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The aggregation of interacting Brownian particles in sheared concentrated suspensions is an
important issue in colloid and soft matter science per se. Also, it serves as a model to understand
biochemical reactions occurring in vivo where both crowding and shear play an important role. We
present an effective medium approach within the Smoluchowski equation with shear which allows
one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid
concentrations. Experiments on a model colloidal system in simple shear flow support the validity
of the model in the concentration range considered. By generalizing Kramers’ rate theory to the
presence of shear and collective hydrodynamics, our model explains the significant increase in the
shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.
© 2010 American Institute of Physics. �doi:10.1063/1.3361665�

I. INTRODUCTION

The kinetics of coagulation �i.e., irreversible aggrega-
tion� and cluster growth in dilute, stagnant colloidal systems
is fairly well understood, such that theoretical models can
accurately predict experimental data under most conditions
of practical interest.1 This is not true in the case of colloidal
systems under shear, especially under nondilute conditions.
A theoretical understanding of colloidal stability and aggre-
gation kinetics under shear is very much in demand in view
of the crucial role that these phenomena play in the dynamics
of biofluids, which are constantly exposed to shear flow �rel-
evant examples are the shear-induced aggregation of plate-
lets in hemostatic processes,2 of the proteins constituting the
synovial fluid,3 as well as of proteins involved in
fibrillogenesis,4 and in pharmaceutical processes5�. In par-
ticular, charge-stabilized suspensions under shear are com-
monly observed to exhibit quite bizarre colloidal stability:
they can remain perfectly stable over extended periods of
time and then suddenly jam into solidlike pastes. This behav-
ior may cause very significant losses in the industrial han-
dling of disperse materials �e.g., in the polymer industry� and
is responsible for the deterioration of pigments.6 On the other
hand, there are also situations where shear-induced aggrega-
tion and jamming are an essential step in the formation of
interesting materials: this is the case of spider silk �a material
with exceptional mechanical properties� formed as a result of
shear-induced coagulation of protein aggregates in the spider
spinneret.7 In all these cases, the shear-induced aggregation
kinetics is initially very slow until it “explodes” becoming
extremely fast.4–8 The physics underlying this phenomenon
has been explained recently in terms of a barrier-hopping
process �where the interaction barrier is due to charge stabi-
lization� driven by the shear.9 The two-body theory is able to
account for the observed induction delay and exponential

dependence of the characteristic aggregation time on the
shear rate.9 However, two-body theory applies rigorously
only in the limit of infinite dilution ��→0� and neglects
important density-dependent effects. This is a strong limita-
tion to the applicability of the theory to, e.g., biochemical
and biological reactions in vivo which usually take place in
crowded environments.10

In this work, we propose a theoretical model for the
characteristic time of shear-induced reaction-limited aggre-
gation at arbitrary colloid volume fraction �relevant for both
biological and industrial applications� by generalizing the
Smoluchowski problem with shear through an effective me-
dium approach which allows us to account for the effects of
colloid concentration such as collective hydrodynamics.

II. DERIVATION

Let us recall that the governing equation for the steady-
state in the pair-correlation function c�r�=c�g�r� �where c�

is the bulk concentration� is the following two-body Smolu-
chowski equation with convection:9,11

� · ��D�− �U�r� + bv�r�� − D��c�r� = 0, �1�

where D=2D0G�r� �D0 being the self-diffusion coefficient
and G�r� the hydrodynamic correction for viscous retarda-
tion�, v�r� is the imposed fluid velocity field, b=3��a is the
friction coefficient �with � the solvent viscosity and a the
particle radius�, and U�r� is the isotropic pair-interaction po-
tential. For concentrated systems, Eq. �1� should be rewritten
by taking into account that the friction that an individual
particle experiences under nondilute conditions has an addi-
tional contribution from the hydrodynamic interactions trans-
mitted by the other Brownian particles. To this aim, we adopt
here an effective medium approach where the solvent is re-
placed with an effective fluid having the macroscopic prop-
erties of the suspension.11 We start by introducing an effec-a�Electronic mail: alessio.zaccone@chem.ethz.ch.

