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ABSTRACT
We present a novel approach to calculate molecular infrared (IR) spectra based on semiclassical (SC) molecular dynamics. The main advance
from a previous SC method [M. Micciarelli et al. J. Chem. Phys. 149, 064115 (2018)] consists of the possibility to avoid state-to-state cal-
culations making applications to systems characterized by sizable densities of vibrational states feasible. Furthermore, this new method
accounts not only for positions and intensities of the several absorption bands which make up the IR spectrum but also for their shapes.
We show that accurate SC IR spectra including quantum effects and anharmonicities for both frequencies and intensities can be obtained
starting from SC power spectra. The approach is first tested against the water molecule and then applied to the 10-atom glycine amino
acid.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5096968

I. INTRODUCTION

Infrared (IR) spectroscopy is commonly employed for chemi-
cal characterization owing to some peculiar features, which include
its cheapness, portability to different environments, and generally
short execution times. The main features of an IR spectrum, from
which important information about molecular structure and inter-
actions can be obtained, include the frequencies of vibrational tran-
sitions, the shapes of absorption bands, and their intensities. How-
ever, experimental measures can be of difficult interpretation. This
is especially true when the IR spectrum consists of many overlap-
ping absorption bands, which make it hard to assign fingerprint
and stretch vibrations. It is in this setting that theoretical simu-
lations of IR spectra may be crucial, allowing the decomposition
of the spectrum into specific molecular motions. This is usually
achieved first relying on the normal modes of vibration as a basic
harmonic approximation and then refining the theory by including
anharmonicity effects.1,2

The frequencies of vibrational transitions can be calculated reli-
ably and accurately through semiclassical (SC) molecular dynam-
ics.3–5 In fact, a SC propagator is able to regain quantum effects
from a classical Hamiltonian dynamics and several SC methods have
been introduced to estimate quantum frequencies of vibration upon

calculation of power spectra.6–14 In practice, a quantum reference
state is chosen and the vibrational eigenenergies are obtained from
the Fourier transform of its survival amplitude. It is then trivial to
calculate the vibrational transition frequencies by difference with
respect to the zero-point energy (ZPE).15–17

Recent advances have permitted to obtain the SC power spec-
tra of systems characterized by many degrees of freedom. This has
been achieved in our group by developing innovative methodolo-
gies such as the multiple coherent (MC) and the divide-and-conquer
(DC) semiclassical initial value representation (SCIVR). MC SCIVR
is based on a tailored choice of reference state and dynamics ini-
tial conditions. In this way, accurate results are collected running
just a few or even a single classical trajectory.18–21 Such a reduction
in the needed computational effort has opened up the possibility to
employ ab initio on-the-fly dynamics and to apply the semiclassical
formalism to systems with many degrees of freedom.22–25

When dealing with high dimensional systems, it is not always
possible to get a sensible spectroscopic signal with a full dimen-
sional SC approach. In the case of a system-bath model, one can
employ a mixed semiclassical approach with an accurate semiclas-
sical propagator for the system and a less accurate one for the
bath.26–28 However, in general, a DC SCIVR has been introduced
to overcome the curse of dimensionality issue.29 The technique,
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still based on full dimensional classical molecular dynamics, allows
the computation of semiclassical power spectra in reduced dimen-
sionality within a set of appropriately chosen subspaces. The total
spectrum is eventually obtained by collecting the low dimensional
spectra calculated in the subspaces. Some representative applications
of these techniques include fullerene,29 glycine,30 benzene,31 water
clusters,32 the protonated glycine dimer, and H2-tagged protonated
glycine.33

Regarding band shapes, they arise naturally in dynamical
approaches, such as SC ones, from the Fourier transform and
include the effect of any interactions experienced along the dynam-
ics. This is different from common stick spectra in which a single
central transition is representative of the whole absorption band
whose shape is modeled by means of an ad hoc Lorentzian function.

Finally, the accurate estimate of spectral intensities is still a par-
tially open issue and the missing tile for a complete semiclassical
simulation of IR spectra. The straightforward approach to the prob-
lem deals with the calculation of the dipole autocorrelation since
its Fourier transform returns the correct estimates for both tran-
sition frequencies and intensities.3,34–42 Strictly speaking, the pres-
ence of two propagators leads semiclassically to a double phase-
space integration, which makes the calculation very hard to converge
due to the oscillations produced by the phase differences between
trajectories with different initial conditions.

Several methods have been developed to try to overcome this
issue. A possible strategy consists in easing the calculation by means
of a filter able to damp the oscillations, hopefully without spoil-
ing the results.43–45 Another possibility is represented by the lin-
earization approximation, which leads to a semiclassical expression
based on a single phase space integration and is formally equal to its
classical counterpart, but with Wigner functions replacing classical
ones.46–50 This kind of approximation has a drawback in that it is
unable to account for quantum coherence between distinct trajecto-
ries and is affected by the zero point energy leakage problem, which
is not the case for the original SCIVR formulation.51 A more accu-
rate approach would be based on the rearrangement of the dipole
autocorrelation in a suitable way for the application of the forward-
backward SC formula obtained by stationary phase approximating
the primitive SC expression. In this way, a single phase space inte-
gration is needed, quantum coherences are included, and oscillations
are quenched due to the evolution of trajectories first forward and
then backward in time.52–56 In all cases, the challenge is to go beyond
model systems and to be able to obtain semiclassical IR spectra even
for molecules of sizable dimensionality, i.e., the goal already reached
for power spectra.

For this purpose, a SC methodology able to reproduce IR spec-
tra has been introduced very recently.57 It is based on the calculation
of oscillator strengths from vibrational eigenfunctions represented
as linear combinations of harmonic functions. The coefficients of the
linear combinations are obtained after collecting information from
an appropriate set of SC power spectrum simulations in which har-
monic states are employed as reference states. The approach takes
advantage of the techniques developed for power spectra, and appli-
cations to systems with many degrees of freedom are, in principle,
feasible. The results for the water molecule are indeed in excel-
lent agreement with the quantum benchmark, but the method has
a drawback of requiring calculation of contributions from all states
involved in the transitions that make up the several absorption bands

in the IR spectrum, which is unpractical for systems characterized by
large densities of vibrational states.

The principal aim of the present paper is to take SC IR spec-
troscopy to the same level of applicability as SC power spectrum
investigations. The goal is achieved by decomposing the IR spec-
trum into a sum of dynamical correlation functions, which can be
calculated from SC power spectra and allows avoiding the unde-
sired state-to-state computations. The paper outline is as follows:
In Sec. II we detail the theory behind the new method; Sec. III is
devoted to two representative applications. Specifically, application
to water yields results of excellent accuracy, while application to the
high energy fundamentals of glycine points out the importance of
electrical and mechanical anharmonicity and demonstrates the pos-
sibility to get reliable IR spectra for higher dimensional systems. A
summary and some conclusions end the paper.

