Effect of maraviroc on non-R5 tropic HIV-1: refined analysis of subjects from the phase IIb study A4001029

M. Surdo1, C. Alteri1, M. C. Puertas2, P. Saccomandi1, L. Parrotta1, L. Swenson3, D. Chapman4, G. Costa1, A. Artese1, E. Balestra1, S. Aquaro6, S. Alcaro3, M. Lewis7, B. Clotet2,8, R. Harrigan4, H. Valdez5, V. Svicher1, C. F. Perno1, J. Martinez-Picado5,9 and F. Ceccherini-Silberstein1

1) Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy, 2) Institut de Recerca de la SIDA irsiCaixa, Hospital Universitari ‘Germans Trias i Pujol’, Badalona, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain, 3) Department of Pharmaco- biological Sciences, University of Catanzaro ‘Magna Græcia’, Catanzaro, Italy, 4) BC Centre for Excellence in HIV/AIDS, Vancouver, Canada, 5) Pfizer, New York, NY, USA, 6) Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy, 7) Pfizer, UK, 8) Universitat de Vic (UVic), Catalonia, and 9) Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

Abstract

We characterized maraviroc susceptibility of dual/mixed tropic viruses from subjects enrolled onto phase IIb study A4001029. Maraviroc baseline plasma samples from 13 multidrug-experienced subjects were sequenced and the HIV-1-env gene cloned into pNL4.3Δenv to obtain recombinant viruses. The V3 region was sequenced by the Sanger method and ultradeep sequencing. By analysing subjects having a weighted optimized background therapy susceptibility (wOBT) score of <1, 3/7 subjects were characterized by good in vivo and in vitro response to maraviroc therapy. Molecular docking simulations allowed us to rationalize the maraviroc susceptibility of dual/mixed tropic viruses. A subset of subjects with dual/mixed tropic viruses responded to maraviroc. Further investigations are warranted of CCR5 antagonists in subjects carrying dual/mixed tropic virus that explore the feasible use of maraviroc in subjects that is potentially larger than those infected with a pure R5 virus.

Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

Keywords: Dual/mixed viruses, HIV, maraviroc, phenotypic activity, UDPS

Original Submission: 6 March 2014; Revised Submission: 31 July 2014; Accepted: 29 August 2014

Editor: G. Antonelli

Article published online: 29 October 2014

Introduction

Human immunodeficiency virus type 1 (HIV-1) strains can be phenotypically classified according to their ability to use CCR5 and/or CXCR4 coreceptors [1,2]. Special attention should be paid to dual/mixed tropic viruses, which can be divided into those more efficient in using the CCR5 coreceptor (R5+/X4), those using CXCR4 (R5/X4+) more efficiently and those using both coreceptors (R5/X4) with similar efficiency [3–5].

Maraviroc, the only U.S. Food and Drug Administration-approved CCR5 antagonist, demonstrated potent activity in subjects infected by CCR5 tropic viruses [6]. Nevertheless, it has been suggested that maraviroc could also be used to improve therapy efficacy in subjects infected with dual/mixed tropic viruses [3–5]. The A4001029 study is a unique exploratory, randomized, double-blind, multicenter trial designed to assess the use of maraviroc in treatment-experienced subjects infected with non-R5 viruses which has proved the efficacy of the regimen in 27% of subjects in the maraviroc twice-daily arm [8].

Thus, to deeply characterize the genotypic and phenotypic coreceptor usage of dual/mixed tropic viruses and to investigate their in vitro susceptibility to this drug, we analysed the maraviroc effect against HIV from 13 subjects enrolled onto the A4001029 study.
Methods

Subjects
Thirteen plasma samples randomly selected from HIV-1-infected subjects with available baseline samples were analysed. All subjects had dual/mixed tropic viruses at screening by standard Trofile assay and were treated with maraviroc according to the study protocol [8].

Sequencing
For each baseline plasma sample, the V3 region was amplified and sequenced by Sanger sequencing and by ultradepth sequencing (UDPS; Roche 454-GS-FLX) [9]. The Geno2Pheno algorithm set at <10% false-positive rate (FPR) was used to define the non-R5 viruses.

