for homogeneous systems.

II. MODEL

A deep and rapid quench of a supercooled liquid is able
to freeze in the liquid structure almost instantaneously, so
that the resulting �solid� glassy state presents a spatial orga-
nization which cannot be distinguished, in practice, from thata�Electronic mail: alessio.zaccone@chem.ethz.ch.
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of the liquid snapshot at the quenching time. In the theoret-
ical framework proposed by Alexander,9 this would corre-
spond to the assumption that the set of interparticle distances
in the rigid reference glass state �R� is the same or approxi-
mately the same as the set of interparticle distances in the
liquid snapshot �r� at the quenching time tq,

�R�glass � �r�tq��liquid. �1�

In Alexander’s approach, it is clear that the situation is more
complicated than this simplistic picture because the particle
positions in the liquid snapshot correspond to an unstable
structure which is out of mechanical equilibrium.9 Even for
an ideal, infinitely fast quench, where diffusive motion is
suppressed, a solidlike relaxation process accompanies the
quench and is responsible for the creation, through a hierar-
chy of restructuring and buckling phenomena, of the me-
chanically stable structure which characterizes the final
amorphous solid.9 The theoretical description of such com-
plex structural reorganization phenomena is out of reach at
present. What we attempt to do in the following is to find an
analytical route which, starting from the liquid structure,
leads to the number of contacts in the final arrested state.

The simplest case one can think of is that of a liquid of
hard spheres �where the interaction reduces to mutual impen-
etrability at contact�. Upon quenching �at zero applied pres-
sure� there is a unique T=0 state, which is mechanically
�marginally� stable and corresponds to the jamming point of
hard spheres at volume fraction ��0.64, denoted as point J,
where �marginal� rigidity is expressed through the isostatic
condition z=2d=6, where z is the mean coordination and
d=3 is the dimensionality of space. It was shown already by
Maxwell that a structure possesses rigidity when the total
number of degrees of freedom is at least equal to the total
number of constraints Nc. That is, for a system of N particles,
Nc�3N−6.10 As shown in recent literature, point J displays
the properties of a critical point where the Maxwell criterion
is only marginally satisfied �isostaticity�, and for large sys-
tems one thus has z=2Nc /N=6.11 At volume fractions lower
than point J, the quenched metastable states are usually very
tenuous at T�0 �and mechanically unstable at T=0�, since
the elasticity of hard-sphere glasses then is exclusively en-
tropic and due to particle caging.1 In the presence of an at-
tractive interaction, substantially rigid states can be instead
obtained even at ��0.64.12 In the latter case, however, the
extent of attractive interaction also affects the spatial organi-
zation favoring the appearance of structural heterogeneity.12

Here we start by deriving an accurate analytical approxi-
mation for the short-range part of the rdf of dense hard-
sphere liquids which represent the most homogeneously dis-
ordered system known. Integrating the liquid rdf over a
certain value of shell width may certainly give a flavor of
how the probability of finding neighbors at that distance
from the tagged particle changes as a function of density, but
does not correspond to any well-defined quantity from a
physical point of view. Instead we submit the liquid snapshot
structure to a so-called “hyperquenching” protocol.11 This
may be visualized as the process of expanding the particle
size in the liquid snapshot until the particles come into con-
tact with each other and each particle gains on average a

certain finite number of contacts. An essential constraint to
be satisfied is that the system must be an isostatic random
close packing at point J, the jamming point of hard
spheres.13

Mathematically, such hyperquenching protocol can be
realized by integrating the rdf of the hard-sphere liquid with
an integration boundary which allows to recover point J at
�=0.64. The result of the integration with the boundary de-
termined in this way is an estimate of the mean contact num-
ber z as a function of the volume fraction for the arrested
homogeneous hard-sphere system, which recovers the isos-
tatic packing at �=0.64, i.e., point J.

The structure of a �disordered� fluid of N particles with
diameter � is entirely described via the n-particle distribution
function defined by

gN
�n��rn� =

�N
�n��r1, . . . ,rn�

�
i=1

N

�N
�1��ri�

. �2�

For a uniform system �N
�1��r�=N /V=�, i.e., the number den-

sity of the fluid. If the system is homogeneous and isotropic,
we have gN

�2��r1 ,r2�=g�r�, i.e., the rdf. The delta function
representation of the rdf gives clear evidence of its geometri-
cal meaning in terms of �random� correlations between par-
ticles positioned around a reference one,5

�g�r� =
�2

N
	 gN

�2��r,r��dr� =
 1

N
�
i=1

N

�
j=1

N

��r − r j + ri�� .

