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ASYMPTOTIC GAUGES: GENERALIZATION OF COLOMBEAU

TYPE ALGEBRAS

PAOLO GIORDANO AND LORENZO LUPERI BAGLINI

Abstract. We use the general notion of set of indices to construct algebras of
nonlinear generalized functions of Colombeau type. They are formally defined
in the same way as the special Colombeau algebra, but based on more general
“growth condition” formalized by the notion of asymptotic gauge. This gener-
alization includes the special, full and nonstandard analysis based Colombeau
type algebras in a unique framework. We compare Colombeau algebras gen-

erated by asymptotic gauges with other analogous construction, and we study
systematically their properties, with particular attention to the existence and
definition of embeddings of distributions. We finally prove that, in our frame-
work, for every linear homogeneous ODE with generalized coefficients there
exists a minimal Colombeau algebra generated by asymptotic gauges in which
the ODE can be uniquely solved. This marks a main difference with the
Colombeau special algebra, where only linear homogeneous ODEs satisfying
some restriction on the coefficients can be solved.

1. Introduction

Currently, a successful approach to modeling singularities as generalized func-
tions in a nonlinear context is the theory of Colombeau-type algebras of generalized
functions. The basic underlying idea is to regularize distributions (or even more
singular quantities) through nets of smooth functions depending on a regulariza-
tion parameter ε and then to quantify asymptotically the strength of singularities
in terms of this parameter ε. In particular, these algebras contain the space of
Schwartz distributions as a linear subspace and the algebra of smooth functions as
a faithful subalgebra. We suppose the reader to have a certain familiarity with this
topic and refer to [2, 3, 1, 4, 7, 6] for detailed information; as for terminology and
notations we mainly follow [6].

Since the beginning of this theory, it was natural to generalize Colombeau con-
struction replacing the family pεnqεPp0,1s,nPN with different “scales”. So, we have the

notions of asymptotic scales (see e.g. [10, 11]), pC, E ,Pq-algebras (see e.g. [8, 14]
and references therein), and sequence spaces with exponent weights ([9]).

In realizing this generalization, one can ask problems like:

‚ When do we obtain an algebra?
‚ When can we embed Schwartz distributions using the common method of

regularization by means of a mollifier?
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‚ How can we use this generalization to solve differential problems having a
singular growth, i.e. growing more than polynomially with ε?

The present work inscribes in this research thread. It is hence natural to clarify the
relationship between our approach and the cited articles, and to highlight what we
obtain more with respect to them. In this introduction, we start this clarification,
so that the reader can more easily understand the general picture.

Smooth functions: First of all, a general approach is frequently preferred,
e.g. by considering a sheaf E of topological algebras, and suitable families of semi-
norms. On the contrary, in the present work we will only consider the usual sheaf
of smooth functions C8pΩq, for Ω open in R

n, and the usual family of seminorms
supxPK |Bαfpxq|, where K Ť Ω and α P N

n. In spite of our choice, as it is clearly
stated in [8, pag. 394]: “Except in a few cases, the sheaf E is chosen to be the
sheaf of smooth functions”. In this way, we can focus on the conditions we need
to impose to the more general family of scales. We can thus avoid to add further
conditions which trivially hold in the (almost) unique case that most of the readers
will consider. We hence left to the interested reader the natural generalization of
the present work to a more abstract framework.

Set of indices: The results of this paper are proved for a generic set of in-
dices, a new unifying structure introduced in [12]. This permits to include several
Colombeau algebras in the same framework and notations: the special algebra Gs,
the full algebra Ge and the nonstandard analysis based algebra of asymptotic func-
tions Ĝ. Even if in the present article we are going to develop only the cases Gs,
Ge and Ĝ, we are strongly convinced that with minor modifications (see [12]), the
results we are going to present can also be applied to the diffeomorphism invariant
algebras Gd, G2 and Ĝ of [6].

Both asymptotic scales and pC, E ,Pq-algebras apply only to the special case.

Sequence spaces with exponent weights applies to Gs, Ge, Gd but not to Ĝ.

Logical structure: One of the key features in using a set of indices is that for
all the algebras Gs, Ge, Ĝ, Gd, G2 and Ĝ of [6], we have the same logical structure of
the simple Colombeau algebra, i.e. @K @α DN and @K @α@m, followed by a suitable
big-O asymptotic relation. Both Ge and Gd can be seen as sequence spaces with
exponent weights, but continuing to use the usual more involved logical structure
(hidden by the use of infinite intersections and unions). On the other hand, this
permits to [9] to underscore the relationship between sequence spaces with exponent
weights and Maddox sequence spaces.

Scales as primitive data: Like in [10, 9], we take the choice of the “scale”
as one of the primitive data. This approach is methodologically a little different
from pC, E ,Pq-algebras, where the scale is hidden in the pair pA, Iq of the ring A
of moderate and the ideal I of negligible scalars, but where the ring A usually
contains much more than only the scales. For example, when A is polynomially
overgenerated, it contains both infinitesimals and infinite nets. Moreover, polyno-
mially overgenerated rings do not permit to obtain an algebra closed with respect
to exponential (see [8]). This represents a limitation e.g. in solving even linear
ODE with generalized constant coefficients. On the contrary, we prove in Thm.
51 that every linear ODE with constant (generalized) coefficients whose scale is of
type B has a unique solution whose scale is of type eB (see Def. 46). Moreover, the
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Colombeau-like algebra defined starting from the scale eB is the smallest among
this type of algebras where every ODE of this type has a solution (see Thm. 56).

Embedding of distributions: In Thm. 44, we characterize which scales per-
mit to embed distributions using a mollifier and respecting the product of smooth
functions. Our results also clarify when, in other approaches, embeddings of distri-
butions are possible and when they are not. About this problem, see also [11, pag.
1-2] and [9].

Generality: Considering [14, 9], it is already known that the pC, E ,Pq-algebras
approach is the most general one. In section 3.0.1, we prove that when we consider
the usual sheaf of smooth functions, and we consider only the special algebra case,
the pC, E ,Pq-algebras approach is equivalent to our approach.

1.1. Set of indices. In this section, we recall notations and notions from [12] that
we will use in the present work. For all the proofs, we refer to [12]. In the naturals
N we always include zero.

If ϕ P DpRnq, r P Rą0 and x P R
n, we use the notations r d ϕ for the function

x P R
n ÞÑ 1

rn
¨ ϕ

`
x
r

˘
P R and x‘ ϕ for the function y P R

n ÞÑ ϕpy ´ xq P R. These
new notations permit to highlight that d is a free action of the multiplicative
group pRą0, ¨, 1q on DpRnq and ‘ is a free action of the additive group pRą0,`, 0q
on DpRnq. We also have the distributive property r d px‘ ϕq “ rx ‘ r d ϕ.

Definition 1. We say that I “ pI,ď, Iq is a set of indices if the following conditions
hold:

(i) pI,ďq is a pre-ordered set, i.e. it is a non empty set I with a reflexive and
transitive relation ď.

(ii) I is a set of subsets of I such that H R I and I P I.
(iii) @A,B P I DC P I : C Ď A XB.

For all e P I, set pH, es :“ tε P I | ε ď eu. As usual, we say ε ă e if ε ď e and ε ‰ e.
Using these notations, we state the last condition in the definition of set of indices:

(iv) If e ď a P A P I, the set Aďe :“ pH, es X A is downward directed by ă, i.e.,
it is non empty and

@b, c P Aďe Dd P Aďe : d ă b , d ă c. (1.1)

Henceforward, functions of the type f : I ÝÑ R will also be called nets, and
for their evaluation we will both use the notations fε or fpεq, in case the subscript
notation is too cumbersome. When the domain I is clear, we use also the notation
f “ pfεq for the whole net. Analogous notations will be used for nets of smooth
functions u “ puεq P CpΩqI .

Example 2.

(i) Conditions (ii) and (iii) can be summarized saying that I is a filter base on
I which contains I.

(ii) The simplest example of set of indices is given by Is :“ p0, 1s Ď R, the relation
ď is the usual order relation on R, and Is :“ tp0, ε0s | ε0 P Iu. We denote
by I

s :“ pIs,ď, Isq this set of indices which, of course, is that used for the
special algebra Gs.

(iii) In the context of [18], we set Î :“ D0 “ DpRdq. The pre-order relation is
defined by ϕ ď ψ iff ϕ ď ψ, where ϕ :“ diam psupppϕqq if ϕ ‰ 0 and ϕ :“ 1
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otherwise. Î is the free ultrafilter on D0 used in [18]. Then Î :“ pÎ ,ď, Îq is
a set of indices.

(iv) With the usual notations of [6] for the full algebra Ge, we define Ie :“ A0,
Ie :“ tAq | q P Nu, and for ε, e P Ie, we define ε ď e iff there exists r P Rą0

such that r ď 1 and ε “ r d e. Then I
e :“ pIe,ď, Ieq is a set of indices.

As we mentioned in the introduction, in the present work we will actually con-
sider only these examples of set of indices.

