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Abstract
Water balance uncertainties have long been known to lead to potential environmental hazards, but their effect on economic 
profitability of mines is an under-studied field of research. Historical rainfall data are analyzed using the extreme value theory 
(EVT) and the peak over threshold method (POT). The resulting distributions are used as inputs into a system dynamics 
techno-economic metal mining investment profitability model, and simulation analysis is performed. The proposed meth-
odology incorporates rainfall extremes and uncertainty into techno-economic modeling of metal mining operations. A case 
study with real-life historical rainfall data was used to illustrate the relationship between hydrologic uncertainty and the 
economic value of a metal mining investment.

Keywords  Open pit flooding · Temporary mine shutdown · Investment analysis · System dynamics modeling · Extreme 
rainfall events

Introduction

Large, irreversible industrial investments with heavy initial 
capital layouts, such as the metal mines that are the focus of 
this research, are designed to operate for decades in uncer-
tain technical and market environments. Investors are faced 
with a trade-off between constructing lower water-related 
risk designs and declining economic returns. This means 
that ex-ante planning of these investments is very important 
from the point of view of being able to secure the long-term 

technical and economic sustainability of mining investments. 
It also implies that the planning models used should be able 
to capture the type and kind of uncertainty that surrounds 
the analyzed investments (Collan et al. 2016) and properly 
reflect their complexity (Ashby 1958).

In this vein, our research focuses on metal mining invest-
ments and specifically on the modeling and analysis of the 
relationships between water management risks and min-
ing economics. The profitability of mining projects can be 
severely threatened by improper water management (ICMM 
2012). Quantification of the cumulative effects of mine water 
management is, however, difficult, and it is common that 
water management policies and decision making include 
conflicting interests (Zhang et al. 2014).

Brown (2010) reviewed the current water management 
planning policies of mines and found that mine water evalu-
ations are unreliable, and that the magnitude of errors in the 
estimation of economic losses due to improper water man-
agement are often significant. Some of the most important 
reasons highlighted by Brown (2010) leading to failures to 
successfully predict the effects of mine-water management 
include (a) high uncertainty of initial data, (b) computa-
tional complexity of analysis (methods), and (c) perceiving 
water management as a secondary issue in a mining pro-
ject. According to Gao et al. (2014), current water balance 
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models are not sufficiently reliable for evaluating long-term 
water management strategies, particularly when dealing with 
climate change scenarios. Water management costs can con-
stitute as much as 10% of the total investment in a mine 
(e.g. Fleming 2016), and the inability to estimate the conse-
quences of an erroneous water balance in a mining project 
analysis can lead to severe economic losses.

Despite the importance of water management issues for 
mining project profitability, there seems to be little written 
on the economic effects of mine water management. This 
lack of research may be due to the lack of models that simul-
taneously embed economic and environmental variables in a 
suitable model. The purpose of this work was to demonstrate 
that a recently developed system dynamics (SD) metal min-
ing investment model (Savolainen et al. 2017a, b) could be 
extended and successfully used to quantitatively explore the 
effects of water management on the value of a metal mining 
investments within a risk-based framework. We illustrate 
how dynamic variables that depend on probabilistic thresh-
olds and characterize the distribution of historical rainfall 
events, when evaluated using the extreme value theory, EVT 
(e.g. Gilli and Këllezi 2006; Pedretti and Beckie 2016; Seri-
naldi and Kilsby 2014; Pedretti and Irannezhad 2018), can 
be used to assess the feasibility of mining investments. The 
SD-based model provides a completely new approach that 
circumvents some of the limitations of traditionally adopted 
static and/or deterministic investment analyses (e.g. Bartrop 
and White 1995; Bhappu and Guzman 1995; Eves 2013; 
Lawrence 2002; Smith 2002) used in the metal mining 
industry.

Typically, system dynamics are modeled using stochastic 
processes, which treat input parameters as random variables. 
The randomness of these parameters is generally linked to 
the poor predictability of fluctuations in stock markets, soci-
etal and economic crises, and consumer habits and demand 
(e.g. Banerjee and Siebert 2017; Caballero and Pindyck 
1992; Gilli and Këllezi 2006; Wernerfelt and Karnani 1987; 
Zachary 2014). When the performance of industrial activi-
ties depends directly on the variability in environmental con-
ditions, long-term economic investments must also embed 
other sources of uncertainty that are linked to the endemic 
variability of natural phenomena. Because of geological, 
atmospheric, and ocean-related processes, several poten-
tial extreme phenomena can occur, such as intense rainfall 
events or temperatures, leading to flooding, heat waves or 
droughts (e.g. Easterling et al. 2000; Kløve et al. 2014; 
Luoma et al. 2013; Merz et al. 2004; Schmidt-Thomé et al. 
2013, 2015).

Incorporating environmental variables into economic 
models is not a straightforward task (e.g., Garrick et al. 
2012). It requires a versatile dynamic simulation method 
that can predict the feasibility and profitability of an invest-
ment by simultaneously capturing (a) the technical and 

economic complexity of large industrial investments and 
(b) the random occurrence of natural events. SD models 
provide a promising approach in this sense, although they 
have not yet been widely applied to incorporate environmen-
tally driven source of uncertainty. SD models are generally 
used for evaluating complex real investments by means of 
non-linearity and feedback loop structures (Forrester 1994; 
Inthavongsa et al. 2016; Johnson et al. 2006; O’Regan and 
Moles 2006; Tan et al. 2010). Größler et al. (2008) discussed 
the use of SD models in the operations management context. 
They pointed out that the power of SD models lies in their 
ability to present how system components interact. Qureshi 
(2007) studied the value of a company using a SD approach, 
although they assumed no variability in the input parameters 
used (i.e. they used a purely deterministic approach).