�3�

The direct correlation function c�r� is defined by the
Ornstein–Zernike convolution relation h�r�=c�r�+�h�r��
�c��r−r���dr� which can be solved within the Percus–
Yevick �PY� closure, c�r���1−e	U�r��g�r�, where U is the
interaction potential, the solution being piecewise analytic.5

Since we are interested in the near-contact region, we can
approximate the PY solution in the range of 1
r /��1.1
using the following formula:14

g��r/��;��� = �1 + ��/2�/�1 − ���2

− �9/2����1 + ���/�1 − ���3�r/�� − 1� . �4�

Correcting for the contact value at high density and for the
phase shift according to the Verlet–Weis prescription leads
to5

g�r/�;�� = g��r/��;��� + �g1�r/�� , �5�

where ����−�2 /16 and ��=���� /��1/3. The short-range
term can be expressed as

�g1�r/�� = �g1�x� = �A/x�exp�− ��x − 1��cos���x − 1�� ,

�6�

where x=r /�, and A and � are coefficients which are only
functions of � and contain the contact value of the rdf,
g�1;��. The advantage of this formulation is that the contact
behavior of the PY solution can be modulated by setting
g�1;�� equal to the value predicted by equations of state
valid in the high-density regime, such as the Hall, as well as
by numerical simulations. Equations �4�–�6�, as can be easily
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verified, are in excellent agreement with the most recent ex-
act rdf from computer simulations in the range of 1
x
�1.1.15 However, it can be noted from the above equations
that the rdf is given exclusively as a function of geometrical
parameters, independent of temperature.

The integral of �g�r� over a volume element d3r is just
the number of atoms in that volume element and volume
integration yields the total number of atoms minus the one at
the origin, �g�r�d3r=N−1. The volume integration of �g�r�
for isotropic systems

z = �	
�

r

4r2g�r�dr = 24�	
1

x

x2g�x�dx �7�

gives the number of particles z in a shell of thickness r−�
�or x−1� around a given particle.

Seen from a different perspective, the integral in Eq. �7�
represents a mapping between the original liquid state, de-
scribed by g�r�, and a state with a mean number of contacts
given by z. The latter state is obtained by expanding the size
of the original particles in the liquid snapshot by an amount
such that each particle ends up being, in the final state, in
physical contact with z neighbors. We can schematize the
hyperquenching in two steps.

�i� Quench the dense �hard-sphere� liquid instantaneously
so that thermal motion is suppressed and the liquid
snapshot structure is frozen in.

�ii� Increase the particle diameter from � to �̂=�+��,
where �̂ is the sphere diameter in the jammed con-
figuration while �, the hyperquenching parameter, is a
�small� number.

What one obtains from step �i� is clearly a configuration
corresponding to the frozen-in liquid snapshot. Then, in step
�ii�, the reference particle comes into contact with a number
of nearest neighbors which depends upon the value of �.
Note that since collisions among particles may occur in the
liquid, at step �i� some particles may already be at contact.
This requires displacing the contacted particles by an amount
�� at step �ii�. Such an effect can be ignored if the � value is
small in comparison to �.

We thus proceed by first constructing the formula which
yields the nearest-neighbors number in the liquid as a func-
tion of the dimensionless gap �or shell width� and volume
fraction, and subsequently submit it to the hyperquenching
procedure. The integral in Eq. �7� can be rewritten in the
interparticle gap l= �r−�� /�=x−1 as z�� ;���24�0

�

��1+ l�2g�l�dl. Then, applying Eqs. �4�–�6�, one can inte-
grate analytically and we arrive at the following expression:

z��;�� � 24�	
0

�

�1 + l�2g�l�dl

= 2����4
1 + ��/2
�1 − ���2 �3 + 3� + �2�

−
9

2
��

1 + ��

�1 − ���3��6 + 8� + 3�2��
+ 6�A/��exp�− ����� exp�− ���

+ sin �� + ��1 + ���sin �� − cos ����� , �8�

which gives the number of nearest neighbors in the liquid
within the dimensionless gap �. Since we are interested in
the high-density regime, we can evaluate the Verlet–Weis
parameters, A and �, using the contact value of the rdf,
g�1;���, from the Hall equation of state for the fluid branch
of the high-density hard-sphere system �which employs up to
seven virial coefficients and is thus valid in the high-density
regime�,16 and we obtain