II. THEORY
A. Eigenvalues, eigenfunctions, and transition dipoles

For a molecular system governed by the vibrational Hamilto-
nian operator

Ĥ = T̂ + V̂ (1)

with potential energy surface (PES) V (R) given by the electronic
Born-Oppenheimer adiabatic energy, we are interested in studying
the spectral decomposition of Ĥ in terms of vibrational bound states
beyond the harmonic approximation, i.e., in solving the eigenvalue
problem

Ĥ∣en⟩ = En∣en⟩. (2)

An analytical solution to Eq. (2) is, in general, not available, so
numerical and approximate strategies are needed. For this purpose,
the theoretical foundation of the formalism employed in this work
lies on the adoption of the time propagation operator

P̂(t) = e−
i
h̵ Ĥt

= ∑
n
e−

i
h̵ Ent ∣en⟩⟨en∣ (3)

to compute the time dependent survival amplitude of an arbitrary
reference state |χ⟩

Iχ(t) ≡ ⟨χ∣P̂(t)∣χ⟩ = ∑
n
e−

i
h̵ Ent ∣⟨χ∣en⟩∣2, (4)

where the second equality is obtained upon introduction of the
representation of the propagator in the basis of the Hamiltonian
eigenvectors.

Equation (4) implies that both squared projections ∣⟨χ∣en⟩∣2 of
the reference state onto the eigenvectors and eigenvalues En can be
determined, respectively, from peak amplitudes and positions of the
following power spectrum:

Ĩχ(E)=
1

2πh̵

τ

∫
−τ

dt Iχ(t)e
i
h̵ Et

=
1
πh̵

Re
⎡
⎢
⎢
⎢
⎢
⎣

τ

∫

0

dt Iχ(t)e
i
h̵ Et

⎤
⎥
⎥
⎥
⎥
⎦

= ∑
n
∣⟨χ∣en⟩∣2D(E − En; Γτ). (5)
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The dynamical convolution function D is a delta-nascent function
centered on En with amplitude Γτ approaching zero as τ → ∞. It
has the analytical form of a sinc function if the exact propagator is
employed.

While eigenvalues are obtained straightforwardly, determina-
tion of eigenvectors requires a more elaborated strategy. In a recent
paper,57 we have shown how vibrational eigenstates can be derived
from SC power spectra. For a generic system with Nv vibrational
degrees of freedom, the starting point is the representation of the
eigenvectors as a linear combination of Nv-dimensional harmonic
states |�K⟩

∣en⟩ =
N
∑
K=1

Cn,K∣�K⟩. (6)

N is the number of states in the basis set, Cn,K = ⟨�K∣en⟩ are real coef-
ficients, and |�K⟩ is the generic K-th element of the complete and
orthonormal Nv-dimensional basis set {∣�K⟩}. Each element |�K⟩ of
the basis set is obtained as the Hartree product of one-dimensional
harmonic states

∣�K⟩ = ∣�K1
,�K2

, . . . ,�KNv
⟩ = ∣�K1

⟩ . . . ∣�KNv
⟩, (7)

and

�Kα(Qα) = ⟨Qα∣�Kα⟩ =
1

√
2KαKα!

(
ωα
πh̵

)

1
4

e−
ωαQ2

α
2h̵ hKα(

√ωα
h̵

Qα),

(8)

where Qα = qα − qeq ,α, ωα, and Kα are, respectively, the αth nor-
mal mode coordinate displacement from equilibrium, frequency,
and quantum number. hKα indicates the Kαth order Hermite poly-
nomial in the variable Qα. The square modulus of coefficients Cn ,K
can be computed considering that they are proportional to the inten-
sity, at the eigenvalue of the vibrational Hamiltonian, of the Fourier
transform of the survival amplitude with the reference harmonic
state �K, i.e., ∣Cn,K∣

2
∝ Ĩ�K(En). As shown in detail in our previ-

ous work,57 the signed coefficients in Eq. (6) can be calculated from
survival amplitudes using the following working formula:

Cn,K =
∆Ĩ�0 ,�K(En)

2
√

Ĩ�0(En)
, (9)

where�0 is the harmonic ground state, Ĩ�K (En) is the value at energy
En of the power spectrum obtained with the harmonic state |�K⟩,
and

∆Ĩ�K1
,�K2

(E) ≡ Ĩ�K1
+�K2

(E) − Ĩ�K1
(E) − Ĩ�K2

(E). (10)

The same coefficients can be exploited to evaluate the transition
dipole between an initial state |en⟩ and a final state |em⟩

⟨en∣µ̂�0N ∣em⟩ = ∑
K,K′

Cn,KCm,K′⟨�K∣µ̂
�
0N ∣�K′⟩, (11)

which is needed for calculating the absorption spectrum. In Eq. (11),
� = x, y, z and µ̂0N(R) = µ̂N(R) + µ̂e0(R) is the molecular dipole
made of two contributions: µN(R) = ∑iZiRi is the nuclear part;
µe0(R) = ∫dr |'0(r; R)|2µe(r) is the electronic dipole with '0(r; R)

representing the adiabatic electronic ground state wavefunction for
a given nuclear configuration. Calculation of the nuclear contribu-
tion is trivial, while the electronic one requires a Monte Carlo esti-
mate.57 The latter can be avoided by means of the widely employed
linearization approximation to the dipole

µ0N(q) − µ0N(qeq) ≃
Nv

∑
α=1

∂µ0N
∂qα

∣

qeq

(qα − qeq,α). (12)

Equation (11) then can be rearranged as

⟨en∣µ̂�0N ∣em⟩ = ∑
K,K′

Cn,KCm,K′∑
α
Z�,α⟨�Kα ∣Q̂α∣�K′α

⟩, (13)

where Z�,α =
∂µ�0N
∂qα

∣
qeq

is a quantity easy to compute and rou-

tinely returned by the most popular electronic structure software
packages.

Equation (13) represents the fully anharmonic estimate of tran-
sition dipoles within the linearized dipole approximation. Other
more approximate formulae can be adopted to ease the calculation.
For instance, the initial state |en⟩ can be approximated by a single
harmonic state ∣�K̄⟩, i.e., ∣en⟩ ≃ ∑K δKK̄∣�K⟩. This leads to

⟨en∣µ̂�0N ∣em⟩ = ∑
K′

Cm,K′∑
α
Z�,α⟨�K̄α ∣Q̂α∣�K′α

⟩. (14)

We refer to Eq. (14) as the semianharmonic transition dipole.
Finally, the harmonic approximation can be invoked also for the
final state so that ∣em⟩ ≃ ∣�K̄′⟩ and the transition dipole takes the
simpler form

⟨en∣µ̂�0N ∣em⟩ = ∑
α
Z�,α⟨�K̄α ∣Q̂α∣�K̄′α⟩. (15)

This is the case commonly known as the harmonic electrical approx-
imation, which is often coupled in basic spectroscopy calculations
to its mechanical counterpart (i.e., the harmonic estimate of fre-
quencies) under the collective name of double harmonic approxim-
tion.

