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Abstract

In 2011, Neil Hindman proved that for every natural number n,m the

polynomial
n∑

i=1

xi −

m∏

j=1

yj

has monochromatic solutions for every finite coloration of N. We want to

generalize this result to two classes of nonlinear polynomials. The first

class consists of polynomials P (x1, ..., xn, y1, ..., ym) of the following kind:

P (x1, ..., xn, y1, ..., ym) =
n∑

i=1

aixiMi(y1, ..., ym),

where n,m are natural numbers,
n∑

i=1

aixi has monochromatic solutions for

every finite coloration of N and the degree of each variable y1, ..., ym in

Mi(y1, ..., ym) is at most one. An example of such a polynomial is

x1y1 + x2y1y2 − x3.

The second class of polynomials generalizing Hindman’s result is more

complicated to describe; its particularity is that the degree of some of the

involved variables can be greater than one.

The technique that we use relies on an approach to ultrafilters based on

Nonstandard Analysis. Perhaps, the most interesting aspect of this tech-

nique is that, by carefully chosing the appropriate nonstandard setting,

the proof of the main results can be obtained by very simple algebraic

considerations.

1 Introduction

We say that a polynomial P (x1, ..., xn) is partition regular on N = {1, 2, ...}
if whenever the natural numbers are finitely colored there is a monochromatic
solution to the equation P (x1, ..., xn) = 0. The problem of determining which
polynomials are partition regular has been studied since Issai Schur’s work [26],
and the linear case was settled by Richard Rado in [23]:

Theorem 1.1 (Rado). Let P (x1, ..., xn) =
∑n

i=1 aixi be a linear polynomial

with nonzero coefficients. The following conditions are equivalent:

1. P (x1, ..., xn) is partition regular on N;

1Supported by grant P25311-N25 of the Austrian Science Fund FWF.
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2. there is a nonempy subset J of {1, ..., n} such that
∑
j∈J

aj = 0.

In his work Rado also characterized the partition regular finite systems of
linear equations. Since then, one of the main topics in this field has been the
study of infinite systems of linear equations (for a general background on many
notions related to this subject see, e.g., [13]). From our point of view, one other
interesting question (which has also been approached, e.g., in [5], [8]) is: which
nonlinear polynomials are partition regular?
To precisely formalize the problem, we recall the following definitions:

Definition 1.2. A polynomial P (x1, ..., xn) is

• partition regular (on N) if for every natural number r, for every partition

N =
r⋃

i=1

Ai, there is an index j ≤ r and natural numbers a1, ..., an ∈ Aj

such that P (a1, ..., an) = 0;

• injectively partition regular2 (on N) if for every natural number r, for

every partition N =
r⋃

i=1

Ai, there is an index j ≤ r and mutually distinct

natural numbers a1, ..., an ∈ Aj such that P (a1, ..., an) = 0.

While the linear case is settled, very little is known in the nonlinear case.
One of the few exceptions is the multiplicative analogue of Rado’s Theorem,
that can be deduced from Theorem 1.1 by considering the map exp(n) = 2n:

Theorem 1.3. Let n,m ≥ 1, a1, ..., an, b1, ..., bm > 0 be natural numbers, and

P (x1, ..., xn, y1, ..., ym) =
n∏

i=1

xai

i −
m∏
j=1

y
bj
j .

The following two conditions are equivalent:

1. P (x1, ..., xn, y1, ..., ym) is partition regular;

2. there are two nonempty subsets I1 ⊆ {1, ..., n} and I2 ⊆ {1, ...,m} such

that
∑
i∈I1

ai =
∑
j∈I2

bj.

As far as we know, perhaps the most interesting result regarding the partition
regularity of nonlinear polynomials is the following:

Theorem 1.4 (Hindman). For every natural numbers n,m ≥ 1, with n+m ≥ 3,
the nonlinear polynomial

n∑

i=1

xi −
m∏

j=1

yj

is injectively partition regular.

2Neil Hindman and Imre Leader proved in [15] that every linear partition regular polyno-
mial that has an injective solution is injectively partition regular; see also Section 2.1.
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Theorem 1.4 is a consequence of a far more general result that has been
proved in [14].
The two main results in our paper are generalizations of Theorem 1.4.

In Theorem 3.3 we prove that, if P (x1, ..., xn) =
n∑

i=1

aixi is a linear injectively

partition regular polynomial, y1, ..., ym are not variables of P (x1, ..., xn), and
F1, ..., Fn are subsets of {1, ...,m}, the polynomial

R(x1, ..., xn, y1, ..., ym) =
n∑

i=1

ai(xi ·
∏

j∈Fi

yj)

(having posed
∏

j∈Fi

yj = 1 if Fi = ∅) is injectively partition regular. E.g., as a

consequence of Theorem 3.3 we have that the polynomial

P (x1, x2, x3, x4, y1, y2, y3) = 2x1 + 3x2y1y2 − 5x3y1 + x4y2y3

is injectively partition regular. The particularity of polynomials considered in
Theorem 3.3 is that the degree of each of their variables is one. In Theorem
4.2 we prove that, by slightly modifying the hypothesis of Theorem 3.3, we
can ensure the partition regularity for many polynomials having variables with
degree greater than one: e.g., as a consequence of Theorem 4.2 we get that the
polynomial

P (x, y, z, t1, t2, t3, t4, t5, t6) = t1t2x
2 + t3t4y

2 − t5t6z
2

is injectively partition regular.
The technique we use to prove our main results is based on an approach to
combinatorics by means of nonstandard analysis (see [10], [19]): the idea behind
this approach is that, as it is well-known, problems related to partition regularity
can be reformulated in terms of ultrafilters. Following an approach that has
something in common with the one used by Christian W. Puritz in his articles
[21], [22], the one used by Joram Hirschfeld in [17] and the one used by Greg
Cherlin and Joram Hirschfeld in [6], it can be shown that some properties of
ultrafilters can be translated and studied in terms of sets of hyperintegers. This
can be obtained by associating, in particular hyperextensions ∗