In each set of indices, we can define two notions of big-O that formally behave in
the usual way. Since each set of the form Aďe “ pH, es XA is downward directed,
the first big-O is the usual one:

Definition 3. Let I “ pI,ď, Iq be a set of indices. Let a P A P I and pxεq,
pyεq P R

I be two nets of real numbers defined in I. We write

xε “ Oa,Apyεq as ε P I (1.2)

if

DH P Rą0 Dε0 P Aďa @ε P Aďε0 : |xε| ď H ¨ |yε|. (1.3)

Definition 4. Let I “ pI,ď Iq be a set of indices. Let J Ď I be a non empty
subset of I such that

@A,B P J DC P J : C Ď A XB. (1.4)

Finally, let pxεq, pyεq P R
I be nets of real numbers. Then we say

xε “ OJ pyεq as ε P I

if

DA P J @a P A : xε “ Oa,Apyεq.
We simply write xε “ Opyεq (as ε P I) when J “ I, i.e. to denote xε “ OIpyεq.

The simplification consequent to the use of the second notion of big-O is due to
the following theorem, which states that also the second big-O formally behaves as
expected:

Theorem 5. Under the assumptions of Def. 4, the following properties of OJ , as
ε P I, hold:

(i) xε “ OJ pxεq;
(ii) if xε “ OJ pyεq and yε “ OJ pzεq then xε “ OJ pzεq;
(iii) OJ pxεq ¨ OJ pyεq “ OJ pxε ¨ yεq;
(iv) OJ pxεq `OJ pyεq “ OJ p|xε| ` |yε|q;
(v) xε ¨OJ pyεq “ OJ pxε ¨ yεq;
(vi) OJ pxεq `OJ pxεq “ OJ pxεq;
(vii) if xε, yε ě 0 for all ε P I, then xε `OJ pyεq “ OJ pxε ` yεq;
(viii) @k P R‰0 : OJ pk ¨ xεq “ OJ pxεq;
(ix) @k P R : k ¨ OJ pxεq “ OJ pxεq.

An analogue of Thm. 5 holds also for the first notion of big-O, i.e. for the relation
xε “ Oa,Apyεq as ε P I.

The unifying properties of these notions are explained in the following results:
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Corollary 6. Let Ω Ď R
n be an open set and puεq P C8pΩ,Rq be a net of

smooth functions. We use the notations of [6] for moderate and negligible nets
related to the special algebra GspΩq, and the notations of [18] for similar notions

related to the algebra ĜpΩq of asymptotic functions. Moreover, we recall that ε :“
mintdiam psupppεqq , 1u, where ε P DpRdq. Then

(i) puεq P Es
M pΩq if and only if

@K Ť Ω@α P N
n DN P N : sup

xPK
|Bαuεpxq| “ Opε´N q as ε P I

s;

(ii) puεq P N spΩq if and only if

@K Ť Ω@α P N
n @m P N : sup

xPK
|Bαuεpxq| “ Opεmq as ε P I

s;

(iii) puεq P M
`
EpΩqD0

˘
if and only if

@K Ť Ω@α P N
n DN P N : sup

xPK
|Bαuεpxq| “ Opε´N q as ε P Î;

(iv) puεq P N
`
EpΩqD0

˘
if and only if

@K Ť Ω@α P N
n @m P N : sup

xPK
|Bαuεpxq| “ Opεmq as ε P Î.

To arrive at a similar unifying result for the full algebra, we need the following

Definition 7. Let Ω Ď R
n be an open set.

(i) If ε P A0, then Ωε :“ Ω X tx P R
n | supppεq Ď Ω ´ xu.

(ii) PepΩq :“ ś
εPIe C

8pΩε,Rq.
(iii) If g : X ÝÑ ZY is a map, then g_ : px, yq P X ˆ Y ÞÑ gpxqpyq P Z.

We can say that elements of PepΩq are Ie-indexed nets puεq such that uε P C8pΩε,Rq.
In [13] it is proved that PepΩq is isomorphic (as diffeological space, and hence also
as set) to the usual space EepΩq (see [6]).

Theorem 8. Let u “ puεq P PepΩq, then

(i) u_ P Ee
M pΩq if and only if

@K Ť Ω@α P N
n DN P N : sup

xPK
|Bαuεpxq| “ O

`
ε´N

˘
as ε P I

e;

(ii) u_ P N epΩq if and only if

@K Ť Ω@α P N
n @m P N : sup

xPK
|Bαuεpxq| “ O pεmq as ε P I

e.

The same unifying and simple formulation can be used for the diffeomorphism
invariant algebra Gd, with only one difference: in the definition of moderate net we
use a big-O relation of the type OJ for a suitable J Ă I (see [12]). For this reason,
we are strongly convinced that the following results can be generalized also to Gd.

2. Asymptotic Gauges

In this section, we are going to introduce some notions for a set of indices which
permit to define what an asymptotic gauge is.
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2.1. “For ε sufficiently small” in a set of indices. We start by introducing a
useful notation which corresponds, in the set of indices for the special algebra I

s,
to the usual “for ε sufficiently small”.

Definition 9. Let I “ pI,ď, Iq be a set of indices. Let a P A P I and Pp´q be a
property, then we say

@Iε P Aďa : Ppεq,
and we read it for ε sufficiently small in Aďa the property Ppεq holds, if

De ď a @ε P Aďe : Ppεq. (2.1)

Moreover, we say that
@Iε : Ppεq,

and we read it for ε sufficiently small in I the property Ppεq holds, if DA P I @a P
A@Iε P Aďa : Ppεq.
Example 10.

(i) By condition (iv) of Def. 1 of set of indices, it follows that Aďe ‰ H.
Therefore, (2.1) is equivalent to

De P Aďa @ε P Aďe : Ppεq.
Analogously, we can reformulate similar properties we will see below.

(ii) We have xε “ Oa,Apyεq if and only if DH P Rą0 @Iε P Aďa : |xε| ď H ¨ |yε|.
(iii) In the set of indices I

s, the following properties are equivalent:
(a) Dε0 P Is @ε P p0, ε0s : Ppεq;
(b) DA P Is Da P A@I

s

ε P Aďa : Ppεq;
(c) DA P Is @a P A@I

s

ε P Aďa : Ppεq;
(d) @A P Is Da P A@I

s

ε P Aďa : Ppεq.
(iv) In the set of indices Î, we recall that a property Ppεq is said to hold almost ev-

erywhere iff tε P D0 | Ppεqu P Î (see [18]). Using this language, the following
properties are equivalent:
(a) Ppε) holds almost everywhere;

(b) DA P Î Da P A@Îε P Aďa : Ppεq;
(c) DA P Î @a P A@Îε P Aďa : Ppεq.

(v) In the set of indices Ie, assume that ϕ P Aq, then the following properties are
equivalent
(a) @I

e

ε P pAqqďϕ
: Ppεq;

(b) Dr P p0, 1s @s P p0, rs : Pps d ϕq.
2.2. Order relation in a set of indices. All the scales pε´nqε,n of the special
algebra are positive functions. Of course, if we change the function ε ÞÑ ε´n, only
for ε ą ε0, so that it is not globally positive anymore, this will not change anything
in the definition of GspΩq. In this section, we are going to define this order relation
for functions of the type I ÝÑ R.

Definition 11. Let I “ pI,ď, Iq be a set of indices, and i, j : I ÝÑ R be maps.
Then we say i ąI j if

@Iε : iε ą jε.

Following the intuitive interpretation given in [12], we can say that i ąI j if we
can find an accuracy class A P I such that for each measuring instrument a P A in
that class, we have iε ą jε for ε P Aďa sufficiently small.
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Theorem 12. Let I “ pI,ď, Iq be a set of indices, and i, j, k, z : I ÝÑ R be
maps. Then we have:

(i) i ­ąI i.
(ii) If i ąI j ąI k, then i ąI k.
(iii) If i ąI 0 and k ąI j, then i ¨ k ąI i ¨ j.
(iv) If i ąI j and k ąI z, then i` k ąI j ` z.
(v) If DA P I @a P A@Iε P Aďa : iε ď jε, then iε “ Opjεq as ε P I.

Proof. (i): By contradiction, assume that i ąI i, i.e.

DA P I @a P A@Iε P Aďa : iε ą iε. (2.2)

But Da P A since H R I. This, (2.2) and (i) of Example 10 yield that for some
e P Aďa we have iε ą iε for all ε P Aďe. This yields the contradiction ie ą ie.
(ii): We can write the assumptions of this claim as

DA P I @a P A@Iε P Aďa : iε ą jε (2.3)

DB P I @b P B @Iε P Bďb : jε ą kε. (2.4)

By (iii) we get the existence of C P I which is contained in AXB, i.e. where both
(2.3) and (2.4) hold. Fix a generic c P C. Both the relations iε ą jε and jε ą kε
hold for ε sufficiently small in Aďc and Bďc respectively. Hence

De1 ď c @ε P Aďe1 : iε ą jε (2.5)

De2 ď c @ε P Aďe2 : jε ą kε. (2.6)

But pH, cs is downward directed so that there exists e ď c such that e ă e1 and
e ă e2. For each ε P Cďe, from (2.5) and (2.6) we hence get the conclusion
iε ą jε ą kε.
Properties (iii) and (iv) can be proved analogously. Property (v) also follows directly
from the definitions. �

Example 13.

