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A theoretical model has been developed which provides analytical expressions for the elastic moduli
of disordered isotropic ensembles of spheres interconnected by physical bonds. Young’s and shear
moduli have been derived assuming an ideal random isotropic network and the radial distribution
function for disordered packings of spheres. The interparticle interactions are accounted for in terms
of surface forces for the two distinct cases of perfectly rigid spheres and spheres deformable at
contact. A theoretical expression is also derived in a similar way for the bulk or compressibility
modulus. In this case, an atomistic approach has been followed based on the analogy with noble gas
solids and colloidal crystals. Also in this case, disordered spatial distribution of the spheres is
described statistically. For the case of colloidal aggregates, a total two-body mean-field interaction
potential is used which includes the Born repulsion energy. This latter contribution plays an essential
role in determining the compression behavior of systems of particles aggregated in the primary
minimum of the potential well and, therefore, must not be neglected. Both the expression of the
Young’s modulus and that of the compressibility modulus derived in this work are found to be
consistent with two distinct sets of experimental data which recently appeared in the literature.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2792995�

I. INTRODUCTION

Granular materials are found in many fields of technol-
ogy and are crucial to the understanding of many phenomena
in Earth’s science.1 The modeling of mechanical and, espe-
cially, elastic properties of disordered granular materials
have stimulated considerable efforts in the physics commu-
nity in the past decades.2–5 In the most studied case, friction-
less contact is assumed and insights into the phenomenology
have been obtained by means of the force network ensemble
approach.3,4 Given the typically hyperstatic nature of the
problem �coordinates and forces are underdetermined� and
the highly spatially inhomogeneous and discrete character of
the involved networks of grains, research has been focused
mainly on stochastic simulations. However, in many practi-
cal situations, the particles constituting the granular material
do strongly interact with each other. A specific but very often
encountered class of materials is thus represented by en-
sembles of particles where each one is connected with other
particles through interparticle bonds. The latter ones are cru-
cial for the cohesion of the material. Just an example is given
by colloidal aggregates where particles are connected by
means of colloidal forces. Colloidal aggregates, their
formation,6 rheology, and shear-induced breakage have been
studied extensively also from the point of view of mechani-
cal resistance and response to shear.7–16 Most of these works
refer to aggregates under fluid shear so that mechanical prop-
erties cannot be decoupled from the shear history and the
problem of characterizing the elasticity of such aggregates

still remains elusive. Therefore, in many cases, empirical re-
lations for the dependence of the shear modulus G on the
solid volume fraction � of the aggregate of the type13–15 G
��n, where n is an empirical exponent, are used which do
not contain much information about the underlying physics.
An experimental breakthrough has been recently achieved by
means of optical tweezers which allow exerting a controlled
load on colloidal aggregates so as to probe their elastic re-
sponse. In this way, it has been possible to directly study the
elasticity of the interparticle bond which represents the start-
ing point of our understanding of aggregates elasticity.17,18

More progress has been achieved in studying the elastic
properties of colloidal crystals.19,20 This is mainly due to the
important simplifications brought about by the ordered struc-
ture of crystals. In particular, it is straightforward to apply
the same treatment that proved valid in the past to describe
the elasticity of noble gas solids.21 The theory is accurate to
such an extent that it has been recently used to extract sur-
face charge information from measurements of elastic
constants.22 In fact, for colloidal crystals, the interparticle
interaction is dominated by the electrostatic repulsion �often
modeled as a simple Yukawa potential�, so that the particles
are found to be in a secondary minimum of the potential and
the lattice spacing is large, thus, giving rise to the well-
known diffraction phenomena in the visible light spectrum.
However, the application of such a methodology, to our
knowledge, has been attempted rarely in the case of disor-
dered packing.19

In this work, a theoretical model is developed with the
aim of providing analytical formulas for predicting the elas-
tic moduli of aggregates of spheres randomly distributed in
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space and connected by cohesive interparticle bonds. Since
the concept of random packing is not well defined,23 we
should point out that the previous definition refers mainly to
mesoscopic particulate materials having such disordered
structures as they can be found in atomic glasses. Even
though it is likely that a certain degree of order is present in
these structures, as recently indicated by Truskett and
co-workers,23,24 we make the reasonable traditional assump-
tion that no trace of long-range order is present. This enables
us to use exact models available in the literature to account
for the spatial arrangement of the spheres.

The particles are assumed to form a well defined net-
work in space with the bonds being the elementary elastic
constituents of the network. Thus, if it is further assumed that
the junctions of the network �i.e., the centers of the particles�
do not move in space upon deformation �which should be
reasonably true for dense enough systems�, then a fixed-
junction model for the network can be employed. This has
been combined with a statistical mechanical description of
the nearest-neighbor statistics of the spheres and with a
physical description of the interparticle interactions based on
surface forces. Contact adhesion, always occurring with lo-
cally nonperfectly rigid bodies, was also considered based on
recent experimental evidences.