A matrix element like the one in Eq. (15) can be readily
evaluated. In fact,

⟨�K∣Q̂α∣�K′⟩ =
⎛

⎝

Nv

∏
β≠α

δKβ ,K′β

⎞

⎠

√
1

2ωα

× (δKα ,K′α+1
√
K′α + 1 + δKα ,K′α−1

√
K′α), (16)

which is obtained starting from Q̂α =
√

1
2ωα

(â†
α + âα), with â†

α and
âα being the harmonic oscillator creation and annihilation opera-
tors, respectively, for normal mode α. Equation (16) incorporates
the harmonic selection rules, which permit us to simplify Eq. (13) by
neglecting many zero-valued terms,

⟨en∣µ̂�0N ∣em⟩ = µ
�
nm = ∑

K
Cn,K∑

α
Cm,K(α)µ�,K(α) . (17)

The second sum in Eq. (13) is restricted in Eq. (17) to the 2Nv basis
set elements obtained by exciting or de-exciting the αth degree of
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freedom, i.e., the states ∣�K(α)⟩ such that ∣�K(α)⟩ ∝ â†
α∣�K⟩ or ∣�K(α)⟩

∝ âα∣�K⟩. Furthermore,

µ�,K(α) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Z�,α
√

Kα+1
2ωα

if ∣�K(α)⟩ ∝ â†
α∣�K⟩

Z�,α
√

Kα
2ωα

if ∣�K(α)⟩ ∝ âα∣�K⟩ and âα∣�K⟩ ≠ 0

0 if ∣�K(α)⟩ ∝ âα∣�K⟩ and âα∣�K⟩ = 0.
(18)

B. The IR spectrum from power spectra
Our target is to calculate the following spectrum:

S�,n(ω) = ∑
m≠n

∣µ�nm∣
2 ωD(ω − Em + En; Γτ), (19)

in which the sum runs over all the spectral lines from the nth to
the mth vibrational states. This is an approximate expression for the
IR absorption of a system initially lying on the nth pure Hamilto-
nian eigenstate and perturbed by a radiation of frequency ω polar-
ized along the � direction, which takes the energy of the system to
E = ω + En. The spectral lines are broadened over a finite range
of energies by means of the dynamical convolution function D.
Details of this approach and derivation of Eq. (19) are presented in
Appendix A.

It is convenient to start by considering the following IR spec-
trum in which the transition dipoles are treated by means of the
semianharmonic approximation [see Eq. (14)]:

S�,�K̄(ω) = ∑
m

∣µ�K̄m∣
2 ωD(ω − Em + En; Γτ), (20)

where

µ�K̄m = ⟨�K̄∣ µ̂
�
0N ∣ em⟩. (21)

Inserting Eq. (17) (with CnK̄ = δn,K̄ ) into Eq. (20) and expanding the
square in the sum, we get

S�,�K̄(ω) =∑
m

⎛

⎝
∑
α
C2
m,K̄(α)(µ

�
K̄(α))

2+

+ 2∑
β<α

Cm,K̄(α)Cm,K̄(β)µ
�
K̄(α)µ

�
K̄(β)

⎞

⎠
ωD(ω − Em + En; Γτ),

(22)

where the indexes α and β run over the normal modes. A proper
combination of Eqs. (5), (6), and (10) permits us to rearrange
Eq. (22) in terms of power spectra only. In fact, by means of

Ĩ�K (E) = ∑
m

∣Cm,K ∣
2D(E − Em; Γτ),

∆Ĩ�K1
,�K2

(E) = ∑
m

2Cm,K1Cm,K2D(E − Em; Γτ),
(23)

and inverting in Eq. (22) the sum over m (that we do not want to
compute) and the sum over α (that we want to keep explicit), after
some straightforward algebra, we get

S�,�K̄(ω) =ω∑
α

⎡
⎢
⎢
⎢
⎢
⎣

µ2
K̄(α) Ĩ�K̄(α)

(ω + En)

+∑
β<α

µK̄(α)µK̄(β)∆Ĩ�K̄(α) ,�K̄(β)
(ω + En)

⎤
⎥
⎥
⎥
⎥
⎦

. (24)

It is worth noting that in Eq. (24) the dependence of the power
spectra on the radiation frequency has been explicitly indicated, as
derived from the anticipated key relation E = ω + En.

Eventually, the (fully anharmonic) IR spectrum defined in
Eq. (19) can be obtained (see Appendix B for derivation details) as

S�,n(ω) =∑
K
C2
n,KS�,�K(ω)

+ ω ∑
K′<K
∑
α,α′

Cn,KCn,K′∆Ĩ�K(α) ,�
K′(α′)

(ω + En)µ�K(α)µ
�
K′(α′) ,

(25)

where in the sum over K′ < K the elements of the basis set are sorted
in some arbitrary way. Equations (24) and (25) demonstrate that a
state-to-state computation is not required and that, if power spectra
are calculated exactly, it is only the fully anharmonic estimate that
demands for coefficients (i.e., for knowledge of the eigenfunction of
the initial state).

C. Semiclassical power spectra
In semiclassical dynamics, the quantum propagator is usually

approximated by means of the Herman-Kluk (HK) expression

P̂(t) ∝∬ dQ0dp0 Ct(Q0,p0)e
i
h̵ St(Q0 ,p0)∣Qt ,pt⟩⟨Q0,p0∣, (26)

where Qt and pt are the classical normal mode displacement and
momentum vectors at time t, obtained from the classical prop-
agation of the trajectory started at (Q0, p0) under the classi-
cal vibrational Hamiltonian. |Qt , pt⟩ are coherent states of the
form

⟨x∣Qt ,pt⟩ = (
det(γ)
π

)

Nv
4

e−
1
2 (x−Qt)Tγ(x−Qt)+ i

h̵ p
T
t (x−Qt), (27)

where γ is a Nv × Nv diagonal matrix with diagonal elements
equal to the harmonic frequencies {ωλ}Nv

λ=1, St is the classical action
at time t computed along the trajectory, and, finally, Ct(Q0, p0)
is the HK prefactor at time t that accounts for second order
quantum fluctuations around each classical path and is defined
as

Ct(Q0,p0) =

¿
Á
ÁÀ 1

2Nv
∣
∂Qt
∂Q0

+ γ−1 ∂pt
∂p0

γ − ih̵
∂Qt
∂p0

γ +
iγ−1

h̵
∂pt
∂Q0

∣.

(28)

The multidimensional integral over the initial phase space condi-
tions is usually performed by means of Monte Carlo techniques, and
the method has been applied successfully in many instances, yielding
accurate results.58–62 However, the number of different classical tra-
jectories to run is often prohibitively high for an effective interface
to ab initio on-the-fly evaluations of energies and gradients.
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The computational cost required for these kinds of simulations
can be much decreased by employing Kaledin and Miller’s time aver-
age filter with a separable approximation to the prefactor.4 This
approximation consists in imposing that the amplitude of the HK
prefactor is constant in time, i.e.,

Ct(Q0,p0) ≃ ei�t(Q0 ,p0), (29)

a condition that is exactly fulfilled in the case of the harmonic
oscillator. In this way, the TA SCIVR power spectrum is

Ĩχ(E)∝ ∫∫ dQ0dp0
1
τ

RRRRRRRRRRRRR

τ

∫

0

dt⟨χ∣Qt ,pt⟩e
i[St(Q0 ,p0)+�t(Q0 ,p0)+Et]/h̵

RRRRRRRRRRRRR

2

.

