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Abstract Ultrafunctions are a particular class of functions defined on a non-Archimedean field R
∗ ⊃ R. They

have been introduced and studied in some previous works (Benci, Adv Nonlinear Stud 13:461–486, 2013; Benci
and Luperi Baglini, EJDE, Conf 21:11–21, 2014; Benci, Basic Properties of ultrafunctions, to appear in the
WNDE2012 Conference Proceedings, arXiv:1302.7156, 2014). In this paper we introduce a modified notion
of ultrafunction and discuss systematically the properties that this modification allows. In particular, we will
concentrate on the definition and the properties of the operators of derivation and integration of ultrafunctions.
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1 Introduction

In some recent papers the notion of ultrafunction has been introduced and studied [1,8,9]. Ultrafunctions are
a particular class of functions defined on a non-Archimedean field R

∗ ⊃ R. We recall that a non-Archimedean
field is an ordered field which contains infinite and infinitesimal numbers. In general, as we showed in our
previous works, when working with ultrafunctions we associate to any continuous function f : R

N → R an
ultrafunction ˜f : (R∗)N → R

∗ which extends f ; more exactly, to any vector space of functions V (�) ⊆
L2(�) ∩ C(�) we associate a space of ultrafunctions ˜V (�). The spaces of ultrafunctions are much larger
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than the corrispective spaces of functions, and they have much more “compactness”1: these two properties
ensure that in the spaces of ultrafunctions we can find solutions to functional equations which do not have any
solutions among the real functions or the distributions.

In [9] we studied the basic properties of ultrafunctions. One property that is missing, in general, is the
“locality”: the extensions of operators that are local2 on V (�) may not be local on ˜V (�). This problem is
related to the properties of a particular basis of the spaces of ultrafunctions, called “Delta basis” (see [8,9]).
The elements of a Delta basis are called Delta ultrafunctions and, in some precise sense, they are an analog of
the Delta distributions. More precisely, given a point a ∈ R

∗, the Delta ultrafunction centered in a [denoted
by δa(x)] is the unique ultrafunction such that, for every ultrafunction u(x), we have3

∫ ∗
u(x)δa(x)dx = u(a).

It would be useful for applications to have an orthonormal Delta basis, namely a Delta basis {δa(x)}a∈�
such that, for every a, b ∈ �, ∫ ∗

δa(x)δb(x)dx = δa,b; unfortunately, this seems to be impossible.
The main aim of this paper is to show how to modify the constructions exposed in [9] (that will be recalled)

to avoid such unwanted issues. We will show how to construct spaces of ultrafunctions that have “good local
properties” and that have Delta bases {δa(x)}a∈� that are “almost orthogonal” where, by saying that a Delta
basis is “almost orthogonal”, we mean the following: for every a, b ∈ �, if |a − b| is not infinitesimal4 then
∫ ∗
δa(x)δb(x)dx = 0.
We will also discuss a few other properties of ultrafunctions that were missing in the previous approach

but that hold in this new context.
The techniques on which the notion of ultrafunction is based are related to non-Archimedean mathematics

(NAM) and to nonstandard analysis (NSA). In particular, the most important notion that we use is that of
�-limit (see [1,8,9]). In this paper this notion will be considered known; however, for sake of completeness,
we will recall its basic properties in the Appendix.

1.1 Notations

If X is a set then

• P(X) denotes the power set of X and P f in(X) the family of finite subsets of X;
• F(X, Y ) denotes the set of all functions from X to Y and F(RN ) = F(RN ,R).

Let � be a subset of R
N : then

• C(�) denotes the set of continuous functions defined on � ⊂ R
N ;

• C0(�) denotes the set of continuous functions in C(�) having compact support in �;
• Ck(�) denotes the set of functions defined on� ⊂ R

N which have continuous derivatives up to the order k;
• Ck

0(�) denotes the set of functions in Ck(�) having compact support;
• C1

� (R) denotes the set of functions f of class C1(�) except than on a discrete set � ⊂ R and such that, for
any γ ∈ �, the limits

lim
x→γ± f (x)

exist and are finite;
• D(�) denotes the set of the infinitely differentiable functions with compact support defined on � ⊂

R
N ; D′(�) denotes the topological dual of D(�), namely the set of distributions on �;

• if A ⊂ R
N is a set, then χA denotes the characteristic function of A;

• for any ξ ∈ (RN )∗, ρ ∈ R
∗, we set Bρ(ξ) = {x ∈ (RN )∗ : |x − ξ | < ρ};

1 In this context “compactness” means that the space of ultrafunctions is a space of hyperfinite dimension so, by transfer, it
satisfies many properties of finite-dimensional vector spaces. This is an useful property for applications (see, e.g., [1] and [8]).

2 By local operator we mean any operator F : V (�) → V (�) such that supp(F( f )) ⊆ supp( f ) ∀ f ∈ V (�).
3
∫ ∗ : L1(R)∗ → C

∗ is an extension of the integral
∫ : L1(R) → C.

4 We recall that an element x of a non-Archimedean superreal ordered field K ⊃ R is infinitesimal if |x | < r for every
r ∈ R>0.
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• mon(x) = {y ∈ (RN )∗ : x ∼ y}, where x ∼ y is defined in Definition 9.4;
• gal(0) = {y ∈ (RN \ {0})∗ : x−1

� 0} ∪ {0};
• ∀a.e. x ∈ X means “for almost every x ∈ X ′′;
• if a, b ∈ R

∗, then
– [a, b]R∗ = {x ∈ R

∗ : a ≤ x ≤ b};
– (a, b)R∗ = {x ∈ R

∗ : a < x < b};
– ]a, b[ = [a, b]R∗ \ (mon(a) ∪ mon(b)).

2 Definition of ultrafunctions

Following the same approach of [1,8,9], we want the space of ultrafunctions to be an hyperfinite-dimensional
vector space. An easy way5 to obtain this property is the following. Let X = P f in(F(R,R)). Given λ ∈ X,
we set Vλ = Span({ f | f ∈ λ}).
Definition 2.1 An internal function

u = lim
λ↑� uλ ∈ F(R)∗

is an ultrafunction if, for every λ ∈ X, uλ ∈ Vλ. The space of ultrafunctions will be denoted by F�(R).
With some abuse of notation the restrictions of ultrafunctions to internal subset of R

∗ will still be called
ultrafunctions.

In particular, we have that

F�(R) = lim
λ↑� Vλ

so, being a �-limit of finite-dimensional vector spaces, the vector space of ultrafunctions has hyperfinite
dimension. Moreover, given any vector space of functions W ⊂ F(R), we can define the space of ultrafunctions
generated by W as follows:

W� = W ∗ ∩ F�(R).

Let us observe that

W� = lim
λ↑�Wλ,

where for every λ ∈ X we pose Wλ = Vλ ∩ W.
The space of ultrafunctions F�(R) is too large for applications. We want to have a smaller space V�(R) ⊂

F�(R) which satisfies suitable properties for applications. There are three kinds of properties that we would
like ultrafunctions to satisfy:

• “Compactness”: we want the space of ultrafunctions to be hyperfinite dimensional so to have the “nice”
properties of finite-dimensional vector spaces; moreover, we want the support of all ultrafunctions to be
contained in a common compact set.

• Extension of spaces: the space of ultrafunction should contains some standard spaces useful for applications
as subspaces like, e.g., the vector space generated by the characteristic functions of intervals and C1(R).
Moreover, it should be possible to associate an ultrafunctions to every distribution (or, at least, to every
compactly supported distribution).