N of N, to every
ultrafilter U its monad µ(U):

µ(U) = {α ∈∗
N | α ∈∗A for every A ∈ U},

and then proving that some of the properties of U can be deduced by proper-
ties of µ(U) (see [19], Chapter 2). In particular, we prove that a polynomial
P (x1, ..., xn) is injectively partition regular if and only if there is an ultrafil-
ter U , and mutually distinct elements α1, ..., αn in the monad of U , such that
P (α1, ..., αn) = 0.
We will only recall the basic results regarding this nonstandard technique, since
it has already been introduced in [10] and [19] .
The paper is organized as follows: the first part, consisting of section 2, contains
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an introduction that covers all the needed nonstandard results. In the second
part, that consists of sections 3 and 4, we apply the nonstandard technique to
prove that there are many nonlinear injectively partition regular polynomials.
Finally, in the conclusions, we pose two questions that we think to be quite
interesting and challenging.

2 Basic Results and Definitions

2.1 Notions about Polynomials

In this work, by "polynomial" we mean any P (x1, ..., xn) ∈ Z[X], where X

is a countable set of variables, ℘fin(X) is the set of finite subsets of X and

Z[X] =
⋃

Y ∈℘fin(X)

Z[Y ].

Given a variable x ∈ X and a polynomial P (x1, ..., xn), we denote by dP(x) the
degree of x in P (x1, ..., xn).

Convention: When we write P (x1, ..., xn) we mean that x1, ..., xn are all
and only the variables of P (x1, ..., xn): for every variable x ∈ X, dP (x) ≥ 1 if
and only if x ∈ {x1, ..., xn}. The only exception is when we have a polynomial
P (x1, ..., xn) and we consider one of its monomial: in this case, for the sake of
simplicity, we write the monomial as M(x1, ..., xn) even if some of the variables
x1, ..., xn may not divide M(x1, ..., xn).

Given the polynomial P (x1, ..., xn), we call set of variables of P (x1, ..., xn)
the set V (P ) = {x1, ..., xn}, and we call partial degree of P (x1, ..., xn) the
maximum degree of its variables.
We recall that a polynomial is linear if all its monomials have degree equal to one
and that it is homogeneous if all its monomials have the same degree. Among
the nonlinear polynomials, an important class for our purposes is the following:

Definition 2.1. A polynomial P (x1, ..., xn) is linear in each variable (from
now on abbreviated as l.e.v.) if its partial degree is equal to one.

Rado’s Theorem 1.1 leads to introduce the following definition:

Definition 2.2. A polynomial

P (x1, ..., xn) =
k∑

i=1

aiMi(x1, ..., xn),

where M1(x1, ..., xn), ...,Mk(x1, ..., xn) are its distinct monic monomials, satis-

fies Rado’s Condition if there is a nonempty subset J ⊆ {1, ..., k} such that∑
j∈J

aj = 0.
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We observe that Rado’s Theorem talks about polynomials with constant
term equal to zero. In fact Rado, in [23], proved that, when the constant term
is not zero, the problem of the partition regularity of P (x1, ..., xn) becomes, in
some sense, trivial:

Theorem 2.3 (Rado). Suppose that

P (x1, ..., xn) = (
n∑

i=1

aixi) + c

is a polynomial with non-zero constant term c. Then P (x1, ..., xn) is partition

regular on N if and only if either

1. there exists a natural number k such that P (k, k, ..., k) = 0;

2. there exists an integer z such that P (z, z, ..., z) = 0 and there is a nonempty

subset J of {1, ..., n} such that
∑
j∈J

aj = 0.

In order to avoid similar problems, we make the following decision: all the
polynomials that we consider in this paper have constant term equal to zero.
The last fact that we will often use regards the injective partition regularity
of linear polynomials. In [15] the authors proved, as a particular consequence
of their Theorem 3.1, that a linear partition regular polynomial is injectively
partition regular if it has at least one injective solution. Since this last condition
is true for every such polynomial (except the polynomial P (x, y) = x − y, of
course), they concluded that every linear partition regular polynomial on N is
also injectively partition regular. We will often use this fact when studying the
injective partition regularity of nonlinear polynomials.

2.2 The Nonstandard Point of View

In this section we recall the results that allow us to study the problem of
partition regularity of polynomials by mean of nonstandard techniques applied
to ultrafilters (see also [10] and [19]). We suggest [16] as a general reference
about ultrafilters, [1], [4] or [25] as introductions to nonstandard methods and
[7] as a reference for the model theoretic notions that we use.
We assume the knowledge of the nonstandard notions and tools that we use,
in particular the knowledge of superstructures, star map and enlarging prop-
erties (see, e.g., [7]). We just recall the definition of superstructure model of
nonstandard methods, since these are the models that we use:

Definition 2.4. A superstructure model of nonstandard methods is a

triple 〈V(X),V(Y ), ∗〉 where

1. a copy of N is included in X and in Y ;

2. V(X) and V(Y ) are superstructures on the infinite sets X, Y respectively;

3. ∗ is a proper star map from V(X) to V(Y ) that satisfies the transfer prop-

erty.
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In particular, we use single superstructure models of nonstandard methods,
i.e. models where V(X) = V(Y ), which existence is proved in [2], [3] and [9].
These models have been chosen because they allow to iterate the star map and
this, in our nonstandard technique, is needed to translate the operations between
ultrafilters in a nonstandard setting.
The study of partition regular polynomials can be seen as a particular case of a
more general problem:

Definition 2.5. Let F be a family, closed under superset, of nonempty subsets

of a set S. F is partition regular if, whenever S = A1 ∪ ... ∪An, there exists

an index i ≤ n such that Ai ∈ F .