SD models are potentially well-suited to accounting for 
undesired economic losses due to the non-linear nature of 
hydrologic processes that can lead to water security issues. 
Côte et al. (2007) evaluated mine water treatment using a SD 
approach. Garrick et al. (2012) described water security as 
the ability to deal with (or predict the impact of) the prob-
ability of occurrence of high impact hazardous events. This 
could, for instance, be the probability of flooding due to the 
occurrence of extreme rainfall events (e.g. Merz et al. 2004). 
Garrick et al. (2012) maintained that decision makers should 
focus on a system’s vulnerability and develop the ability 
to “anticipate, cope with, resist and recover” from water 
security risks. System dynamics investment models linked 
to the variability of hydrologic events would be ideal tools 
to develop such abilities and support the decision-making 
process. This work is among the first to illustrate how real-
world environmental data can be used with a SD metal min-
ing model to study the effects of water risks on metal mining 
project feasibility.

The paper presents the methodology used to describe 
hydrologic and the economic variability and an approach 
to combine them in a unique investment model. It describes 
how the approach can improve predictive outcomes and pre-
sents a case study of a long-term mining investment using 
real-world precipitation data.

Methodology

Modeling Metal Mines with System Dynamics

The SD model of metal mining investments used in this 
research was introduced in Savolainen et al. (2017a), where 
its key SD characteristics—namely modularity and feed-
back loops—were presented in detail. The model mimics 
the characteristics of real-world mining investments, where 
different aspects—most importantly production rates, cash-
flow (CF), and the balance sheet—simultaneously affect the 
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overall economic profitability of the mining investments 
studied. These “aspects” are presented as stand-alone sub-
models tied together by immediate, or delayed, interactions 
that originate from feedback/feed-forward loops and stocks.

As a simple example of the SD model, production during 
a long metal price recession results in a series of negative 
cash-flow periods (feed-forward). This in turn decreases the 
accumulated cash balance (stock), which in turn inhibits pro-
duction (feedback) in the long-term. In other words, a per-
manent abandonment option would be exercised in the simu-
lation if the cash runs out and the accumulation of losses to 
the owners is stopped. The SD model accounts not only for 
the variability in key parameters, but more importantly mod-
els the reactions to changes by altering the outcomes when 
the changes occur. For example, one can create a trigger for 
temporary mine closure to limit economic losses and save 
the remaining ore reserves for the future.

The importance of modeling operational changes in metal 
mines is supported by Moel and Tufano (2002) who stud-
ied North American gold mines. They showed that most 
existing mines have been closed for some period of time. 
During times of lower metal prices, it may be economically 
favorable to temporarily stop mining and wait for the prices 
to recover. However, as mine closing and opening decisions 
entail large capital and operational costs, metal prices should 
be well below or above break-even profitability before mak-
ing a decision to temporarily close or open, respectively, an 
operation. The hysteresis effect of real investments has been 
discussed, e.g. Dixit and Pindyck (1994) and Dixit (2004).

The SD model used is generic in the sense that the 
number of sub-models attached to it is not limited. For the 

purposes of this study, we created a stand-alone SD water 
management sub-model with a (water) stock and feedback 
loop interaction. This sub-model is attached to the SD 
model. It should be noted that the water balance sub-model 
may be replaced by any hydrogeological model. A sche-
matic diagram of the SD model used is presented in Fig. 1, 
and a detailed function block-diagram of the water manage-
ment sub-model is shown in Fig. 2a. The model is created 
in and runs on the Matlab®/Matlab Simulink® software 
environment.

Modeling Rainfall Extremes

The probability of rainfall events is modeled in this work 
using the extreme value theory (EVT). The foundation of 
EVT stems from the need to estimate the probability of 
events that are less frequent but more intense than com-
mon low-intensity events (e.g. Coles 2001). EVT is used to 
describe the stochastic frequency (or probability of occur-
rence) of rainfall events using parametric analysis and distri-
butions with heavy tails. Traditionally, daily rainfall events 
have been statistically described using heavy-tailed mod-
els, such as the Generalized Extreme Values (GEV) model 
(Papalexiou and Koutsoyiannis 2013), the Gamma model 
(Aksoy 2000), and the Generalized Pareto (GP) model 
(Solari et al. 2017; Van Montfort and Witter 1986). The 
modeling described in the paper is for precipitation falling 
as rain and is not relevant for precipitation falling as snow.

The question of which EVT model best describes the 
data is currently debated in the literature, in light of the 
potential implications of non-stationarity of the time series 

Fig. 1   Schematic diagram of the 
applied system dynamics model 
of a metal mining investment
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used, driven by changes in the climate and other time-
dependent factors (e.g. Milly et al. 2008; Serinaldi and 
Kilsby 2015; Pedretti and Irannezhad 2018). This debate 
falls outside the scope of this research, given that the main 
purpose of this work was to illustrate how to incorporate 
general hydrologic uncertainty in industrial economic 
models. We used an established approach based on the 
well-known stationary peak-over-threshold (POT) analysis 
method (e.g. Smith 1990; Coles 2001; Pedretti and Beckie 
2016; Pedretti and Irannezhad 2018), which evaluates 
the parametric distribution of the extremes of empirical 
rainfall distributions that exceed a given threshold, � . 

The implication of the selection of a different modeling 
approach is left open for a future extension of the analyses 
in this paper.

Using a stationary POT model, it can be shown that the 
GP model represents a robust solution to describe the tails of 
the empirical rainfall distributions (e.g., Serinaldi and Kilsby 
2014). This is particularly true for increasing thresholds, 
as the distributions tend to follow a power-law function for 
� → ∞ . The probability density function (pdf) of the GP 
model can be defined as (e.g. Pedretti and Beckie 2016):

(1)g(r|k, �, �) =
(
1

�

)(
1 + k

r − �

�

)−1−1∕k

,

Fig. 2   Rainfall data input to metal mining investment model. a The 
general model structure from the input file to the output binary deci-
sion, with a Gaussian distribution illustrative of a probabilistic dis-

tribution of entry data. b The sequence of steps for application to the 
specific dataset tried in this work using the Generalized Pareto model 
fitting the peak-over-threshold statistics
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where r is the daily rainfall intensity [mm/day], k is the 
shape, and � is the scale. The parameter k controls the 
power-law tailing of the distribution; for a specified θ and 
σ, a larger k determines a larger amount of extreme rain-
fall events. Conversely, the parameter σ controls the total 
variability of the data (similar to the standard deviation in a 
Gaussian model); for specified θ and k, a larger σ determines 
a broader distribution of values having the same power-law 
geometry (controlled exclusively by k). The best fitting 
parameters of the GP model can be found in several ways. 
As for other power-law models, the best-suited parametric 
estimation approach is usually found by means of maximum 
likelihood estimation, MLE (Clauset et al. 2009).