Production of recombinant viruses
Infectious recombinant viruses were obtained by cotransfecting 2 μg of gp160 polymerase chain reaction product obtained from each baseline plasma sample and 3 μg of pNL4.3Δenv plasmid.

Phenotypic tropism determination
Phenotypic tropism of recombinant viruses was evaluated by a multiple replication cycle assay on U87MG-CD4+/CCR5+/CXCR4+-astroglioma-expressing cells [3,7].

Phenotypic activity of maraviroc
Susceptibility to entry inhibitors (maraviroc 0.02–10 000 nM, AMD3100 1.3–65 000 nM) was investigated in human peripheral blood mononuclear cells.

Structural analysis
Structural analysis was performed using the CCR5–maraviroc–gp120 binding complex recently developed [10].

Detailed information about all methodologies are available in the online supplementary material.

Results and discussion

Subject characteristics
Data from 13 multidrug-experienced subjects, enrolled onto the phase IIb study A4001029, treated with maraviroc-containing regimens, all harbouring dual/mixed tropic viruses, were analysed. Most of them (8/13) had a wOBT score of ≤1. For all subjects, recombinant viruses were successfully obtained by cloning the entire gp160 from baseline plasma samples into a pNL4.3Δenv plasmid (Table 1).

Genotypic characterization
V3 population sequencing was performed for all 13 pairs of plasma samples and corresponding recombinant viruses. The tropism prediction was concordant for 12/13 samples (92%), with a CXCR4 tropism prediction for 11 samples (FPR < 10%). The only discordant subject was subject 10 (plasma FPR 3.4% vs. recombinant virus FPR 27.0%) (Table 1). By UDPS analysis, non-R5-using species were found in all plasma samples, with a median prevalence ranging from 3.7% to 99.6%. Interestingly, in 5/11 subjects with plasma and recombinant virus V3 population FPR of <10%, UDPS revealed R5 species with a prevalence of >25% (Table 1).

Phenotypic tropism characterization
By using U87MG-CD4⁺-CCR5⁺/CXCR4⁺-expressing cells, 12/13 (92.3%) viruses replicated in both CXCR4⁺ and CCR5⁺ cell lines, and thus were defined as dual/mixed tropic viruses, while one recombinant virus (ID#3) replicated only in CXCR4⁺ cells, showing pure X4 tropism (Table 1). No recombinant virus replicated solely in CCR5⁺ cells. According to p24 production, three recombinant viruses were defined as R5/X4 tropic for similar p24 production in supernatants of either U87MG-CD4⁺/CCR5⁺ or U87MGCD4⁺/CXCR4⁺ cells. Four other viruses were defined as R5’/X4 for p24 production higher in U87MG-CD4⁺/CCR5⁺ cells than in U87MG-CD4⁺/CXCR4⁺ cells. The latter five viruses were defined as R5/X4 tropic for p24 production higher in U87MG-CD4⁺/CXCR4⁺ cells than in U87MG-CD4⁺/CCR5⁺ cells.

Antiviral activity of maraviroc in vitro
As expected, maraviroc was not active against the pure X4 recombinant virus (ID#3; viral replication inhibition 0% at 200 nM/10 000 nM). At a concentration of 200 nM (close to the minimal concentration achieved in plasma of maraviroc-treated subjects with the common dose of 300 mg) maraviroc was able to significantly inhibit 12 dual/mixed tropic viruses (median (interquartile range, IQR) inhibition = 31.5% (15.5–54.5%). According to phenotypic tropism characteristics, viral inhibition (maraviroc 200 nM) and drug concentration causing 50% inhibition (IC₅₀) of R5’/X4 were considerably different from those observed for R5/X4 and R5/X4⁺ viruses (median (IQR) inhibition = 77% (45–86.5) vs. 16% (15–30.5) vs. 26% (19–37), respectively; IC₅₀ 0.7 nM vs. >1000 nM vs. >1000 nM, respectively; Supplementary Table 1). Only R5’/X4 viruses responded to maraviroc in vitro similarly to the pure R5 virus control (HIV Bal), reaching approximately 90% of viral inhibition at 20 nM (Fig. 1(A)). In contrast, X4 inhibitor AMD3100 (1300 nM) efficiently inhibited the pure X4 recombinant virus (95% inhibition) and partially inhibited 9/12 dual/mixed tropic viruses (median (IQR) inhibition = 43.5% (6.8–59),
TABLE 1. Genotypic and phenotypic characterization