Given a polynomial P (x1, ..., xn), we have that P (x1, ..., xn) is (injectively)
partition regular if and only if the family of subsets of N that contain a(n
injective) solution to P (x1, ..., xn) is partition regular. We recall that partition
regular families of subsets of a set S are related to ultrafilters on S:

Theorem 2.6. Let S be a set, and F a family, closed under supersets, of

nonempty subsets of S. Then F is partition regular if and only if there exists

an ultrafilter U on S such that U ⊆ F .

Proof. This is just a slightly changed formulation of Theorem 3.11 in [16].

Theorem 2.6 leads to introduce two special classes of ultrafilters:

Definition 2.7. Let P (x1, ..., xn) be a polynomial, and U an ultrafilter on N.

Then:

1. U is a σP-ultrafilter if and only if for every set A ∈ U there are a1, ..., an ∈
A such that P (a1, .., an) = 0;

2. U is a ιP-ultrafilter if and only if for every set A ∈ U there are mutually

distinct elements a1, ..., an ∈ A such that P (a1, .., an) = 0.

As a consequence of Theorem 2.6, it follows that a polynomial P (x1, ..., xn)
is partition regular on N if and only if there is a σP -ultrafilter U on N, and it is
injectively partition regular if and only if there is a ιP -ultrafilter on N.
The idea behind the research presented in this paper is that such ultrafilters
can be studied, with some important advantages, from the point of view of
Nonstandard Analysis. The models of nonstandard analysis that we use are the
single superstructure models satisfying the c+-enlarging property. These models
allow to associate hypernatural numbers to ultrafilters on N:

Proposition 2.8. (1) Let ∗
N be a hyperextension of N. For every hypernatural

number α in ∗
N, the set

Uα = {A ∈ N | α ∈∗A}

is an ultrafilter on N.

(2) Let ∗
N be a hyperextension of N with the c

+-enlarging property. For every

ultrafilter U on N there exists an element α in ∗
N such that U = Uα.
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Proof. These facts are proved, e.g., in [18] and in [20].

Definition 2.9. Given an ultrafilter U on N, its set of generators is

GU = {α ∈∗
N | U = Uα}.

E.g., if U = Un is the principal ultrafilter on n, then GU = {n}.
Here a disclaimer is in order: usually, the set GU is called "monad of U"; in this
paper, from this moment on, the monad on U will be called "set of generators
of U" because, as we will show in Theorem 2.10, many combinatorial properties
of U can be seen as actually "generated" by properties of the elements in GU .
The following is the result that motivates our nonstandard point of view:

Theorem 2.10 (Polynomial Bridge Theorem). Let P (x1, ..., xn) be a polyno-

mial, and U an ultrafilter on βN. The following two conditions are equivalent:

1. U is a ιP -ultrafilter;

2. there are mutually distinct elements α1, ..., αn in GU such that P (α1, ..., αn) =
0.

Proof. (1) ⇒ (2): Given a set A in U , we consider

SA = {(a1, ..., an) ∈ An | a1, ..., an are mutually distinct and P (a1, ..., an) = 0}.

We observe that, by hypothesis, SA is nonempty for every set A in U , and that
the family {SA}A∈U has the finite intersection property. In fact, if A1, ..., Am ∈
U , then

SA1
∩ ... ∩ SAm

= SA1∩...∩Am
6= ∅.

By c+-enlarging property, the intersection

S =
⋂

A∈U

∗SA

is nonempty. Since, by construction,

"for every (a1, ...., an) ∈ SA a1, ..., an are mutually distinct and
P (a1, ..., an) = 0",

by transfer it follows

"for every (α1, ..., αn) ∈∗SA α1, ..., αn are mutually distinct and
P (α1, ..., αn) = 0".

Let (α1, ..., αn) be an element of S. As we observed, P (α1, ..., αn) = 0, α1, ..., αn

are mutually distinct and, by construction, α1, ..., αn ∈ GU since, for every index
i ≤ n, for every set A in U , αi ∈∗A.
(2) ⇒ (1): Let α1, ..., αn be mutually distinct elements in GU such that
P (α1, ..., αn) = 0, and let us suppose that U is not a ιP -ultrafilter. Let A be
an element of U such that, for every mutually distinct a1, ..., an in A \ {0},
P (a1, ...., an) 6= 0.
Then by transfer it follows that, for every mutually distinct ξ1, ..., ξn in ∗A,

7



P (ξ1, ..., ξn) 6= 0;

in particular, as GU ⊆∗A, for every mutually distinct ξ1, ..., ξn in GU we have
P (ξ1, ..., ξn) 6= 0, and this is absurd. Hence U is a ιP -ultrafilter.

Remark 1: We obtain similar results if we require that only some of the
variables take distinct values: e.g., if we ask for solutions where x1 6= x2, we have
that for every set A in U there are a1, ..., an with a1 6= a2 and P (a1, ..., an) = 0
if and only if in GU there are α1, ..., αn with α1 6= α2 and P (α1, ..., αn) = 0.

Remark 2: The Polynomial Bridge Theorem is a particular case of a far
more general result, that we proved in [19] (Theorem 2.2.9) and we called Bridge
Theorem. Roughly speaking, the Bridge Theorem states that, given an ultra-
filter U and a first order open formula ϕ(x1, ..., xn), for every set A ∈ U there
are elements a1, ..., an ∈ A such that ϕ(a1, ..., an) holds if and only if there are
elements α1, ..., αn in GU such that ϕ(α1, ..., αn) holds. E.g., every set A in
U contains an arithmetic progression of length 7 if and only if GU contains an
arithmetic progression of length 7.