(i) In the set of indices I
s, we have i ąIe j if and only if iε ą jε for ε sufficiently

small.
(ii) In the set of indices I

e we have i ąIe j if and only if there exists q P N such
that for each ϕ P Aq we have ipε d ϕq ą jpε d ϕq for ε P p0, 1s sufficiently
small.

(iii) In the set of indices Î we have i ą
Î
j if and only if iε ą jε almost everywhere.

2.3. Limits in a set of indices. All the scales pε´nqε,n of the special algebra have
limit `8 for ε Ñ 0`. In this section, we want to define the notion of limit in a set
of indices for functions of the type I ÝÑ R. This notion can be easily generalized
to generic f : I ÝÑ T , where T is a topological space.

Definition 14. Let I “ pI,ď, Iq be a set of indices, f : I ÝÑ R a map, and
l P R Y t`8,´8,8u. Then we say that l is the limit of f in I if

DA P I @a P A : l “ lim
εďa

f |Apεq, (2.7)

where the limit (2.7) is taken in the downward directed set pH, as.

Remark.
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(i) Writing limεďa f |Apεq we mean (in case l is finite)

@r P Rą0 Da0 ď a @ε P A : ε ď a0 ùñ |l ´ fε| ă r, (2.8)

that is
@r P Rą0 @Iε P Aďa : |l ´ fε| ă r. (2.9)

From this, the following properties easily follow
‚ If l “ limεďa f |Apεq and B Ď A, B P I, then l “ limεďa f |Bpεq.
‚ There exists at most one l verifying (2.8).

(ii) Let us assume that l1 and l2 are both limits of f in I. So, for some A,
B P I we have l1 “ limεďa f |Apεq for all e P A, and l2 “ limεďe f |Bpεq for all
e P B. We can always find C P I and e P C such that C Ď A X B, so that
l1 “ limεďe f |Cpεq “ l2. Therefore, if this limit exists, it is unique and we
can use the notation

l “ lim
I

f “ lim
εPI

fε.

Example 15.

(i) In the set of indices I
s, we have l “ limIs f if and only if l “ limεÑ0` fε.

(ii) In the set of indices I
e, we have l “ limIe f if and only if there exists q P N

such that for each ϕ P Aq we have l “ limεÑ0` fpεd ϕq.
(iii) In the set of indices Î, assume that Î is a P-point ([5]), and denote by ˚

R the

hyperreals constructed as the ultrapower R
I{Î. Then we have

(a) D lim
Î
f “ l P R if and only if f is finite and l is the standard part of

rf s
Î

P ˚
R.

(b) D lim
Î
f “ `8 if and only if f ą 0 and rf s

Î
is infinite.

(c) D lim
Î
f “ ´8 if and only if f ă 0 and rf s

Î
is infinite.

(d) D lim
Î
f “ 8 if and only if r|f |s

Î
is infinite.

An expected result is the following

Theorem 16. Let I “ pI,ď, Iq be a set of indices and f , g, h : I ÝÑ R be maps
such that the limits limI f , limI g exists and are finite. Then

(i) D limIpf ` gq “ limI f ` limI g.
(ii) D limIpf ¨ gq “ limI f ¨ limI g.
(iii) @r P R : D limI r “ r.

(iv) If limI g ‰ 0, then D limI
f
g

“ limI f
limI g

.

(v) If f ăI h ăI g and limI f “ limI g “: l, then D limI h “ l.
(vi) If D limI f ą 0, then f ąI 0.

The proof is a direct consequence of our definition of limit and, as usual, property
(iii) of Def. 1.

2.4. Asymptotic gauges. Asymptotic gauges represent our definition of scale for
Colombeau like algebras. The idea is, essentially, to ask the asymptotic closure of
B Ď R

I with respect to algebraic operations.

Definition 17. Let I “ pI,ď, Iq be a set of indices. All the big-O in this definition
have to be meant as OI (see Def. 4). Then we say that B is an asymptotic gauge
on I (briefly: AG on I) if

(i) B Ď R
I ;

(ii) Di P B : limI i “ 8;
(iii) @i, j P B Dp P B : i ¨ j “ Oppq;
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(iv) @i P B @r P R Dσ P B : r ¨ i “ Opσq;
(v) @i, j P B Ds P B : s ąI 0 , |i| ` |j| “ Opsq.

Moreover, we say that:

‚ B ąI 0, and we read it as B is positive, if i ąI 0 for each i P B;
‚ B is totally ordered if for all i, j P B either i “ Opjq or j “ Opiq;
‚ Bą0 :“ ti P B | i ąI 0u.

Of course, any solid subalgebra (see [14, Def. 9]) of RI containing at least an
infinite net is a trivial asymptotic gauge. To include this case, we only asked an
existence in (ii) of the previous definition.

The name gauge gives the idea that using the infinities of B, we are going to
define moderate nets for our Colombeau-like algebras. To define negligible nets, we
can use b´1 for all b P B or another asymptotic gauge Z “at least as strong as B”.

The first example corresponds, of course, to the special algebra and so it starts
from the set of indices I

s and it is defined as Bs :“ tpε´aq | a P Rą0u. This AG is
positive and totally ordered.

Property (v) of Def. 17 is equivalent to ask for the asymptotic closure of B with
respect to sum and to absolute value, as it is stated in the following

Lemma 18. Let B Ď R
I , then property (v) of Def. 17 is equivalent to

(i) @i, j P B Ds P B : i` j “ Opsq;
(ii) @i P B Da P B : a ąI 0 , i “ Opaq.
Proof. That Def. 17.(v) is sufficient follows from i ` j ď |i| ` |j|, i ď |i| ` |i| and
Thm. 12.(v). The condition is also necessary: if i, j P B, then from (ii) we get
a, b P Bą0 such that i “ Opaq and j “ Opbq; from (i) we have the existence of
s P B such that a ` b “ Opsq. Once again from (ii), we can assume s ąI 0. Thus
|i| ` |j| “ Op|a| ` |b|q “ Opa ` bq “ Opsq. �

A general way to obtain an asymptotic gauge on a generic set of indices I is to
find a map ρ : I ÝÑ p0, 1s such that limI ρ “ 0 and to take the composition of ρ
with the nets of an asymptotic gauge B on I

s, i.e.

B ˝ ρ :“ ti ˝ ρ | i P Bu .
For example, for the set of indices I

e we can consider

ρpϕq :“ min tdiam psuppϕq , 1u @ϕ P Ie “ A0. (2.10)

An analogue function ρ can be defined for the set of indices Î and in both cases they
have limit zero. Several of the definitions we have introduced so far are motivated
by the wish to obtain the following

Theorem 19. Let I “ pI,ď, Iq be a set of indices, and ρ : I ÝÑ p0, 1s be a map
such that limI ρ “ 0. Let B be an asymptotic gauge on I

s, then

(i) B ˝ ρ is an asymptotic gauge on I.
(ii) If B ąIs 0 then B ˝ ρ ąI 0.
(iii) If B is totally ordered, then also B ˝ ρ is totally ordered.

Proof. Property (i) of Def. 17 is clear. To prove (ii) of Def. 17, assume that i P B

is such that limrÑ0` ir “ 8. Since limI ρ “ 0, we get

DA P I @a P A : 0 “ lim
εďa

ρ|Apεq. (2.11)
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For each R P Rą0 there exists δ P Rą0 such that |ir| ą R for r P p0, δs. But for
each a P A, 2.11 yields

Dε0 ď e @ε P A : ε ď ε0 ùñ |ρε| ă δ.

Therefore, |ipρεq| ą r for the same ε P Aďε0 . This proves that limI ipρεq “ 8.
Take i, j P B. We want to prove that both |i ˝ ρ| ` |j ˝ ρ| and pi ˝ ρq ¨ pj ˝ ρq

are asymptotically in B ˝ ρ. From the analogous property of the AG B, we get
the existence of σ, π P B such that |i| ` |j| “ OIspσq and i ¨ j “ OIspπq, that
is ||ir| ` |jr|| ď H ¨ |σr| and |ir ¨ jr| ď K ¨ |πr| for some H , K P Rą0 and for
each r P p0, r0s. It suffices to take A as in 2.11 and a P A to have |ρε| ă r0
for each ε P Aďε1 , for a suitable ε1 ď a. For all these ε P Aďε1 we hence get
||ipρεq| ` |jpρεq|| ď H ¨|σpρεq| and |ipρεq¨jpρεq| ď K ¨|πpρεq|, which is our conclusion.
Analogously, we can prove the asymptotic closure with respect to the product by
scalars.

To prove (ii), assume that i P B ąIs 0, so that ir ą 0 for r P p0, r0s. From
(2.11) for each a P A we have that |ρε| ă r0 for all ε P Aďε1 and for some ε1 ď a.
Therefore ipρεq ą 0 for the same ε. This proves that ipρεq ą 0 @Iε P Aďa, and
hence also that i ˝ ρ ąI 0.