<table>
<thead>
<tr>
<th>Subject ID</th>
<th>Phenotypic tropism</th>
<th>UDPS</th>
<th>% Non-R5</th>
<th>% R5</th>
<th>V3 mutations</th>
<th>MVC IC50 (nM)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1_RV</td>
<td>RS/X4</td>
<td>1.7</td>
<td>99.6</td>
<td>0.4</td>
<td>R9S S11R I12/V H13S F20W Y21R T22A G24del E25D/N5S</td>
<td>333</td>
</tr>
<tr>
<td>1_Plasma</td>
<td></td>
<td>1.5</td>
<td>99.6</td>
<td>0.4</td>
<td>R9S S11R I12/V H13S F20W Y21R T22A G24del E25D/N5S</td>
<td>>10,000</td>
</tr>
<tr>
<td>2_RV</td>
<td>RS/X4</td>
<td>2.8</td>
<td>94.9</td>
<td>5.1</td>
<td>R10TS N75K H13E T22A E25Q</td>
<td><0.03</td>
</tr>
<tr>
<td>2_Plasma</td>
<td></td>
<td>2.8</td>
<td>94.9</td>
<td>5.1</td>
<td>R10TS N75K H13E T22A E25Q</td>
<td>>10,000</td>
</tr>
<tr>
<td>3_RV</td>
<td>X4</td>
<td>0.2</td>
<td>86.4</td>
<td>13.6</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>266</td>
</tr>
<tr>
<td>3_Plasma</td>
<td></td>
<td>0.9</td>
<td>88.7</td>
<td>11.3</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>4_RV</td>
<td>RS/X4*</td>
<td>0.2</td>
<td>72.4</td>
<td>27.6</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>4_Plasma</td>
<td></td>
<td>1.7</td>
<td>72.0</td>
<td>28.0</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>5_RV</td>
<td>RS/X4*</td>
<td>0.2</td>
<td>72.4</td>
<td>27.6</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>5_Plasma</td>
<td></td>
<td>1.7</td>
<td>89.9</td>
<td>10.1</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>6_RV</td>
<td>RS/X4*</td>
<td>0.7</td>
<td>99.5</td>
<td>0.5</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>6_Plasma</td>
<td></td>
<td>0.7</td>
<td>99.5</td>
<td>0.5</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>7_RV</td>
<td>RS/X4*</td>
<td>1.1</td>
<td>70.6</td>
<td>29.4</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>7_Plasma</td>
<td></td>
<td>1.7</td>
<td>70.6</td>
<td>29.4</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>8_RV</td>
<td>RS/X4*</td>
<td>1.7</td>
<td>77.3</td>
<td>22.7</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>8_Plasma</td>
<td></td>
<td>1.7</td>
<td>77.3</td>
<td>22.7</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>9_RV</td>
<td>RS/X4*</td>
<td>0.1</td>
<td>3.7</td>
<td>96.3</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>9_Plasma</td>
<td></td>
<td>0.8</td>
<td>3.7</td>
<td>96.3</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>10_RV</td>
<td>RS/X4</td>
<td>27</td>
<td>72.2</td>
<td>27.8</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>10_Plasma</td>
<td></td>
<td>34</td>
<td>72.2</td>
<td>27.8</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>11_RV</td>
<td>RS/X4</td>
<td>1.7</td>
<td>96</td>
<td>4</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>11_Plasma</td>
<td></td>
<td>96</td>
<td>1.0</td>
<td>9.0</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>12_RV</td>
<td>RS/X4</td>
<td>17</td>
<td>81.3</td>
<td>18.7</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>12_Plasma</td>
<td></td>
<td>27.9</td>
<td>81.3</td>
<td>18.7</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>13_RV</td>
<td>RS/X4</td>
<td>4.1</td>
<td>99.4</td>
<td>0.6</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
<tr>
<td>13_Plasma</td>
<td></td>
<td>4.7</td>
<td>99.4</td>
<td>0.6</td>
<td>T23A D29G Y21H G24K E25G I27T G28E D29G I30L</td>
<td>>10,000</td>
</tr>
</tbody>
</table>