Since, in the following, we use also operations between ultrafilters, we recall
a few definitions about the space βN (for a complete tractation of this space,
we suggest [16]):

Definition 2.11. βN is the space of ultrafilters on N, endowed with the topology

generated by the family 〈ΘA | A ⊆ N〉, where

ΘA = {U ∈ βN | A ∈ U}.

An ultafilter U ∈ βN is called principal if there exists a natural number n ∈ N

such that U = {A ⊆ N | n ∈ A}.
Given two ultrafilters U ,V, U⊕V is the ultrafilter such that, for every set A ⊆ N,

A ∈ U ⊕ V ⇔ {n ∈ N | {m ∈ N | n+m ∈ A} ∈ V} ∈ U .

Similarly, U ⊙ V is the ultrafilter such that, for every set A ⊆ N,

A ∈ U ⊙ V | {n ∈ N | {m ∈ N | n ·m ∈ A} ∈ V} ∈ U .

An ultrafilter U is an additive idempotent if U = U ⊕ U ; similarly, U is a

multiplicative idempotent if U = U ⊙ U .

To study ultrafilters from a nonstandard point of view we need to translate
the operations ⊕,⊙ and the notion of idempotent ultrafilter in terms of genera-
tors. These translations involve the iteration of the star map, which is possible
in single superstructure models 〈V(X),V(X), ∗〉 of nonstandard methods:

Definition 2.12. For every natural number n we define the function

Sn : V(X) → V(X)

8



by setting

S1 = ∗

and, for n ≥ 1,
Sn+1 = ∗ ◦ Sn.

Definition 2.13. Let 〈V(X),V(X), ∗〉 be a single superstructure model of non-

standard methods. We call ω-hyperextension of N, and we denote by •
N, the

union of all the hyperextensions Sn(N):

•
N =

⋃
n∈N

Sn(N).

Observe that, as a consequence of the Elementary Chain Theorem, •
N is a

nonstandard extension of N.
To the elements of •

N is associated a notion of "height":

Definition 2.14. Let α ∈•
N \ N. The height of α (denoted by h(α)) is the

least natural number n such that α ∈ Sn(N).

By convention we set h(α) = 0 if α ∈ N. We observe that, for every α ∈•
N\N

and for every natural number n ∈ N, h(Sn(α)) = h(α) + n, and that, by
definition of height, for every subset A of N and every element α ∈•

N, α ∈•A if
and only if α ∈ Sh(α)(A).
A fact that we will often use is that, for every polynomial P (x1, ..., xn) and
every ιP -ultrafilter U , there exists in GU a solution α1, ..., αn to the equation
P (x1, ..., xn) = 0 with h(αi) = 1 for all i ≤ n:

Lemma 2.15 (Reduction Lemma). Let P (x1, ..., xn) be a polynomial, and U
a ιP -ultrafilter. Then there are mutually distinct elements α1, ..., αn ∈ GU∩∗

N

such that P (α1, ..., αn) = 0.

Proof. It is sufficient to apply the Polynomial Bridge Theorem to ∗
N ⊆•

N.

Two observations: first of all, the analogue result holds if U is just a σP -
ultrafilter; furthermore, for every natural number m > 1 there are mutually
distinct elements of height m in GU that form a solution to P (x1, ..., xn): if
α1, ..., αn are given by the Reduction Lemma, we just have to take Sm−1(α1), ..., Sm−1(αn).
The hyperextension •

N provides an useful framework to translate the operations
of sum and product between ultrafilters:

Proposition 2.16. Let α, β ∈•
N, U = Uα and V = Uβ, and let us suppose that

h(α) = h(β) = 1. Then:

1. for every natural number n, Uα = USn(α);

2. α+∗β ∈ GU⊕V ;

3. α·∗β ∈ GU⊙V .

Proof. These results have been proved in [10] and in [19], Chapter 2.

9



Remark: In Proposition 2.16 we supposed, for the sake of simplicity, that
h(α) = h(β) = 1. If we drop this hypothesis, the thesis in point (2) becomes

α+ Sh(α)(β) ∈ GU⊕V

and, in point (3), the thesis becomes

α · Sh(α)(β) ∈ GU⊙V .

Here arises a question: can a similar result be obtained for generical hyperex-
tensions of N (with this we mean an hyperextension where the iteration of the
star map is not allowed)? The answer is: yes and no.

Yes: As Puritz proved in ([22], Theorem 3.4), in each hyperextension that
satisfies the c+-enlarging property we can characterize the set of generators of
the tensor product U⊗V in terms of GU , GV for every ultrafilter U and V , where
U ⊗ V is the ultrafilter on N

2 defined as follows:

∀A ⊆ N
2, A ∈ U ⊗ V ⇔ {n ∈ N | {m ∈ N | (n,m) ∈ A} ∈ V} ∈ U .

Theorem 2.17 (Puritz). Let ∗
N be a hyperextension of N with the c

+-enlarging

property. For every ultrafilter U ,V on N,

GU⊗V={(α, β) ∈∗
N

2 | α ∈ GU , β ∈ GV , α < er(β)},

where

er(β) = {∗f(β) | f ∈ Fun(N,N),∗f(β) ∈∗
N \ N}.

If we denote by S : N2 → N the operation of sum on N and by Ŝ : βN2 → βN2

its extension to βN, we have that U ⊕ V = Ŝ(U ⊗ V). So by Puritz’s Theorem
it follows that

GU⊕V = {α+ β | α ∈ GU , β ∈ GV , α < er(β)}.

No: The characterization given by Theorem 2.17 is, somehow, "implicit":
Proposition 2.16 gives a procedure to construct, given α ∈ GU and β ∈ GV ,
an element γ ∈ GU⊕V related to both α and β, and this fact does not hold for
Theorem 2.17.