A similar approach has been adopted for the derivation
of the bulk modulus. In this case, the well established
method of deriving the bulk modulus from the mean-field
two-body potential energy of the particles as it is usually
done for colloidal crystals19,22 has been applied. Again, this
is coupled to an appropriate statistical model accounting for
the random isotropic distribution of the particles.

II. YOUNG’S AND SHEAR MODULI OF IDEAL
NETWORKS OF SPHERES

A possible simplified approach to the problem of finding
physically meaningful expressions for the elastic moduli of
particle aggregates is to view the disordered isotropic aggre-
gate of spheres as a network whose elementary constituents
are the interparticle bonds and where the particles are the
junctions. This establishes an analogy between the structure
of this kind of aggregates and rubber materials where the
corresponding basic elastic elements are given by the poly-
mer chains and the junctions are given by the cross-links
�Fig. 1�. The general approach is to consider the deformation

free energy of a single interparticle bond, treated as a spring,
and then derive the stress-strain relation for the network of
bonds under the hypothesis of affine transformation. Based
on it, when the aggregate is deformed, each individual elastic
element �the interparticle bond� moves in proportion to the
deformation of the whole sample. This approach is similar to
the one used to derive the first statistical mechanical theory
of the mechanical properties of polymers, namely, the theory
of rubber elasticity. Notice, however, that the thermodynam-
ics of deformation of a polymer chain is essentially different
with respect to that of an interparticle bond. In fact, the main
contribution to the free energy of a strained polymer chain is
entropic, whereas, in the case of an interparticle bond, this is
purely elastic and reversible. This becomes evident on writ-
ing down the first principle of thermodynamics for an elastic
body undergoing isothermal extensional strain for which the
internal energy coincides with the Helmholtz free energy F.
The change of this latter quantity is given by25

dF = − TdS + fdL , �1�

where f denotes the applied force and L is the macroscopic
length of the body. In the case of an interparticle bond treated
as an elastic spring, the entropy variation can be ignored, so
that we can write25 f = ��F /�R�T,V, where R is the length of
the spring. Recall the definition of single-bond elastic modu-
lus as K0���f /�R�R=R0

, where R0 is the length of the spring,
i.e., of the interparticle bond at rest, which is R0�2a �a is
the radius of the particles�. Differentiating both sides of Eq.
�1� with respect to R and introducing the definition of K0 lead
to ��2F /�R2�R=R0

=K0. Assuming that the relation between f
and R is linear �linear elasticity�, for a given displacement of
the spring �R, as schematically represented in Fig. 2, two-
fold integration of Eq. �1� between the length at rest, R0 �Fig.
2�a��, and the length of the deformed spring, R0+�R �Fig.
2�b��, gives the following second-power law for the differ-
ence in free energy that accompanies the deformation of the
ith spring:

�Fi = K0�R2. �2�

The extension ratio or stretch ratio is defined macroscopi-
cally as26 �= �L0+�L� /L0, where L0 is the macroscopic
sample length in the equilibrium position at rest and �L is
the macroscopic displacement �see Fig. 3 for the schematic
of the deformation of a macroscopic sample of material
along the y axis�. Let us now refer to a spring in Cartesian
space having an extremity fixed at the origin of the axes,
whose position in the nondeformed state is given by the vec-

FIG. 1. �a� Schematic two-dimensional �2D� illustration of a network of
bonded particles. The basic elastic elements of the network are the interpar-
ticle bonds schematized by means of segments connecting the centers of the
spheres. These latter ones constitute the junctions of the network. �b� Sche-
matic of a rubber network. The lines represent polymer chains �the basic
elements� and the junctions are given by the cross-link points.

FIG. 2. �a� The interparticle bond in the rest �equilibrium� configuration
having length R0 schematized as a spring joining the centers of the spheres.
�b� The interparticle bond in the strained configuration under the action of a
force f . The interparticle distance is displaced by a displacement �R.
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tor R0= �Rx,0 ,Ry,0 ,Rz,0� as schematized in Fig. 4. Based on
the hypothesis of affine deformation, in the deformed state
the length of the spring transforms according to the follow-
ing coordinate transformation law:26

R = 	Rx = �xRx,0

Ry = �yRy,0

Rz = �zRz,0

 . �3�

We can now write the square of the displacement in terms of
the position of the spring prior to deformation as follows:

�R2 = ��R�2 = �R − R0�2 = �Rx − Rx,0�2 + �Ry − Ry,0�2

+ �Rz − Rz,0�2. �4�

For Rx,0
2 =Ry,0

2 =Rz,0
2 =R0

2 /3, Eq. �4� reduces to

�R2 = ��R�2 =
R0

2

3
���x

2 + �y
2 + �z

2� − 2��x + �y + �z� + 3� .