(30)

Calculation of the time averaged power spectrum still requires per-
forming a multidimensional integration but yields converged results
orders of magnitude faster with a loss in accuracy in peak positions
of just a few cm−1. Notwithstanding, the computational overhead of
ab initio on-the-fly simulations demands for a further reduction of
the number of trajectories to be run.

This goal has been reached by means of the MC-SCIVR
approach in which rather than relying on a full Monte Carlo sam-
pling of the phase space, the SC time propagator is built using
only a handful of tailored classical trajectories. The trajectories are
ideally selected according to the Einstein-Brillouin-Keller (EBK)
quantization rules

∮

H(Q(n)t ,p(n)t )=En

p(n)i dq(n)i = h̵(νi +
ai
2

+
bi
4
), (31)

where νi are positive integers, while ai and bi are Maslov indexes.
Indeed, the EBK quantization condition is exact for the harmonic
oscillator with Maslov indexes ai = 1 and bi = 0. In this particular
case,

1
2
(p(n)i (t))

2
+

1
2
ω2
i (Q

(n)
i (t))

2
= (

1
2

+ νi)h̵ωi (32)

so that the classical trajectories have total energies (and energy
partition) corresponding to the harmonic oscillator spectral energies

EHOν = ∑
i
(

1
2

+ νi)h̵ωi. (33)

The EBK quantization conditions are still exact when the PES anhar-
monicity preserves the generalized periodicity of the motion (i.e.,
when each mode performs a periodic motion). In fact, Eqs. (32) and
(33) become

∑
i

1
2
(p(n)i (t))

2
+ V(Q(n)

(t)) = ∑
i
(

1
2

+ νi) h̵ Ξi(E)

En(ν) = ∑
i

(
1
2

+ νi) h̵ Ξi(En(ν)),
(34)

where Ξi(E) are the classical frequencies of the generalized peri-
odic dynamics, which depend on the energy since the PES is not
harmonic.

The trajectories employed in SC dynamics require a short
time evolution (1 ps or less) without any preliminary equilibration.
Therefore, the harmonic EBK quantization conditions of Eq. (32)
can be easily fulfilled at the initial step by setting

Qn
i (0) = 0,

pni (0) =
√

(2νi + 1)h̵ωi.
(35)

These conditions still realize a good approximation to the proper
EBK quantization condition of Eq. (34) if the energy dependence
of the anharmonic frequencies is moderate enough, i.e., if Ξi(En(ν))
≃ Ξi(Ehν). The MC-SCIVR power spectrum is eventually computed
as

Ĩν,χ(E)∝Re
⎡
⎢
⎢
⎢
⎢
⎣

τ

∫

0

dt⟨χ∣P̂MC
n(ν)(t)∣χ⟩e

i
h̵ Et

⎤
⎥
⎥
⎥
⎥
⎦

=
1
τ

RRRRRRRRRRRRR

τ

∫

0

dt⟨χ∣Qn
t ,pnt ⟩e

i[St(Qn
0 ,pn0)+�t(Qn

0 ,pn0)+Et]/h̵
RRRRRRRRRRRRR

2

. (36)

In calculations where |χ⟩ = |K⟩, the term ⟨χ∣Qn
t ,pnt ⟩ is analytical.57

We have indicated with n(ν) the nth Hamiltonian eigenvalue corre-
sponding to the ν vector of integers via Eq. (35). The label n(ν) has
been added explicitly to the MC propagator to indicate that it gives
a reliable approximation to the exact propagator only in the region
of the energy spectrum close to En, i.e.,

P̂MC
n(ν)(t) = ∑

m
W2

n,m e−
i
h̵ E
(Pn)
m t

∣e(Pn)
m ⟩⟨e(Pn)

m ∣ (37)

with

E(Pn)
n ≃ En (38)

and

W2
n ∣e

(Pn)
n ⟩ ≃ ∣en⟩, (39)

where the constants W2
n = W2

n,n account for both the potential loss
of amplitude due to the separable approximation and the fact that,
having used a single trajectory, the amplitudes of the different states
are not converged uniformly.

In practice, the initial EBK conditions are chosen according to
the state to be investigated, and each different trajectory is used to
build a different propagator specialized in the energy range around
the eigenenergy of the target state. The MC-SCIVR approach has
been numerically tested in several applications returning accurate
eigenvalues and eigenvectors.18,57 The typical strategy consists in
obtaining a first estimate of the SC frequencies of the fundamental
transitions by means of the ground state propagator. Calculations
are then refined by employing a different and tailored MC-SCIVR
propagator (i.e., a different trajectory) for each state. Using this
approach, hence, the full SC power spectrum can be composed piece
after piece as a collection of different single-trajectory propagators.
In particular, for a given state |χ⟩, the MC-SCIVR power spectrum
obtained after a run of classical molecular dynamics of length τ can
be written as
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Ĩχ(E ∼ En) ≃
1
W2

n
Ĩν,χ(E ∼ En) ≃ ∣⟨χ∣en⟩∣2D(E − En; Γτ), (40)

where, as already anticipated, the broadening functions D have the
shape of squared sync functions. The constants W2

n can be eventually
derived enforcing the normalization of the eigenstates, i.e.,

1 = ⟨en∣en⟩ = ∑
K

∣Cn,K∣
2. (41)

In fact, by selecting in Eq. (40) |χ⟩ = |�K⟩, E = En, and D(0; Γτ) = 1
(see Appendix A for a justification for this choice),

W2
n = ∑

K
Ĩν,�K(E = En), (42)

which means that the constant for the nth state can be calculated
as the sum of the (non-negligible) intensities at energy En of all
power spectra obtained using the harmonic states of the basis set
as reference states. For systems with sizable densities of states, many
different states and transitions may contribute to power spectra and
absorption bands. To avoid calculating all needed normalization
constants, they can be considered to be the same for all vibrational
states in the confidence energy range of each propagator. This is
justified by some tests which show that only a very mild discrep-
ancy (∼1%) in the value of normalization constants comes from a
change in the reference energy position within the same confidence
energy window. This approximation is instead no longer valid when
different energy ranges and/or different propagators are taken into
consideration.