Despite the expected better fit of the GP model for 
increasing thresholds, θ cannot increase indefinitely, as a 
larger θ also corresponds to a lower amount of POT sam-
ples, np. A trade-off between fitting capability and np must 
be found. Finding an optimal threshold 

(
�e

)
 has been the 

subject of multiple studies and is currently being debated 
(e.g. Solari et al. 2017). The visual assessment of probabil-
ity plots provides a first-cut approach to evaluating θe. Less 
subjective, more quantitative methods can also be used. A 
consolidated approach is the goodness-of-fit test, based on 
the Kolmogorov–Smirnov (KS) test, in which a distance is 
quantified between the empirical distribution function of the 
samples, F, and the cumulative distribution function of the 
modeled distribution, G. We define D as the sum of this 
distance, such that:

using Eq. 2, θe is the optimal threshold, above which D tends 
to a constant, quasi-asymptotic value close to zero, as illus-
trated with an example that follows.

Connecting the Rainfall Model to the Metal Mining 
Investment Model

The SD mining model can embed multiple parametric mod-
els to describe g(r|k, �, �) . The selected distribution is used 

(2)D(�) = F(r|�) − G(r|�),

to generate a set of Monte Carlo simulations of the invest-
ment model, as illustrated in Fig. 2b. The SD model uses a 
discrete monthly time-step, and monthly aggregated rainfall 
data were created and used as input to the model. Using a 
shorter step time would be unlikely to produce any addi-
tional insights to the cash-flow (CF) modeling due to the 
joint uncertainty caused by several parameters. We believe 
that the monthly time-step is robust enough to allow for good 
control of the model and give accurate enough analysis for 
the purposes of this research. The total timeframe of SD 
simulations performed was set to 300 months.

A random monthly rainfall input to the investment model 
was created as follows:

•	 31 random daily precipitation events were drawn from 
the modeled GP distribution and summed to generate 
the monthly precipitation for each of the 300 simulated 
months. We assumed that varying the length of individ-
ual months (from 27 to 31 days) would not play a signifi-
cant role, considering the overall simulation accuracy.

•	 The obtained sum of random draws was multiplied 
by 365/12/31 (≈ 0.98) to represent the average length 
(≈ 30.4 days) of a month in a year, so in fact every month 
was assumed to be ≈ 30.4 days long.

The other key parameters used in the SD metal mine 
model are listed in Table 1. We note that in Savolainen et al. 
(2017b), the water balance model assumed a Gaussian dis-
tribution with a mean cumulative annual precipitation R of 
600 mm, a standard deviation of 150 mm, and an arbitrary 
water output limit of 200,000 m3/month. In the present study, 
we increased the output to 300,000 m3/month to cope with 
the overall larger water amounts derived from the empirical 
distribution fitting. The critical limit of water balance, lcrit , to 
avoid pit flooding was set to 1 Mm3. No seasonal patterns of 
water flows (e.g. Fernández-Álvarez et al. 2016; Sahu et al. 
2009) or possible discrete changes in water flows (Rapantová 
et al. 2012) were considered. In the case of an operating 
mine, these characteristics could be derived from measured 

Table 1   Numerical values of 
key uncertainties (adopted from 
Savolainen et al. 2017b)

Variable Unit Pessimistic Most likely Optimistic Volatility, %

Reserve size Tons 72,000 140,000 210,000 –
Metal yield Tons/month 1000 1200 1400 10
Production ramp Tons/month 50 100 200 –
Unit cost EUR/ton 4000 3500 3000 –
Fixed cost (operating) EUR/month 3,500,000 3,000,000 2,500,000 –
Fixed cost (closed) EUR/month 500,000
Construction time Months 36 24 12 –
Construction cost EUR 80,000,000 60,000,000 40,000,000 –
Unit price EUR/ton 14,000 16,000 18,000 5
Exchange rate USD/EUR 1.1 –
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precipitation data and a detailed hydro-geological model and 
added to the water balance sub-model for additional insight.

Traditionally, metal mining investments have been valued 
using static net present value (NPV) calculations, or other 
discounted cash-flow (DCF) based approaches. According 
to Brennan and Schwartz (1985a, b), a metal mine can be 
valued analogically to a financial option. That is, the owner 
of the metal mine holds an option to operate the mine when 
the metal sales price exceeds the cost of production, and 
the option to temporarily close the mine during metal mar-
ket price recessions. In addition to the temporary closure 
option, other flexibilities to steer metal mine profitability 
exist, such as mine planning, contracting, and expanding 
production—these are typically referred to as real options 
(e.g. Savolainen 2016; Newman et al. 2010).

In this paper, we view the effective and active water 
management of a metal mine as a real option (RO) that has 
an effect on the overall economic return from the mine. To 
determine the real option value (ROV), Trigeorgis (1993) 
proposed the following method, based on comparing an 
investment’s NPV with and without the real option:

In Eq. 3 [Expanded NPV], refers to a case in which the 
value of real options has been taken into account (e.g. by 
considering the effect of temporary mine closure), and [Pas-
sive NPV] is the static NPV under a fixed operation mode.

(3)

[
Value of Real Options

]
=
[
Expanded NPV

]
− [Passive NPV].

Model Application: A Case Study

As an illustrative example of how SD models can be used 
to generate relevant and high-quality decision support for 
mining operations in a way that combines economic and 
environmental analyses, we analyzed the effects of extreme 
rainfall events on a hypothetical metal mine operating in a 
location potentially exposed to flooding.