�5�

In the case of uniaxial extension along the y axis and for an
incompressible material, we have �y =�, �x=�z=�−1/2, and
�x�y�z=1. Hence, Eq. �5� becomes

�R2 =
R0

2

3 ���2 +
2

�
 − 2�� +

2
��

 + 3� . �6�

We now have a manageable expression for the free energy of
deformation of an interparticle bond,

�Fi = K0
R0

2

3 ���2 +
2

�
 − 2�� +

2
��

 + 3� . �7�

To obtain the total free energy of the aggregate, we extend
the summation to all bonds/springs by introducing the den-
sity of bonds �N�= �1/2��n� / �4/3�a3��, where n is the mean
number of bonds per particle and � is the solid volume frac-

tion. The factor 1 /2 arises in order to avoid counting the
interparticle bonds twice.

The n value can be evaluated upon introduction of a
radial pair correlation function evaluated at particle-particle
contact, i.e., at a center-to-center distance equal to R0�2a.
Torquato et al. derived the nearest-neighbor statistical de-
scriptors for the microstructure of random isotropic packings
of hard spheres.27,28 In particular, Torquato28 derived expres-
sions for the radial distribution function as a function of the
volume fraction on the basis of the well-known Carnahan-
Starling approximation for equilibrium hard spheres. The de-
rived expressions have been proposed to apply to the mod-
eling of nonequilibrium disordered packings studied in
materials science, including amorphous solids and composite
particulates.28 More recently, it has been demonstrated by
means of an order metrics approach23,24 that the nonequilib-
rium �glassy� systems may have various degrees of increased
order with respect to equilibrium systems, although the
former was traditionally assumed to share the same spatial
structure as the latter. An important outcome is that the tra-
ditionally accepted limit of random close packing, which can
be better termed as maximally random jammed state,23 is not
unique and cannot be defined unambiguously. In the same
way, no unique “random packing” can be defined but a va-
riety of disordered packings with different degrees of order
and upper limiting densities can be created which depend on
the protocol �i.e., the process history�. However, statistical
structural descriptors accounting for these important findings
are still missing in the literature. Therefore, in the following,
the traditional equilibrium hard-sphere approach introduced
by Torquato28 has been adopted and should be regarded as an
approximation of the real structure. We believe that such
approximation still can correctly describe the realistic scaling
of the computed properties with the volume fraction. Fur-
thermore, the hard-sphere model is known to also provide an
excellent approximation of those systems where dispersive
attractions sum up with the hard-sphere repulsion such as the
Lennard-Jones system, as stated by the perturbation theory29

and recently confirmed by simulations.30 The expression de-
rived by Torquato for the contact-value radial distribution
function in disordered packings of hard spheres is given by28

n � g�R0� =
�1 − �/2�
�1 − ��3 . �8�

Upon neglecting fluctuations of the network’s junctions, we
can now run a summation over all the contributions coming
from all the bonds in the unit volume. This approach is quite
straightforward but it is expected to work reasonably well for
dense materials where each particle is bonded to a relatively
high number of nearest neighbors, thus, remaining con-
strained to a nearly fixed position in space. Deviations from
this picture are expected for less dense materials where the
particles are bound to a smaller number of neighbors and are
therefore free to fluctuate in space. Hence, one can obtain the
difference in free energy associated to deformation per unit
volume as

FIG. 3. Macroscopic extensional deformation of the elastic body along the y
direction in 2D. The deformation of the small rectangular macroscopic ele-
ment implies stretching along the y direction and compression along the x
direction. This can be described in terms of orthogonal coordinate transfor-
mation by introducing the stretch ratio � �see the text�.

FIG. 4. The fixed-junction model. To analyze the deformation of a single
bond, the center of one particle is treated as fixed at the orthogonal axes’

origin and the vector R̄0 joining the centers of the spheres is given by three
components in Cartesian space.
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�F̃tot =
1

V
�

i

�Fi = �N�K0
R0

2

3 ���2 +
2

�
 − 2�� +

2
��

 + 3�
=

K0R0
2

8�a3�
�1 − �/2�
�1 − ��3 ���2 +

2

�


− 2�� +
2
��

 + 3� . �9�

In the regime of linear �Hookean� elasticity, the stretch ratio
� can be expressed as a function of the strain eyy as �=1
+eyy.