A = �3/4���2�1 − 0.7117�� − 0.114��2�/�1 − ���4

− �1 − ���/2��/�1 − ���3 + 0.4074��� − 0.9378�

��1.3948 − 0.7365�� + ��2� � �1.7988 + 1.9685��

+ ��2�/��− 0.7405 + ����1.2947 − 2.1357�� + ��2�� ,

�9�

� = 18�1 − 0.7117�� − 0.114��2�/�1 − ����1 − ���/2��

� ��1 − ���/2��/�1 − ���3�/�0.4074��� − 0.9378�

��1.3948 − 0.7365�� + ��2� � �1.7988 + 1.9685��

+ ��2�/��− 0.7405 + ����1.2947 − 2.1357�� + ��2��� .

At this point, we can fix the hyperquench by assigning to � a
value which recovers the critical point J of hard spheres.
Thus, from the latter condition we find that z=6, i.e., the
isostatic solid is obtained at �=0.64, if one sets

� = 0.03325. �10�

This fixes the hyperquenching protocol in that now Eqs.
�8�–�10� produce a unique z��� curve which passes through
point J �i.e., through z=6 at �=0.64�. For illustration we
have plotted the dependence of z upon � at �=0.64 in Fig. 1.

In the presence of attraction, we may expect two distinct
scenarios depending upon the volume fraction. In the first,
density is high enough that restructuring driven by attraction
is strongly hindered �frustration�, so that the structure is spa-
tially homogeneous and a mean coordination number for the
contacts close to the value predicted by Eqs. �8�–�10� should
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0.03325� �
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FIG. 1. The contact number in the hyperquenched system as a function of
the parameter � calculated from Eqs. �8� and �9� for �=0.64. The diamond
identifies the value of the parameter � which recovers the isostatic jamming
point of hard spheres �z=6�, that is �=0.03325.
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be expected at the end of the quench. In this case, z�6, the
system is rigid due to initial stresses and harmonically restor-
ing forces.9 In the second scenario, density is not high
enough to forbid larger scale restructuring and aggregation of
the particles into locally denser regions �clusters�, accompa-
nied by a reduction in the internal energy of the system.
Therefore when structural heterogeneity becomes important,
the mean coordination is expected to be higher than the
model prediction.

In order to test these speculations, also from a quantita-
tive point of view, as well as the model itself, we have car-
ried out simulations on model glassy systems with attraction.

III. MOLECULAR DYNAMICS SIMULATIONS
OF LENNARD-JONES GLASSES

Molecular dynamics �MD� simulations have been carried
out on a binary mixture of 2024 atoms with size ratio of
1:1.2 interacting via two different cutoff Lennard-Jones-type
potentials with exponents 20-10 and 40-20. The system was
first driven into the deepest metastable minimum in the en-
ergy landscape at T�0.46. Three different glass configura-
tions for each potential obtained in this way were then
quenched to T=0.005 for 106 MD steps. Further, the simu-
lations provide an indication of the mean local structure of
the glass. A readily accessible quantity in this respect is pro-
vided by the average internal energy per particle, �Eint�.

For systems with an attractive component of interaction,
there is a direct relationship between mean coordination and
the macroscopic elastic response, as shown also in recent
work.11 Attraction provides indeed restoring forces which
can oppose an externally applied deformation, thus confer-
ring rigidity to the system. It seems natural then to identify
the mean coordination number with the number of mechani-
cal contacts which are involved in the restoring forces. It is
likely that the neighbors that give a major contribution to
stress bearing are those localized near the minimum of the
potential well. In fact, in the Cauchy–Born approach for
amorphous solids by Alexander,9 if one neglects nonaffine

relaxations �which are usually a small contribution for
strongly bonded glasses� the dominant term in the free en-
ergy expansion is the one involving the second derivative of
the interaction potential evaluated at the minimum of the
potential well. The neighbors, which are positioned in the
low-energy tail of the potential, instead, are expected to play
a negligible role in the stress-bearing mechanism. Therefore
we calculate the mean number of contacts in glasses with
attraction

z �
1

N
�
l=1

N

�
m=1

nn

wm
�l� =

1

N
�
l=1

N

�
m=1

nn

Um
�l�/U0, �11�

i.e., for each particle l the number of mechanical contacts is
determined as the weighted average number of its neighbors
where for each mth neighbor of l the weight wm

�l� is given by
its interaction potential energy level, Um

�l�, normalized by the
depth of the potential well, U0. nn is the number of neigh-
bors around the lth particle. In the case of truncated Lennard-
Jones potentials, as they are often used in simulations, this is
just the number of particles within the cutoff distance. For a
schematic illustration of the terms in Eq. �11�, see Fig. 2. The
expression Eq. �11� corresponds to the internal energy per
particle �Eint�, as calculated from our MD simulations.