III. RESULTS AND DISCUSSION
A. H2O molecule

The first test application we propose concerns the nonrotating
water molecule in vacuum. MC SCIVR was already applied to this
system in our previous study,57 and the results for both eigenener-
gies and eigenstates were in excellent agreement with reference cal-
culations performed using the Grid Time-Dependent Schrödinger
Equation (GTDSE) computational package.63 From that work, we
borrowed the same pre-existing analytical H2O PES64 and the same
pre-existing dipole surface.65

The initial step of any SC approach consists in providing
a harmonic estimate of vibrational frequencies. To this end, the
Hessian matrix at the equilibrium geometry has been diagonal-
ized to get the three harmonic frequencies of vibration, which are
related to the symmetric stretch (ωs = 3831 cm−1), the bending
(ωb = 1650 cm−1), and the asymmetric stretch (ωa = 3941 cm−1)
motions. Consistently with the MC-SCIVR methodology presented
above, to investigate the 5 lowest-lying vibrational states, we selected
the appropriate harmonic EBK initial conditions and then gener-
ated five classical trajectories to build five MC-SCIVR propaga-
tors. The trajectories were associated with the following triplets
of harmonic quantum numbers (in increasing order of energy):
ν(n=1,...,5) = {(0, 0, 0); (0, 1, 0); (0, 2, 0); (1, 0, 0); (0, 0, 1)}. Each tra-
jectory was propagated for a total of 1.2 ps with Hessians calculated
at each step along the dynamics to evaluate the time evolution of
the Herman-Kluk prefactor (specifically its phase). We then applied

Eq. (36) to get 5 distinct MC-SCIVR power spectra Ĩνn ,�ν(E). The
final total power spectrum has been obtained as a direct sum of the
5 single power spectra.

In Fig. 1(a), we report the total MC-SCIVR power spectrum.
As discussed above, the Hamiltonian eigenenergies correspond to
the positions of the different peaks. In Fig. 1(b), we present the
total power spectrum obtained from the 5 normalized power spec-
tra, i.e., 1

W2
n
Ĩνn ,�ν(E). The constants Wn have been obtained from

Eq. (42) by employing a truncated harmonic basis set made of all
possible harmonic functions with quantum numbers not greater
than 10, i.e., the total number of harmonic states in the basis set
was 113 = 1331. The different intensities of peaks between panels
(a) and (b) in Fig. 1 point out the importance of the normaliza-
tion factors W2

n for this new SC approach very clearly. It is also
worth noting that the different peak intensities in Fig. 1(b) are due
to anharmonicity effects, which are related to the squared projec-
tions ∣⟨�νn ∣en⟩∣

2. However, as observed in our previous work,57 the
main contribution to a generic anharmonic state |en⟩ is given by
its purely harmonic counterpart. Therefore, all peak intensities are
indeed close to 1 since most of the character of each anharmonic
state is given by its harmonic associate. This is particularly true for
the ground and first bunch of excited states, while anharmonic-
ity increases in the excitation of bond stretches (corresponding to
the two peaks at the highest energies in Fig. 1). For the latter, in
fact, the normalized peak intensities become smaller. The effect is
larger for the symmetric stretch (blue curve) than for the asymmet-
ric one (green line). The reason is that a Fermi resonance between
the symmetric stretch |100⟩ and the bending overtone |020⟩ is
present.

In Fig. 1(c), we show the fully anharmonic semiclassical IR
spectrum of water under the effect of unpolarized light [S0(E)
= ∑�=x ,y ,zS� ,0(E)] obtained using the ground state as a reference
state. This is, hence, the IR absorption spectrum at temperature T
= 0 K. The ground state eigenfunction was expanded in terms of the
harmonic states already employed in our previous work57 and the
related coefficients employed in Eq. (25). We note that the inten-
sity of the bending transition, located at 1587 cm−1, is correctly
almost twice as intense as the two stretching ones at 3707 cm−1 and
3811 cm−1, respectively. Furthermore, the bending overtone transi-
tion, estimated at 3162 cm−1, is very weak but not exactly 0 because
of the anharmonicity of the PES.

The exact anharmonic intensities of these absorption peaks
have been derived in our previous work by means of a GTDSE
approach.57 They are reported as vertical black lines in Fig. 2 for
the bright vibrational fundamental transitions of water and com-
pared to the peaks of the SC IR spectrum. The agreement is excellent,
and all three absorption intensities are perfectly reproduced within a
negligible error due to the dipole linearization and/or the semiclas-
sical approximation. Figure 2 also points out the enhanced accuracy
of fully anharmonic IR spectra with respect to the semianharmonic
ones reported in dashed lines.

These results validate the proposed approach and show that it
is equivalent to the direct state-to-state calculation of the oscillator
strengths (i.e., the square moduli of transition dipoles). However,
the decrease in computational overhead is evident already at this
low dimensionality. In fact, the IR spectrum thus calculated requires
only the dipole derivative with respect to nuclear displacements at
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FIG. 1. Semiclassical power spectra for a nonrotating
water molecule using the MC approach based on single-
trajectory propagators. The peaks represent the ground
state (brown), first bending excitation (red), first bending
overtone (magenta), and first symmetric (blue), and asym-
metric (green) excitations. In panel (a), power spectra from
harmonic reference states (i.e., ν = K) are reported. In panel
(b), the same spectra are shown upon normalization. Panel
(c) illustrates the semiclassical IR spectrum at 0 K for unpo-
larized light. The inset, panel (d), zooms in on the bending
overtone.

the equilibrium geometry in addition to what is needed to get a SC
power spectrum. Any subsequent dipole evaluation is not required.

B. Glycine
We move to the 10-atom glycine molecule in its neutral form in

gas phase. Being the smallest among all amino acids, this molecule
has both a great biological relevance and a manageable size, so sev-
eral theoretical methods have been applied to calculate its vibrational
spectrum beyond the harmonic approximation.66–71 In a recent
study,30 MC-SCIVR power spectra have been calculated for the four
main conformers of glycine using on-the-fly ab initio molecular
dynamics. Semiclassical energies are in very good agreement with
other theoretical calculations as well as experimental data.70 Here,
we extend the previous study by evaluating intensities and absorp-
tion bands for the high-energy fundamental transitions, i.e., the CH2
and NH2 stretches and the OH vibration, of the global minimum

conformer (Conf I). This spectroscopic region is of great interest
and the key target of investigation in bigger aggregates because it
is influenced by the hydrogen bonding responsible for the structural
stability of the complexes.33

We performed ab initio on-the-fly molecular dynamics runs at
the DFT-B3LYP level of theory with aug-cc-pVDZ basis set using
the NWChem72 suite of codes. The structure obtained for the global
minimum conformer is reported in ball-and-stick representation in
Fig. 3. The molecular dipole derivatives, which are necessary for cal-
culating the harmonic transition dipoles, the set of 24 normal mode
coordinates, and the harmonic spectrum have been computed at
this molecular geometry with the same level of theory and basis set.
Starting from the double harmonic approximation thus obtained, as
anticipated, we focused on the anharmonic corrections to the high-
est energetic fundamentals in the energy range between 3000 cm−1

and 4000 cm−1, for which harmonic estimates are known to be
inaccurate.

FIG. 2. Detail of the three bright IR peaks of water reported in Fig. 1. The exact (vertical black line), SC semianharmonic (colored dashed line), and SC fully anharmonic
(colored solid line) intensity estimates are reported in each plot.
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FIG. 3. Ball-and-stick representation of the global minimum energy structure of
glycine in vacuum.