26 Upon substituting this into Eq. �9�, we obtain a rela-
tion between the applied stress and the strain eyy,

�F̃tot =
K0R0

2

8�a3�
�1 − �/2�
�1 − ��3 ���1 + eyy�2 +

2

�1 + eyy�


− 2��1 + e� +
2

��1 + eyy�
 + 3� . �10�

Recall that the free energy per unit volume of a deformed

anisotropic body is F̃= �1/2�Ciklmeikelm, where Ciklm is the
rank-4 tensor of the elastic constants.31 We can now apply
the fundamental relation of deformation thermodynamics,
based on which the associated stress is given by the deriva-
tive of the free energy of deformation per unit volume with

respect to the strain,31 �ik= ��F̃ /�eik�T=Ciklmelm. For the case
of an isotropic material and uniaxial extension along the y
axis, the tensor formulation reduces to a scalar equation and
we arrive at the following stress-strain relation:

�yy =
��F̃tot

�eyy
=

K0R0
2

8�a3�
�1 − �/2�
�1 − ��3 �2�1 + eyy� −

2

�1 + eyy�2

− 2�1 −
1

�1 + eyy�3/2� . �11�

This relation is nonlinear �i.e., non-Hookean� but it can be
linearized in the limit of small strains through a Maclaurin
expansion which yields the following linearly elastic rela-
tionship:

�yy = �3K0R0
2

8�a3 �
�1 − �/2�
�1 − ��3 �eyy . �12�

Thus, one can conclude that the Young’s modulus of the
network is given by

E =
3K0R0

2

8�a3 �
�1 − �/2�
�1 − ��3 =

3K0

2�a
�

�1 − �/2�
�1 − ��3 . �13�

Under the assumption of incompressibility, which is quite
reasonable for elastic networks, one can assume the Pois-
son’s ratio to be �=0.5. Then, from the theory of elasticity,
the shear modulus follows as

G = E/3 =
K0R0

2

8�a3�
�1 − �/2�
�1 − ��3 =

K0

2�a
�

�1 − �/2�
�1 − ��3 . �14�

In order to evaluate the above expressions for the elastic
moduli of a random ensemble of particles connected by

bonds, it is necessary to consider the nature of the interpar-
ticle bonds in order to describe the single-bond elasticity in a
suitable way. This is done in the following section.

III. SINGLE-BOND ELASTICITY: CONSTITUTIVE
RELATIONS

A. Perfectly rigid colloidal particles „nonadhesive
case…

Following the classic description of colloidal forces, the
interaction between two perfectly rigid spherical particles is
formulated in terms of two-body interparticle potential en-
ergy with central symmetry. The interaction potential, in
turn, is associated with a central interaction force between
the particles which is responsible for the interparticle bond
strength between them. The Derjaguin-Landau-Verwey-
Overbeek �DLVO� theory states that the mean-field interpar-
ticle potential is made up of two contributions, namely, the
attractive van der Waals potential and the repulsive electro-
static double layer �EDL� potential.32 However, the van der
Waals forces alone would lead to an asymptotically decreas-
ing potential at short interparticle distances which is not re-
alistic. To account for short-range repulsion which ultimately
arises due to the overlap of atomic shells �Pauli’s exclusion
principle�, the Born energy contribution is inserted with the
formulation made by Feke et al.33 who derived manageable
formulas by using the Hamaker summation approach. Hence:
UTOT=UvdW+UEDL+UBorn. Assuming the general Hamaker
form for the van der Waals potential between two spheres,
the Hogg-Healy-Fuerstenau34 approximation for the repul-
sive EDL interaction and the expression of the Born repul-
sion energy suggested by Feke et al.,33 leads to the following
total interparticle potential energy:

UTOT�r� = −
AH

6
� 2

r2 − 4
+ 2r2 + ln

r2 − 4

r2 �
+ N12

1

r
� r2 − 14r + 54

�r − 2�7 +
− 2r2 + 60

r7

+
r2 + 14r + 54

�r + 2�7 � +
4��0�ra�0

2

r
ln�1 + exp�

− 	a�r − 2��� , �15�

where AH is the Hamaker constant, r is the interparticle
center-to-center distance normalized by the particle radius a,
N12 is a parameter expressing the strength of the van der
Waals attraction relative to the Born repulsion. Furthermore,
�0 is the surface electric potential and 	 is the Debye-Hückel
parameter. N12 is defined as N12=4�� /a�6�4! /10!�, where �
is the atomic collision diameter.33 In practice, however, when
computing the force acting between two neutral rigid spheres
at contact, only the van der Waals term is considered.35 The
single-bond spring constant for the case of perfectly rigid
�i.e., nonadhering� neutral spheres can be simply given by

K0,NA �
�− �U/�R�

R0
=

f

R0
=

2�a
SL

R0
� �
SL, �16�

where, for simplicity, the Derjaguin approximation has been
used and linear elasticity has been assumed. The quantity 
SL
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is the solid-liquid surface energy. One can now insert this
constitutive equation into Eq. �13�, which yields the follow-
ing expression for the elastic Young’s modulus:

ENA =
3

2
�

�1 − �/2�
�1 − ��3


SL

a
. �17�

It is seen that the Young’s modulus depends on the solid
volume fraction of the material, �, the radius of the particles,
a, and the surface energy of the solid-liquid interface, 
SL.
Very similar expressions of the interparticle force are avail-
able for the case of particles in vapor and in vacuum �just by
replacing 
SL with the corresponding values for the solid-
vapor and solid-vacuum interfaces, 
SV and 
S, respectively�
so that the present analysis can be easily extended to packing
of whatever system of rigid spheres.