IV. RESULTS AND DISCUSSION

In Fig. 3 distributions for the fraction of particles n�z�
within a distance equal to the minimum of the potential well
having coordination number z are shown for the two
Lennard-Jones potentials investigated. We observe that in
both cases the distribution broadens toward higher values of

U0
U1

U2
U3

U4

1 2 3 4

m =

U

r

U0
U1

U2
U3

U4

1 2 3 4

m =

U

r

FIG. 2. Schematic representation of an interaction potential with attraction
�such as, e.g., for Lennard-Jones systems�. The arrows indicate the energy
levels corresponding to the positions on the radial distance axis occupied by
the neighbors. See text and Eq. �11�.
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FIG. 3. Fraction of particles having a number of neighbors z within the
minimum of the potential well at different volume fractions �see legend�. �a�
Lennard-Jones 20-10 system. �b� Lennard-Jones 60-30 system.
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z upon lowering the volume fraction below �=0.6. In par-
ticular, in the case of the 20-10 potential the distribution
clearly develops a tail at high values of z which tends to
grow upon lowering the volume fraction. This indicates that
at lower volume fractions, the geometric frustration being
less severe, particles can more easily rearrange during the
quenching process to aggregate locally with a significantly
higher value of z �nearly by a factor of 2�.

It is clear that for this reason structural heterogeneity
must increase upon lowering the volume fraction. Therefore,
one can describe the arising of structural heterogeneity upon
decreasing � in terms of the formation of locally very dense
regions �clusters� characterized by a coordination number
significantly higher.

In Fig. 4 we report the theoretical z��� curve and the
average values for the Lennard-Jones glasses evaluated ac-
cording to Eq. �11�. We observe that the z values for the
Lennard-Jones systems are rather close to the theoretical pre-
dictions around �=0.6 �where indeed we could not see sig-
natures of structural heterogeneity in Fig. 3�, but then de-
crease much less rapidly upon decreasing � and become
increasingly higher with respect to the theoretical prediction.
Based on what suggested by the analysis of Fig. 3, this can
be explained if one thinks that upon decreasing � the locally
denser regions still retain a very high value of contact num-
ber and make an important contribution to the measured
sample-averaged value even at the lowest �. A much weaker
dependence of the average z upon �, as compared with the
perfectly spatially homogeneous case, and the consequent
higher values of z, could be then interpreted as hallmarks of
significant structural heterogeneity. The deviation increases
upon decreasing � as the structural heterogeneity becomes
more important.

This suggests that the z��� curve of a specific glassy
system can be used to assess the extent of structural hetero-
geneity in the system by comparing it with the theoretical
curve, Eqs. �8�–�10�, corresponding to the highest degree of
structural homogeneity. The structural heterogeneity is ex-

pected to be more pronounced the more the z��� curve will
depart from the theoretical one.

V. CONCLUSION

We derived an analytical formula �using liquid theory
and the properties of the jamming point of hard spheres� to
estimate the mean number of contacts in hard-sphere systems
as a function of the volume fraction. The predictions apply
whenever the distribution of the particles in space is homo-
geneously disordered. Furthermore, we have investigated the
contact number versus volume fraction in model amorphous
solids where a significant attractive component of the inter-
action is present �Lennard-Jones glass�. In these cases we
estimate the average contact number from the internal energy
per particle. In the measured distributions of the contact
number, we found clear signatures of the development of
structural heterogeneity upon lowering the volume fraction
corresponding to a significant deviation from the homoge-
neous curve for ��0.6. At higher �, geometric frustration
due to packing constraints overwhelms the tendency to de-
velop heterogeneity induced by attraction and the theoretical
estimate may have a universal validity �with spherical par-
ticles� independent of the microscopic interaction potential.

In conclusion, we have proposed an effective method to
assess the structural heterogeneity in disordered media with
spherical particles, in terms of the comparison of the mean
contact number measured as a function of �, and a theoret-
ical curve obtained for homogeneous systems. Based on the
cases examined, we suggest that observed values of z larger
than the theoretical ones indicate a significant structural het-
erogeneity, which usually grows upon further lowering the
volume fraction.
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