Finally, to prove (iii), take i, j P B such that ir “ OIspjrq as r P I
s. We want

to prove that ipρεq “ OIpjpρεqq as ε P I. Assume that |ir| ď H ¨ |jr| for r P p0, r0s.
The limit relation (2.11) yields the existence of A P I such that for each a P A we
have

Dε0 ď a @ε P Aďε0 : |ρε| ă r0,

and thus |ipρεq| ď H ¨ |jpρεq| for the same ε. By (iv) of Def. 1 of set of indices, we
get Aďε0 ‰ H which yields

Dε1 P Aďa @ε P Aďε1 : |ipρεq| ď H ¨ |jpρεq|,
which proves that ipρεq “ Oa,Apjpρεqq, that is our conclusion. �

Example 20.

(i) Let ρ be the function defined in (2.10), then tpρ´a
ε q | a P Rą0u is a totally

ordered asymptotic gauge of positive functions on I
e. In the same way, we

can proceed for Î.
(ii) Define exppxq :“ ex for x P R, and expk :“ exp ˝ k. . . . . . ˝ exp, then B

exp
fin :“ 

expk
`
1

ε

˘
| k P N‰0

(
and B

exp
8 :“

!´
exprε´1spε´1qa

¯
| a P Rą0

)
, where rxs is

the integer part of x P R, are totally ordered asymptotic gauges of positive
functions.

(iii) Assuming that Î is a P-point on Î “ DpRdq, then the condition ρ : Î ÝÑ Rą0

and lim
Î
ρ “ 0 are equivalent to say that rρs

Î
P ˚

R “ R
Î{Î is infinitesimal.

Therefore, Thm. 19 gives that B̂ρ :“ tρ´a | a P Rą0u, B̂exp
fin :“ texpkpρ´1q |

k P N‰0u and B̂
exp
8 :“

!
exprρ´1spρ´1qa | a P Rą0

)
are totally ordered asymp-

totic gauges of positive functions on Î.

Definition 21. Let B be an AG on the set of indices I “ pI,ď, Iq. The set of
moderate nets generated by B is

RM pBq :“
 
x P R

I | Db P B : xε “ Opbεq as ε P I
(
.
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It is immediate to see that B Ď RM pBq. Let us introduce also the following
definition:

Definition 22. We say that an AG B is an asymptotically closed ring if

B “ RM pBq. (2.12)

The following holds:

Theorem 23. If B is an AG then RM pBq is the minimal (with respect to inclusion)
asymptotically closed solid ring containing B.

Proof. From Def. 17.(ii) and Thm. 12 we get 0 P RM pBq. If xε “ Opbεq and
yε “ Opcεq for b, c P B, then xε ` yε “ Op|bε| ` |cε|q. But |bε| ` |cε| “ Opdεq for
some d P Bą0 by Def. 17.(v). Therefore, xε ` yε “ Opdεq. Analogously, we can
prove the closure of RM pBq with respect to the product. It is immediate to see that
RM pRM pBqq “ RM pBq. Let us prove the minimality: let R be an asymptotically
closed ring containing B. Let x P RM pBq, and let a P Bą0 be such that x “ Opaq.
Then, since a P B Ď R, we get x P RM pRq. But R “ RM pRq because R is
asymptotically closed, and we get that x P R. So RM pBq Ď R. The definition of
RM pBq directly gives that it is also asymptotically solid. �

Definition 24. Given two asymptotic gauges B1,B2 we say that B1 and B2 are
equivalent if RM pB1q “ RM pB2q.
Example 25.

(i) Every AG B is equivalent to RM pBq.
(ii) The asymptotic gauges B1 “ tpε´aq | a P Ru, B2 “ tpε´2aq | a P Ru and

B3 “ tpε´nq | n P Nu on I “ p0, 1s are all equivalent.

3. Colombeau algebras generated by two asymptotic gauges

As we have already stated, every asymptotic gauge formalizes a notion of "growth
conditions". For example, Bs (see Sec. 2.4) formalizes the idea of polynomial
growth. We can hence use an asymptotic gauge B to define moderate nets and
the reciprocals of nets taken from another asymptotic gauge Z to define negligible
nets. From this point of view, it is natural to introduce the following definition:

Definition 26. Let Ω Ď R
n be an open set, let B,Z be AG on a set of indices

I “ pI,ď, Iq and let A be a subalgebra of C8pΩqI . The set of B-moderate nets in
A is

EM pB,Ω,Aq :“ tu P A | @K Ť Ω@α P N
n

Db P B : sup
xPK

|Bαuεpxq| “ Opbεq as ε P Iu.

The set of Z-negligible nets in A is

N pZ,Ω,Aq :“ tu P A | @K Ť Ω@α P N
n

@z P Zą0 : sup
xPK

|Bαuεpxq| “ Opz´1

ε q as ε P Iu. (3.1)

Moreover we set

EM pB,Ωq :“ EM pB,Ω, C8pΩqIq
and
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N pZ,Ωq :“ N pZ,Ω, C8pΩqIq.
Remark.

(i) If z P Zą0 then @Iε P Aďa : zε ą 0 for some a P A P I, so that we can
consider z´1

ε . It is implicit in (3.1) that we are considering only these ε.
(ii) EM pB,Ωq X R

I “ RM pBq (by identifying a constant function Ω ÝÑ R with
its value).

(iii) EM pB,Ω,Aq “ EM pB,Ωq X A.
(iv) N pZ,Ω,Aq :“ N pZ,Ωq X A.

We want to find conditions that ensure that the quotient EM pB,Ωq{N pZ,Ωq is
an algebra. When this happens, we will use the following definition:

Definition 27. Let B,Z be AG and let A be a subalgebra of C8pΩqI . The
Colombeau AG algebra generated by B and Z on A is the quotient

GpB,Z,Aq :“ EM pB,Ω,Aq{N pZ,Ω,Aq.
We also set GpB,Z, C8pΩqIq “ GpB,Z,Ωq.

In the following, we will only consider the case A “ C8pΩqI and real valued
nets of smooth functions. Nevertheless, all the results that we prove in this section
can be easily generalized to the case of a generic subalgebra A Ď C8pΩqI and to
complex valued nets.

Let us observe that GspΩq “ GpBs,Bs,Ωq. A known result is that, having fixed
Z “ Bs, B “ Z is the maximal choice such that GpB,Z,Ωq is an algebra. We will
prove that a similar property holds in our general setting.

Lemma 28. For every B,Z asymptotic gauges and Ω Ď R
n the inclusion N pZ,Ωq Ď

EM pB,Ωq holds.

Proof. Let b P B and z P Z be infinite nets: limεPI bε “ limεPI zε “ 8. Then
limεPI z´1

ε “ 0, so that, for some a P A P I, |z´1
ε | ă 1 @Iε P Aďa. Analogously,

1 ă |bε| @Iε P Bďb for some b P B P I. Therefore, z´1
ε “ Opbεq. Now, let K Ť Ω,

α P N
n and u P N pZ,Ωq. As

sup
xPK

|Bαuεpxq| “ Opz´1

ε q

and z´1
ε “ Opbεq, we obtain that

sup
xPK

|Bαuεpxq| “ Opbεq,

so puεq P EM pB,Ωq. �

Lemma 29. For every B,Z AG and Ω Ď R
n open set, both EM pB,Ωq and N pZ,Ωq

are rings.

Proof. Let u, v P EM pB,Ωq. Let K Ť Ω, α P N
n and let b, c P Bą0 be such that

sup
xPK

|Bαuεpxq| “ Opbεq, sup
xPK

|Bαvεpxq| “ Opcεq.

Finally, let d P Bą0 be such that |bε| ` |cε| “ Opdεq. Then

sup
xPK

|Bαpuε ` vεqpxq| “ Opbεq `Opcεq “ Op|bε| ` |cε|q “ Opdεq,

so u` v P EM pB,Ωq. Similarly, we can proceed for the product.
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Now let u, v P N pZ,Ωq. Let K Ť Ω, α P N
n and let z P Zą0. Then

sup
xPK

|Bαpuε ` vεqpxq| “ Opz´1

ε q `Opz´1

ε q “ Opz´1

ε q,

so u` v P N pZ,Ωq. Similarly, we can proceed for the product. �

To have that GpB,Z,Ωq is an algebra, we need that the product of a moderate
net by a negligible one is always negligible. This implies that if b P B and z P Zą0,
then we can find a w P Zą0, depending on b and sufficiently small, such that w´1

ε ¨bε
is bounded by z´1

ε . This forces a relation between the AG B and Z which can be
summarized by saying that the scale Z is stronger or equal to that of B, as it is
precisely stated in the following theorem.

Theorem 30. Let B, Z be AG and Ω Ď R
n be an open set. Then the following

properties are equivalent

(i) RM pBq Ď RM pZq;
(ii) @b P B @z P Zą0 Dw P Zą0 : w´1

ε ¨ bε “ Opz´1
ε q.