B. Particles deformable at contact „adhesive case…

The case discussed in the previous subsection is some-
how ideal since real particles are never completely rigid but
can undergo elastic deformation upon contact. This, in the
case of spheres, gives rise to a nonzero circular contact area,
with a radius denoted by ac, which is associated with attrac-
tive van der Waals forces between the two surfaces.35 Recent
experimental work done by Pantina and Furst17,18 has dem-
onstrated that, in the case of colloidal polymethyl metacry-
late �PMMA� particles, the contact mechanics can be de-
scribed conveniently by means of the Johnson-Kendall-
Roberts �JKR� theory.36 These authors studied the response
of linear chains of aggregated PMMA particles by means of
optical tweezers and were able to measure the spring con-
stant of the colloidal bonds. The experimental values of K0

were found in very good agreement with values calculated
with the following expression:17 K0=3�ac

4Em /4a3. K0 is pro-
portional to the area moment of inertia of the cylindrical
neck in the region between the particles, I=�ac

4 /4. Em is the
Young’s modulus of the bulk material and the radius of the
contact area, ac, is given according to the JKR theory as17,35

ac= �3�a2WSL/2Bm�1/3, where WSL is the adhesion energy �a
function of the intersurface forces� and Bm is the compress-
ibility or bulk modulus of the material that constitutes the
particles. ac is measured, for micron particles, with optical
techniques. Inserting K0=3�ac

4Em /4a3 into Eq. �14� yields
the following form of the Young’s modulus in the case of
contact adhesion:

EA =
9

8
Em�

�1 − �/2�
�1 − ��3 �ac

a
4

. �18�

The Young’s modulus as given by Eq. �17� for the case of
perfectly rigid spheres and by Eq. �18� for adhering spheres
is plotted as a function of the solid volume fraction in Fig. 5,
for a system of uncharged PMMA particles �1.5� in diam-
eter�. 
SL=0.19 J /m2 is the surface energy of the PMMA-
water interface.18 The interparticle bond spring constant has
been taken equal to 0.8 N/m as predicted by the JKR theory
for this system.17 However, Pantina and Furst18 found that
the JKR theory leads to an overestimation of the experimen-
tal values if one does not account for the electrostatics in a
proper way. They found a significant improvement by incor-

porating electrostatic and even ion-correlation effects into
the adhesion energy WSL.18 Another possible contribution to
this systematic overestimation might be the well-known fact
that the JKR theory ignores the roughness of the particle
surface. It has been shown recently37 that, in the case of
polystyrene particles, the surface roughness plays a signifi-
cant role in the adhesion mechanism and leads to a decreased
adhesion with respect to that predicted for perfectly smooth
surfaces. This eventually leads to a “decoration” in the for-
mulation of the JKR relations.37

IV. COMPRESSIBILITY „BULK… MODULUS

In the hydrostatic compression of a solid body, the bulk
modulus is defined as the coefficient relating the hydrostatic
pressure p to the trace of the strain tensor. Under the assump-
tion of small deformations, the following relation is valid:
B=−�1/V���p /�V�T, where V is the volume of the sample.
The pressure acting on an aggregate of particles is equili-
brated by an equal and opposed pressure originated by the
energy of the interparticle bonds. Hence, the pressure can be
expressed, also in the case of macroscopic spheres, as p
=−dU /dV. We can, thus, write the bulk modulus in terms of
particle-averaged quantities, B=v�� /�v���u /�v�, where v
=V /N is the volume per particle in the packing. In order to
compute the interaction energy per particle, u, rigorously one
should first consider the interaction of the particle chosen at
the origin with all the particles in the sample, �R�0U�R�,
where R is the vector connecting the center of the particle at
the origin with the centers of all the other particles in the
network. If this quantity is multiplied by the number of par-
ticles in the sample, however, what one gets is twice the total
potential energy of the sample. Therefore, the interaction en-
ergy per particle must be given by u= �1/2��R�0U�R�.38 As-
suming that the interaction energy rapidly decays after the
first coordination shell, the previous quantity can be conve-
niently expressed by limiting the summation to the nearest
neighbors and introducing, once again, the radial pair corre-
lation function at contact, so that the previous expression
simplifies to