Modeling the Flooding of an Open‑pit Mine

The problem is conceptualized as presented in Fig. 3. An 
open-pit metal mine is designed to optimally operate under 
normal (non-flooded) conditions (Fig. 3, top). The mined 
ore is fed into the concentration plant, where water is used 
for ore processing. Residual water from the concentrator is 
pumped to a water-storage facility before final treatment and 
discharge. Under anomalous, or undesired conditions, such 
as a pit flooding event (Fig. 3, bottom), water accumulates 
in the pit after collapsing the drains. The pit flooding causes 
the mine to temporarily interrupt ore processing, resulting in 
a negative cash flow and economic losses. Given that the SD 
model combines the use of hydrologic and economic vari-
ables, the two major ingredients for estimation of economic 
losses associated with flooding events are:

a.	 the probability of occurrence of volumes of water that 
cause flooding of the open pit; and

Rainfall
within
”normal”
limits
-
Produc�on
on-going

Con�nuous
output

(Output when
needed)

DischargingStoraging TreatmentMining Pit

Realiza�on
of
extreme
rainfall
-
Produc�on
stopped

Draining water
from pit

Concentrator

Water
intake

(Water
Intake)

SCENARIO

Residual water

(Residual water)

Ore feed

(Ore feed)

Upper limit

Upper limit

Surface water

Draining water
from pit

Surface water

Metal
concentrate

Metal
concentrate

Fig. 3   Conceptual model of the problem analyzed in this research. 
Above: Designed operation mode: residual water from concentrate 
production and open pit is pumped into storage and treated. Below: 
Extreme rainfall event: only water from the open pit is pumped into 

storage and treated—there’s no room to store residual water from 
concentrate production and the production is stopped to avoid flood-
ing of the mining pit
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b.	 the estimation of the economic damage caused by the 
ensuing interruption to ore production.

The probability of flood waters entering the open pit (a) 
can be calculated in several ways. It is reasonable to asso-
ciate these volumes with excessive run-off resulting from 
extreme precipitation, expressed, for example, as daily pre-
cipitation rates r [mm/day]. During extreme events, rainfall 
rates tend to exceed evaporation and infiltration rates and 
the storage capacity of the subsurface, generating run-off 
(e.g. Boughton 2007). Because the occurrence of extreme 
rainfall events is random at a given site, the occurrence of 
run-off and pit flooding is also random and can be estimated 
in two general ways. The most correct yet unrealistic option 
(in many practical mining conditions) is through the direct 
measurement of flooding volumes. Very often, rainfall is 
sparsely distributed upgradient of open pits and results in 
diffuse sources of run-off entering the open pit that are 
not necessarily funneled in a single stream or water body 
(where a gauge station could be located). Due to this dif-
ficulty, an indirect approach is used to estimate the prob-
ability of flood events, based on a water balance model and 
measured rainfall from a weather station located at a mining 
site (e.g. Beven 2012; Chiew et al. 1993). Here, we used 
the water balance model approach. Since we are interested 
in evaluating the effects of hydrologic randomness on eco-
nomic investments, we used a simplified stochastic mod-
eling approach, in which we assigned the same probability 
of occurrence of rainfall extremes to the occurrence of pit 
flooding events characterized by a specific water volume. In 
reality, the two probabilities may be different, given that the 
amount of run-off generated from precipitation inputs can 
be highly nonlinear (e.g. Bo et al. 2018; Romanowicz et al. 
2006). Nevertheless, the conclusions of this study from the 
method demonstration point of view are not limited by this 
assumption, as such non-linearities, derived from the mine 
specific hydrologic model, can be included when dealing 
with a real world case.

A number of previous studies have identified precipita-
tion extremes as one key variable limiting the global dis-
tribution of economic growth, because private investors 
prefer developed countries without water security related 
risks (e.g. Dadson et al. 2017; Khan et al. 2017). Therefore, 
embedding a real-world probability-based model with either 
real-world rainfall or run-off events is valuable in terms of 
obtaining more information on the profitability effects of 
these events and generally in making the model more holistic 
and realistic.

The estimation of the economic damages caused by 
interruptions in ore production (b) depends on the market 
situation at the time of the interruptions. Regardless of 
the water balance, it may sometimes be favorable to tem-
porarily stop mining during the recession of prices. In our 

illustrative example, the cost to temporary stop the mine 
was set at 1.2 million Euros (M€) and the re-opening cost 
was set at 0.5M€ (see Table 1). These costs effectively 
restrict the shutdown-restart flexibility of the investment 
only to situations caused by critical water imbalances.

The first step in calculating the rainfall-related finan-
cial risk to mining is to compute the probability of a pit 
flooding event that can generate an economic loss. Using 
the pdf of rainfall events, g(r) (Eq. 1), the current level of 
water storage, l(T), is written as:

where l(T) is constrained to be ≥ 0, which is met by auto-
matic adjustments of the residual water and discharge terms 
in the SD model (the residual water term is set to zero by a 
temporary stoppage of production), and the initial level is 
between 0 ≤ l(T0) ≤ lmax.

As explained in the previous section, we assume that 
the uncertainty in rainfall is the key factor affecting the 
probability of pit flooding. The probability of pit flooding 
(and the volume of water entering the pit) is assumed to 
be fully characterized by rainfall probability g(r), which is 
associated with the probability of pit flooding g(f ) through 
the expression:

where lcrit is the critical level of water storage needed to 
avoid pit flooding. During periods of critical water storage 
levels, we assign the same probability used for an extreme 
rainfall event to a flooding event that can potentially pre-
vent open pit mining and generate an economic loss of an 
uncertain magnitude. While this is a simplification of the 
hydrologic process, we note that the essential randomness 
of events in the investment model is preserved. Because a 
probabilistic function is used in modeling rainfall and thus 
the risk of “mining failure,” we conclude that this linear 
transformation does not have an effect on the conclusions 
drawn.