• Extension of operators: we want to be able to extend to ultrafunctions many operators between standard
functions preserving, when it is possible, the locality of the operators. In particular, the operator that we are
most interested in is the derivative.

5 We note that the construction presented here is not the unique way to construct a space of ultrafunctions. In any case, with
the present construction it is easy to apply a modification of the Faedo–Galerkin method to solve some particular differential
equation, see [8] for details.
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The reader should be aware that this list of properties is subjective and motivated mainly by the fact that
all these properties are easily obtainable with our construction and (as we will show in some planned future
papers) they are sufficient to study some applications of ultrafunctions to PDE. By no means we intend our
list to be complete or suitable for all possible applications.

Desideratum 2.2 There is an infinite number β such that if u(x) ∈ V�(R) then u(x) = 0 for |x | > β and
u(x) ∈ L∞(R)∗.

Desideratum 2.2 states that the ultrafunctions have an uniform compact support and are bounded in R
∗.

From these conditions it follows that, if u(x) ∈ V�(R), then u(x) ∈ L p(R)∗ for every p; in particular, u(x)
is summable and is in L2(R)∗. So V�(R) ⊂ L2(R)∗, and this allows to give to V�(R) the euclidean structure
and the norm induced by L2(R)∗.

Desideratum 2.3 V�(R) ⊂ F�(R)∗, where

F�(R) =
{

u ∈ L1
loc | u(x) = lim

ε→0+
1

2ε

∫ x+ε

x−ε
u(y) dy

}

.

This request, which may seem strange at first sight, will allow to associate to every point a ∈ [−β, β] a
delta (or Dirac) ultrafunction centered in a, namely an ultrafunction δa(x) such that, for every ultrafunction
u(x), we have

∫ ∗
u(x)δa(x)dx = u(a).

Desideratum 2.4 If f ∈ C1(R), and a, b ∈ R, then ( f · χ[a,b])∗ ∈ V�(R).

Desideratum 2.4 is introduced because, for many applications, it is important to have both the characteristic
functions of intervals and the C1(R) functions in the function space that we consider. Moreover, we will show
that from Desideratum 2.4 it follows that the delta functions have compact support concentrated around their
center: in fact we will show that, ∀a ∈ gal(0), supp(δa) ⊂ mon(a).

However, it would be nice to have the previous property in the following more general fashion:

Desideratum 2.5 ∀a ∈ [−β, β], supp(δa) ⊂ mon(a).

Our next desideratum is the following:

Desideratum 2.6 There exists a linear map ˜(·) : [L1
loc(�)]∗ → V�(R) such that ∀ f ∈ [L1

loc(�)]∗, ∀v ∈
V�(R), we have

∫ ∗
f vdx =

∫ ∗
˜f vdx .

Desideratum 2.6 will be used to construct an embedding of C−∞(R) into our space of ultrafunctions. The
relations between ultrafunctions, distributions and Schwartz impossibility result are precised in [10], where
it is constructed an algebra of ultrafunctions in which all distributions can be embedded. Let us note that, in
general, we do not require the space of ultrafunctions to be an algebra: in fact, the multiplication uv of two
ultrafunctions u, v is defined, since ultrafunctions are internal functions, but in general we do not have (and
for many applications, we do not need to require) that uv ∈ V�(R).

Desideratum 2.7 There exists a map D : V�(R) → V�(R) such that

• ∀ f ∈ C1(R), ∀x ∈ R, D ˜f (x) = ˜f ′(x);
• ∀u, v ∈ V�(R),

∫ β

−β Du(x)v(x)dx = − ∫ β−β u(x)Dv(x)dx + [u(x)v(x)]β−β;
• D˜1 = 0;
• Dχ[a,b] = δa − δb.

Desideratum 2.7 simply states that it is possible to define a derivative on V�(R) which satisfies a few
expected properties. Let us note that the second property presented in this desideratum is a weak form of the
Leibniz rule. In fact our derivative will not satisfy Leibniz rule (in general); nevertheless once again we note
that this weak form is sufficient for many applications (see [10] for a discussion on this point).

In the next sections, we show how to construct a space that satisfies all the Desideratum that we presented.
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3 Construction of a canonical space of ultrafunctions

We want to consider a special subset of F�(R). Let β be an infinite number; we set

� = {γ0, γ1, . . . , γ�} ⊂ R
∗,

where l ∈ N
∗, γ0 = −β; γ� = β and for j = 0, 1, . . . , �− 1, we require that

0 < γ j+1 − γ j < η

where η is an infinitesimal number. Moreover, it is useful to assume6 that R ⊆ �.

For j = 0, 1, . . . , �− 1, we set

I j := (γ j , γ j+1)R∗ .

For every a, b ∈ � we denote by χ[a,b](x) the characteristic function of [a, b]R∗ defined in a slightly
different way:

χ[a,b](x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if x ∈ (a, b)R∗
0 if x /∈ [a, b]R∗
1
2 if x = a, b; a �= −β; b �= β

1 if x = a = −β
1 if x = b = β

; (1)

For every j = 0, 1, . . . , �− 1, we set

χ j (x) = χ
I j
(x).

The set of functions

G = {
�−1
∑

j=0

c jχ j (x) | c j ∈ R
∗}

will be referred to as the set of grid functions.

Definition 3.1 We denote by V�(R) the space of ultrafunctions

u : [−β, β]R∗ → R
∗

which can be represented as follows:

u(x) =
�−1
∑

j=0

v j (x)χ j (x)

where, ∀ j ∈ J, v j (x) ∈ C1
�(R) . We will refer to V�(R) as the canonical space of ultrafunctions.

Let us note that the space of ultrafunctions depends on the particular choices of β, l and �. Depending
on the applications that one wants to study it might be useful to assume some further properties for these
quantities, e.g., to assume that β is a multiple of 2π, that l is odd/even or that � contains some fixed infinite
number. In any case all the properties that we will present in this paper do not depend on particular choices of
β, l and �. Moreover, if � ⊆ R is open, we pose

V�(�) = {u��∗ | u ∈ V�(R)}.
Nevertheless, we will mainly study V�(R).

Proposition 3.2 The elements of V�(R) are restriction to [−β, β]R∗ of ultrafunctions.

6 We can always assume this property if we work in a c+-saturated hyperextensions.
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Proof Let u(x) = ∑�−1
j=0 v j (x)χ j (x), let � = limλ↑� �λ, χ j (x) = limλ↑� χ j,λ(x) and v j (x) = limλ↑� v j,λ.

Then

u(x) = lim
λ↑�

�λ−1
∑

j=0

v j,λ(x)χ j,λ(x),

so it is an ultrafunction. ��
Proposition 3.3 V�(R) is an hyperfinite-dimensional vector space, and dim(V�(R)) ≤ � · dim C1

�(R).

Proof C1
�(R) is hyperfinite dimensional because it is an internal vector subspace of the hyperfinite-dimensional

vector space F�(R). If

B = {vi (x) | i ≤ dim(C1
�(R))}

is a basis for C1
�(R), the set

BV = {vi (x)χ j (x) | vi ∈ B, j = 0, . . . , �}
is a set of generators for V�(R), and its cardinality is � · dim C1

�(R). So dim(V�(R)) ≤ � · dim C1
�(R). ��

Since V�(R) ⊂ [L2(R)]∗, it can be equipped with the following scalar product

(u, v) =
∫ ∗

u(x)v(x) dx,

where
∫ ∗ is the natural extension of the Lebesgue integral considered as a functional

∫

: L1(�) → C.