FIG. 5. The Young’s modulus as a function of the solid volume fraction
calculated from Eqs. �17� and �18� for the case of perfectly rigid spheres
�continuous line� and adhering spheres �dashed line�, respectively.
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nU�R� =
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�1 − �/2�
�1 − ��3 U�R� , �19�

where the sum is over the n nearest-neighbors particles, i.e.,
over the particles bonded to the particle chosen at the origin.
It is now required to find a suitable expression for the vol-
ume per particle in the random packing, v. To this aim, the
simplest approach is to use the analytical result originally
derived by Hertz, based on which, in an ensemble of Poisson
distributed particles, v= �R /0.553 96�3, where R is the inter-
particle distance.39 It follows that � /�v
= ��0.553 96�3 /2R2�� /�R. Thus, the bulk modulus can be
written as B= ��0.553 96�3 /9�R�� /�R��1/R2��� /�R�u. We are
interested in evaluating the bulk modulus at the equilibrium
interparticle distance, i.e., at the location where �u /�R→0.38

Inserting Eq. �19� into the above B expression gives the bulk
modulus as follows:

B0 =
�0.553 96�3

9

1

R0
��2u

�R2�
R=R0

=
�0.553 96�3

18

�1 − �/2�
�1 − ��3

1

R0
��2U

�R2 �
R=R0

. �20�

Equation �20� provides an exact formula for the compress-
ibility or bulk modulus of an isotropic random ensemble of
spheres, as a function of the mean-field potential energy of
interaction between nearest-neighbor particles and of the
solid volume fraction. Also in this case, as in the cases of the
Young’s and shear moduli, a statistical description of the
spatial disordered distribution of the spheres is combined
with a physical description of the interparticle bond. This
derivation does not account for contact adhesion effects and,
rigorously, can be applied only to perfectly rigid spheres. It is
worth noticing that, in the general case of the bulk modulus
of charged colloidal aggregates, the total interparticle poten-
tial, as given by Eq. �15�, is required, which cannot reduce to
the van der Waals term alone. In fact, in this case, since the
bulk modulus is related to the resistance of the material to
hydrostatic pressure, it is evident that the Born repulsion

plays an essential role in determining such kind of behavior
and, therefore, must be accounted for in calculating the bulk
modulus.

V. DISCUSSION AND COMPARISON WITH
EXPERIMENTAL DATA

In the previous parts, simple exact relationships express-
ing the elastic moduli of randomly distributed aggregated
spheres have been derived starting from thermodynamic first
principles and upon application of the linear elasticity theory.
Physically, relevant and measurable parameters entering the
theoretical formulation are the solid volume fraction, the pri-
mary particles size, the interparticle interaction parameters,
and the contact mechanics parameters �the latter ones includ-
ing the contact radius and the Young’s modulus of the bulk
material�. Particularly relevant to applications, from materi-
als design to geophysical research, is the dependence of the
elastic moduli on the solid volume fraction �or porosity� of
the material sample. Relations �17� and �18� express the
Young’s modulus as a function of physical parameters that
are either known a priori or experimentally measurable.
Shahidzadeh-Bonn et al.40 experimentally studied the depen-
dence of the Young’s modulus on the porosity �and thereof
on the solid volume fraction �� of a disordered packing con-
stituted by glass beads, a�57 �m, that were sintered in or-
der to induce softening and adhesion between the spheres.
The size of the particles situates the system out of the col-
loidal domain and the particle-particle interaction can be at
best understood in terms of contact mechanics as explained
in Section IV.B. The relevant quantity in this regard is, thus,
the contact radius of the cylindrical neck between the par-
ticles which was measured and found to be ac=14 �m. This
system appears to be a suitable ground to test the theory
presented here. These authors compared their results with
analytical predictions of the so-called self-consistent �SC�
method.41,42 This latter one was developed for calculating
properties of heterogeneous materials based on the principle
that the perturbations brought about by the inclusions �cavi-
ties, in this case� must be zero on average. The SC model for
porous materials used by these authors reads

E = Emat�20�mat + 63�2�mat − 69��mat − 27�2 + 15� + 8 + �3� − 4���

10�2�0 − 1��3��mat − 3� + 2�
� , �21�

where � is the porosity ��=1−��, Emat is the Young’s modu-
lus of the bulk material, �mat is the Poisson’s ratio of the bulk
material, and � is a second order polynomial function of �

and �0. A common shortcoming of the SC model, despite its
wide use, is that it ignores specific microstructural features of
the material such as morphology and spatial organization.41

In Fig. 6, the model proposed in this work is compared with
the experimental results reported by Shahidzadeh-Bonn et
al.,40 as well as with the prediction of the SC model. The

parameters for the computation of the theoretical curves have
been chosen consistently with the parameters relative to the
experimental system. The Young’s modulus for glass is43

Emat=9.4�10−10 N/m2. A Poisson’s ratio of 0.3 for glass has
been used. The contact radius is the one measured and re-
ported by these authors, namely, ac=14 �m. The authors
show a fitting of the experiments by means of Eq. �21� where
a good accord is achieved by using Emat as a fitting param-
eter, Emat=2.2�10−10 N/m2. This value is of the same order
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of magnitude of the typical value for glass but probably still
too low �indeed about four times lower�. In Fig. 6, both our
model and the SC model are calculated with the value usu-
ally employed for silica glass and reported above.