Equations 4 and 5 dictate the behavior of the water-
balance sub-model (see Fig. 2a). The water storage level 
depends directly on stochastic pit flooding volumes during 
rainfall events, as well as on the fixed water inflows from 
metal concentrate production and mine dewatering. Thus, 
the amount of water is directly linked to the probability 
of the extreme rainfall events, g(r) . The monthly metal 
output in the production sub-model is fixed by default, and 
the production on/off decision serves as a binary control 
variable that is based on the actual level of water storage. 

(4)

l(T) =

T

∫
0

r(t)g(r)dt +

T

∫
0

[
residual water from production

]
(t)dt

−

T

∫
0

[
discharge

]
(t) + l(T0),

(5)g(r) + lcrit = g(f ),
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That is, a temporary stoppage decision will set the residual 
water from production–term (Eq. 4) to zero and steers the 
overall water-balance.

As a summary of the problem setting: the investment 
model dynamically tracks the development of the water-bal-
ance at the mining site, and, if pit flooding occurs, stops the 
production of metal concentrate to ease the water situation. 
It is noted here that the water management continues “as-is” 
and keeps on accruing operational costs to the owners. Using 
this logic, running n rounds of pseudo-random simulations 
(Monte Carlo) on the investment model with random rainfall 
realizations derived from historical data, the probability and 
magnitude of the economic effects of rainfall (events) can 
be estimated using Eq. 3. If the project runs out of cash, the 
metal mining operation is abandoned, and the accumulation 
of production and water management related costs stops. 
The costs related to permanent shutdown are assumed to be 
included in the pre-paid environmental provision, which is 
(modeled here as) a part of the initial investment cost. For 
the purposes of this research, we have left out a detailed 
consideration of the full economic consequences of a per-
manent mine shutdown from our model and “only” focused 
on the normal state of the operations, including temporary 
shut-down periods.

Peak‑over‑threshold Evaluation of Rainfall 
Variability

We applied the SD model and the proposed method to a 
metal mining case with real rainfall observation data from 
the Äänekoski-Kalaniemi weather station in Finland. The 
precipitation data were used to estimate the rainfall-model 
parameters for the water balance model (Figs. 1, 2). The 
collected data consist of daily rainfall measured between 
Jan 4, 1965 and Feb 22, 2016 by the Finnish Meteorologi-
cal Institute, and can be considered an adequate set of data 
for the purposes of runoff modeling. However, as in many 
other rainfall series, the available dataset is incomplete. 
Here, approximately 50% of the data are missing, as 9,516 
measurements for a total of 18,987 days exist. However, the 
selected POT-method is robust enough to handle the pres-
ence of missing records. Indeed, the approach works even 
with strongly incomplete time series, where a minimal num-
ber of records exists, and is able to build an empirical distri-
bution that reflects the overall variability of rainfall events.

The resulting empirical cumulative distributions (Eq. 1) 
of the estimated rainfall using the GP model are shown in 
Fig. 4a. Figure 4 also displays the other tested best-fitting 
heavily tailed models in the form of probability plots, 
namely Gamma, Gaussian, GEV, and LOG (logarithmic) 
models. Each panel shows a different result for increasing 
the rainfall threshold, θ, applied to the source data as a fil-
ter. We note that the observed rainfall data span from 0 to 

70 mm/day, and most observations lie between 0 and 20 mm/
day, with a probability of ≈ 99%. Put another way, rainfall 
events with intensities of up to 20 mm/day are expected at 
least once every 100 days. Naturally, more extreme events, 
grossly exceeding 20 mm/day, have an even lower probabil-
ity of occurrence. For instance, a rainfall event of 40 mm/
day is expected once every 1000 days, given that its prob-
ability lies somewhere around 0.1%. Although the frequency 
of high-intensity events becomes many times lower than that 
of low-intensity events (e.g. the estimated 10-fold differ-
ence), it is of fundamental importance to properly calculate 
the occurrence of the highly improbable, rare events, from 
the water-security point of view. That is, high-volume, low-
probability events are essentially the events that are associ-
ated with the potential extreme run-off volumes and conse-
quently pit flooding risk and temporary mine closure.

The probability plots in Fig. 4a emphasize the extremes 
of the distributions. While all the tested models result in 
the same behavior for low probabilities (P < 10%), at the 
extremes, no model provides a good fit with the empirical 
data (marked with circles). The best-fitted Gaussian model 
(black line) seems to largely underestimate the extremes, 
as the calculated probability of occurrence of events with 
intensity r > 30 mm/day is virtually non-existent. In contrast, 
the GEV model (dashed yellow line) tends to overestimate 
the extreme values, given that an event with an intensity of 
70 mm/day has a probability of 5%, which corresponds to 
a theoretical frequency of one event every 20 days. The GP 
(solid red line) also overestimates the extremes of the data 
for θ = 0 mm/day. However, consistent with the theoretical 
behavior of this model, the GP tends to increase “matching 
of the extremes” with an increasing θ. While the other mod-
els still incorrectly estimate the probability of rare events, 
the GP provides a satisfactory fit with all the used empiri-
cal data for θ > 1 mm/day, including the very intense, least 
frequent events (e.g., r = 70 mm/day).

An optimal threshold for the empirical dataset, θe, can 
be found by using the Kolmogorov-Smirnoff test (Eq. 2). 
This is illustrated in Fig. 4b, where the cumulative distance 
D is plotted against θ. In this case, the distance goes to an 
asymptotic minimum value D ≈ 10 for θ = 3 mm/day or larger 
values. As such, the threshold θe = 3 mm/day can be identi-
fied as an optimal value, when taking into account the trade-
off between realistic extreme events fitting (= increasing θ) 
and the preservation of the original data (= decreasing θ). 
We still considered and used a range of values for θ to study 
the sensitivity of the results with regard to θ to highlight the 
importance of the selection of the threshold, θ, and the cor-
responding GP parameters (k,σ). The best-fitting parameters 
for θ range between 0 and 9 mm/day (Table 2).