The norm of a (canonical) ultrafunction will be given by

‖u‖ =
(∫ ∗

|u(x)|2 dx

) 1
2

.

Canonical ultrafunctions have a few interesting properties:

Proposition 3.4 The following properties hold:

(i) If f ∈ C1(R) then f ∗ · χ[−β,β]R∗ ∈ V�(R);
(ii) if u ∈ V�(R) and a, b ∈ �, then u · χ[a,b]R∗ ∈ V�(R);

(iii) if u ∈ V�(R) then for j = 1, . . . , �− 1 the limits

( lim
x→γ±

j

)∗u(x)

are well defined and we set

u(γ+
j ) :=

(

lim
x→γ+

j

)∗
u(x); u(γ−

j ) := ( lim
x→γ−

j

)∗u(x); (2)

(iv) if u ∈ V�(R) then for j = 0 the limit
(

lim
x→γ+

0

)∗
u(x)

is well defined and for j = l the limit
(

lim
x→γ−

l

)∗
u(x)

is well defined.
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(v) if, for every j = 0, . . . , �− 1 we set

V (I j ) := {u(x)χ j (x) | u(x) ∈ C1
�(R)},

then, for k �= j, V (I j ) and V (Ik) are orthogonal;
(vi) V�(R) can be split in orthogonal spaces as follows:

V�(R) =
�−1
⊕

j=0

V (I j ).

Proof (i) If f ∈ C1(R), then f ∗ ∈ C1
�(R), and

f ∗ · χ[−β,β]R∗ =
�−1
∑

j=0

f ∗(x)χ j (x) ∈ U(R).

(ii) It follows by the definition of χ[a,b](x).
(iii) If u(x) =∑�−1

j=0 u j (x)χ j (x), then

u(γ−
0 ) = ( lim

x→γ−
j

)∗u j−1(x)

and

u(γ+
j ) = ( lim

x→γ+
j

)∗u j (x)

and these limits exist because u j−1, u j are continuous on I j−1, I j , respectively.
(iv) The same as in (i).
(v) This is immediate since, if j �= k, if u ∈ V (I j ) and v ∈ V (Ik) then the supports of u and v are disjoint.

(vi) Having proved (iii), it remains only to prove that
⊕�

j=0 V (I j ) generates all V�(R), and this is clear

because, if u(x) =
�
∑

j=0
u j (x)χ j (x) then, for every j = 0, . . . , �− 1, u j (x)χ j (x) ∈ V (I j ).

��
Definition 3.5 A basis {e j,k : j = 0, . . . , �− 1, k = 1, . . . , s j } for V�(R) is called split basis if, for every
j = 0, . . . , �− 1, {e j,k}s j

k=1 is a basis for V (I j ).

4 Delta and Sigma basis

Following the approach presented in [9], in this section we introduce two particular bases for V�(R) and study
their main properties. We start by defining the Delta ultrafunctions. To do this, it is useful to observe that the
value of an ultrafunction u for γ j , j = 1, . . . , �− 1, can be defined as follows:

u(γ j ) = u(γ+
j )+ u(γ−

j )

2

where u(x+), u(x−) are defined by (2). The fact that this definition makes sense follows by points (iii) and (iv)
in Proposition 3.4. Obviously, this choice is conventional, and other linear combinations of the limits could be
used to define the value of an ultrafunction in a point γ j , j = 1, . . . , �−1, and all the results that follow would
be repeatable (with the natural modifications due to the change in the definition of u(γ j )). Nevertheless, in
some sense our definition is “natural”, since it gives to u(γ j ) the intermediate value between the limits u(γ+

j )

and u(γ−
j ). Moreover, we pose

u(γ0) = u(−β) = u+(−β); u(γ�) = u(β) = u−(β).

These observations are relevant in the following definition:
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Definition 4.1 Given a number q ∈ [−β, β] we denote by δq(x) an ultrafunction in V�(R) such that

∀v ∈ V�(R),
∫ ∗

v(x)δq(x)dx = v(q). (3)

δq(x) is called the Delta (or Dirac) ultrafunction concentrated in q .

Let us see the main properties of the Delta ultrafunctions:

Theorem 4.2 We have the following properties:

(i) for every q ∈ [−β, β] there exists an unique Delta ultrafunction concentrated in q;
(ii) for every a, b ∈ [−β, β] δa(b) = δb(a);

(iii)
∥

∥δq
∥

∥

2 = δq(q).

Proof (i) Let {e j,k : j = 0, . . . , �− 1, k = 1, . . . , s j } be an orthogonal split basis of V�(R) (see Definition
3.5). If q ∈ I j we pose

δq(x) =
s j
∑

k=1

e j,k(q)e j,k(x).

For every i �= j , for every v ∈ V (Ii ) we have
∫ ∗
v(x)δq(x)dx = 0 = v(q). If v ∈ V (I j ), v =

∑s j
k=1 vke j,k(x) we have

∫ ∗
v(x)δq(x)dx

=
∫ ∗

(

s j
∑

k=1

e j,k(q)e j,k(x))(

s j
∑

k=1

vke j,k(x))dx =
s j
∑

k=1

∫ ∗
e j,k(q)e j,k(x)vke j,k(x)

=
s j
∑

k=1

e j,k(q)vk = v(q).

If q = γ0 we pose

δq(x) =
s0
∑

k=1

e+
j,k(q)e j,k(x)

and if q = γ� we pose

δq(x) =
s�−1
∑

k=1

e−
j,k(q)e j,k(x).

The verification that these definitions are well posed is equal to the one carried out for q ∈ I j .

If q = γ j , j �= 0, � we set

δq(x) = 1

2

(s j−1
∑

k=1

e−
j−1,k(q)e j−1,k(x)+

s j
∑

k=1

e+
j,k(q)e j,k(x)

)

.
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Then
∫ ∗

v(x)δq(x)dx

= 1

2

(

∫ ∗

[γ j−1,γ j ]
v(x)

( s j
∑

k=1

e−
j−1,k(q)e j−1,k(x)

)

dx +
∫ ∗

[γ j ,γ j+1]
v(x)

( s j
∑

k=1

e+
j,k(q)e j,k(x)

)

dx

)

= 1

2

(

∫ ∗

[γ j−1,γ j ]
v−(x)

( s j
∑

k=1

e−
j−1,k(q)e j−1,k(x)

)

dx +
∫ ∗

[γ j ,γ j+1]
v+(x)

( s j
∑

k=1

e+
j,k(q)e j,k(x)

)

dx

)

= 1

2
[v−(γ j )+ v+(γ j )] = v(γ j ).

The Delta function in q is unique: if fq(x) is another Delta ultrafunction centered in q then for every
y ∈ [−β, β] we have:

δq(y)− fq(y) =
∫ ∗

(δq(x)− fq(x))δy(x)dx = δy(q)− δy(q) = 0

and hence (i) δq(y) = fq(y) for every y ∈ (−β, β).
(ii) δa(b) = ∫ ∗

δa(x)δb(x) dx = δb(a).