An important corollary of Proposition 2.16 is that we can easily characterize
the idempotent ultrafilters in the nonstandard setting:

Proposition 2.18. Let U ∈ βN. Then:

1. U⊕U = U ⇔ ∀α, β ∈ GU∩∗
N α+∗β ∈ GU ⇔ ∃α, β ∈ GU∩∗

N α+∗β ∈ GU ;

2. U ⊙U = U ⇔ ∀α, β ∈ GU∩∗
N α+∗β ∈ GU ⇔ ∃α, β ∈ GU∩∗

N α·∗β ∈ GU .

Proof. The thesis follows easily by points (2) and (3) of Proposition 2.16.

In [10] these characterizations of idempotent ultrafilters are used to prove
some results in combinatorics, in particular a "constructive" proof of (a partic-
ular case of) Rado’s Theorem.
In the next two sections we show how the nonstandard approach to ultrafilters
can be used to prove the partition regularity of particular nonlinear polynomials.
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3 Partition Regularity for a Class of l.e.v. Poly-

nomials

In [8], P. Csikvári, K. Gyarmati and A. Sárközy posed the following ques-
tion (that we reformulate with the terminology introduced in section 2): is the
polynomial

P (x1, x2, x3, x4) = x1 + x2 − x3x4

injectively partition regular? This problem was solved by Neil Hindman in [14]
as a particular case of Theorem 1.4, that we recall:

Theorem. For every natural number n,m ≥ 1, with n+m ≥ 3, the nonlinear

polynomial
n∑

i=1

xi −
m∏

j=1

yj

is injectively partition regular.

We start this section by proving the previous theorem using the nonstandard
approach to ultrafilters introduced in section 2.
A key result in our approach to the partition regularity of polynomials is the
following:

Theorem 3.1. If P (x1, ..., xn) is an homogeneous injectively partition regular

polynomial then there is a nonprincipal multiplicative idempotent ιP -ultrafilter.

Proof. Let

IP = {U ∈ βN | U is a ιP -ultrafilter}.

We observe that IP is nonempty since P (x1, ..., xn) is partition regular. By the
definition of ιP -ultrafilter, and by Theorem 2.10, it clearly follows that every
ultrafilter in U is nonprincipal, since |GU | = 1 for every principal ultrafilter.

Claim: IP is a closed bilateral ideal in (βN,⊙).

If we prove the claim, the thesis follows by Ellis’ Theorem (see [11]).
IP is closed since, as it is known, for every property P the set

{U ∈ βN | ∀A ∈ U A satisfies P}

is closed.
IP is a bilateral ideal in (βN,⊙): let U be an ultrafilter in IP , let α1, ..., αn be
mutually distinct elements in GU∩∗

N with P (α1, ..., αn) = 0 and let V be an
ultrafilter in βN. Let β ∈∗

N be a generator of V .
By Proposition 2.16 it follows that α1·

∗β, ..., αn·
∗β are generators of U ⊙ V .

They are mutually distinct and, since P (x1, ..., xn) is homogeneous, if d is the
degree of P (x1, ..., xn) then

11



P (α1·∗β, ..., αn·∗β) =∗βdP (α1, ..., αn) = 0.

So U ⊙ V is a ιP -ultrafilter, and hence it is in IP .
The proof for V⊙U is completely similar: in this case, we consider the generators
β·∗α1, ..., β·∗αn, and we observe that

P (β·∗α1, ..., β·∗αn) = βdP (∗α1, ...,
∗αn) = 0

since, by transfer, if P (α1, ..., αn) = 0 then P (∗α1, ...,
∗αn) = 0.

So IP is a bilateral ideal, and this concludes the proof.

Remark: Theorem 3.1 is a particular case of Theorem 3.3.5 in [19]) which,
roughly speaking, states that whenever we consider a first order open formula
ϕ(x1, ..., xn) that is "multiplicatively invariant" (with this we mean that, when-
ever ϕ(a1, ..., an) holds, for every natural number m also ϕ(m · a1, ...,m · an)
holds) the set

Iϕ = {U ∈ βN | ∀A ∈ U ∃a1, ..., an such that ϕ(a1, ..., an) holds}

is a bilateral ideal in (βN,⊙). This, by Ellis’s Theorem, entails that Iϕ contains
a multiplicative idempotent ultrafilter (and we can prove that this ultrafilter can
be taken to be nonprincipal). Similar results hold if ϕ(x1, ..., xn) is "additively
invariant", and for other similar notions of invariance.

As a consequence of Theorem 3.1, we can reprove Theorem 1.4:

Theorem. For every natural number n,m ≥ 1, with n+m ≥ 3, the nonlinear

polynomial
n∑

i=1

xi −
m∏

j=1

yj

is injectively partition regular.

Proof. If n ≥ 2, m = 1, the polynomial is
∑n

i=1 xi−y, and we can apply Rado’s

Theorem. If n = 1,m ≥ 2 the polynomial is x −
m∏
i=1

yi, and we can apply the

multiplicative analogue of Rado’s Theorem (Theorem 1.3).
So, we suppose n ≥ 2, m ≥ 2 and we consider the polynomial

R(x1, ..., xn, y) =
n∑

i=1

xi − y.

By Rado’s Theorem, R(x1, ..., xn, y) is partition regular so, as we observed in
section 2, since it is linear it is, in particular, injectively partition regular. It is
also homogeneous, so there exists a multiplicative idempotent ιR-ultrafilter U .

Let α1, ..., αn, β be mutually distinct elements in GU∩∗
N with

n∑
i=1

αi − β = 0.

Now let

η =
m∏
j=1

Sj(β).

12



For i = 1, ..., n we set

λi = αi · η

and, for j = 1, ...,m, we set

µj = Sj(β).