THE JOURNAL OF CHEMICAL PHYSICS 132, 134903 �2010�

0021-9606/2010/132�13�/134903/6/$30.00 © 2010 American Institute of Physics132, 134903-1

http://dx.doi.org/10.1063/1.3361665
http://dx.doi.org/10.1063/1.3361665
http://dx.doi.org/10.1063/1.3361665


tive friction coefficient beff �see Dhont,11 pp. 356–357� de-
fined via the following Einstein relation:

Deff = ��beff�−1G�r� = Deff
� G�r� , �2�

where Deff
� is the relative diffusion coefficient for two par-

ticles embedded in the effective fluid. Within this approach,
the effective friction coefficient is equal to11

beff = 3�����a , �3�

where ���� is the concentration-dependent effective �macro-
scopic� viscosity of the suspension. Thus, we can rewrite the
Smoluchowski equation with shear for two interacting
Brownian particles moving in an effective medium repre-
senting the suspension as

� · ��Deff����− �U�r� + beff���v�r�� − Deff�����c�r� = 0,

�4�

where Deff is given by Eqs. �2� and �3� and is now also a
function of the colloid volume fraction � due to the
�-dependence of �. In Ref. 9, we have proposed a novel
scheme which allows one to obtain an analytical solution to
Eq. �1� under the absorbing boundary condition �c=0� at
contact �r=2a� and the far-field boundary condition �c=c��
implemented at the hydrodynamic boundary layer, for an ar-
bitrary direct interaction potential U�r�. Now, we can gener-
alize the approach to arbitrary volume fractions, within the
effective medium approximation, by solving Eq. �4� with the
same scheme used in Ref. 9. The result for the orientation-
averaged pair-correlation function is given in Appendix A.
The frequency of binary encounters in the system that we
obtain reads

k1,1 =
8�Deff

� ���ac�

�
0

���� dx

G�x��x + 2�2exp�
����

x

ds��dU/ds + Peeff����ṽr
+�r�	�

, �5�

with x= �r /a�−2, and ����=
��D /a��Peeff����−1, where �D

is the range of the direct interaction �the Debye length in our
case�. According to the effective medium approach, the ef-
fective Peclet number is given by

Peeff��� = 	̇a2/Deff
� ��� . �6�

Furthermore, the orientation-averaged inward �relative� di-
mensionless velocity �ṽr

+�r�	 depends uniquely upon the type
of flow and its expression is reported in Appendix A. The
integrals in Eq. �5� have to be evaluated numerically. How-
ever, as shown in Ref. 9, the generalized expression for the
binary encounter rate can be significantly simplified in the
case of an interaction potential which goes through a maxi-
mum �potential barrier�. This is the case of, e.g., the well-
known Derjaguin–Landau–Verwey–Overbeek �DLVO�
potential,1 widely used in colloidal science and which is also
employed to model the interaction of globular proteins �e.g.,
lysozime12�. Applying the steepest-descent method,9,13 we ar-
rive at the following activated-rate formula for the reaction-
limited encounter �aggregation� rate between two Brownian
particles in a flowing system at colloid volume fraction �,

k1,1 � 8�Deff
� ���ac�


Peeff��� − �Um� e−�Um+2
Peeff���, �7�

where 
 is a coefficient related to the type of flow �

=1 /3� in simple shear�. Um is the interaction potential value
at the local maximum �i.e., the potential barrier�, while Um�
denotes the second derivative evaluated at the maximum.9

Equation �7� generalizes Kramers’ rate theory13 to the pres-
ence of shear and to concentrated conditions.

The associated characteristic time for a binary encounter
is given by

�1,1 =
1

k1,1
�

�8�Deff
� ���ac��−1


Peeff��� − �Um�
e�Um−2
Peeff���. �8�

It is worth noting that hydrodynamic interactions due to the
disturbance of the shear field induced by the relative motion
of the particles are accounted for in the analytical treatment
as long as the derivation of the rate expression Eq. �5� is
concerned �cf. Eq. �A2� where the role of the hydrodynamic
function A�x�, originally calculated by Batchelor and
Green,14 is made explicit�. In the subsequent steepest-descent
approximation9 leading to Eqs. �7� and �8�, these two-body
hydrodynamic interactions are neglected. However, we have
checked numerically that the importance of these hydrody-
namic corrections is very minor. Indeed the difference be-
tween rates calculated using the full expression accounting
for them, Eq. �5�, and the approximate one, Eq. �7�, is prac-
tically negligible. This is somewhat expected with DLVO
interactions since the interparticle distance range where this
hydrodynamic effect is important overlaps with the range
where van der Waals attraction dominates. This leads to the
hydrodynamic effect being masked �an observation due to
Smoluchowski15�.