(iii)
∥

∥δq
∥

∥

2 = ∫ ∗
δq(x)δq(x) = δq(q). ��

A consequence of the previous proof is that, for every γ j ∈ � \ {−β, β}, it is possible to define three
delta functions centered in γ j , namely δ−γ j

(x), δ+γ j
(x) and δγ j (x), which satisfy the following properties:

∀v ∈ V�(R), we have
∫ ∗

v(x)δ−γ j
(x)dx = v−(γ j );

∫ ∗
v(x)δ+γ j

(x)dx = v+(γ j );
∫ ∗

v(x)δγ j (x)dx = v(γ j ). (4)

Moreover, it is immediate to prove that the conditions in (4) characterize uniquely the functions δ−γ j
(x),

δ+γ j
(x) and δγ j (x). So we will consider (4) as a definition for δ−γ j

(x), δ+γ j
(x) and δγ j (x).

Definition 4.3 A Delta basis {δa(x)}a∈� (� ⊂ [−β, β]) is a basis for V�(R) whose elements are Delta
ultrafunctions. Its dual basis {σa(x)}a∈� is called Sigma basis. We recall that, by definition of dual basis, for
every a, b ∈ � the equation

∫ ∗
δa(x)σb(x)dx = δab (5)

holds. A set A ⊂ [−β, β] is called set of independent points if {δa(x)}a∈A is a basis

The existence of a Delta basis is a consequence of the following fact:

Remark 4.4 The set {δa(x)|a ∈ [−β, β]} generates V�(R). In fact, let G(R) be the vector space generated
by the set {δa(x) | a ∈ [−β, β]} and suppose that G(R) is properly included in V�(R). Then, the orthogonal
G(R)⊥ of G(R) in V�(R) contains a function f �= 0. But, since f ∈ G(R)⊥, for every a ∈ [−β, β] we have

f (a) =
∫ ∗

f (x)δa(x)dx = 0,

so f�[−β,β] = 0 and this is absurd. Thus, the set {δa(x) | a ∈ (−β, β)} generates V�(R), hence it contains a
basis.
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Let us see some properties of Delta and Sigma bases (which, in this new context, are slightly different from
the one presented in [9]):

Theorem 4.5 A Delta basis {δq(x)}q∈� and its dual basis {σq(x)}q∈� satisfy the following properties:

(i) if u ∈ V�(R) then

u(x) =
∑

q∈�

(∫ ∗
σq(ξ)u(ξ)dξ

)

δq(x);

(ii) if u ∈ V�(R) then

u(x) =
∑

q∈�
u(q)σq(x); (6)

(iii) if two ultrafunctions u and v coincide on a set of independent points then they are equal;
(iv) if � is a set of independent points and a, b ∈ � then σa(b) = δab;
(v) for every q ∈ [−β, β], σq(x) exists and is unique;

(vi) for every q ∈ [−β, β] if q ∈ I j then supp(δq(x)) ⊂ I j and supp(σq(x)) ⊂ I j ;
(vii) for every γ j ∈ � \ {γ0, γ�}, supp(δγ j (x)) ⊂ I j−1 ∪ I j and supp(σγ j (x)) ⊂ I j−1 ∪ I j ;

(viii) supp(δγ0(x)) ⊂ I0, supp(σγ0(x)) ⊂ I0, supp(δγ�(x)) ⊂ I� and supp(σγ�(x)) ⊂ I�−1;
(ix) for every q ∈ [−β, β], supp(δq(x)) ⊂ mon(q) and supp(σq(x)) ⊂ mon(q).

Proof (i) It is an immediate consequence of the definition of dual basis.
(ii) Since {δq(x)}q∈� is the dual basis of {σq(x)}q∈� we have that

u(x) =
∑

q∈�

(∫

δq(ξ)u(ξ)dξ

)

σq(x) =
∑

q∈�
u(q)σq(x).

(iii) It follows directly from the previous point.
(iv) If follows directly by Eq. (5).
(v) Given any point q ∈ [−β, β] clearly there is a Delta basis {δa(x)}a∈� with q ∈ �. Then σq(x) can be

defined by mean of the basis {δa(x)}a∈�. We have to prove that, given another Delta basis {δa(x)}a∈�′
with q ∈ �′, the corresponding σ ′

q(x) is equal to σq(x). Using (ii), with u(x) = σ ′
q(x), we have that

σ ′
q(x) =

∑

a∈�
σ ′

q(a)σa(x).

Then, by (iv), it follows that σ ′
q(x) = σq(x). So σq(x) exists and is unique.

(vi) As we proved in Theorem 4.2, if q ∈ I j then δq is an element of V (I j ), so supp(δq(x)) ⊂ I j . Now
δq ∈ V (I j ), so there is a corrispective function σq ∈ V (I j ) which is the sigma function centered in q.
If we extend this function to [−β, β] by posing σq(x) = 0 for x /∈ I j we obtain, by uniqueness, exactly
the sigma function centered in q in V�(R). And supp(σq(x)) ⊂ I j .

(vii) In Theorem 4.2 we proved that δγ j is an element in V (I j )∪ V (I j+1), so supp(δγ j (x)) ⊂ I j−1 ∪ I j .Now
we can consider its corrispective sigma function σγ j ∈ V (I j ) ∪ V (I j+1). If we extend this function to
V�(R) by posing σγ j (x) = 0 for x /∈ I j ∪ I j+1, we obtain the sigma function in V�(R) centered in γ j .

And, by construction, supp(σγ j (x)) ⊂ I j ∪ I j+1.
(viii) In Theorem 4.2 we proved that δγ0 is an element in V (I0) and δγ� is in V (I�−1), and that the same

property holds for the corrispective σ functions that can be proved as in (vi). So supp(δγ0(x)) ⊂ I0,
supp(σγ0(x)) ⊂ I0, supp(δγ�+1(x)) ⊂ I� and supp(σγ�(x)) ⊂ I�−1.

(ix) It is a straightforward consequence of (vi) and (vii), since for every j ∈ J we have I j ∪ I j+1 ⊂ mon(q).
��
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5 Canonical extension of functions

We start by defining a map

˜(·) : [L1
loc(R)]∗ → V�(R)

which will be very useful in the extension of functions and distributions.

Definition 5.1 If u ∈ [L1
loc(R)]∗, ũ denotes the unique ultrafunction such that

∀v ∈ V�(R),
∫ ∗

ũ(x)v(x)dx =
∫ ∗

u(x)v(x)dx .

Remark 5.2 Notice that, if u ∈ [L2(R)
]∗
, then ũ = PV u where

PV : [L2(R)]∗ → V�(R)

is the orthogonal projection.

The following theorem proves that ũ exists and is unique for every u ∈ L1
loc(R) by showing the explicit

expressions of ũ(x) in terms of sigma and delta bases:

Theorem 5.3 If u ∈ [L1
loc(R)

]∗
then

ũ(x) =
∑

q∈�

[∫

u(ξ)δq(ξ)dξ

]

σq(x) (7)

=
∑

q∈�

[∫

u(ξ)σq(ξ)dξ

]

δq(x). (8)

Proof It is sufficient to prove that

∀v ∈ V�(R),
∫

∑

q∈�

[∫

u(ξ)δq(ξ)dξ

]

σq(x)v(x)dx =
∫

u(ξ)v(ξ)dξ.

We have that v(x) =∑q∈� vqδq(x) with vq = ∫ σq(x)v(x)dx; then
∫

∑

q∈�

[∫

u(ξ)δq(ξ)dξ

]

σq(x)v(x)dx =
∑

q∈�

(∫

u(ξ)δq(ξ)dξ

)(∫

σq(x)v(x)dx

)

=
∑

q∈�

(∫

u(ξ)δq(ξ)dξ

)

vq =
∫

u(ξ)

⎡

⎣

∑

q∈�
vqδq(ξ)

⎤

⎦ dξ =
∫

u(ξ)v(ξ)dξ.