In Fig. 4, we report the five unpolarized light semianharmonic
IR spectra S�0(ω) obtained using five different EBK trajectories. For
each trajectory, the initial conditions were determined by means of
the harmonic EBK quantization rule with vectors ν obtained giving
one quantum of excitation to modes 20–24 as indicated in the legend
of the different figure panels. All trajectories have been evolved for
5000 time steps (dt = 10 a.u.) giving a total evolution time of ∼1.2 ps.
It is worth mentioning that, according to Eq. (24), for glycine, the
total number of power spectra to be computed in order to get

FIG. 4. The semianharmonic IR absorption spectra of glycine in vacuum S�0
(ω)

(continuous color lines) are reported together with survival amplitude power spec-
tra Ĩ�K

(ω) (black dashed lines) with harmonic reference states�K corresponding
to the EBK single trajectory used for the semiclassical propagator (i.e., ν = K).
The results have been obtained using the propagator associated with the first har-
monic excitations of modes 20–24 [panels from (a) to (e)]. Dashed vertical lines
are located at the frequencies of the maxima of the absorption bands correspond-
ing to the fundamental transitions. For each propagator, the energy confidence
window is derived by the comparison of power and IR spectra and is highlighted
by reporting it in a region with white background.

the semianharmonic IR spectrum S�0(ω) would add up to Nv(Nv

+ 1)/2 = 300 for each trajectory (i.e., for each SC propagator). How-
ever, for many of the 24 singly excited harmonic reference states, the
power spectra Ĩ�0(α)

appearing in Eq. (24) give no contribution in the
energy range of interest. Furthermore, in these cases, the ∆Ĩ�0(α) ,�0(β)

terms vanish for all β, thus substantially decreasing the total number
of power spectra to be evaluated. In practice, the sole contributors
to the high energy bands investigated are the six modes from 19
to 24, decreasing the total number of power spectra calculated to
just 21.

Interestingly, energy shifts of the order of 100 cm−1 and vari-
ations in band shapes are observed among different spectra, but,
consistently with the MC-SCIVR recipe, we consider each IR spec-
trum reliable only within a given confidence energy range. These
ranges are selected in a way that they contain the absorption
band located where vibrational states have a significant compo-
nent on the harmonic state corresponding to the EBK trajectory
adopted. The energy windows are revealed by considering the (prin-
cipal) band of the survival probability power spectrum Ĩ�K (ω), with
K = ν (reported with black dashed lines in each panel) and have
been highlighted in Fig. 4. As can be seen from Figs. 4(a) and 4(b),
the confidence regions relative to modes 20 and 21 (corresponding
to the symmetric and asymmetric CH2 stretches) coincide. Further-
more, the two IR spectra obtained are equivalent within method
accuracy, and hence, any of the two is representative of the IR
spectrum in that specific energy region, i.e., it is the result of the
sum of contributions from both CH2 absorption bands. A differ-
ent situation applies in the case of the two NH2 stretches, whose
confidence regions and absorption bands are not equal. Specifi-
cally, the data shown in panel (c) and (d) are obtained from the
EBK trajectories for the symmetric and asymmetric stretch, respec-
tively. From the survival probability power spectra, two nonoverlap-
ping confidence windows can be determined. In panel (c), a dou-
ble peak structure is present and we assign the symmetric stretch
to the peak at lower energy. In panel (d), a single band conceals
both states and its peak is taken as the reference for the absorp-
tion of the asymmetric stretch fundamental, which is in agreement
with the underlying EBK trajectory. In this way, though, the inten-
sity of this band is expected to be overestimated because contri-
butions from the symmetric stretch are also included. However, it
turns out that in this specific case they are small. Finally, a well-
defined single band characterizes the OH stretch fundamental in
panel (e).

As discussed in Sec. II and already pointed out for water, the
relative intensities of the different bands in Fig. 4 are not directly
comparable to each other in the absence of a preliminary normal-
ization. Each IR spectrum in Fig. 4 has been globally normalized
by applying Eq. (42) at the energy corresponding to the maximum
of the absorption band in the confidence region (i.e., in correspon-
dence of the vertical dashed lines reported in Fig. 4). The relative
intensities of absorption bands in confidence regions obtained with
different propagators are hence meaningful. In order to determine
the normalization constants via Eq. (42), the sum over K has been
performed over a truncated set of harmonic basis set elements. The
truncation strategy adopted consisted in considering all possible 24-
dimensional direct products of 1-dimensional harmonic eigenstates
up to the total quantum number kmax = 6 with a maximum of 2

J. Chem. Phys. 150, 184113 (2019); doi: 10.1063/1.5096968 150, 184113-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. Comparison between experiment (black line, top) and the fully anharmonic
zero temperature IR spectrum of glycine in vacuum (continuous lines, bottom).
The semianharmonic spectrum (dashed lines, bottom) is also reported. The fully
and semianharmonic spectra have been obtained by means of single trajectory
propagators, each one valid in its confidence energy range. This is indicated by
the different colors chosen in agreement with Fig. 4.

modes simultaneously excited. The truncated basis set obtained in
this way contains 10 081 harmonic states. Not surprisingly, look-
ing at the amplitude of the expansion coefficients associated with
each peak, in all cases, the largest coefficient belongs to the har-
monic excited state corresponding to the absorption band. How-
ever, dozens of other relevant contributions are also present, and
many of them are due to (dark) harmonic states in resonance with
the principal one. So, while within the harmonic approximation at
T = 0 K only fundamental transitions give nonzero contributions
to the IR spectrum, multiple Fermi resonances mixing the bright
harmonic states with many others imply that the number of non-
dark states becomes much larger in the real anharmonic case. The
absorption bands obtained in Fig. 4, hence, are made of multiple
energetically close vibrational transitions. This is different from the
simpler picture of absorption bands as made of a single broaden-
ing function around a central bright transition. Any state-by-state
approach would fail to describe this phenomenology, unless all oscil-
lator strengths relative to transitions from a given reference state to
all states under the absorption band are taken into account. Apart
from the computational overhead required, this procedure would be
numerically unfeasible.

In Fig. 5, we report our estimate for the zero temperature fully
anharmonic IR spectrum S0(ω). In the same figure, the semianhar-
monic spectrum S�0(ω) is also presented in dashed lines. The differ-
ent colors (the same adopted in Fig. 4) identify the single trajectory
propagator used in each confidence energy range, and, for all bands
reported, the relative intensities are meaningful. The spectrum S0(ω)
has been obtained by sorting the elements of the harmonic basis
set in order of relevance (i.e., absolute value) of the corresponding
ground state expansion coefficients and then applying Eq. (25) with
the sum over harmonic states performed over the first 50 basis set
elements. With this cutoff, all coefficients with absolute value bigger
than ∼0.03 in the ground state expansion (see Fig. S1 in the supple-
mentary material) are considered. However, in order to keep under
control the number of power spectra to evaluate, we have limited the
sum over normal mode contributions to the same set of coordinates
used for the calculation of S�0(ω). The total number of power spec-
tra taken into account in this way, in fact, already adds up to ∼2.6
× 106. As shown in Fig. S2 of the supplementary material, inclusion
of more and more harmonic contributions does have an observable

effect on the intensity of all bands with convergence obtained only
after the inclusion of the 40th basis set element. The observed incre-
ment in absorption intensities, however, is proportionally almost
equivalent for all bands. Hence, after a global renormalization, the
overall effects of taking into account the anharmonicity of the vibra-
tional ground state (in terms of change in relative band intensities)
become minor.