As can be seen, the SC model, if no adjustable parameter
is used, is unable to predict the experimental results, except
for the point at the lowest �, and it fails also in reproducing
the trend of the experimental curve qualitatively. In particu-
lar, the SC model systematically overestimates the experi-
mental data and especially the last point is overestimated
nearly by a factor of 5. Instead, the model presented within
this work �Eq. �18�� is found to be consistent with the ex-
perimental data in the entire range of the experimental inves-
tigation. One reason that could explain the good consistency
may be that the experiments refer to a rather dense system of
particles which are strongly bonded to each other. This
means that nonideal effects in the network’s deformation
such as motion and rearrangement of the particles in the
network, which are ignored by the model, may in this case be
of small extent, due to the compact nature of the network.
This hypothesis is further corroborated by what was reported
by Pantina and Furst17,18 who, even in the case of linear-
chain aggregates of particles, observed sliding and rolling of
the particles past each other only to a small extent. Consid-
ered the much higher compactness of the system discussed
here, it is reasonable to assume that the particles are not
much free to move, and, during the elastic deformation, the
network behaves as nearly ideal.

On turning now our attention to the validation of the
model for the compressibility modulus, experimental results
of compression strength reported by Tang et al.44 are com-
pared to theoretical predictions given by Eq. �20�. In the
experiments, colloidal aggregates of polystyrene spheres
�having radius a=0.57 �m� were obtained under RLCA con-
ditions and then squeezed between parallel plates. The aggre-
gates were produced according to the procedure described in
Tang et al.,45 where an optical micrograph of a typical RLCA

aggregate is also shown, indicating a rather compact struc-
ture where each particle has multiple contacts with other par-
ticles. The rupture of the aggregates under compression was
optically monitored and the applied force was measured. The
latter, when divided by the cross-sectional area of the aggre-
gates, gives a measure of the compression strength of the
aggregates, which can be regarded as a measure of the com-
pressibility modulus of the aggregates. Tang et al.44 fitted
these data with a semiempirical model for the tensile strength
of aggregates.

One could question the adoption of a correlation func-
tion for random packing of hard spheres to model fractal
aggregates such as RLCA aggregates. However, one should
also bear in mind that the power-law scaling in the pair cor-
relation function typical of fractal aggregates sets in at a
distance from the particle which is normally about four times
the particle radius.46,47 Here, we are interested in the corre-
lation function at contact only �i.e., at the local particle
scale�, which still can be modeled in a good approximation
with the simple correlation used for disordered packing of
spheres. The number of bonds per particle within an aggre-
gate predicted from Monte Carlo simulations and simulations
of random packing of spheres48,52 increases as the solid vol-
ume fraction increases. Then, the compressibility modulus
also increases with the solid volume fraction, as it is ob-
served experimentally.

The calculated bulk modulus is plotted in Fig. 7 together
with the experimental results. The total interparticle potential
given by Eq. �15� has been computed with the experimental
parameters reported by Tang et al.,44 i.e., �0�−20 mV taken
equal to the measured zeta potential, the Debye length 	−1

�0.68 nm corresponding to the ionic strength conditions
employed, and the Hamaker constant AH=4.12�10−21 J as
used by the authors. Furthermore, the atomic collision diam-
eter required to compute the Born repulsion term has been
taken equal to ��4 Å, which is the value generally used for
the carbon atom. The resulting two-particle mean-field po-
tential energy is shown in Fig. 8. There is an energy barrier

FIG. 6. The Young’s modulus as a function of the solid volume fraction.
Experimental data from Ref. 35 �squares� are compared with theoretical
predictions from Eq. �18� �line 1� and with predictions from the SC approxi-
mation, Eq. �21� �line 2�. Physical parameters of the experiments used for
the theoretical calculation are a=57 �m, ac=14 �m, Emat=9.4
�10−10 N/m2, and �mat=0.3.

FIG. 7. The bulk modulus calculated based on Eq. �20� with the total mean-
field interaction potential given by Eq. �15� �solid line� compared with ex-
perimental data reported in Ref. 39 �squares�. The total interaction potential
has been calculated with the following parameters: �0

�−20 mV, 	−1�0.68 nm, AH=4.12�10−21 J, and ��4 Å.

174512-7 Elastic moduli of interconnected spheres J. Chem. Phys. 127, 174512 �2007�



due to the partially unscreened EDL repulsion and a smooth
secondary minimum. However, the height of the barrier is of
a few kT’s, where k is Boltzmann’s constant, so that we can
assume that the particles are aggregated in the primary mini-
mum, which occurs at a normalized interparticle distance of
r=2.0004. The average number of particles per bonds, n, as
it is approximated by the pair correlation function for ran-
dom packing, ranges from a value of about 2 in the lower
range of � up to a maximum value of 6 at the highest volume
fraction.