The other equalities can be proved similarly. So ũ exists and is unique for every u ∈ [L1
loc(R)]∗. ��

In particular, if f ∈ L1
loc(R), the function ˜f ∗ is uniquely defined. From now on we will simplify the

notation just writing ˜f .

Example 5.4 Take |x |−1/2 ∈ L1
loc(−1, 1), then

˜|x |−1/2 =
∑

q∈�

(∫ ∗
|ξ |−1/2δq(ξ)dξ

)

σq(x)

makes sense for every x ∈ R
∗; in particular

( ˜|x |−1/2)x=0 =
∫ ∗

|x |−1/2δ0(x)dx,

and it is easy to check that this is an infinite number. Notice that the ultrafunction ˜|x |−1/2 is different from
(|x |−1/2)∗ since the latter is not defined for x = 0 (and they also differ for |x | > β).
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Now we want to show some interesting relations between ˜f and f ∗. More precisely we are interested in
the following question.

Take f ∈ L1
loc(R) and � ⊂ R, which are the conditions that ensure the following:

∀x ∈ �∗, ˜f (x) = f ∗(x)? (Q)

Notice that the above equality must be intended for almost every x .

Lemma 5.5 Let � ⊂ R be an open set and let f ∈ L1
loc(R). Then

∀a.e.x ∈ � f (x) = 0 ⇔ ∀x ∈ �∗ ∩ [−β, β] ˜f (x) = 0.

Proof We recall that, by (7),

˜f (x) =
∑

q∈�

[∫

f ∗(ξ)δq(ξ)dξ

]

σq(x).

If ∀a.e.x ∈ � f (x) = 0 then by Leibnitz principle we have that ∀a.e.x ∈ �∗ f ∗(x) = 0, so that
∀x ∈ �∗ ∩[−β, β] ˜f (x) = 0 follows by (7). Conversely, since f ∗(x) is an ultrafunction for every g ∈ C∞

0 (�),
we have

0 =
∫

�∗
˜f (x)g∗(x)dx =

∫

�∗
f ∗(x)g∗(x)

=
∫

�

f (x)g(x)dx,

so f (x) = 0 ∀a.e.x ∈ �. ��
Corollary 5.6 Let � ⊂ R be an open set and let f, g ∈ L1

loc(R), then

∀a.e.x ∈ � f (x) = g(x) ⇔ ∀x ∈ �∗ ∩ [−β, β] ˜f (x) = g̃(x).

Proof We apply the previous theorem to the function h(x) = f (x)− g(x) and use that the operation f → ˜f
is linear. ��
Theorem 5.7 Let � ⊂ R be an open bounded set, let f ∈ L1

loc(R), if f�� ∈ C1(�) then

∀x ∈ �∗ ∩ [−β, β] ˜f (x) = f ∗(x).

Proof Let {δa(x)}a∈� be a Delta basis, let y ∈ �∗ and let y ∈ I j . Since, by Theorem (4.5), for every q ∈ �
with q /∈ I j σq(y) = 0, by (7) we deduce that

˜f (y) =
∑

q∈�∩I j

[

∫

I j

f ∗(ξ)δq(ξ)dξ

]

σq(y).

Now let g j (x) be the function such that

g j (x) =
{

f ∗(x) if x ∈ I j ;
0 otherwise.

Since f�� ∈ C1(�) then g j (x) is an ultrafunction. By construction, we have that g j (y) = ˜f (y) since, by
(6),

g j (y) =
∑

q∈�
g j (q)σq(y) =

∑

q∈�∩I j

[

∫

I j

g j (ξ)δq(ξ)dξ

]

σq(y)

=
∑

q∈�∩I j

[

∫

I j

f ∗(ξ)δq(ξ)dξ

]

σq(y) = ˜f (y).

But, by definition, g j (y) = f ∗(y); hence, we deduce that f ∗(y) = ˜f (y). ��
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Example 5.8 If f (x) = 1, then

˜1(x) =
{

1 i f x ∈ [−β, β]R∗;
0 i f x /∈ [−β, β]R∗ .

By Theorem 5.7 and the above example, we get:

Corollary 5.9 Let f ∈ C1(�), then,

˜f = f ∗ ·˜1
By Theorem 5.7, given a function f (x) ∈ C1(R) we have that ˜f (x) extends f (x) to [−β, β]R∗ . ˜f (x) will

be called the canonical extension of f (x). With some abuse of notation, ˜f (x) will be called the “canonical
extension of f (x)” even when f (x) ∈ L1

loc(R).

Example 5.10 If we consider the Example 5.4, by Theorem 5.7, we have that

∀a ∈ [−β, β]\mon(0), ( ˜|x |−1/2)x=a = (|x |−1/2)∗x=a = |a|−1/2.

Example 5.11 For a fixed k ∈ R, the function eikx defines a unique ultrafunction ˜eikx . Notice that ˜eikx is
different from the natural extension of eikx even if

∀x ∈ gal(0), ˜eikx = eikx .

6 Derivative

Definition 6.1 For every ultrafunction u ∈ V�(R), the derivative Du(x) of u(x) is the ultrafunction defined
by the following formula:

Du(x) = PV u′(x)+
�−1
∑

j=1

�u(γ j )δγ j (x), (9)

where PV u′(x) denotes the orthogonal projection of u′(x) on V�(R)w.r.t. the L2 scalar product and, for every
j = 1, . . . , l − 1,

�u(γ j ) = u+(γ j )− u−(γ j ).

Let us observe that the derivative operator is almost-local in the following sense: if u(x) ∈ V�(R) is an
ultrafunction and there are 0 < i < j < l −1 ∈ J such that supp(u(x)) ⊆⋃i≤k≤ j Ik , then supp(D(u(x))) ⊆
⋃

i−1≤k≤ j+1 Ik , so the support of the derivative of u(x) can be larger than the support of u(x) but only of an
infinitesimal.

Theorem 6.2 For every u, v ∈ V�(R) the following equality holds:
∫

Du(x)v(x) dx = −
∫

u(x)Dv(x) dx + [u(x)v(x)]β−β. (10)

Proof We have:
∫

(Du(x)v(x)+ u(x)Dv(x))dx

=
∫

⎛

⎝PV u′(x)+
�−1
∑

j=1

�u(γ j )δγ j (x)

⎞

⎠ v(x)dx +
∫

⎛

⎝PV v
′(x)+

�−1
∑

j=1

�v(γ j )δγ j (x)

⎞

⎠ u(x)dx

=
∫

[

PV u′(x)v(x)+ u(x)PV v
′(x)
]

dx
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+
∫

⎡

⎣

⎛

⎝

�−1
∑

j=0

�u(γ j )δγ j (x)

⎞

⎠ v(x)+
⎛

⎝

�−1
∑

j=0

�v(γ j )δγ j (x)

⎞

⎠ u(x)

⎤

⎦ dx

=
∫

[

PV u′(x)v(x)+ u(x)PV v
′(x)
]

dx +
�−1
∑

j=1

[�u(γ j )v(γ j )+ �v(γ j )u(γ j )
]

.

Now let us compute the two terms of the sum separately; the first one:

∫

[

PV u′(x)v(x)+ u(x)PV v
′(x)
]

dx =
�−1
∑

j=0

∫ γ j+1

γ j

[

PV u′(x)v(x)+ u(x)PV v
′(x)
]

dx

=
�−1
∑

j=0

∫ γ j+1

γ j

[

u′(x)v(x)+ u(x)v′(x)
]

dx =
�−1
∑

j=0

∫ γ j+1

γ j

(u(x)v(x))′ dx

=
�−1
∑

j=0

[

u−(γ j+1)v
−(γ j+1)− u+(γ j )v

+(γ j )
]

.