It is worth noting that for absorption bands composed of more
than one transition line, the maximum may not formally coincide
with the maximum of a given survival amplitude power spectrum.
A non-negligible change in the estimate of the position of the max-
imum of absorption bands is indeed observed for the semianhar-
monic spectra of glycine in Figs. 4(a)–4(d). Furthermore, an addi-
tional even if less significant shift of most band maxima is observed
(≲5 cm−1) when the ground state anharmonicity is also taken into
account (see Fig. S2 in the supplementary material). In Fig. 5, we also
report the experimental spectrum recorded in argon matrix at low
temperature.70 A satisfactory overall agreement between our theo-
retical prediction and the experimental spectrum is observed. The
key difference is in the region between 3150 and 3250 cm−1, where
the experimental signature of another conformer, not included in
our theoretical investigation, stands out. The most intense absorp-
tion band is centered at 3560 cm−1 and associated with the OH
stretch. The second most intense experimental band is located in the
energy range between 2900 and 3000 cm−1, with an overall absorp-
tion intensity ∼6 times smaller than the OH one. This band features
a barely distinguishable bimodal shape and is associated with the
two (symmetric and asymmetric) CH2 stretches. The bimodality of
this band is not resolved in our semiclassical spectrum in which the
broadening functions resulting from the dynamics are indeed too
large to recover this effect. Notably, however, a secondary much
less intense band located between 3050 and 3150 cm−1 appears in
the computed spectrum. In fact, as revealed by the power spec-
tra reported in Fig. 4 (black dashed curves), in this spectral energy
range, vibrational states with relevant components on the harmonic
excited states of the two CH2 stretches are present, most proba-
bly originated by the presence of Fermi resonances coupling them
with (dark) harmonic excited states. The intensity of this secondary
band, as expected, is much reduced compared to the principal one in
the semianharmonic spectrum, but its oscillator strength increases
upon inclusion of ground state anharmonicities making it non-
negligible. However, the signal is not enough intense to be assigned
in the experimental spectrum and to be discernible from noise or
signals coming from other conformers. Finally, another absorption
band (assigned to the NH2 stretches) in the experimental spectrum
spans the energy range between 3370 and 3480 cm−1. Its inten-
sity, even if an order of magnitude smaller than that of the OH
stretch, makes it clearly distinguishable from the experimental base-
line and well matched in position and intensity by the semiclassical
prediction.

Energies and intensities obtained from the semiclassical IR
spectrum are reported in Table I and compared to both experimen-
tal values and theoretical estimates provided by the double harmonic
approximation and by perturbative methods at a similar level of
electronic structure theory.66 In order to facilitate the comparison,
all intensities have been globally renormalized by leveling off the
intensities assigned by the different approaches to the intense OH
stretch band. This reference value is set equal to the experimental
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TABLE I. Main features of the SC IR spectrum of glycine, in its most stable conformer, in the high energy range are compared to experiments70 and second order Generalized
Vibrational Perturbation Theory (GVPT2) calculations performed at the B3LYP/N07D level of theory.66 Energies of maximum/maxima associated with each IR band are reported
in cm−1, while intensities are scaled in order to level the intensity of the OH stretch band up to the experimental one in all cases. The results from the double harmonic
approximation are also reported.

MC-TA-SCIVR GVPT2

Assignment Harmonic Anharmonic Harmonic Anharmonic

(Modes) (B3LYP/aug-cc-pVDZ) (B3LYP/N07D) Expt.

ω I ω I ω I ω I ω I

CH2 (20; 21) 3051; 3089 0.08; 0.03 2900 0.07 3044; 3079 0.08; 0.03 2938; 2929 0.09; 0.04 2935 0.04
NH2 (22; 23) 3495; 3568 0.01; 0.02 3345; 3430 0.03; 0.01 3509; 3582 0.01; 0.03 3387; 3407 0.01; 0.02 3410; 3450 0.03; 0.01
OH (24) 3735 0.25 3563 0.25 3750 0.25 3568 0.25 3560 0.25

value of 0.25. From Table I, it is clear that a double harmonic
approximation is not efficient especially in estimating the frequen-
cies of vibration, while a better prediction is obtained for intensities.
Results are neatly improved moving to the SC and GVPT2 calcu-
lations. Both methods are in excellent agreement with the experi-
ment for all modes, taking alternatively the lead as the most accurate
approach. This demonstrates that the SC approach works appropri-
ately and accurately if compared to benchmark calculations in both
low (water) and high (glycine) dimensionalities, opening the way to
the quantum simulation of the IR spectra of systems currently not
achievable.

IV. SUMMARY AND CONCLUSIONS
We have presented a new semiclassical approach to simulate

anharmonic IR spectra. The method is able to deal with medium–
large molecular systems with sizable densities of vibrational states.
At the heart of the strategy are MC-SCIVR power spectra, which are
combined linearly to give, in addition to frequencies of vibration, IR
intensities and band shapes.

Meaningful IR intensities are, indeed, obtained exploiting a
proper decomposition of the absorption spectrum in terms of sur-
vival amplitude power spectra. As for band shapes the method relies
on the fact that, as the number of absorption lines under a given
band becomes large and in the limit in which the width of the band is
much larger than the width of the single lines, the shape of the band
is independent of the broadening function adopted. This allows
employing the convolution function associated with the finite-time
survival amplitude Fourier transform as a broadening function
in lieu of the usual Gaussian or Lorentzian envelopes. Furthermore,
this feature permits us to avoid undesired state-to-state oscillator
strength calculations, whose number becomes huge for large sys-
tems making their computation hardly feasible. In fact, although
MC-SCIVR power spectra need a proper normalization to allow
comparisons between different energy regions, normalization con-
stants refer to the central peak of absorption bands and barely vary
within it. Thus, only one constant per absorption band has to be
computed, a figure that in large systems is much smaller than the
actual number of lines composing each band.

The approach is also based on the linearization of the molecu-
lar dipole, but intensities of absorption spectra can still be calculated
at the double harmonic, semianharmonic, or fully anharmonic level.
The difference depends on the way the states contributing to the lin-
earized transition dipoles are treated. The accuracy of the method
has been tested against the exact results for the water molecule with
more than satisfactory outcome. Furthermore, the study of the IR
spectrum of glycine has provided results in agreement with both
experiments and previous VPT2 calculations and demonstrated the
effectiveness of the method in dealing with a 24-dimensional sys-
tem. Investigation of glycine focused on the absorption bands of
high energy fundamentals, an energy region where anharmonicities
are relevant. The importance of anharmonicities at both electrical
and mechanical levels is evident after a comparison to the widely
employed double harmonic approximation. In both cases explored
the double harmonic approximation is off the mark, which raises
serious questions about the legitimacy of employing such a rough
guess in a black box fashion.