Using an increasing threshold, θ, in GP modeling 
(0–9 mm in this study) leads to a decreasing number of sim-
ulated rainy days, with higher daily sums. In other words, the 
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A

B

Fig. 4   a Empirical cumulative distributions of measured daily rainfall 
intensity, r, with different distribution fittings (GP generalized pareto, 
GEV generalized extreme value, LOG logarithmic). b The Kolmog-

orov–Smirnov test for estimating the optimal threshold, θe, for GP-
model fitting
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random drawing for these distributions suggests illogically 
that there is a minimum amount of rain, greater than zero, 
that can fall daily (e.g. >1 mm/day). We use uniformly dis-
tributed data to compensate for the reduction in the number 
of samples, np , as θ increases, and we formulate the estima-
tion of cumulative rainfall over a period of T days as follows:

where N is the total number of samples, rGP is the mean 
value of the GP-estimated rainfall values exceeding θ that 
enclose the fitting parameters k and σ, and U

�
 is a uniformly 

distributed random number between 0 and θ.

Results and Discussion

The SD model is used to evaluate the implications of the 
hydrologic modeling parameters discussed above on the 
overall profitability of the mine. Figure 5 shows the mean 
net present value (NPV, circles) resulting from over 1000 
Monte Carlo simulation runs that in the context of this case 
correspond to over one thousand simulated rainfall accumu-
lations and their effect on mine profitability. The red line is 
the reference NPV (23.1 M€) that represents the attainable 
“benchmark” value of the project excluding water-balance 
issues. The results show that not taking water balance issues 
into account will result in an unrealistic over-estimation of 

(6)Rc = T

[
np

N
rGP +

(
1 −

np

N

)
U

�

]
,

project value if a rainfall event causes the temporary shut-
down of the open pit. It can be noted that all results gener-
ated with the SD model using empirical data-based rainfall 
distributions are below the benchmark NPV. Table 3 shows 
the results, which indicate a clear non-linear loss of NPV as 
total rainfall increases.

To evaluate the effects of different proportions (probabili-
ties) of extreme rainfall events, we extended the interpreta-
tion of the simulation results to include simulations with 
generic GP parameters. In this case, the total rainfall is not 
constrained by the empirical data set, as the daily rainfall 
is calculated exclusively based on the contribution of POT 
values. In this vein, we calculate the cumulative yearly rain-
fall as:

where Run is the unconstrained cumulative annual rainfall, in 
contrast with the constrained cumulative yearly rainfall, Rc, 
calculated using Eq. 1, and depends exclusively on the GP 
parameters k and σ used to run the simulations.

The mean NPV results attained (Fig. 5, cross-marks) 
imply that there is a certain limit of annual rainfall 
(R < 1086 mm/year) that has no effect on the economic value 
of the mining operation. We refer to this condition as an 
“economically safe zone.” An “uncertainty zone” is found 
when R is between 1086 and 1609 mm/year, during which 
the NPV moves from positive values to strongly negative 
values. This suggests that the value of the project declines 
dramatically as capacity constraints in water management 

(7)Run = 365 rGP,

Table 2   Rainfall distribution 
parameters from distribution 
fitting and comparison with the 
actual data

The most realistic fitting in relation to the original data is achieved using POT threshold of 3 mm/day
a Normal distribution
b Based on naive analysis of actual data: [avg rainfall, mm/day] * [365 days/year]

POT-limit Distribution param-
eters

Sample size Avg. yearly rainfall 0.999 perc of daily 
rainfall

mm/day k sigma n vs. Act mm/year vs. Act mm/day vs. Act

Actual 9082 – 1150 – 41.00 –
Naïvea 149 1188b 38 4.52 − 36.48
 0.0 0.347 2.289 9082 0 1249 99 68.76 27.76
 0.1 0.265 2.655 8614 − 468 1248 98 55.65 14.65
 0.3 0.126 3.518 7563 − 1519 1251 101 38.63 − 2.37
 0.5 0.044 4.268 6737 − 2345 1236 86 35.66 − 5.34
 1.0 − 0.049 5.507 5547 − 3535 1249 99 31.73 − 9.27
 2.0 − 0.139 7.355 4140 − 4942 1224 74 33.41 − 7.59
 3.0 − 0.197 9.010 3204 − 5878 1188 38 34.60 − 6.39
 4.0 − 0.243 10.569 2535 − 6547 1210 60 35.96 − 5.04
 5.0 − 0.291 12.387 1955 − 7127 1182 32 36.65 − 4.35
 6.0 − 0.332 13.978 1582 − 7500 1188 38 38.16 − 2.84
 7.0 − 0.379 15.843 1255 − 7827 1197 47 38.88 − 2.12
 8.0 − 0.429 17.851 998 − 8084 1191 41 39.40 − 1.60
 9.0 − 0.483 20.021 798 − 8284 1197 47 39.99 − 1.01
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Fig. 5   Sensitivity analysis of the project value (NPV) in millions of € 
(MEUR), as a function of the total cumulative yearly rainfall occur-
ring at the mining site and directly related to flooding volumes. The 
red line represents results from a model that does not consider the 
water balance restrictions, and shows that the negative effects of high 
rainfall to the profitability are not captured properly. Accounting for 

the water balance creates a much more realistic and credible picture 
of the profitability of the mining investment under different rainfall 
conditions, and creates an incentive for investing in water treatment, 
because uncontrolled problems with water are likely to cause greater 
costs than the additional investments into proper water management 
would entail

Table 3   Monte Carlo 
simulation results (n = 1000 
rounds/row) of a feasibility 
analysis of metal mining 
investment using different 
POT-threshold assumptions in 
creating GP-distribution for the 
investment model’s input

The NPVs are compared to the case without having water balance modeling in place (‘unconstrained’) to 
calculate ‘Value Lost, M€’—indicator