Now, for i ≤ n, j ≤ m we set xi = λi and yj = µj . Since U is a multiplicative
idempotent, all these elements are in GU . Also,

n∑
i=1

λi −
m∏
j=1

µj = η(
n∑

i=1

αi − β) = 0,

and this shows that U is a ιP -ultrafilter. In particular P (x1, ..., xn, y1, ..., ym) is
injectively partition regular.

These ideas can be slightly modified to prove a more general result:

Definition 3.2. Let m be a positive natural number, and let {y1, ..., ym} be a

set of mutually distinct variables. For every finite set F ⊆ {1, ..,m} we denote

by QF (y1, ..., ym) the monomial

QF (y1, ..., ym) =






∏
j∈F

yj , if F 6= ∅;

1, if F = ∅.

Theorem 3.3. Let n ≥ 2 be a natural number, let R(x1, ..., xn) =
n∑

i=1

aixi be a

partition regular polynomial, and let m be a positive natural number. Then, for

every F1, ..., Fn ⊆ {1, ..,m} (with the request that, when n = 2, F1 ∪ F2 6= ∅),
the polynomial

P (x1, ..., xn, y1, ..., ym) =
n∑

i=1

aixiQFi
(y1, ..., ym)

is injectively partition regular.

Proof. If n = 2, since in this case we supposed that at least one of the monomials
has degree greater than one, we are in a particular case of the multiplicative
analogue of Rado’s Theorem with at least three variables, and this ensures that
the polynomial is injectively partition regular. Hence we can suppose, from now
on, n ≥ 3.
Since R(x1, ..., xn) is linear (so, in particular, it is homogeneous) and partition
regular, by Theorem 3.1 it follows that there is a nonprincipal multiplicative
idempotent ιR-ultrafilter U . Let α1, ..., αn ∈∗

N be mutually distinct generators
of U such that R(α1, ..., αn) = 0, and let β ∈∗

N be any generator of U . For
every index j ≤ m, we set

βj = Sj(β) ∈ GU .

We observe that, for every index j ≤ m, βj ∈ GU . We set, for every index i ≤ n,

13



ηi = αi · (
∏

j /∈Fi

βj).

Since U is a multiplicative idempotent, ηi ∈ GU for every index i ≤ n.

Claim: P (η1, ..., ηn, β1, ..., βm) = 0.

In fact,

P (η1, ..., ηn, β1, ..., βm) =
n∑

i=1

aiηiQFi
(β1, ..., βm) =

n∑
i=1

aiαi(
∏

j /∈Fi

βj)(
∏

j∈Fi

βj) =
n∑

i=1

aiαi(
m∏
j=1

βj) = (
m∏
j=1

βj)
n∑

i=1

aiαi = 0.

This shows that, if we set xi = ηi for i = 1, ..., n and yj = βj for j = 1, ...,m,
we have an injective solution to P (x1, ..., xn, y1, ..., ym) in GU .

Three observations:

1. as a consequence of the argument used to prove the theorem, the ultrafilter
U considered in the proof is both a ιP -ultrafilter and a ιR-ultrafilter;

2. we observe that some of the variables y1, ..., ym may appear in more than
a monomial: e.g., the polynomial

P (x1, x2, x3, x4, x5, y1, y2, y3) = x1y1y2 + 4x2y1y2y3 − 3x3y3 − 2x4y1 + x5

satisfies the hypothesis of Theorem 3.3, so it is injectively partition regular;

3. Theorem 1.4 is a particular case of Theorem 3.3.

Theorem 3.3 can be reformulated in a way that leads to the generalization given
by Theorem 4.2:

Definition 3.4. Let

P (x1, ..., xn) =

k∑

i=1

aiMi(x1, ..., xn)

be a polynomial and let M1(x1, ..., xn), ...,Mk(x1, ..., xn) be the distinct monic

monomials of P (x1, ..., xn). We say that {v1, ..., vk} ⊆ V (P ) is a set of exclu-
sive variables for P (x1, ..., xn) if, for every i, j ≤ k, dMi

(vj) ≥ 1 ⇔ i = j.

In this case we say that the variable vi is exclusive for the monomial Mi(x1, ..., xn)
in P (x1, ..., xn).

E.g., the polynomial P (x, y, z, t, w) : xyz+yt−w admits {x, t, w} or {z, t, w}
as sets of exlusive variables, while the polynomial P (x, y, z) : xy+ yz− xz does
not have any exclusive variable.

14



Definition 3.5. Let

P (x1, ..., xn) =

k∑

i=1

aiMi(x1, ..., xn)

be a polynomial, and let M1(x1, ..., xn), ...,Mk(x1, ..., xn) be the distinct monic

monomials of P (x1, ..., xn). We call reduct of P (notation Red(P )) the poly-

nomial:

Red(P )(y1, ..., yk) =
k∑

i=1

aiyi.

E.g., if P (x, y, z, t, w) is the polynomial x1x2 + 4x2x3 − 2x4 + x2x5, then

Red(P )(y1, y2, y3, y4) = y1 + 4y2 − 2y3 + y4.

As a consequence of Rado’s Theorem, we have that P (x1, ..., xn) satisfies Rado’s
condition if and only if Red(P ) is partition regular. As a consequence of Theo-
rem 3.3, we obtain the following result:

Corollary 3.6. Let n ≥ 3, k ≥ n be natural numbers and let

P (x1, ..., xn) =
k∑

i=1

aiMi(x1, ..., xn)

be a l.e.v. polynomial. We suppose that P (x1, ..., xn) admits a set of exclu-

sive variables and that it satisfies Rado’s Condition. Then P (x1, ..., xn) is an

injectively partition regular polynomial.

Proof. If n = k, the polynomial is linear and the thesis follows by Theorem
1.1. So we can suppose that k > n. By reordering, if necessary, we can suppose
that, for j = 1, ..., k, the variable xj is exclusive for the monomial Mj(x1, ..., xn).
Then, by Rado’s condition, the polynomial

k∑
i=1

aixi

is partition regular. If F = {1, ..., n− k}, for i ≤ k we set

Fi = {j ∈ F | xj+k divides Mi(x1, ..., xn)}.