Even if the total potential energy of the system can be
expressed as a sum over pair interactions, the force between
two particles in a concentrated system is not equal to
−�U�r�. It is instead given by −�Ueff�r�, where Ueff is the
potential of mean force between two particles which contains
contributions from the remaining particles.1,11 For charge-
stabilized colloids, these effects have been found to effec-
tively reduce the pair-interaction barrier, Um, with respect to
the undisturbed pair-interaction potential between isolated
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particles.16–19 In the following we neglect this effect in the
comparison with experimental data since in our system �a
=�D

−1a=24.74 and 0.19�0.23. Hence, the average sepa-
ration between a particle and its nearest neighbors is about
1.7–1.8 times the diameter,20 whereas the range of the
screened-Coulomb repulsion is only about 1.04 times the di-
ameter. Further, for a system at equilibrium, the potential of
mean force equals Ueff�r�=−kBT ln geq�r�, where geq�r� is the
pair-correlation function at equilibrium. Under driven, non-
equilibrium conditions, the actual pair-correlation function
can differ substantially from geq�r�. These additional effects
represent a formidable unresolved issue and here are simply
omitted.

In order to close the model, we need expressions for the
volume fraction-dependent effective viscosity of the me-
dium, ����. For hard spheres, an improved differential vis-
cosity model has been recently proposed by Mendoza and
Santamaría-Holek,21 which yields accurate expressions
throughout the entire volume fraction spectrum, from the di-
lute limit up to close packing, and for both the low and
high-shear viscosity. In the case of charge-stabilized par-
ticles, the effective viscosity can be further enhanced due to
the effective enlargement of the colloid size induced by elec-
trostatics. This effect is especially important at low shear
rates where one should care of using expressions for the
effective viscosity such as those derived by Russel.1,22 This
effect becomes less and less significant as the shear rate goes
up.22 Since in the following we are going to compare our
model predictions with experiments at substantially high
shear rates �	̇�103 s−1�, we will neglect this effect and use
the viscosity expressions for hard spheres of Ref. 21.

III. COMPARISON WITH EXPERIMENTAL DATA

Experimental curves of effective suspension viscosity
��� as a function of the elapsed shearing time �t� are plotted
in Fig. 1 for three different volume fractions: �=0.19 �a�,
�=0.21 �b�, and �=0.23 �c�. Consistent with previous
observations,4–8 there is a very sharp, explosive upturn in the
suspension viscosity due to the onset of self-accelerated ag-
gregation kinetics as soon as the activation energy, i.e., the
argument of the exponential in Eq. �8�, vanishes. This hap-
pens when on average the colloidal clusters reach a shear-
activated size, as suggested by our theory.9 A working mea-
sure of the characteristic time for aggregation in the
experiments ��� is estimated from the crossing of the asymp-
totes �according to the protocol introduced by Guery et al.8�
which is related to the incipient increase of viscosity as a
consequence of aggregate formation throughout the system.
Rigorously, the theory presented here describes the very ini-
tial stage of aggregation where only doublets are formed.
However, since the doublets once formed grow further and
very quickly to larger aggregates,9 it is very difficult to moni-
tor the conversion of primary particles to doublets for deter-
mining the doublet formation rate. The protocol we used to
experimentally estimate the characteristic aggregation time is
just the most convenient, systematic procedure to evaluate
the time scale of a process which is anyways controlled by
the doublet formation rate �since aggregation proceeds very

rapidly afterward due to the larger Peclet values of the ag-
gregates with respect to primary particles�. Since the viscos-
ity rise is so fast, the overestimation of the true characteristic
aggregation time is certainly not dramatic and represents a
systematic effect which does not significantly change the
agreement and leaves the scaling with 	̇ unaltered.