GP-model’s Net present value ROV(*) Abandons Value lost Diff

POT-thresh, mm Mean M€ < 0, n > 0, M€ M€ n M€ vs. Naïve

Unconstr. 23.1 494 129.0 65.2 146 – 19.2
Naïve 3.9 568 124.4 53.7 187 − 19.2 –
0.0 − 26.5 656 100.5 34.6 254 − 49.6 − 30.3
0.1 − 14.0 599 101.2 40.6 217 − 37.0 − 17.8
0.3 − 15.1 637 112.0 40.7 192 − 38.2 − 19.0
0.5 − 5.7 590 114.4 46.9 214 − 28.8 − 9.5
1.0 − 5.8 592 110.6 45.1 199 − 28.9 − 9.6
2.0 − 8.4 600 113.8 45.5 204 − 31.5 − 12.2
3.0 − 0.2 575 119.7 50.9 186 − 23.3 − 4.1
4.0 − 2.5 569 107.4 46.3 168 − 25.6 − 6.4
5.0 6.9 539 115.2 53.1 178 − 16.2 3.0
6.0 6.1 546 114.1 51.8 174 − 17.0 2.3
7.0 2.2 555 111.4 49.6 177 − 20.9 − 1.6
8.0 − 1.1 577 118.0 49.9 196 − 24.2 − 5.0
9.0 1.8 571 119.7 51.4 170 − 21.3 − 2.1



458	 Mine Water and the Environment (2019) 38:447–462

1 3



459Mine Water and the Environment (2019) 38:447–462	

1 3

seriously inhibit the operational efficiency. That is, the mine 
suffers from temporary shutdowns due to exceedance of crit-
ical water storage levels. A “failure zone” can be defined as 
R > 1609 mm/year, where the NPV becomes and remains 
negative, independent of any additional increase in pit flood-
ing volumes.

From the point of view of the annual rainfall events, the 
NPV of the case study is in the zone of uncertainty. This 
result suggests that the long-term profitability of the min-
ing operation will likely suffer from water-balance issues, 
given the uncertainty in rainfall variability derived from the 
historical data and the simulated water management meas-
ures on-site. From the project management perspective, it 
makes sense to study the feasibility of either adding water 
treatment capacity to allow greater discharge (which may 
be constrained by the environmental permit), or to increase 
water storage.

Figure 6a presents a three-dimensional plot of the sensi-
tivity of the mean NPV to a set of extreme rainfall param-
eters. The selected range of parameters reflects typical 
values reported in the literature (e.g. Serinaldi and Kilsby 
2014) and is in line with the best-fitting parameters, empiri-
cally obtained from the MLE analysis from weather data 
for the Äänekoski-Kalaniemi case study. The sensitivity 
analysis indicates that there is a clear relationship between 
project value and the GP parameters. Rainfall distribu-
tions are predominantly controlled by the k (shape) and σ 
(scale), although the parameter σ has a larger effect on the 
NPV than does k. For example, when k = 0.01 or k = 0.3, all 
scenarios with σ = 1 are in the safe zone economically and 
the NPV remains positive, while all scenarios with σ = 5 
fall in the failure zone, regardless of the k value (see also 
Fig. 6b). The extension of the uncertainty zone, on the other 
hand, depends on the bivariate combination of the param-
eters k and σ. For σ = 3, a heavy distribution tail (k = 0.3) 
implies a shutdown of the mining operation, while a light tail 
(k = 0.01) implies a safe condition. The sensitivity analysis 
shows that the SD model is able to handle extreme parame-
ters and capture the non-linear complex relationship between 
water-balance issues and profitability, via mine production 
and cash flows.

As shown in Fig. 6b, there is strong variability in pro-
ject value depending on the selected rainfall modeling 

parameters. For low k scenarios (more symmetric distribu-
tions), the variability is much higher than for high k scenar-
ios (more heavily tailed distributions). At the same time, the 
variability increases with higher σ values. However, while 
for low σ values all project outcomes are positive (including 
the statistical outliers, marked with red crosses), for large σ 
the median of all project outcomes tends to become negative, 
although a number of realizations behave differently. The 
reason for this observed model behavior stems from the fact 
that the investment model uses an aggregate of ≈ 31 daily 
observations with no seasonal patterns as a model input: 
it is statistically unlikely that a tailless distribution with 
high sigma-parameter would yield tens of extreme events 
in successive months. Therefore, the lowest project values 
are found in simulations with tailed distributions (large k). 
For example, for k = 0.01 and σ = 3, more than 42% of pro-
ject value realizations are equal or greater than the reference 
NPV (23.1 M€), whereas for k = 0.2275 and σ = 3 the corre-
sponding figure is only 9.3%. As such, while statistically the 
stochastic model suggests that on average the mining opera-
tions would fail economically (i.e. NPV < 0), if the rainfall 
distribution shows k = 0.3 and σ = 0.2275, it is possible that 
in approximately 1 out of 10 mining cases, the NPV is still 
unaffected by the adverse flooding conditions that limit pro-
duction. A sensitivity analysis is provided in Table 4.

The above discussion shows that initial estimates of 
rainfall uncertainty can have a crucial effect on investment 
profitability. In real life, when estimating parameters from 
empirical rainfall distribution, an uncertainty in σ of one unit 
may not be an unusual result of analysis when the effects of 
subsampling complicate the estimation of GP parameters 
(e.g. Pedretti and Beckie 2016; Pedretti and Irannezhad 
2018). While these effects reduce as the length of the ana-
lyzed time series increases, sometimes the only useful data 
available for a remote greenfield mining site are based on 
measurements from a recently-installed weather station on 
the site. As such, extra care is recommended when estimat-
ing long-term predictions for water balance requirements 
using EVT-based stochastic modeling approaches.

Conclusions

Adequately linking the randomness of environmental events 
to economic profitability is usually complicated by the large 
number of variables and processes involved, and a versatile 
modeling approach is required. In this work, we presented 
an approach that can integrate hydrologic uncertainty into 
a SD model of a metal mining operation. We focused in 
particular on a synthetic case study using real rainfall data, 
where we demonstrated the effect of extreme rainfall events 
on the resulting economic profitability of a mine. The model 
allows an examination of the effects of water balance issues 

Fig. 6   a Ensemble-mean net project values as a function of GP 
parameters. The yearly water balance is unconstrained and increases 
for larger k and/or σ. b Box-plot summary of project value distribu-
tions (i.e., box sizes in the figure) from the sensitivity analysis. The 
line inside each box represents the sample median and shows the 
possible skewness of the results. The box-sizes and whisker-lengths 
emphasize the uncertainty of the results by representing the 25th and 
75th statistical centiles. The red plus-signs in the diagram indicate 
statistical outliers (> 1.5 times the box height (interquartile range) of 
the top or bottom of the box)

◂
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on the long-term profitability of mining investments in a 
quantitative manner. A numerical example showed how the 
proposed method can make use of historical hydrologic data 
(in this case, daily precipitation) to create insights on the 
feasibility of an investment.