Then if we set, for j ≤ n − k, yj = xi+k, the polynomial P (x1, ..., xn) is, by
renaming the variables, equal to

k∑
i=1

aixiQFi
(y1, ..., yn−k).

By Theorem 3.3 the above polynomial is injectively partition regular, so we have
the thesis.

Corollary 3.7 talks about l.e.v. polynomials; in section 4 we show that there
are also non l.e.v. polynomials that are partition regular, provided that they
have "enough exclusive variables" in each monomial.
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4 Partition Regularity for a Class of Nonlinear

Polynomials

In this section we want to extend Theorem 3.3 to a particular class of nonlin-
ear polynomials. To introduce our main result, we need the following notations:

Definition 4.1. Let P (x1, ..., xn) =
k∑

i=1

aiMi(x1, ..., xn) be a polynomial, and let

M1(x1, ..., xn), ...,Mk(x1, ..., xn) be the monic monomials of P (x1, ..., xn). Then

• NL(P)={x ∈ V (P ) | d(x) ≥ 2} is the set of nonlinear variables of

P (x1, ..., xn);

• for every i ≤ k, li = max{d(x)− di(x) | x ∈ NL(P )}.

Theorem 4.2. Let

P (x1, ..., xn) =

k∑

i=1

aiMi(x1, ..., xn)

be a polynomial, and let M1(x1, ..., xn),...,Mk(x1, ..., xn) be the monic monomi-

als of P (x1, ..., xn). We suppose that k ≥ 3, that P (x1, ..., xn) satisfies Rado’s

Condition and that, for every index i ≤ k, in the monomial Mi(x1, ..., xn) there

are at least mi = max{1, li} exclusive variables with degree equal to 1.

Then P (x1, ..., xn) is injectively partition regular.

Proof. We rename the variables in V (P ) in the following way: for i ≤ k let
xi,1, ..., xi,mi

be mi exclusive variables for Mi(x1, ..., xn) with degree equal to 1.
We set

E = {xi,j | i ≤ k, j ≤ mi}

and NL(P ) = {y1, ..., yh}. Finally, we set {z1, ..., zr} = V (P ) \ (E ∪NL(P )).
We suppose that the variables are ordered as to have

P (x1, ..., xn) = P (x1,1, ..., x1,m1
, x2,1, ...., xk,mk

, z1, ..., zr, y1, ..., yh).

We set

P̃ (x1,1, ..., zr) = P (x1,1, ..., zr, 1, 1, ..., 1).

By construction, and by hypothesis, P̃ (x1,1, ..., zr) is a l.e.v. polynomial with
at least three monomials, it satisfies Rado’s Condition and it has at least one
exclusive variable for each monomial. So, by Theorem 3.3, it is injectively
partition regular. Let U be a multiplicative idempotent ultrafilter such that in
GU there is an injective solution (α1,1, ..., αk,mk

, β1, ..., βr) to P̃ (x1,1, ..., zr).
Let γ be an element in GU \ {α1,1, ..., αk,mk

, β1, ..., βr}.
We consider

η =
h∏

i=1

Si(γ)
d(yi).
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For i = 1, ..., k we set MNL
i =

h∏
j=1

Sj(γ)
di(yj) and

ηi =
η

MNL
i

=
h∏

j=1

Sj(γ)
d(yj)−di(yj).

We observe that the maximum degree of an element Sj(γ) in ηi is, by construc-
tion, li.
Finally, for 1 ≤ j ≤ mi, we set Ii,j = {s ≤ h | d(ys)− di(ys) ≥ j} and

γi,j =
∏

s∈Ii,j

Ss(γ).

With these choices, we have

mi∏
j=1

γi,j = ηi

and, by construction, {γi,j | i ≤ k, j ≤ mi} ⊆ GU since U is a multiplicative
idempotent.

We also observe that, for every i ≤ k,

(
mi∏
j=1

γi,j

)
·MNL

i = η.

Now, if we set, for i ≤ k and j ≤ mi:

xi,j =





αi,j · γi,j if li ≥ 1;

αi,j if li = 0;

and

• yi = Si(γ) for i ≤ h;

• zi = βi for i ≤ r

then

P (x1,1, ..., xk,mk
, z1, ..., zr, y1, ..., yh) =

η · P̃ (α1,1, ..., αk,mk
, β1, ..., βr, 1, ..., 1) = 0,

so P (x1,1, ..., yh) is injectively partition regular.

In order to understand the requirement k ≥ 3, we observe that one of the
crucial points in the proof is that, when we set y = 1 for every y ∈ NL(P ), the

polynomial P̃ (x1,1, ..., zr) that we obtain is injectively partition regular. Now,
let us suppose that k = 2, and let M1(x1, ..., xn) and M2(x1, ..., xn) be the
two monic monomials of P (x1, ..., xn). If D(x1, ..., xn) is the greatest common
divisor of M1(x1, ..., xn), M2(x1, ..., xn), we set

Qi(x1, ..., xn) =
Mi(x1, ..., xn)

D(x1, ..., xn)
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for i = 1, 2. We have

P (x1, ..., xn) = D(x1, ..., xn)(Q1(x1, ..., xn)−Q2(x1, ..., xn)),

and it holds that P (x1, ..., xn) is injectively partition regular if and only if
R(x1, ..., xn) = Q1(x1, ..., xn)−Q2(x1, ..., xn) is, since D(x1, ..., xn) is a nonzero
monomial.
Now there are two possibilities:

1. NL(R) 6= ∅, in which case, since every y ∈ NL(R) divides Q1(x1, ..., xn) if
and only if it does not divide Q2(x1, ..., xn) (this property holds because,
by construction, Q1(x1, ..., xn) and Q2(x1, ..., xn) are relatively prime), in
at least one of the monomials there are at least two exclusive variables,
and this entails that the polynomial R̃(x1,1, ..., zr) is injectively partition
regular by Theorem 3.3;

2. NL(R) = ∅, in which case R(x1, ..., xn) is a l.e.v. polynomial with only
two monomials, so it is injectively partition regular if and only if n ≥ 3.