If these hold, then

(iii) N pZ,Ωq is a multiplicative ideal in EM pB,Ωq (so, in particular, the quotient
GpB,Z,Ωq is an algebra).

Moreover, if
@b P B @z P Z : bε “ Opzεq or zε “ Opbεq (3.2)

then (iii) entails (i).

Proof. (i) ñ (ii): Let b P B and z P Zą0, we have to prove that z ¨ b P RM pZq.
But b P B Ď RM pBq Ď RM pZq and z P Zą0 Ď RM pZq. Since RM pZq is a ring, the
conclusion follows.
(ii) ñ (i): Take x P RM pBq, so that xε “ Opbεq for some b P B. Take an infinite
net z P Z: limεPI zε “ 8. Then bε “ Opzε ¨ bεq and hence xε “ Opzε ¨ bεq. By (ii)
we get w P Zą0 such that zε ¨ bε “ Opwεq, which implies x P RM pZq.
(ii) ñ (iii): Let u P N pZ,Ωq and v P EM pB,Ωq, let K Ť Ω, α P N

n. Since

sup
xPK

|Bαpuε ¨ vεqpxq| ď
ÿ

βPNn

βďα

ˆ
α

β

˙
sup
xPK

ˇ̌
Bβuεpxq

ˇ̌
¨ sup
xPK

ˇ̌
Bα´βvεpxq

ˇ̌
@ε P I,

for each β ď α we can find bβ “ pbβεq P Bą0 such that

sup
xPK

|Bα´βvεpxq| “ Opbβεq.

Therefore, for all w P Zą0 we obtain

sup
xPK

|Bαpuε ¨ vεqpxq| “
ÿ

βPNn

βďα

ˆ
α

β

˙
Opw´1

ε qOpbβεq “

“ O
`
w´1

ε

˘
¨O

¨
˚̊
˝

ÿ

βPNn

βďα

bβε

˛
‹‹‚. (3.3)

Let b P Bą0 such that
ř

βPNn

βďα

bβε “ Opbεq and z P Zą0. By (ii) there exists

pwεq P Zą0 such that w´1
ε ¨bε “ Opz´1

ε q, and hence supxPK |Bαpuε ¨ vεqpxq| “ Opz´1
ε q

by (3.3).
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(iii) and (3.2) ñ (i): Let us assume that (i) does not hold. Then there exists
x P RM pBqzRM pZq, i.e. xε “ Opbεq for some b P Bą0. Since x R RM pZq, it is easy
to see that b R RM pZq. From b R RM pZq, we get bε ‰ Opzεq for all pzεq P Z. Thus,
(3.2) yields zε “ Opbεq for all pzεq P Z. Hence b´1

ε “ Opz´1
ε q for all pzεq P Zą0, so

we have that
pbεq P EM pB,Ωq;

pbεq´1 P N pZ,Ωq;
pbεq ¨ pb´1

ε q R N pZ,Ωq,
so N pZ,Ωq is not a multiplicative ideal in EM pB,Ωq, which is absurd. �

Let us note that, in particular, when (3.2) holds, GpB,Z,Ωq is an algebra if
and only if RM pBq Ď RM pZq, so the maximal possible choice for B is to take B

equivalent to Z. This is the generalization to our context of the known result for
GspΩq.

We conclude this section by proving that equivalent asymptotic gauges give the
same Colombeau AG algebras:

Theorem 31. Let B,Z be AG, and let Ω Ď R
n. The following conditions hold:

(i) EM pB,Ωq “ EM pRM pBq,Ωq;
(ii) N pZ,Ωq “ N pRM pZq,Ωq.

In particular, GpB,Z,Ωq “ GpRM pBq,RM pZq,Ωq.
Proof. The proofs follow from the definitions. �

A consequence of Theorem 31 and Proposition 23 is that the theory could be
developed in terms of asymptotically closed rings. This is the point of view followed
by [8, 14]. Nevertheless, we think that it is useful to consider the notion of asymp-
totic gauge because many growth conditions are more easily expressed in terms of
asymptotic gauges than in terms of asymptotically closed rings: note e.g. that the
assumption (3.2) is too restrictive if B is a ring.

Example 32. Let B be an AG on I
s, then Thm. 19 yields that

Be :“
!`
bε
˘
εPA0

| b P B

)
, B̂ :“

!`
bε
˘
εPDpRdq | b P B

)

are AG on I
e and Î respectively. Therefore, if RM pBq Ď RM pZq then GpBe,Ze,Ωq

and GpB̂, Ẑ,Ωq generalize the full Colombeau algebra GepΩq and the algebra ĜpΩq
of asymptotic functions (see also Cor. 6 and Thm. 8).

3.0.1. A comparison with asymptotic scales, pC, E ,Pq algebras and exponent weights.
To study the relations between AG and the generalizations of Colombeau algebras
cited in the title, in this section we only consider the set of indices I

s of the special
algebra, the sheaf C8of ordinary smooth functions, and the usual family of norms

S :“
 

}Bα ¨ }L8pKq | K Ť Ω, α P N
n
(
.

Let B, Z be AG, with RM pBq Ď RM pZq. We already know (Thm. 23) that
RM pBq is a solid ring. Set

JZ :“
!
x P R

Is | @z P Zą0 : xε “ Opz´1

ε q
)
. (3.4)

If b P RM pBq, x P JZ and z P Zą0, then Thm. 30.(ii) yields w´1
ε ¨ bε “ Opz´1

ε q for
some w P Zą0. By the definition (3.4), we have xε “ Opw´1

ε q, so that xε ¨ bε “
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Opw´1
ε ¨ bεq “ Opz´1

ε q, which proves that x ¨ b P JZ , i.e. that JZ is an ideal of
RM pBq. Directly from the definitions, we get

ARM pBq{JZ ,C8,S “ GpB,Z,´q, (3.5)

where the left hand side is the pC, E ,Pq-algebra associated to the ring RM pBq{JZ .
Vice versa, let us assume that A is a solid subring of RIs

containing at least one
infinite net

Da P A : lim
εÑ0

aε “ 8.

Then B :“ A is an AG. We can now consider the solid ideal associated to A, i.e.

IA “
!
x P R

Is | @a P A˚ : x “ Opaq
)
.

It is easy to prove that IA “
 
x P R

Is | @a P A˚
ą0

: x “ Opa´1q
(

so that we can set
Z :“ IA, which is an AG. Directly from the definitions, we get

AA{IA,C8,S “ GpB,Z,´q. (3.6)

This proves that, in the framework of the special algebra, pC, E ,Pq-algebras and
Colombeau AG algebra are essentially equivalent.

In [14], the relations between pC, E ,Pq-algebras and asymptotic algebras gen-
erated by an asymptotic scales are already clarified, so that our previous (3.5),
(3.6) would also give the relations with the latter. Anyway, let us assume that
a “ pamqmPZ, am P R

Is

ą0, is an asymptotic scale:

@m P Z : am`1 “ opamq, a´m “ 1

am
, DM P Z : aM “ Opa2mq.

Then, we can define the AG B :“ Z :“
 
x P R

Is | Dm P Z : xε “ Opamεq
(
, and this

yields

AapC8, Sq “ GpB,Z,´q.
Finally, let r : N ÝÑ Rą0 be a sequence of weights (see [9]) and, instead of the set
of indices I

s, we consider the set of indices I
8 :“ pN,ď,Fq, where ď is the usual

order relation on N and F is the Fréchet filter on N. Setting

B :“ Z :“ tx P R
N | @p P S : ~x~p,r ă 8u

we get an AG and

GS,r “ GpB,Z,´q.
See [9] for more details and for the notations ~ ´ ~p,r and GS,r.

4. Embeddings of Distributions

In this section we let Ω Ď R
n be a fixed open set and we let B,Z be two fixed

asymptotic gauges with RM pBq Ď RM pZq. We will define an embedding

i : D1pΩq Ñ GpB,Z,Ωq
by slightly modifying the construction usually considered in GspΩq. Our construc-
tion will follow the same approach used by [6]. We start by defining our mollificator.

Definition 33. Let b P Bą0 be infinite: limI b “ `8; for simplicity, we can assume
that bε ą 0 for all ε P I. Let ρ P SpRnq be such that

(i)
ş
ρpxq dx “ 1;

(ii)
ş
ρpxqxk dx “ 0 for every k ě 1.
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We set

ρε :“ b´1

ε d ρ,

so that ρεpxq “ bnε ¨ ρpbεxq for all x P R
n.

Lemma 34. Let w P E 1pΩq and ϕ P DpΩq, then

lim
εPI

ż

Ω

pw ˚ ρεq ¨ ϕ “ xw,ϕy.