When one considers that no adjustable parameter is
used, the agreement between the theory and the experiments
is very satisfactory. Apart from a point which is clearly not
aligned with the others, the theoretical curve reproduces the
experimental data not only qualitatively but also quantita-
tively. From a quantitative point of view, the interparticle
potential chosen �DLVO plus Born energy� turns out to be
the correct way of accounting for colloidal interactions, and
including the short-range repulsive Born term is necessary to
describe the interaction realistically. This is done in analogy
with the theory of bulk modulus of solid noble gases where a
6-12 Lennard-Jones potential generally leads to excellent
agreement with experiments �with the exception of
helium�.21,38 The present case can then be regarded as an
extension of that theory to random ensembles of aggregated
colloidal particles.

VI. CONCLUDING REMARKS

A theoretical model has been developed, starting from
thermodynamic first principles, for the elastic moduli of ma-
terials constituted by randomly distributed spheres connected
by physical interparticle bonds. Granular materials are cur-
rently being the object of intense theoretical investigation49

but most of the research focuses on packing of frictionless
nonbonded particles. The present work instead treats the case
of packing of particles that are strongly interconnected, thus
constituting a well defined isotropic random network in
space. This class of materials is of high relevance for chemi-

cal applications �e.g., colloidal aggregates and coagulation
processes� as well as for geophysical science50 and for the
understanding of fracture phenomena in construction engi-
neering �e.g., porous materials�.51 It is assumed that the
strong physical interparticle bonds can be identified as the
elementary constituents of a network, and they are modeled
as linearly elastic springs whose position remains fixed in
space during strain. The deformation of such an ideal net-
work was analyzed by means of the affine transformation
hypothesis. The free energy of deformation of the network is
consequently expressed through a summation over all the
elastic springs in the network, and the disordered distribution
of the particles is accounted for by means of the radial pair
correlation function for disordered packing of spheres. This
introduces a physically meaningful dependence on the solid
volume fraction of the material.

Elastic Young’s and shear moduli are derived as a func-
tion of the single-bond spring elastic constant. Analytical ex-
pressions for the latter have been derived by means of con-
stitutive relations for the two distinct cases of perfectly rigid
particles �no adhesion� and adhering particles. For the
former, the only attractive part of the mean-field interparticle
potential is used, as it is usually done, and, for the latter, the
JKR theory of adhesion is introduced. As expected, the elas-
tic moduli are slightly larger in the case of adhesion than in
the case of perfectly rigid spheres.

An expression for the bulk or compressibility modulus is
also derived following a similar approach and adopting a
procedure used for noble gas solids and colloidal crystals. In
describing the spatial distribution of the spheres, the simple
law of distribution of the nearest neighbor in a random en-
semble of spheres has been employed, thus replacing the
treatment based on lattice constants usually adopted with
colloidal crystals. The form of the mean-field interparticle
potential is also different, and it includes the van der Waals
and EDL terms, as well as the Born repulsion energy which
is important to describe the interaction of aggregates of
spheres realistically. The Born repulsion term is not crucial
in the case of colloidal crystals where the interaction is
dominated by the electrostatics but it is of fundamental im-
portance in the case of colloidal particles aggregated in the
primary minimum.

Predictions of the theory are compared with recent ex-
perimental data available in the literature, and with no ad-
justable parameters, the agreement is very satisfactory for the
Young’s modulus of dense packing of glass beads by using
the bond spring constant based on contact mechanics. The
good agreement, in spite of assuming an ideal network, can
be explained by the fact that, in the limit of dense packing,
the spheres have multiple contacts with neighboring par-
ticles, thus minimizing nonideal network effects such as slid-
ing and rolling of the particles.

Very good agreement is also obtained between our the-
oretical predictions and literature experimental data for the
compressibility or bulk modulus of colloidal aggregates of
PS spheres. In this case, it turns our that including the Born
short-range repulsion in the total interaction potential is cru-
cial in describing the physics of particle-particle interaction

FIG. 8. Mean-field interaction energy curve computed using Eq. �15� for the
experimental system of RLCA aggregates reported in Ref. 39. Physical pa-
rameters used are �0�−20 mV, 	−1�0.68 nm, AH=4.12�10−21 J, and �
�4 Å.
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in a realistic manner. The bulk modulus is therefore directly
determined by interactions at the particle-particle level.

In sum, our analysis, consistent with experimental obser-
vations in the literature, suggests that the elastic properties of
a particular but ubiquitous category of granular materials,
namely, disordered packing of particles connected by physi-
cal bonds, may be understood in close relation to the nature
and features of the interparticle bonds that seem to play a
major role in determining the cohesion and the mechanical
behavior of such materials.
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