Thus, we obtain a ��	̇� curve for each � investigated. It
is seen that, especially at high 	̇, a modest increase in � is
able to cause a very significant decrease in the aggregation
time. This phenomenon can be attributed to two distinct
�-dependent effects: �1� the effect of collective hydrodynam-
ics which is reflected in a higher effective friction and hence
in a higher effective Peclet number; �2� the increase in ionic
strength due to increasing the macroion concentration along
with �.

In order to compare predictions from our model with
these experimental data, one should consider that the charac-
teristic encounter time between two particles in the effective
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FIG. 1. Suspension viscosity as a function of the shearing time under steady
shear for charge-stabilized colloids at volume fractions �=0.19 �a�, �
=0.21 �b�, and �=0.23 �c�, and at a varying shear rate 	̇ �see legends�.
Added electrolyte for all conditions: 17 mM �NaCl�. The characteristic time
of aggregation ��� is estimated as shown schematically in Refs. 8 and 9.
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medium does not correspond yet to the characteristic aggre-
gation time measured in the experiments. The latter is indeed
related to the total number of collisions per unit time in the
system. Under nondilute conditions, colloidal suspensions
exhibit a liquidlike structure where each particle is sur-
rounded by a finite number of nearest neighbors, correspond-
ing to the first peak in the radial distribution function.1,23

Hence, in the experiment, all binary collisions of each par-
ticle with its nearest neighbors have the same probability to
occur. Thus, the total frequency of binary collisions relevant
for our comparison is given by the collision frequency be-
tween two isolated particles in the effective medium times
the total number of equally probable collisions, which is di-
rectly proportional to the volume fraction. �This is somewhat
analogous to the way the total bombardment frequency of
gas molecules on a wall is calculated according to the clas-
sical kinetic theory of gases.24� The Arrhenius-like form of
Eqs. �7� and �8� is helpful in this respect since it allows us to
distinguish the collision frequency, �1,1

= �8�Deff
� ���ac��
Peeff���−�Um� , i.e., the pre-exponential

factor in Eq. �7�, from the encounter efficiency �the exponen-
tial term�. Based on these arguments, the total collision fre-
quency in the experimental system �which is relevant to the
aggregation time measured�, denoted as �̄, follows upon
multiplying the collision frequency for two particles in the
effective medium by the total number of �equally probable�
collisions in the system. The latter number is given by
zN /2=3zVT� /8�a3, where z is the average number of near-
est neighbors �i.e., of particles in the first coordination shell�
and VT is the total volume of the system. Thus, we obtain the
following approximate relation for the total binary-collision
frequency:

�̄ = �3zVT�/8�a3��1,1

= �3zVT�Deff
� ���c�a−2�
Peeff��� − �Um� . �9�

According to liquid structure theory, the average number of
particles in the first shell is always z�12 and does not de-
pend much upon the volume fraction.23 Of course, in the
presence of intense shear flow, the local structure is signifi-
cantly distorted and anisotropic.11 However, the higher local
density in the two upstream quadrants is counterbalanced by
particle depletion in the two downstream quadrants. Hence,
despite the significant anisotropic shape of the radial distri-
bution function in shear, due to the balancing of densification
and depletion in opposite quadrants, the orientation-averaged
number of nearest neighbors in a disordered suspension is
not expected to deviate much from the estimate z=12 that we
use in our calculations. Thus, the characteristic time for ag-
gregation to be compared with the experimental data is given
by

� �
e�Um−2
Peeff���

�3zVT�Deff
� ���c�a−2�
Peeff��� − �Um�

. �10�

The effect of macroion �colloid� concentration upon the
interaction parameters in the model �Um and Um� �, on the
other hand, is more difficult to assess. This is due to the
difficulty, in the experimental practice, of accurately deter-
mining the electrostatic surface potential ��0� of the colloidal

particles under the nondilute conditions ���0.2� of our
shearing experiments. In view of this, we have left �0 �re-
quired in the DLVO calculation of Um and Um� � as the only
adjustable parameter. Once �0 is fixed, the DLVO-interaction
potential curve for the system can be calculated using the
Sader–Carnie–Chan formula valid for high surface electro-
static potentials.25 The van der Waals attractive component
of the DLVO interaction is determined using the standard
formula for colloidal spheres as is found in the textbooks1

with the value of Hamaker constant of the polystyrene-
acrylate/water system.