The second one:

�−1
∑

j=1

[�u(γ j )v(γ j )+ �v(γ j )u(γ j )
]

=
�−1
∑

j=1

(

(u+(γ j )− u−(γ j ))

(

v+(γ j )+ v−(γ j )

2

)

+ (v+(γ j )− v−(γ j ))

(

u+(γ j )+ u−(γ j )

2

))

=
�−1
∑

j=1

(u+(γ j )v
+(γ j )− u−(γ j )v

−(γ j )).

Thus
∫

[

PV u′v(x)+ u(x)PV v
′] dx +

�−1
∑

j=0

(�u(γ j )v(γ j )+ �v(γ j )u(γ j )
)

=
�−1
∑

j=0

(

u−(γ j+1)v
−(γ j+1)− u+(γ j )v

+(γ j )
)+

�−1
∑

j=1

(u+(γ j )v
+(γ j )− u−(γ j )v

−(γ j )).

But
�−1
∑

j=0

(

u−(γ j+1)v
−(γ j+1)− u+(γ j )v

+(γ j )
) = −u(−β)v(−β) + u(β)v(β) +

�−1
∑

j=1

(

u−(γ j )v
−(γ j )

−u+(γ j )v
+(γ j )

)

, hence

�−1
∑

j=0

(

u−(γ j+1)v
−(γ j+1)− u+(γ j )v

+(γ j )
)+

�−1
∑

j=1

(u+(γ j )v
+(γ j )− u−(γ j )v

−(γ j ))

= u(β)v(β)− u(−β)v(−β).
��

Remark 6.3 The generalized derivative

D : V�(R) → V�(R)

is a linear operator, as can be directly derived by (9). Moreover for every ultrafunction u ∈ V�(R) ∩ C1(R)∗
we have that

Du(x) = ũ′(x), (11)
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since in this case �u(γ j ) = 0 for every j = 1, . . . , l − 1. In particular, if f ∈ C2(R) then ∀x ∈ [−β, β]
D f ∗(x) = ( f ′)∗ (x), (12)

because in this case
(

f ′)∗ (x) ∈ V�(R), so PV
(

f ′)∗ = ( f ′)∗ .

Remark 6.4 Notice that by (11) and (12) we have that ∀ f ∈ C1(R) and ∀x ∈ R

D ˜f (x) = f̃ ′(x) ∼ f ′(x)

and ∀ f ∈ C2(R) and ∀x ∈ R

D ˜f (x) = f ′(x).

In this sense, D extends the usual derivative to all ultrafunctions and to all the points in R
∗.

Example 1 By (10) we have that
D˜1 = 0. (13)

If u(x) = x̃ then

Dx̃ =˜1.
Example 2 If a �= −β, b �= β and u(x) = χ[a,b](x), then

Dχ[a,b] = δa − δb.

Example 3 If a = −β, b �= β and u(x) = χ[a,b](x), then

Dχ[a,b] = −δb,

and if a �= −β, b = β and u(x) = χ[a,b](x), then

Dχ[a,b] = δa .

Example 4 if u(x) = w(x)χ[a,b](x) with a, b ∈ �\{−β, β}, then by (9)

u(x)′ = PVw
′(x)χ[a,b](x)+ w(a)δa(x)− w(b)δb(x).

7 Definite integral

Since every ultrafunction is an internal function, the definite integral is well defined:

∫ b

a
u(x)dx :=

(∫ b

a

)∗
u(x)dx .

Let us observe that, for every a, b ∈ �, the characteristic function χ[a,b] of [a, b] in the usual sense and the
characteristic function χ[a,b]R∗ of [a, b] in the sense of ultrafunctions are different (at most) only in the points
a and b. In particular, for every ultrafunction u(x) we have

∫ b

a
u(x)dx =

∫ ∗
u(x)χ[a,b](x)dx =

∫ ∗
u(x)χ[a,b]R∗ (x)dx .

This observation is important to prove the following theorem:

Corollary 7.1 (Fundamental Theorem of Calculus) If a, b ∈ �, then

∫ b

a
Du(x)dx = u(b)− u(a).
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Proof We have:

∫ b

a
Du(x)dx =

∫ ∗
Du(x)χ[a,b](x)dx

=
∫ ∗

Du(x)χ[a,b]R∗ (x)dx = −
∫

u(x)Dχ[a,b]R∗ (x)dx + [u(x)χ[a,b]R∗
]β

−β .

Now if a �= −β, b �= β we have
[

u(x)χ[a,b]R∗
]β

−β = 0 and Dχ[a,b]R∗ (x) = δa − δb, so

−
∫

u(x)Dχ[a,b]R∗ (x)dx = −
∫

u(x)(δa − δb)dx

= u(b)− u(a).

If a = −β, b �= β we have
[

u(x)χ[a,b]R∗
]β

−β = −u(−β) and Dχ[a,b](x) = −δb, so

−
∫

u(x)Dχ[a,b]R∗ (x)dx − u(−β) = −
∫

u(x)(−δb)dx − u(−β)
= u(b)− u(−β) = u(b)− u(a).

The case a �= −β, b = β can be proved similarly. If a = −β, b = β then

∫

Du(x)χ[−β,β](x)dx =
∫

Du(x)˜1dx

= −
∫

u(x)D˜1dx + [u(x)]β−β = u(β)− u(−β),

since D˜1 = 0. ��
We assumed that R ⊂ �; thus if f ∈ C1(R) we have that, ∀a, b ∈ R,

∫ b

a
D ˜f (x)dx = f (b)− f (a).

A question that arises is: does it hold, for ultrafunctions, some kind of “rule of integration by parts for continuous
functions”, at least for the points in �? E.g., is it true that, if u, v ∈ V�(R) and a, b ∈ �, then

∫ b

a
Du(x)v(x) dx = −

∫ b

a
u(x)Dv(x) dx + [u(x)v(x)]b

a? (14)

The answer is no, as a simple computation shows. Nevertheless, we have the following:

Proposition 7.2 Let u, v ∈ V�(R) ∩ C1(R)∗, and γn < γm ∈ �. Then

∫ γm

γn

Du(x)v(x) dx = −
∫ γm

γn

u(x)Dv(x) dx + u−(γm)v
−(γm)− u+(γn)v

+(γn).

Proof By (11), since u, v ∈ V�(R) ∩ C1(R)∗ then Du = ˜u′ and Dv = ˜v′. Moreover, since V�(R) =
⊕l−1

j=0 V (I j ), if for every j = 0, . . . , l − 1 we denote by Pj the orthogonal projection on I j we have

PV u′(x) =
l−1
∑

j=0

Pj (u
′(x)).
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Now, if m = n + 1, since u and v are continuous we have
∫ γm

γn

Du(x)v(x) dx =
∫ γm

γn

PV u′(x)v(x) dx

=
∫ γm

γn

Pnu′(x)v(x) dx =
∫ γm

γn

u′(x)v(x) dx

= −
∫ γm

γn

u(x)v′(x)dx + u−(γm)v
−(γm)− u+(γn)v

+(γn)

= −
∫ γm

γn

u(x)Pjv
′(x)dx + u−(γm)v

−(γm)− u+(γn)v
+(γn)

= −
∫ γm

γn

u(x)Dv(x)dx + u−(γm)v
−(γm)− u+(γn)v

+(γn).