Proof. As usual, by the continuity of convolution, the conclusion is equivalent to

lim
εďe

ż
ρε ¨ ϕ “ ϕp0q, (4.1)

where e P I. In fact, this would prove that pρεqεďe Ñ δ in D1 with respect to the
directed set pH, es. To prove (4.1), we consider

ˇ̌
ˇ̌
ż
ρεpxqϕpxq dx´ ϕp0q

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ż
ρptq

„
ϕ

ˆ
t

bε

˙
´ ϕp0q


dt

ˇ̌
ˇ̌ ď

ď
ż

|ρptq|
ˇ̌
ˇ̌ϕ

ˆ
t

bε

˙
´ ϕp0q

ˇ̌
ˇ̌ dt.

Since ϕ is compactly supported, we have

@r P Rą0 Dε0 ď e @ε ď ε0 @t P suppϕ :

ˇ̌
ˇ̌ϕ

ˆ
t

bε

˙
´ ϕp0q

ˇ̌
ˇ̌ ă r,

so

@r P Rą0 Dε0 ď e @ε ď ε0 :

ˇ̌
ˇ̌
ż
ρεpxqϕpxq dx´ ϕp0q

ˇ̌
ˇ̌ ď r

ż
|ρ| .

�

Theorem 35. For every open Ω Ď R
n the map

i0 : E 1pΩq Ñ GpB,Z,Ωq
w ÞÑ rpw ˚ ρεq|Ωs (4.2)

is a linear embedding.

Proof. We have to prove that

(i) i0 is linear;
(ii) @w P E 1pΩq : pw ˚ ρεq|Ω P EM pB,Ωq;
(iii) Kerpi0q “ t0u.
That i0 is linear follows immediately by the definition, since the convolution is a
linear operator. Let us prove (ii). By the local structure theorem for distributions,
it suffices to consider the case w “ Bαf P E 1pΩq, with f P DpΩq and α P N

n. Let
x P K Ť Ω, then

pw ˚ ρεqpxq “ f ˚ Bαρεpxq “
ż
fpx´ yqBαρǫpyq dy “

“
ż
fpx´ yqbn`|α|

ε pBαρqpbε ¨ yq dy “

“ b|α|
ε

ż
f

ˆ
x´ t

bε

˙
¨ Bαρptq dt “ Opb|α|

ε q “ Opcεq,
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for some pcεq P B with b
|α|
ε “ Opcεq. The same argument applies to the derivative

Bβpf ˚ Bαρεq “ f ˚ Bα`βρε.
To prove (iii), let w P E 1pΩq be such that rpw ˚ ρεq |Ωs “ 0 and let ϕ P DpΩq.

Thus, setting K :“ supppϕq, we have

@z P Zą0 : sup
xPK

|pw ˚ ρεqpxq| “ Opz´1

ε q

and hence limεPI supxPK |pw ˚ ρεqpxq| “ 0. From this and Lemma 34, we hence
obtain

|xw,ϕy| “ lim
εPI

ˇ̌
ˇ̌
ż

Ω

pw ˚ ρεqϕ
ˇ̌
ˇ̌ ď lim

εPI
sup
xPK

|pw ˚ ρεqpxq| ¨
ż

K

|ϕ| “ 0.

�

Let us note that the embedding (4.2) depends on the open set Ω. We will use
the notation i0Ω when we want to underline this dependence.

We denote by σ the constant embedding of C8pΩq into GpB,Z,Ωq, namely σpfq “
rf s. We would like to prove the analogue of [6, Prop. 1.2.11]. As usual, the idea is
to start with f P DpΩq and to use Taylor’s formula obtaining

pf ˚ ρε ´ fqpxq “
ż

pfpx´ yq ´ fpxqqρεpyq dy “

“
ż ˆ

f

ˆ
x´ t

bε

˙
´ fpxq

˙
ρptq dt “

“
ż ÿ

0ă|α|ăm

1

α!

ˆ
´ t

bε

˙α

Bαfpxqρptq dt`

`
ż ÿ

|α|“m

1

α!

ˆ
´ t

bε

˙α

Bαf

ˆ
x´ Θ

t

bε

˙
ρptq dt “

“ 0 ` b´m
ε ¨

ż ÿ

|α|“m

1

α!
p´tqα Bαf

ˆ
x´ Θ

t

bε

˙
ρptq dt “

“ O
`
b´m
ε

˘
. (4.3)

Therefore, to have pf ´ pf ˚ ρεq|Ωq P N pZ,Ωq we need a further condition of the
form

@z P Zą0 Dm P N : b´m
ε “ Opz´1

ε q i.e. zε “ Opbmε q.
This implies Zą0 Ď RM pAGpbqq Ď RM pBq, where AGpbq is the AG

AGpbq :“ tbm | m P Nu.
We have thus RM pZq “ RM pBq “ RM pAGpbqq.
Definition 36. Let B be an AG. If b P B is such that RM pAGpbqq Ě RM pBq then
we will say that b is a generator of B and that B is a principal AG.

Let us note that in the previous definition we could equivalently substitute the
condition RM pAGpbqq Ě RM pBq with RM pAGpbqq “ RM pBq. Moreover if B is
principal AG then, if necessary, we can always find a positive generator of B: in
fact, if b is any generator of B and c P Bą0, c P Op|b|q, then also c is a generator of
B.

Every AG of Ex. 20, other than B
exp
fin and B̂

exp
fin , is principal; for example, ε´1

is a generator of Bs. Moreover, a solid subalgebra of R
I (containing an infinite
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net) generally speaking is not a principal AG. In the latter case, the embedding of
distributions using a mollifier is not possible (see Thm. 44).

By Theorem 31 we can also assume, without loss of generality, that B “ Z,
which is the subject of our next

Assumption: Z “ B is a principal AG. Moreover we assume that the
mollifier pρεq is constructed with a fixed generator b.

Let us observe that a generator of an asymptotic gauge is necessarily an infinite
element in R

I , i.e. limεPI bε “ 8, and that every principal AG is totally ordered.
As a first consequence of our assumption, we have

N pZ,Ωq “ N pB,Ωq “
"
u P C8pΩqI | @K Ť Ω@α P N

n @m P N : sup
xPK

|Bαuεpxq| “ Opb´m
ε q as ε P I

*
.

Henceforward, we will thus use the simplified notation GpB,Ωq :“ GpB,B,Ωq.
Theorem 37. i0|DpΩq “ σ. Consequently, i0 is an injective homomorphism of
algebras on DpΩq.
Proof. The second statement follows from the first like in [6]. The remaining part
is proved in (4.3). �

The notions of support supppuq of a generalized function u P GpB,Ωq and of restric-
tion u|Ω1 P GpB,Ω1q can be defined exactly like in [6, pag. 12].

Theorem 38. If w P E 1pΩq then supppwq “ supppi0pwqq.
Proof. Let us prove that supppi0pwqq Ď supppwq. We have to prove that

i0pwq|supppwqc “ 0

in GpB, supppwqcq. Let K Ť supppwqc, let α P N
n be such that w “ Bαf , with

f P DpRnzKq. Then i0pwq “ rpf ˚ Bαρεq|Ωs and

pf ˚ Bαρεqpxq “
ż
fpx´ yqBαρεpyq dy “

“
ż
fpx´ yq ¨ b|α|`n

ε Bαρpbεyq dy “

“
ż
f

ˆ
x´ t

bε

˙
¨ b|α|

ε Bρptq dt “

“
ż

|t|ă
?
bε

f

ˆ
x´ t

bε

˙
¨ b|α|

ε Bρptq dt`

`
ż

|t|ě
?
bε

f

ˆ
x´ t

bε

˙
¨ b|α|

ε Bρptq dt.

Recall that bε ą 0 for each ε P I. Since supppfq X K “ H, if x P K there exist
A P I such that for each a P A

@Iε P Aďa @t : |t| ă
a
bε ùñ x´ t

bε
R supppfq,

so the first integral is zero. For the same ε sufficiently small, the second integral
can be estimated as follows:ż

|t|ě
?
bε

f

ˆ
x´ t

bε

˙
¨ b|α|

ε Bρptq dt ď b|α|
ε ¨ }f}8 ¨

ż

|t|ě
?
bε

ˇ̌
ˇB|α|ρptq

ˇ̌
ˇ dt.
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Since ρ P SpRnq for any m P N there exists a constant cm ą 0 such that
ˇ̌
B|α|ρptq

ˇ̌
ď

cmp1` |t|q´2m´n´1. Thus
ˇ̌
B|α|ρptq

ˇ̌
ď cm

`?
bε
˘´2m p1` |t|q´n´1 for |t| ě

?
bε, and

ż

|t|ě
?
bε

b|α|
ε

ˇ̌
ˇB|α|ρptq

ˇ̌
ˇ dt ď cmb

|α|´m
ε ¨

ż

|t|ě
?
bε

p1 ` |t|q´n´1 dt “ Ăcm ¨ b|α|´m
ε .

Since m is arbitrary we can treat the derivative of i0pwq in the same way, and this
gives the desired estimates that show that supppi0pwqq Ď supppwq.