The modeled case study was found to be very sensitive to 
rainfall extreme variability. By using a GP model to describe 
the peak-over-threshold distribution of values exceeding pre-
determined thresholds, we found that the investment value 
strongly depends on both the shape ( k ) and scale ( �) rainfall 
parameters used in the GP model. For example, a change 
in scale parameter from � = 3 to � = 4 in the case study 
turned the expected project value from nearly positive to 
grossly negative. Given the difficulties in estimating statis-
tical parameters describing variability in extreme rainfall 
events, sufficient safety margins must be considered when 
making long-term investments involving rainfall distribution 
uncertainty.

Water management investments that could prevent pit 
flooding and a temporary mine shutdown include adding 

water treatment and water storage. Based on the results from 
the illustrative case study, some general implications for 
decision making regarding water management investments 
may be suggested:

1.	 The results suggest that the relationship between hydro-
logic uncertainty and investment value distribution is 
non-linear and, in this case, negatively skewed; that is, 
higher hydrologic uncertainty leads to lower project 
value. Inadequate water management investments are 
as likely to destroy investment value as over-investing. 
Therefore, from a rational decision-making perspective, 
and assuming uncertainty of rainfall modeling variables 
such as incomplete historical data, the strategy for deter-
mining the size of an initial water management invest-
ment would be in the borderline area between safe and 
uncertain zones.

2.	 A gradual increase in water management capacity (stor-
age and/or treatment) would likely result in the highest 

Table 4   Sensitivity analysis of 
rainfall modeling parameters

Key: [1, 2]: shape and scale parameters in GP model, respectively; [3]: Mean NPV (out of 1000 simula-
tions); [4, 5]: number of positive simulation outcomes and their respective mean value; [6, 7]: Mean ROV 
and number of abandons, [8–10]: simulated distribution values (100 years)

1 2 3 4 5 6 7 8 9 10
k σ NPV, M€ < 0, n > 0, M€ ROV, M€ Ab., n mm/year mm/day mm/month

0.0100 1.0 35 467 137 73 139 379 7.1 46.6
0.0100 2.0 25 479 129 67 145 771 14.0 97.6
0.0100 3.0 17 514 125 61 157 1155 21.9 144.8
0.0100 4.0 − 108 930 64 4 566 1555 28.4 190.8
0.0100 5.0 − 133 1000 NaN NaN 1000 1913 36.3 225.9
0.0825 1.0 21 485 120 62 156 410 9.3 50.9
0.0825 2.0 29 464 128 69 148 823 18.5 104.1
0.0825 3.0 − 9 597 113 46 202 1226 28.4 157.8
0.0825 4.0 − 129 989 36 0 737 1651 38.9 208.5
0.0825 5.0 − 131 1000 NaN NaN 1000 2088 44.1 268.5
0.1550 1.0 24 491 132 67 159 447 11.8 58.6
0.1550 2.0 27 498 132 66 139 900 24.2 121.4
0.1550 3.0 − 36 712 104 30 280 1361 36.9 184.5
0.1550 4.0 − 131 999 14 0 990 1784 48.6 244.0
0.1550 5.0 − 131 1000 NaN NaN 1000 2230 60.9 290.3
0.2275 1.0 32 481 139 72 132 490 18.3 69.8
0.2275 2.0 30 487 140 72 147 988 37.3 136.0
0.2275 3.0 − 90 873 67 8 453 1463 51.6 221.5
0.2275 4.0 − 132 1000 NaN NaN 1000 1979 70.4 278.8
0.2275 5.0 − 131 1000 NaN NaN 1000 2467 91.3 370.0
0.3000 1.0 32 481 137 71 143 541 21.8 88.9
0.3000 2.0 27 484 132 68 159 1086 46.5 173.8
0.3000 3.0 − 122 973 47 1 643 1609 68.8 244.2
0.3000 4.0 − 131 1000 NaN NaN 1000 2196 94.8 379.6
0.3000 5.0 − 131 1000 NaN NaN 1000 2747 118.6 429.1
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overall returns on investment (ROI) in cases where more 
capacity is needed.

3.	 The view that water management investments are real 
options has been implicitly and intuitively applied in the 
mining industry (see point 2 above), even if the decision-
making tools used may have been unable to handle the 
value of real options in the past.

The optimal level of water management investments will 
be left for future research efforts. Furthermore, the attained 
results could be refined by including trends into the simu-
lation of future rainfall, e.g. to account for the effects of 
climate change on extreme rainfall distributions. Indeed, sto-
chastic parameters associated with rainfall variability could 
be conditioned by nonstationary distributions, although 
uncertainty affects the actual observation of trends for lim-
ited empirical datasets (e.g. Serinaldi and Kilsby 2015; 
Pedretti and Irannezhad 2018).

The limitations of the study are related to the nature and 
availability of data. In this study, we assumed that all the 
relevant technical data for model building and uncertainties 
are parametric, whereas in real life industrial investments on 
the planning table often entail “non-numeric” uncertainties 
(such as environmental permits, technical development or 
changes in legal environment). In such cases, less detailed 
models should be considered.

With the approach proposed in this paper, a simulation-
based real option study for staged investment of additional 
water management capacity could be performed by pro-
viding the SD model with an optional water management 
investment, which is only triggered (automatically) if the 
water balance is trending towards a critical level. This would 
radically decrease the water security risks without increas-
ing the initial capital investment. However, the substantially 
longer time need to install water management capacity vs. 
the potentially rapid trend toward a critical water balance 
level must also be considered.
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