In the general case,

∫ γm

γn

Du(x)v(x) dx =
m−1
∑

i=n

∫ γi+1

γi

Du(x)v(x) dx

=
m−1
∑

i=n

[

−
∫ γi+1

γi

u(x)Dv(x)dx + u−(γi+1)v
−(γi+1)− u+(γi )v

+(γi )

]

,

and since u, v are continuous we have

m−1
∑

i=n

[

−
∫ γi+1

γi

u(x)Dv(x)dx + u−(γi+1)v
−(γi+1)− u+(γi )v

+(γi )

]

=
m−1
∑

i=n

[

−
∫ γi+1

γi

u(x)Dv(x)dx

]

+ u−(γm)v
−(γm)− u+(γn)v

+(γn)

= −
∫ γm

γn

u(x)Dv(x) dx + u−(γm)v
−(γm)− u+(γn)v

+(γn).

��
The previous proposition is, in general, false if at least one between u, v is not in C1(R)∗.

Example: Let 0 = γi , and let us consider the ultrafunction

u(x) =

⎧

⎪

⎨

⎪

⎩

1 x < 0;
0 x ∈ Ii ;
1 x ∈ Ii+1;
0 x > γi+2.

Let v(x) = x . Then
∫ γi+2

γi

Du(x)v(x) dx =
∫ γi+2

γi

[

−δ+γi
(x)+ δγi+1(x)− δ−γi+2

(x)
]

v(x)dx

= −γi + γi+1 − γi+2 �= −
∫ γi+2

γi

u(x)Dv(x) dx + u−(γi+2)v
−(γi+2)− u+(γi )v

+(γi )

= γi+1 − γi+2 + γi+2 = γi+1.

Just for sake of completeness, we now show how to obtain a relaxed version of (14) by considering a
different notion of derivative on V�(R). The relaxed version of (14) is the following: since the functions in
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V�(R) are piecewise C1 functions, does it hold, for ultrafunctions, an analog of the rule of integration by parts
for piecewise C1 functions? Namely, is it true that, if u, v ∈ V�(R) and γn < γm ∈ �, then

∫ γm

γn

Du(x)v(x) dx =

−
∫ γm

γn

u(x)Dv(x) dx +
m−1
∑

i=n

[

u−(γi+1)v
−(γi+1)− u+(γi )v

+(γi )
]

? (15)

With the operator D the answer is no. But there is a different linear operator that actually satisfies (15):

Definition 7.3 We denote by D2u(x) the linear operator such that, for every u ∈ V�(R), we have

D2u(x) = PV (u
′(x)).

Since V�(R) =⊕l−1
j=0 V (I j ), if we denote by Pj the orthogonal projection on I j , we have

D2u(x) = PV u′(x) =
l−1
∑

j=0

Pj (u
′(x)).

Moreover we have that if u(x) is continuous in γ j , γ j+1, then

Du(x) = D2u(x)

on I j . In particular, if u(x) is continuous in [−β, β] then

Du(x) = D2u(x).

This new linear operator is what we need to obtain the generalization to V�(R) of the rule of integration by
parts for piecewise continuous functions:

Theorem 7.4 (Integration by parts for piecewise C1functions) For every u, v ∈ V�(R) and γn < γm ∈ � we
have

∫ γm

γn

D2u(x)v(x) dx = −
∫ γm

γn

u(x)D2v(x) dx +
m−1
∑

i=n

[

u−(γi+1)v
−(γi+1)− u+(γi )v

+(γi )
]

.

Proof If m = n + 1 then
∫ γm

γn

D2u(x)v(x) dx =
∫ γm

γn

u′(x)v(x) dx

= −
∫ γm

γn

u(x)v′(x)dx + u−(γm)v
−(γm)− u+(γn)v

+(γn)

= −
∫ γm

γn

u(x)D2v(x)dx + u−(γm)v
−(γm)− u+(γn)v

+(γn).

In the general case we have

∫ γm

γn

D2u(x)v(x) dx =
m−1
∑

i=n

∫ γi+1

γi

D2u(x)v(x) dx

=
m−1
∑

i=n

(

−
∫ γi+1

γi

u(x)D2v(x)dx + u−(γi+1)v
−(γi+1)− u+(γi )v

+(γi )

)

= −
∫ γm

γn

u(x)D2v(x) dx +
m−1
∑

i=n

[

u−(γi+1)v
−(γi+1)− u+(γi )v

+(γi )
]

.

��
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In particular, since D2˜1 = 0, it is immediate to prove that the following holds:

Corollary 7.5 (Fundamental Theorem of Calculus for piecewise continuous functions) For every u ∈ V�(R)
and γn < γm ∈ � we have

∫ γm

γn

D2u(x)dx =
m−1
∑

i=n

[

u−(γi+1)− u+(γi )
]

.

Of course, the derivative D2 has also many drawbacks, e.g., for every grid function g we have D2(g) = 0.
So in the following we will only consider the derivative D.

8 Ultrafunctions and distributions

In this section we briefly explain how to associate an ultrafunction to every distribution T ∈ C−∞ (R), where

C−∞(R) = {T ∈ D′(R) | ∃k ∈ N, ∃ f ∈ C0(R) such that T = ∂k f }.
Note that, by definition, if T ∈ C−∞(R) then there exists a natural number k and a function f ∈ C1(R) such
that:

T = ∂k f. (16)

So it is natural to introduce the following definition:

Definition 8.1 Given a distribution T ∈ C−∞(R), let k be the minimum natural number such that there exists
f ∈ C1(R) with T = ∂k f. We denote by ˜T the ultrafunction

˜T (x) = Dk f ∗.

˜T will be called the ultrafunction associated with the distribution T .

Proposition 8.2 For every distribution T ∈ C−∞(R), for every test function ϕ ∈ D(R) we have

∫ ∗
˜T (x)ϕ∗(x)dx = 〈T, ϕ〉 .

Proof Let us suppose that T = ∂k f, where k, f are given as in Definition 8.1. Then, by (10), since ϕ∗(β) =
ϕ∗(−β) = 0, we have that

∫ ∗
˜T (x)ϕ∗(x)dx =

∫ ∗
Dk f ∗(x)ϕ∗(x)dx = (−1)k

∫ ∗
f ∗(x)∂kϕ∗(x)dx

=
[

(−1)k
∫

f (x)∂kϕ(x)dx

]∗
= 〈T, ϕ〉∗ = 〈T, ϕ〉 .

��
In [10] we showed that, actually, it is possible to define an embedding of the whole space of distributions in

a particular algebra of ultrafunctions. Our embedding preserves the pointwise moltiplication of C1 functions;
we do not contrast with Schwartz impossibility result because the derivative of ultrafunctions satisfies only a
weak form of the Leibniz rule.
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9 Appendix: �-theory

In this section we present the basic notions of non-Archimedean mathematics and of non-standard analysis
following a method inspired by [4] (see also [1] and [8]).

Non-Archimedean fields

Here, we recall the basic definitions and facts regarding non-Archimedean fields. In the following, K will
denote an ordered field. We recall that such a field contains (a copy of) the rational numbers. Its elements will
be called numbers.

Definition 9.1 Let K be an ordered field. Let ξ ∈ K. We say that:

• ξ is infinitesimal if, for all positive n ∈ N, |ξ | < 1
n ;

• ξ is finite if there exists n ∈ N such as |ξ | < n;
• ξ is infinite if, for all n ∈ N, |ξ | > n (equivalently, if ξ is not finite).