Let us now prove that supppwq Ď supppi0pwqq. Let x0 P supppwq. For every
η ą 0 there exists ϕ ‰ 0 in DpRq such that supppϕq Ď Bηpx0q and |xw,ϕy| “: c ą 0.
Since limεPI w ˚ ρε “ w in D1pΩq (Lemma 34), this implies that |xw ˚ ρε, ϕy| ą c

2
for

ε P I small. But setting K :“ Bηpx0q we have

0 ă c

2
ă |xw ˚ ρε, ϕy| “

ˇ̌
ˇ̌
ż

K

pw ˚ ρεqpxq ¨ ϕpxq dx

ˇ̌
ˇ̌ ď sup

xPK
|pw ˚ ρεqpxq| ¨

ż

K

|ϕ| . (4.4)

The equality
“
pw ˚ ρεq|Bηpx0q

‰
“ 0 in GpB, Bηpx0qq would imply

lim
εPI

sup
xPK

|pw ˚ ρεqpxq| “ 0,

which is impossible by (4.4), so i0pwq|Bηpx0q “
“
pw ˚ ρεq|Bηpx0q

‰
‰ 0 and therefore

x0 P supppi0pwqq. �

To prove that i0 can be extended to an embedding i : D1pΩq Ñ G we can now
use the following result, whose proof can be conducted exactly like in [6]:

Theorem 39.

(i) GpB,´q : Ω ÞÑ GpB,Ωq is a sheaf of differential algebras on R
n;

(ii) There is a unique sheaf morphism of real vector spaces i : D1 ÝÑ GpB,´q
such that:
(a) i extends the embedding i0 : E 1 ÝÑ GpB,´q defined in (4.2), i.e. such

that iΩ|E 1pΩq “ i0Ω.
(b) i commutes with partial derivatives, i.e. Bα piΩpT qq “ iΩ pBαT q for each

T P D1pΩq and α P N.
(c) i|C8p´q : C

8p´q ÝÑ GpB,´q is a sheaf morphism of algebras.

4.1. Embedding with a strict δ-net. A simpler way to embed distributions is
by means of a strict δ-net rather than a model δ-net (i.e. a net obtained by scaling
a single function ρ). This can be done for a generic set of indices and a principal
AG simply by generalizing [17, Lem. A1, Cor. A2]:

Theorem 40. Let I be a set of indices and B be a principal AG on I generated by
b P Bą0. There exists a net pψεqεPI of DpRnq with the properties:

(i) supppψεq Ď B1p0q for all ε P I;
(ii)

ş
ψε “ 1 for all ε P I;

(iii) @α P N
n Dp P N : supxPRn |Bαψεpxq| “ Opbpεq as ε P I;

(iv) @j P N@Iε : 1 ď |α| ď j ñ
ş
xα ¨ ψεpxq dx “ 0;

(v) @η P Rą0 @Iε :
ş

|ψε| ď 1 ` η.

In particular

ρε :“ b´1

ε d ψε @ε P I
satisfies (ii) - (v).
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Proof. For m P N and η P Rą0 define the sets

Am :“
"
ϕ P DpRnq | supppϕq Ď B1p0q,

ż
ϕ “ 1,

ż
xαϕpxq dx “ 0 1 ď |α| ď m

*
,

A1
mpηq :“

"
ϕ P Am |

ż
|ϕ| ď 1 ` η

*
.

In [17] it is proved that Am ‰ H ‰ A1
mpηq. For each m P Ną0, we choose ϕm P

A1
m

`
1

m

˘
and we set

Mm :“ sup
xPRn

|α|ďm

|Bαϕmpxq| ,

Am,ε :“

$
’&
’%
ϕ P A1

m

ˆ
1

m

˙
| sup

xPRn

|α|ďm

|Bαϕpxq| ď bε

,
/.
/-

@m P Ną0 @ε P I.

Therefore, H ‰ Am`1,ε Ď Am,ε and ϕm P Am,ε whenever Mm ď bε. Since
limmÑ`8 Mm “ `8 (see [17]), for each fixed ε P I, we have bε ă Mm`1 for
m sufficiently big. We denote by mε the minimum m P N such that bε ă Mm`1, so
that

Mmε
ď bε ă Mmε`1 @ε P I (4.5)

and hence ϕmε
P Amε,ε for all ε P I. Define ψε :“ ϕmε

for all ε P I, so that
ψε “ ϕmε

P Amε,ε Ď Amε
, which proves (i), (ii). The remaining properties can be

proved like in [17]. We have only to note that if α P N
n, then |α| ď bε for ε P I

sufficiently small because limεPI bε “ `8. Therefore, (4.5) yields |α| ď mε and
hence A|α|,ε Ě Amε,ε Q ψε. �

We finally have the following results, whose proof is just a mild variation of the
previous proofs about the embedding with a model δ-net.

Corollary 41. If pρεq is the net defined like in Thm. 40, then the mapping

iΩ : T P D1pΩq ÞÑ rT ˚ ρεs P GpB,Ωq
is a sheaf morphism of real vector spaces i : D1 ÝÑ GpB,´q, and satisfies the
following properties:

(i) i commutes with partial derivatives, i.e. Bα piΩpT qq “ iΩ pBαT q for each T P
D1pΩq and α P N;

(ii) i|C8p´q : C
8p´q ÝÑ GpB,´q is a sheaf morphism of algebras;

(iii) If w P E 1pΩq then supppwq “ supppiΩpwqq;
(iv) iΩpT q « T for each T P D1pΩq, i.e. limεPI

ş
Ω

pT ˚ ρεq ¨ ϕ “ xT, ϕy for all
ϕ P DpΩq.

4.2. Comparison of embeddings. We close this section by facing a natural prob-
lem: let us define two embeddings ib, ic like (4.2) but using two different generators
b, c P B:

ibpwq : “
“
w ˚ pb´1

ε d ρq
‰
,

icpwq “
“
w ˚ pc´1

ε d ρq
‰
.

It is well known that ibpT q « T « icpT q, but when are they equal?
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Theorem 42. Let b, c P Bą0 be generators of the AG B. Assume that ρp0q ‰ 0;
then ib “ ic if and only if rbεs “ rcεs in GpB,Rq, i.e. iff they generate the same
B-Colombeau generalized number.

Proof. If ib “ ic, then ibpδq “ rbnε ¨ ρpbε ¨ ´qs “ icpδq “ rcnε ¨ ρpcε ¨ ´qs. Setting
K “ t0u in the definition of negligible net, we get

@m P N : |bnε ρp0q ´ cnε ρp0q| “ Opb´m
ε q,

that is rbnε s “ rcnε s. The conclusion follows by applying the smooth function n
?

´ P
C8pRą0q.

Vice versa, assume that rbεs “ rcεs; we want to prove that
“
w ˚

`
b´1

ε d ρ´ c´1

ε d ρ
˘‰

“ 0 @w P E 1pΩq.
It suffices to prove that limεPI

`
b´1
ε d ρ´ c´1

ε d ρ
˘

“ 0 in D1pΩq. For each ϕ P DpΩq
we have ż `

b´1

ε d ρ´ c´1

ε d ρ
˘
ϕ “

ż
ρptq ¨

„
ϕ

ˆ
t

bε

˙
´ ϕ

ˆ
t

cε

˙
. (4.6)

The composition of the generalized functions ϕ P C8pRnq Ď GpB,Rnq and
„
x ÞÑ x

bε


“
„
x ÞÑ x

cε


P GpB,Rnq

is well defined since the latter is compactly supported. Therefore, forK :“ supppϕq,
limεPI suptPK

ˇ̌
ˇϕ

´
t
bε

¯
´ ϕ

´
t
cε

¯ˇ̌
ˇ “ 0. From this and (4.6) the conclusion follows. �

The assumption ρp0q ‰ 0 clearly holds if we define ρ as the inverse Fourier
transform of a positive function identically equal to 1 in a neighborhood of 0.

For example, ipε´kq and ipε´hq permit to deal with different speeds at the origin
of different models of the Heaviside function H . Finally, as we already said at
the beginning of the present work, it could be interesting to apply these results
about different embeddings also to the full algebra GepBe,Ωq, e.g. in case we need
particular properties like Hp0q “ 0. This is only a first step in the study of the
infinitesimal (and infinite) differences between two embeddings ib and ic. In our
opinion, this study could be very useful in nonlinear modeling.

4.3. Necessity of a principal AG to embed distributions with a mollifier.

The assumption that B is a principal AG is quite natural if one looks at (4.3). In
this section we want to prove that this is indeed a necessary condition if we want
to have a pair i0, σ of embeddings (where i0 is defined like in Thm. 35) which
coincide on a suitable set. More precisely, to state the following result, we set

Definition 43. Let B be an AG, then E 1
M pB,Ωq :“ EM pB,Ωq XDpΩqI denotes the

set of moderate nets of compactly supported functions.

We also recall that if pzkqk is a sequence of Aďa, then we say pzkqk Ñ H in Aďa if

@a0 P Aďa DK P N@k P NěK : zk ă a0.

The existence of such a sequence is always verified in all our examples of set of
indices (see [12]).