Plasma indicates virus from subject plasma. RV, recombinant virus (pNL4.3ΔEnv + gp160 from subject). V3 mutations (in bold) are found associated with X4 or dual tropism [3]. Underlined mutations were found associated with MVC or VCV resistance. Consensus B was used as reference sequence. Phenotypic tropism was evaluated on U87MG−CD4+/CXCR4+. Genotypic tropism was evaluated by the Geno2Pheno (G2P) algorithm using FPR at 10%.

*FPR, false-positive rate; MVC, maraviroc; IC50, drug concentration causing 50% inhibition; IQR, interquartile range; PBMC, peripheral blood mononuclear cells.

**Percentage of non-R5 species by UDPS was calculated setting G2P FPR at 10%. Similar results were obtained setting FPR at 3.75% and 5.75%, with the exception of samples 7, 8, 11 and 13.

**Effect of maraviroc on non-R5 tropic HIV 103.e3

Supplementary Table 1). These results confirm that dual tropic viruses represent a swarm of different viruses with different characteristics and different sensitivity to RS/X4 inhibitors.

Comparison between in vitro and in vivo response to maraviroc

By comparing the in vitro and in vivo maraviroc response in a subgroup of subjects (n = 7) with available viroimmunological follow-up and with wOBT score of <1 (indicating a very limited efficacy of the backbone drugs), we found in 6/7 subjects a good correlation between the two maraviroc responses. In particular, three subjects (subjects 4, 10, 12) with >25% of R5 species in plasma at UDPS exhibited good in vivo (Fig. 1(B)) and in vitro responses (Table 1) (median (IQR) change in viral load = −2.1 log copies/mL (−2.05; −2.75) at 8 weeks. HIV RNA<50 copies/mL at 24 weeks and median maraviroc IC50 4.6 nM). Conversely, 3 subjects (subjects 1, 2, 11), infected by a viral population with >95% of X4 species were characterized by exhibiting no or very low response in vivo and in vitro. For only one subject (subject 13), with 98.4% of X4 species in plasma but characterized by a R5*/X4 phenotype in vitro were the 2 maraviroc responses not concordant, with no/low response exhibited in vivo and excellent activity exhibited in vitro.

Even if few subjects have been analysed, our results suggest that subjects having >25% of R5 species in plasma at UDPS and characterized by a good in vitro response to maraviroc (IC50 < 300 nM) could potentially respond to a maraviroc-containing regimen, even in the setting of a low wOBT score.
This finding is important from a clinical point of view. Despite recent studies demonstrated the ability of CCR5 antagonist to inhibit dual/mixed tropic viruses both in vivo and in vitro [3,4,7,8], maraviroc treatment is recommended today only for subjects having a pure R5 viral population [11]. Of note, extending our V3 analysis at UDPS to all subjects, irrespective of wOBT score, the cutoff of R5 species found associated with ex vivo maraviroc response was 5% (6/8 subjects with >5% R5 species had HIV RNA<50 copies/mL at week 24 vs. 0/5 with <5% R5 species, p 0.02). Other recent studies reported that a prevalence of >2% of X4 species is sufficient to negatively affect the decline in viral load during maraviroc regimen [12]. In these studies, however, it is important to mention that a cutoff FPR of 3.5% was consistently used, therefore suggesting that samples with viral mixture with low X4% by UDPS are the ones in which it is reasonable to expect a good in vivo response and phenotypic susceptibility. Overall, UDPS studies with a higher number of subjects infected with non-pure-R5 viruses are strongly suggested; indeed, our results may support the use of V3 UDPS, in the particular setting of subjects with few therapeutic options, as a rapid method to identify subjects for whom maraviroc can be a suitable option [12,13].

Correlation between maraviroc activity and structure analysis

Among all subjects analysed, two (subjects 2 and 11) having at baseline very high percentage of non-R5 sequences at UDPS (>95%) and very low FPR value by population sequencing (2.8% and 1.7%, respectively) and phenotypically characterized by a R5/X4 and R5'/X4 virus, respectively, responded neither in vivo nor in vitro to maraviroc, and, interestingly, not even to AMD3100 in vitro (Supplementary Table 1).