By the previous discussion (and using the same notations) it follows that,
when k = 2, if the other hypothesis of Theorem 4.2 hold then the polyno-
mial P (x1, ..., xn) is injectively partition regular if and only if there do not exist
two variables xi, xj ∈ V (P ) such that R(x1, ..., xn) = xi − xj .
We conclude this section by showing with an example how the proof of Theorem
4.2 works. Consider the polynomial

P (x1,1, x2,1, x2,2, x3,1, x3,2, x4,1, x4,2, z1, z2, y1, y2) =

x1,1y
2
1y

2
2 + x2,1x2,2z1y

2
2 − 2x3,1x3,2z2y1 + x4,1x4,2,

where we have chosen the names of the variables following the notations intro-
duced in the proof of Theorem 4.2.
We set

P̃ (x1,1, ..., x4,2, z1, z2) = x1,1 + x2,1x2,2z1 − 2x3,1x3,2z2 + x4,1x4,2.

Let U be a multiplicative idempotent ιP̃ -ultrafilter and let α1,1, ..., α4,2, β1, β2 ∈∗
N

be mutually distinct elements in GU such that

α1,1 + α2,1α2,2β1 − 2α3,1α3,2β2 + α4,1α4,2.

We take γ ∈ GU \ {α1,1, ..., α4,2, β1, β2} and we set:

γ2,1 = γ2,2 =∗γ, γ3,1 =∗γ∗∗γ, γ3,2 =∗∗γ, γ4,1 = γ4,2 =∗γ∗∗γ.

Finally, we set:

• x1,1 = α1,1;

• x2,1 = α2,1 · γ2,1;

• x2,2 = α2,2 · γ2,2;
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• x3,1 = α3,1 · γ3,1;

• x3,2 = α3,2 · γ3,2;

• x4,1 = α4,1 · γ4,1;

• x4,2 = α4,2 · γ4,2;

• z1 = β1;

• z2 = β2;

• y1 =∗γ;

• y2 =∗∗γ.

With these choices, we have:

P (x1,1, x2,1, x2,2, x3,1, x3,2, x4,1, x4,2, z1, z2, y1, y2) =

α1,1·∗γ2·∗∗γ2 + α2,1α2,2β1
∗γ2∗∗γ2 − 2α3,1α3,2β2

∗γ2∗∗γ2 + α4,1α4,2
∗γ2∗∗γ2 =

∗γ2∗∗γ2P̃ (α1,1, α2,1, α2,2, α3,1, α3,2, α4,1, α4,2, β1, β2) = 0,

so P (x1,1, x2,1, x2,2, x3,1, x3,2, x4,1, x4,2, z1, z2, y1, y2) has an injective solution in
GU , and this entails that P (x1,1, x2,1, x2,2, x3,1, x3,2, x4,1, x4,2, z1, z2, y1, y2) is
injectively partition regular.

5 Conclusions

A natural question is the following: can the implications in Theorem 3.3
and/or Theorem 4.2 be reversed? The hypothesis on the existence of exclusive
variables is not necessary: in [8] it is proved that the polynomial

P (x, y, z) = xy + xz − yz

is partition regular (it can be proved that it is injectively partition regular),
and it does not admit a set of exclusive variables. The hypothesis regarding
Rado’s Condition is more subtle: by slightly modifying the original arguments
of Richard Rado (that can be found, for example, in [12]) we can prove that this
hypothesis is necessary for every homogeneous partition regular polynomial, but
it seems to be not necessary in general. For sure, it is not necessary if we ask
for the partition regularity of polynomials on Z: in fact, e.g., the polynomial

P (x1, x2, x3, y1, y2) = x1y1 + x2y2 + x3

is injectively partition regular on Z even if it does not satisfy Rado’s Condition.
This can be easily proved in the following way: the polynomial

R(x1, x2, x3, y1, y2) = x1y1 + x2y2 − x3
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is, by Theorem 3.3, injectively partition regular on N and, if Uα is a ιR-ultrafilter,
then U−α is a ιP -ultrafilter; in fact, if α1, α2, α3, β1, β2 are elements in GUα

such
that R(α1, α2, α3, β1, β2) = 0, then −α1,−α2,−α3,−β1,−β2 are elements in
GU

−α
and, by construction,

P (−α1,−α2,−α3,−β1,−β2) = 0.

Furthermore, the previous example also shows that, while in the homogeneous
case every polynomial which is partition regular on Z is also partition regular on
N, in the non homogeneous case this is false, since P (x1, x2, x3, y1, y2), having
only positive coefficients, can not be partition regular on N (it does not even
have any solution in N).
Finally, Rado’s Condition alone is not sufficient to ensure the partition regularity
of a nonlinear polynomial: in [8] the authors proved that the polynomial

x+ y − z2

is not partition regular on N, even if it satisfies Rado’s Condition.
We conclude the paper summarizing the previous observations in two questions:

Question 1: Is there a characterization of nonlinear partition regular poly-
nomials on N in "Rado’s Style", i.e. that allows to determine in a finite time if
a given polynomial P (x1, ..., xn) is, or is not, partition regular?

Question 1 seems particularly challenging; an easier question, that would
still be interesting to answer, is the following:

Question 2: Is there a characterization of homogeneous partition regular
polynomials (in the same sense of Question 1)?
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