Definition 9.2 An ordered field K is called non-Archimedean if it contains an infinitesimal ξ �= 0.

It is easily seen that all infinitesimal are finite, that the inverse of an infinite number is a nonzero infinitesimal
number, and that the inverse of a nonzero infinitesimal number is infinite.

Definition 9.3 A superreal field is an ordered field K that properly extends R.

It is easy to show, due to the completeness of R, that there are nonzero infinitesimal numbers and infinite
numbers in any superreal field. Infinitesimal numbers can be used to formalize a new notion of “closeness”:

Definition 9.4 We say that two numbers ξ, ζ ∈ K are infinitely close if ξ − ζ is infinitesimal. In this case, we
write ξ ∼ ζ .

Clearly, the relation “∼” of infinite closeness is an equivalence relation.

Theorem 9.5 If K is a superreal field, every finite number ξ ∈ K is infinitely close to a unique real number
r ∼ ξ , called the shadow or the standard part of ξ .

Given a finite number ξ , we denote its shadow as sh(ξ), and we put sh(ξ) = +∞ (sh(ξ) = −∞) if ξ ∈ K

is a positive (negative) infinite number.

Definition 9.6 Let K be a superreal field, and ξ ∈ K a number. The monad of ξ is the set of all numbers that
are infinitely close to it:

mon(ξ) = {ζ ∈ K : ξ ∼ ζ },
and the galaxy of ξ is the set of all numbers that are finitely close to it:

gal(ξ) = {ζ ∈ K : ξ − ζ is finite}
By definition, it follows that the set of infinitesimal numbers is mon(0) and that the set of finite numbers

is gal(0).

The �-limit

In this section we will introduce a superreal field K and will analyze its main properties by mean of the�-theory
(see also [1,8]).

We set

X = P f in(F(R,R));
we will refer to X as the “parameter space”. Clearly (X,⊂) is a directed set and, as usual, a function ϕ : X → E
will be called net (with values in E). So nets are a natural generalization of the notion of sequence, and the
�−limit is, in some sense, a generalization of the notion of “limit” of a sequence.

We present axiomatically the notion of �-limit:
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Axioms of the �-limit

• (�-1) Existence Axiom. There is a superreal field K ⊃ R such that every net ϕ : X → R has a unique
limit L ∈ K (called the “�-limit” of ϕ.) The �-limit of ϕ will be denoted as

L = lim
λ↑�ϕ(λ).

Moreover we assume that every ξ ∈ K is the �-limit of some real function ϕ : X → R.
• (�-2) Real numbers axiom. If ϕ(λ) is eventually constant, namely ∃λ0 ∈ X, r ∈ R such that ∀λ ⊃
λ0, ϕ(λ) = r, then

lim
λ↑�ϕ(λ) = r.

• (�-3) Sum and product Axiom. For all ϕ,ψ : X → R:

lim
λ↑�ϕ(λ)+ lim

λ↑�ψ(λ) = lim
λ↑� (ϕ(λ)+ ψ(λ)) ;

lim
λ↑�ϕ(λ) · lim

λ↑�ψ(λ) = lim
λ↑� (ϕ(λ) · ψ(λ)) .

Theorem 9.7 The set of axioms {(�-1),(�-2),( �-3)} is consistent.

In this paper the word “limit” will be used and should be intended, only as a “suggestive” terminology for
our constructions.7 It is possible to show8 that the �-limit is related to a notion of convergence (to be more
precise, it is the projection of a topological limit), but we will not adopt this topological point of view in this
paper.

Theorem 9.7 is proved in [1] and in [9]. The�-limit can be extended to more general nets; to this aim, we
recall that the superstructure on R is defined as follows:

U =
∞
⋃

n=0

Un

where Un is defined by induction as follows:

U0 = R;

Un+1 = Un ∪ P(Un).

Here P(E) denotes the power set of E . Identifying the couples with the Kuratowski pairs and the functions
and the relations with their graphs, it follows that U contains almost every usual mathematical object.

We can extend the definition of the �-limit to any bounded net of mathematical objects in U (a net
ϕ : X → U is bounded if there exists n such that ∀λ ∈ X, ϕ(λ) ∈ Un). To this aim, consider a net

ϕ : X → Un . (17)

We will define lim
λ↑�ϕ(λ) by induction on n. For n = 0, lim

λ↑�ϕ(λ) is defined by the axioms (�- 1),(�-2),(�-3);

so by induction we may assume that the limit is defined for n − 1 and define it for the net (17) as follows:

lim
λ↑�ϕ(λ) =

{

lim
λ↑�ψ(λ) | ψ : X → Un−1 and ∀λ ∈ X, ψ(λ) ∈ ϕ(λ)

}

.

Definition 9.8 A mathematical entity (number, set, function or relation) which is the�-limit of a net is called
internal.

We explicitate the definition of �-limit for nets of subsets of R and functions in F(R,R):

7 In fact, it is easy to prove that K is isomorphic to R
X/ ∼, where we set ϕ1 ∼ ϕ2 ⇔ limλ↑� ϕ1(λ) = limλ↑� ϕ2(λ). This

identification can be used to prove that, in what follows, all our definitions do not depend on the choice of representatives.
8 We plan to do this in a forthcoming paper.
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Definition 9.9 The natural extension of a set E ⊂ R is given by

E∗ := lim
λ↑� cE (λ) =

{

lim
λ↑�ψ(λ) | ψ(λ) ∈ E

}

where cE (λ) is the net identically equal to E .

This definition, combined with axiom (�-1), entails that

K = R
∗.

Since a function f can be identified with its graph then the natural extension of a function is defined by
the above definition. Moreover we have the following result:

Theorem 9.10 The natural extension of a function

f : E → F

is a function

f ∗ : E∗ → F∗

and for every net ϕ : X → E, and every function f : E → F, we have that

lim
λ↑� f (ϕ(λ)) = f ∗

(

lim
λ↑�ϕ(λ)

)

.

The following theorem is a fundamental tool in using the �-limit:

Theorem 9.11 (Leibniz Principle) Let R be a relation in Un for some n ≥ 0 and let ϕ,ψ : X → Un. If

∀λ ∈ X, ϕ(λ)Rψ(λ)
then

(

lim
λ↑�ϕ(λ)

)

R∗
(

lim
λ↑�ψ(λ)

)

.

When R is ∈ or = we will not use the symbol ∗ to denote their extensions, since their meaning is unaltered
in universe constructed over R

∗. To give an example of how Leibniz Principle can be used to prove facts about
internal entities, let us prove that the set

R
◦ := lim

λ↑�(R ∩ λ)

has the maximum and the minimum: for every λ ∈ � let Mλ,mλ be, respectively, the maximum and the
minimum of R ∩ λ (that exists because R ∩ λ is finite).9 Then

M = lim
λ↑� Mλ

and

m = lim
λ↑�mλ

are, respectively, the maximum and the minimum of R
◦. In fact, let, e.g., ξ ∈ R

◦. Let ξ = limλ↑� ξλ. For
every λ we have mλ ≤ ξλ ≤ Mλ, so we can apply Leibniz Principle and we get

m ≤ ξ ≤ M ∀ξ ∈ R
◦.

9 Here we are identifying constant functions in F(R,R) with real numbers, so R ∩ λ has to be intended as the set of constants
c such that the function with constant value c is in λ.
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