The comparison between theoretical estimates from Eq.
�9� and the experimentally measured values of � is shown in
Fig. 2. For the effective suspension viscosity inside the ef-
fective Peclet number, we have used the following improved
expression for hard spheres by Mendoza and
Santamaría–Holek21 ����=��1−� / �1−c���−5/2 with c
= �1−�c� /�c, and �c=0.7404 as prescribed for the high-
shear branch. An excellent agreement is found with the fol-
lowing numerical values of the surface potential in the cal-
culation of the DLVO interaction �using the Sader–Carnie–
Chan formula25 for the electric double layer repulsion�: �0

=−45.67 mV ��=0.19�, �0=−45.64 ��=0.21�, and �0

=−45.60 ��=0.23�. A slight decrease of �0 with increasing �
is reasonable since an increase in the macroion concentration
�by keeping the salt concentration constant� along with �
brings about an increase of the total ionic strength of the
system. These values of �0 are still within the confidence
interval of the measured colloid �-potential under dilute ��
=5�10−4� conditions, which was found to be
−45.9�3 mV. In measuring the �-potential, the same back-
ground ionic concentration �17 mM of NaCl� as in the shear-
ing experiments was used. Hence, a value of potential under
nondilute conditions which is lower than the value under
dilute conditions �with the quantity of added electrolyte be-
ing the same� might be expectable.

This comparison demonstrates the capability of the
model to capture the volume fraction dependence of
reaction-limited aggregation kinetics in shear. Furthermore,
the comparison indicates that the major effect behind the
significant reduction of the aggregation time upon increasing
� is the increase in the effective friction and thus in the

800 1200 1600
103

104

105
� � ����
� � ����
� � ����

	
[s
]



 [s-1].

FIG. 2. Characteristic aggregation time under nondilute conditions �see leg-
end� as a function of the applied shear-rate. Symbols: data points from the
experiments reported in Fig. 1. Solid lines: theoretical calculations using
Eq. �10� �see text�.
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effective Peclet number which controls the encounter effi-
ciency through the exponential term of Eq. �10�. Indeed, Peeff

increases nonlinearly with �, thus causing a strongly nonlin-
ear increase of the encounter efficiency upon increasing �.
The resulting decrease in the absolute value and increase in
the slope of the ��	̇� curve predicted by the theory is quali-
tatively consistent also with previous experimental data by
Guery et al.8 Finally, the fact that the fitted surface potential
is practically constant and changes by less than 0.1 mV with
� suggests that the �-dependent effect of the ionic strength
plays a comparatively minor role.

IV. CONCLUSIONS

We have generalized Kramers’ rate theory to the simul-
taneous presence of shear and concentration effects with ap-
plication to the shear-induced aggregation rate of charge-
stabilized colloids. The results presented here provide
insights, for the first time, into the kinetics of reaction-
limited �colloidal� aggregation kinetics under shear in con-
centrated ���0.10� conditions. In order to account for col-
lective hydrodynamics, we have reformulated the
Smoluchowski problem with shear by using an effective me-
dium approach. This introduces an effective friction coeffi-
cient which depends upon the colloid volume fraction �
through the effective suspension viscosity. The Smolu-
chowski equation is then solved using the boundary-
condition scheme proposed in Ref. 9. By implementing ap-
propriate expressions for the effective suspension viscosity,
we calculated the binary encounter rate for concentrated col-
loidal suspensions in shear. The theoretical calculations are
compared with experimental data of DLVO-interacting col-
loids �with a potential barrier of approx. 60kBT� in simple
shear at 0.19�0.23. The theory is in good agreement
with the experiments and is able to capture the volume frac-
tion dependence of the characteristic aggregation time. Fur-
ther, the comparison suggests that the main effect behind the
significant reduction of the aggregation time upon increasing
� is to be identified with the nonlinear increase with � of the
effective Peclet number which in turn causes a strongly non-
linear increase of the collision efficiency. Hence, many-body
hydrodynamic interactions play an active role in enhancing

the shear-activated barrier-crossing process.26 In future work,
it is hoped that these findings can be applied to situations
directly relevant to biological processes where in vivo bio-
chemical reactions between biomolecules occur in crowded
and mechanically strained environments.10
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APPENDIX A: DERIVATION OF EQUATION „5…

Solving Eq. �4� for the pair-correlation function under
the far-field boundary-condition proposed in Ref. 9, yields

�c�r,��	 = exp�
����

x

ds�− �dU/ds − Peeff����ṽr
+�r�	��

� �c0 +
G

8�a��beff����−1�
����

x ds

G�s��s + 2�2

� exp�
����

x

ds��dU/ds + Peeff����ṽr
+�r�	�� .