Both plasma and recombinant viruses of these two subjects carried key mutations required for CXCR4 binding (e.g. S11R, I12V, H13S, I27V, G24R, E25R) but also for CCR5 binding (e.g. E25D, G24D) [14]. For these reasons, we raised the question of whether the mutations observed in these nonresponsive subjects may have an impact on interaction with the coreceptors. Because of the absence of a CXCR4 crystallographic model, we focused on the interaction network of CCR5 with gp120, or with maraviroc in the adopted HIV-1 CCR5–gp120–gp120 binding structure complex [10,15]. After molecular dynamic simulations of CCR5–gp120 complexes in the presence of maraviroc, the productive interactions V3 sequences in subjects 2 and 11 with CCR5 increased or were superimposable to those observed for the reference YU2-WT-V3-complex (Supplementary Table 2). Differently, in the CCR5–maraviroc–gp120 binding complex, the productive interactions of the drug remarkably decreased (465 = ID#2, 426 = ID#11S1 and 444 = ID#11S2 vs. 478 = WT), with a consequent binding destabilizing effect. Thus, these data confirmed the phenotypic results, demonstrating the ability of these viruses to efficiently bind the CCR5 coreceptor in presence of maraviroc as well. Our results are concordant with
other studies suggesting that maraviroc-resistant viruses may develop an increased dependence on the CCR5/N-terminus, most likely signaling a shift in gp120 binding to a region of CCR5 not modified by the antagonist binding [16].

In conclusion, by using an integrated genotypic, phenotypic and structural approach, this study provides evidence for the existence of a wide variety of HIV-1 dual tropic viruses, with some of them showing a substantial susceptibility against maraviroc. This is clinically important since dual/mixed viruses are frequently observed in subjects’ viral population [17–19], and the emergence of X4/dual mixed variants correlates with a worse clinical outcome [20]. For these reasons, this work highlights the importance of further investigations of the activity of CCR5 antagonists in subjects carrying dual/mixed tropic virus, exploring a feasible use of maraviroc as a therapeutic option in a subset of multidrug-failed subjects, particularly in those with R5 species present in >25% of the viral population by UDPS and with susceptible in vitro maraviroc phenotype.

Transparency Declaration

Financial support was received from the European Commission Framework 7 Program (CHAIN, collaborative HIV and anti-HIV drugs Resistance Network, Integrated Project 223131), Aviralia Foundation, Italian National Institute of Health (convention 40H41, RF-2009-1539999), Italian Ministry of University and Scientific Research (prot. 2008MRLSNZ_003) and Spanish Ministry of Science and Innovation (grant SAF2010-21224). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CFP has received funds for attending symposia, speaking, organizing educational activities, grant research support, consultancy and advisory board membership, from Abbott, Boehringer Ingelheim, Bristol Myers Squibb, Gilead, Merck Sharp & Dohme, Janssen Cilag, Pfizer, Tibotec, Roche and Viiv. FCS has received funds for attending symposia, speaking, organizing educational activities, grant research support, consultancy and advisory board from Abbott, Boehringer Ingelheim, Bristol Myers Squibb, Gilead, Janssen Cilag, Roche, Bristol Myers Squibb, and Viiv. VS has received funds for attending symposia, speaking, organizing educational activities, grant research support, consultancy and advisory board from Abbott, Boehringer Ingelheim, Bristol Myers Squibb, Gilead, Janssen Cilag, Merck (MSD) and Viiv. DC is an employee of Pfizer Inc. and owns shares of Pfizer stock. HV is a Pfizer employee and owns Pfizer stock. ML is a Pfizer employee. JMP has received financial compensation for consultancy, lectures, educational activities and research support from Merck Sharp & Dohme, Bristol Myers Squibb, Viiv, Janssen Cilag and Boehringer Ingelheim. The other authors report no conflicts of interest relevant to this article.

Appendix A. Supplementary data

Supplementary data related to this article can be found at doi:10.1016/j.cmi.2014.08.002.

References