A still open issue is that, due to the short duration of the
semiclassical propagation, the SC absorption bands obtained for
glycine are wider than the low-temperature experimental ones. This
effect could be less relevant for spectra at higher temperature, where
experimental bands are expected to extend over a larger interval of
energies. Furthermore, the quality of the SC calculation could be
improved by reducing the impact of spurious rotations, which may
contribute to the enlargement of peaks and are due to the adop-
tion of a normal mode reference frame. Advances on this aspect are
currently being undertaken.

We conclude by remarking that SC spectroscopy, through
power spectra calculations, had already well established two of
its hallmark features. They are the possibility of application to
large dimensional molecular systems, which is often precluded to
other quantum approaches, and the capability to reproduce and
explain experimental findings where other theoretical approaches
(like scaled harmonic or classical ones) fail. Now, we have increased
the appeal of semiclassical spectroscopy by demonstrating that semi-
classical IR spectra are also achievable without any restrictions due
to the density of states. This gives SC approaches the potential to be
reference methods for IR spectroscopy of medium-large systems.
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SUPPLEMENTARY MATERIAL

See supplementary material for additional data about the
expansion coefficients of the ground state vibrational eigenfunction
of glycine and an additional plot about convergence of the full-
anharmonic IR spectrum of glycine as a function of the number of
expansion coefficients taken into account.
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APPENDIX A: FUNCTIONAL FORM
OF THE IR SPECTRUM

From quantum linear response theory in its sum-over-state
version, the functional form of the IR spectrum of isotropic and
homogeneous molecular systems is

S(ω,T) = ∑
n
∑
m≠n

[Pn(T)−Pm(T)]Ωnm
1
3
∣µnm∣

2 δ(ω−Ωnm), (A1)

where Ωnm = Em − En is the difference between the vibrational ener-
gies of a given transition, µnm = ⟨en∣µ̂0N ∣em⟩ is the corresponding

transition dipole, and Pl = e−
El
kBT /Z is the lth vibrational state pop-

ulation at a given temperature T (with Z = ∑n e
− En

kBT being the
partition function). In this work, we are interested in the modeling
of the IR spectrum in the region of the high energy fundamentals
(ω ≳ 2500 cm−1) of a system at a given (reasonable) temperature T.
Hence, Ωnm ≫ KBT and it can be assumed that all the arrival state
populations Pm(T) are zero. Equation (A1) simplifies to

S(ω,T) = ∑
n
∑
m≠n

Pn(T) Ωnm
1
3
∣µnm∣

2 δ(ω −Ωnm)

= ∑
n
Pn(T)Sn(ω), (A2)

where

Sn(ω) = ∑
m≠n

Ωnm
1
3
∣µnm∣

2 δ(ω −Ωnm). (A3)

In experimental IR spectra, each spectral line is broadened over
a finite range of energies. This is due to several known effects. For
instance, the thermal Doppler, collisional, and Stark effect broad-
ening all play an important role in a gas phase environment. These
effects can be accounted for phenomenologically by assuming that
the transition probability distributions of the system are broadened
so that in Eq. (A3) the Dirac delta function can be substituted by
some bell shaped function L(ω − Ωnm; Γ) of finite amplitude Γ.
Equation (A3) in this case becomes

Sn(ω) = ∑
m≠n

1
3
∣µnm∣

2 ω L(ω − Em + En; Γ). (A4)

It is straightforward to notice from a comparison between Eqs. (A3)
and (A4) that the term Ωnm, characteristic of a transition between
two single and well defined states, has been substituted by ω in the
case of an absorption band. This is necessary to account for the gain
of a quantum h̵ω of energy by the system (and, correspondingly,
for the loss of an equal amount of energy by the electromagnetic
field) in the neighborhood of Ωnm with probability density given by
1
3 ∣µnm∣

2 L(ω − Em + En; Γ).
Depending on the most relevant phenomenological effect to

take into account, L is generally described by either a Gaussian or a
Lorentzian function. In this work, L is substituted by the dynamical
convolution function D(ω − Em + En; Γτ), a legitimate procedure as
explained in Sec. IV. Therefore, the calculated spectrum in the pres-
ence of a radiation polarized along the direction �, S� ,n(ω), descends
from Eq. (19).

It is common practice to use normalized broadening func-
tions that integrate to unity over the energy axis. This choice, in
fact, has the advantage to preserve the oscillator strength summa-
tion rules. The most convenient choice for our purposes, instead,
is to normalize them by setting D(0, Γτ) =1. This choice has the
advantage to allow a straightforward calculation of the normaliza-
tion constants of the eigenstates expanded on the harmonic basis via
Eq. (42). These two normalization choices are in any case equivalent
because the resulting absorption spectra just differ in a multiplicative
constant.

APPENDIX B: FROM POWER
SPECTRA TO IR SPECTRA

We derive the decomposition of the fully anharmonic IR spec-
trum of Eq. (19) in terms of power spectra, i.e., the result reported in
Eq. (25). First, Eq. (17) for transition dipoles has to be inserted into
Eq. (19), leading to

S�,n(ω) = ω∑
m≠n

∣∑
K
Cn,K∑

α
Cm,K(α)µ

�
K(α) ∣

2

D(ω−Em +En; Γτ). (B1)

At this point, the square modulus is expanded to allow inversion of
the order of the sums over α and over m. From an algebraic point of
view, this procedure is not straightforward because of the presence of
multiple sums, so we perform it starting from the following general
expansion:

∣∑
K
Cn,KAm,K∣

2

= ∑
K

⎡
⎢
⎢
⎢
⎢
⎣

C2
n,KA

2
m,K + ∑

K′<K
2Cn,KCn,K′Am,KAm,K′

⎤
⎥
⎥
⎥
⎥
⎦

. (B2)

If

Am,K = ∑
α
Cm,K(α)µ

�
K(α) , (B3)

then

Am,KAm,K′ = ∑
α,α′

Cm,K(α)Cm,K′(α′)µ
�
K(α)µ

�
K′(α′) , (B4)

and upon substitution into Eq. (B1),
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S�,n(ω) = ω∑
K
C2
n,K

⎧⎪⎪
⎨
⎪⎪⎩

∑
α

⎡
⎢
⎢
⎢
⎢
⎣

( ∑
m≠n

C2
m,K(α)D(ω − Em + En))(µ�K(α))

2

+∑
β<α

µ�K(α)µ
�
K(β)( ∑

m≠n
2Cm,K(α)Cm,K(β)D(ω − Em + En))

⎤
⎥
⎥
⎥
⎥
⎦

+ ∑
K′<K
∑
α,α′

Cn,KCn,K′( ∑
m≠n

2Cm,K(α)Cm,K′(α′)D(ω − Em + En))

× µ�K(α)µ
�
K(α′)

⎫⎪⎪
⎬
⎪⎪⎭

. (B5)

Finally, Eq. (25) is obtained starting from Eq. (B5) by not-
ing that (i) the terms in brackets are the semianharmonic spectra
S�,�K(E); (ii) in the last line, the terms in parentheses are also easily
related to the survival amplitudes of the kind of Eq. (23).
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