�A1�

Under dilute conditions ��→0� the nondimensionalized hy-
drodynamic boundary-layer thickness is given by �=� /a
=
�� /a� /Pe.9 Under nondilute conditions, � becomes as well
a function of the volume fraction, ����=
�� /a��Peeff����−1.
With simple shear, the flow term �ṽr

+�r�	 is given by

�ṽr
+�r�	 � − �1/3���x + 2��1 − A�x�� . �A2�

A�x� is the hydrodynamic retardation function for two par-
ticles approaching each other and its expression can be found
in Ref. 1. The solution to the Smoluchowski problem with
shear, Eq. �4�, is completely determined upon implementing
the absorbing boundary condition at contact which identifies
the inward flux G of particles toward the tagged one as

G =
8�Deff

� ���ac�

2�
0

���� dx

G�x��x + 2�2exp�
����

x

ds��dU/ds + Peeff����ṽr
+�r�	�

. �A3�

Equation �5� follows upon applying k1,1�2G.27

APPENDIX B: EXPERIMENTAL SECTION

The colloidal system used to perform the experiments
reported here is a surfactant-free colloidal dispersion in wa-
ter, constituted by styrene-acrylate copolymer particles sup-
plied by BASF SE �Ludwigshafen, Germany�. The nearly
monodisperse particles have mean radius of a=60�1 nm

and were characterized by both dynamic and static light scat-
tering �using a BI-200 SM goniometer system, Brookhaven
Instruments, NY�. In order to avoid contamination, a thor-
ough cleaning of the suspensions by mixing with an ion-
exchange resin �Dowex MR-3, Sigma–Aldrich� was per-
formed. To check that the suspensions were free of
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impurities after the cleaning procedure, we measured the sur-
face tension by means of the Wilhelmy plate method with a
DCAT-21 tensiometer �Dataphysics, Germany� and only sus-
pensions with surface tension �71.7 mN /m were used for
the investigations. For the shearing experiments, a small
amount of electrolyte �NaCl� was added to make up the ionic
background. In fact, with de-ionized suspensions, the shear-
ing time at which viscosity rises due to aggregation would be
very long �on the order of tens of hours�. This can seriously
affect the system and the reproducibility of the experiments
due to solvent evaporation. However, the final NaCl concen-
tration in the sample �17 mM� is well below the critical co-
agulation concentration �50 mM with NaCl�. The long-time
stability of each suspension after adding the NaCl solution
was checked by light scattering. To induce the shear flow
under shear-rate control and to simultaneously measure the
viscosity of the flowing suspension, a strain-controlled
ARES rheometer �Advanced Rheometric Expansion System,
TA Instruments, Germany� with Couette geometry has been
employed. The gap between the outer cylinder and the inner
one is 1 mm and the diameter of the latter is 34 mm. The
outer cylinder is temperature controlled at T=298�0.1 K
and, in order to prevent evaporation, a solvent trap has been
fixed on the outer rotating cylinder. In all the experiments we
used de-ionized water �milli-Q, Millipore� and the mixing of
the latex suspensions with NaCl solutions was done in such a
way to avoid heterogeneities in the concentration field which
could cause the aggregation kinetics to speed up in locally
more concentrated regions. It is worth noting that the sam-
pling of all the NaCl-solution/latex mixtures was done care-
fully with a top-cut pipette in order to avoid any local shear-
ing during the sampling that could induce aggregation. In
order to ensure reproducibility, each time the shearing was
switched on 7 min from the time of mixing between latex
and background NaCl solution. For each point in the �-	̇
plane investigated, at least three repetitions were done. The
experimental error on the aggregation time � has never been
found to exceed 15% of the mean value. �-potential measure-
ments were carried out using a Zetasizer Nano instrument
�Malvern, UK�, on dilute suspensions ��=5�10−4� at the
same ionic background concentration �17 mM NaCl� used
for the shearing experiments.
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