Theorem 44. Let B, Z be AG on the set of indices I. Assume that for each
a P A P I there exists a sequence pzkqk Ñ H in Aďa. Let b, ρ, ρε as in Def. 33.
Then the following are equivalent:
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(i) @pfεq P E 1
M pAGpbq,Rq @x P R : pfε ˚ ρεq pxq “ fεpxq ` N pZ ,Rq;

(ii) b is a generator of Z.

Proof. We prove (i) ñ (ii) only for the case n “ 1, even if slightly more general
notations can be used to repeat this proof for a generic dimension. As in (4.3), we
can use in (i) a Taylor formula of order m P N, with Peano remainder, at x P Ω,
so that for each fε P DpΩq we have a (unique) remainder Rε “ Rpm, fε, xq P DpΩq
such that for each ε P I

|pfε ˚ ρεq pxq ´ fεpxq| “ b´m
ε ¨

ż

R

Rε

ˆ
x´ t

bε

˙
¨ ρptq dt

Rεpyq “ o p|y ´ x|mq as y Ñ x. (4.7)

We set cεpm, fε, xq :“
ş
R
Rε

´
x´ t

bε

¯
¨ ρptq dt. Without lack of generality, we can

assume that ρp0q ą 0; analogously, we can proceed if ρpxq ‰ 0 at another point
x P R.

Now, for each ε P I and m P Ną0, we want to define a function fεm to use in
(4.7) such that:

‚ fεm is equal to its Peano remainder of order m at x “ 0. This permits to
directly have Rε “ fεm in (4.7) and in the definition of cεpm, fεm, 0q.

‚ cεpm, fεm, 0q ě Lm ą 0, where Lm doesn’t depend on ε and is infinitesimal
for m Ñ `8.

fεm can be defined in infinite ways; in its definition we will always respect the
following criteria:

(i) We firstly fix p, q P Rą0 such that

ρptq ą 0 @t P p´p, pq
q ă minpp, 1q.

(ii) fεm P EM pAGpbq,Rq and supppfεmq Ď
”
´ p

bε
, p
bε

ı
.

(iii) fεmpsq ě 0 for each s.

(iv) fεmpsq “ s2m ¨ b2mε for each s P
´

´ q
bε
, q
bε

¯
.

For example, we can take ψ P DpRq such that supppψq Ď r´p, ps, ψ ě 0, ψpsq “ 1

for s P r´q, qs and set fεmpsq “ s2m ¨ b2mε ¨ ψ pbε ¨ sq; let us note that limεPI rfεms “
s2m ¨ b2m´n ¨ δpsq in GpAGpbq,Rq in the sharp topology, so that the limit of this net
is a nonlinear generalized Colombeau function.
We have fεmpsq “ opsm`1q as s Ñ 0 by (iv), so fεm equals its Taylor remainder of

order m ą 0. Moreover t P p´p, pq iff ´ t
bε

P
´

´ p
bε
, p
bε

¯
, so that

cεpm, fεm, 0q “
ż p

´p

fεm

ˆ
´ t

bε

˙
¨ ρptq dt ě

ż q

´q

t2m ¨ ρptq dt “: Lm ą 0, (4.8)

where we have used (iv), (iii) and (ii). Since q ă 1, t2m ¨ ρptq ă ρptq for every
t P r´q, qs. So, by dominated convergence, limmÑ`8 Lm “ 0. Now, (4.7) yields

|pfεm ˚ ρεq p0q ´ fεmp0q| “ b´m
ε ¨ cεpm, fεm, 0q @ε,m,

so that, considering a generic z P Zą0, assumption (i) gives

@m P Ną0 DAm P I @a P Am : b´m
ε ¨ cεpm, fεm, 0q “ Oa,Am

pz´1

ε q. (4.9)
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We proceed by contradiction assuming that

@m P N : b´m
ε ‰ Opz´1

ε q.
Taking a generic m P Ną0, this means

@A P I Da P A : b´m
ε ‰ Oa,Apz´1

ε q.
We apply this with A “ Am obtaining

Dam P Am : b´m
ε ‰ Oam,Am

pz´1

ε q.
By Thm. 15 of [12], we obtain that for each H P Rą0 there exists a sequence
pεkqkPN : N ÝÑ pAmqďam

(depending on m and H) such that:

pεkqk Ñ H in pAmqďam

b´m
εk

ą H ¨ z´1

εk
@k P N. (4.10)

We set H :“ L´2
m ą 0 in (4.10), obtaining a sequence pεkqk Ñ H in pAmqďam

(depending only on m) such that

b´m
εk

zεk ą L´2

m @k,m P N. (4.11)

But from (4.9) with a “ am and (4.8), we get

@m P Ną0 DT P Rą0 @Iε P pAmqďam
: b´m

ε ¨ zε ď T ¨ cεpm, fεm, 0q´1 ď T ¨ L´1

m .

Applying this for ε “ εk, with k sufficiently big, we get b´m
εk

zεk ď T ¨ L´1
m which,

together with (4.11), yields L´2
m ă T ¨ L´1

m for each m. This is impossible since
Lm Ñ 0 for m Ñ `8.

To prove (ii) ñ (i), we can proceed as in (4.3) considering that Bαfε is bounded,
on a fixed compact sets K Ť R, by a suitable power b´Nα

ε . Therefore, for x P R

fixed and ε sufficiently small, x ´ t
bε

P B1pxq “: K, and for each m P N, we can
write

|pfε ˚ ρεqpxq ´ fεpxq| ď b´m
ε ¨

ÿ

|α|“m

sup
xPK

|Bαfεpxq|
ż |t| α

α!
|ρptq| dt ď

ď b´m
ε

ÿ

|α|“m

b´Nα
ε

ż |t| α
α!

|ρptq| dt ď b´m´Nm
ε ¨ Cm,

where Nm :“ max|α|“mNα and Cm :“ ř
|α|“m

ş |t|α
α!

|ρptq| dt. If z P Zą0, by (ii)

we get the existence of k P N such that b´k
ε “ Opz´1

ε q. It suffices to take m

sufficiently big so that m ` Nm ą k so that for this fixed m and for ε small,
b´m´Nm
ε ¨ Cm ď b´k

ε . �

Let us note that condition (i) is stronger than the equality i0|DpΩq “ σ, which can
be applied only to a single function f P DpΩq instead of a whole net. Indeed, in
the previous proof, we used this condition with the net pfεmqε, which effectively
depend on ε.
We can say that if b is a generator of Z, then the equality i0pfq “ σpfq for f P DpΩq
can be extended to any net of compactly supported function which are AGpbq-
moderated. Therefore, the only possibility to have an embedding using a mollifier
but without using a generator is to avoid a natural property like (i), which is unde-
sirable. We can summarize our results concerning the embedding of distributions
by saying:
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(i) The embedding of distributions by using a mollifier forces us to take only one
principal AG: B “ Z “ AGpbq.

(ii) If we are interested in using two different AG, B ‰ Z, or a non principal AG,
we have to consider a particular set of indices, e.g. the full one I

e, where an
intrinsic embedding is possible. Of course, this is incompatible with particular
properties like Hp0q “ 0.

5. Solving linear homogeneous ODE with generalized coefficients

Studying Colombeau theory, one senses a sort of delusion by seeing that these
algebras, invented to find solutions of differential equations which are not solvable in
D1, are not able to find solutions of ODE of the simplest type. One way to bypass
this problem is to assume ad hoc growing conditions of logarithmic type, i.e. to
adapt the differential problem to the constraints of the theory (see e.g. [15, 16] for
linear ODE). Another solution is to guess that this deficiency is due to the chosen
polynomial growing condition, and that a generalization could be possible. This is
one of the basic motivations to generalize Colombeau theory by defining notions
like asymptotic scales, pC, E ,Pq algebras, exponent weights or AG. Here, the point
of view is more similar to that used in algebra: given an equation we have to find
the best space where it has a solution, i.e. we adapt the theory to the equation.

We start this section by defining the module of Colombeau generalized numbers
where we will take the coefficients of our linear ODE.

Definition 45. Let B, Z be AG on a set of indeces I such that RM pBq Ď RM pZq,
and let d P Ną0, then

(i) ΩM pBq :“
 

pxεq P ΩI | Db P B : xε “ Opbεq
(
;

(ii) pxεq „Z pyεq iff @z P Zą0 : xε ´ yε “ Opz´1
ε q, where pxεq, pyεq P ΩM pBq;

(iii) rΩpB,Zq :“ ΩM pBq{ „Z ;

(iv) rRdpB,Zq :“ R
d
M pBq{ „Z .

Like in Thm. 30, we have that rRpB,Zq is a ring. Moreover, rRpB,Zq can be

identified with a subring of rRpB1,Z 1q if

RM pBq Ď RM pB1q Ď RM pZ 1q Ď RM pZq. (5.1)

A sufficient condition for these inclusions is B Ď B1 Ď Z 1 Ď Z. The proof of
Prop. 1.2.35 of [6] can be directly generalized to every set of indices, so that if Ω is

connected and u P GpB,Z,Ωq, then Du “ 0 if and only if u P rRpB,Zq.
As we mentioned above, if a differential equation 9xptq “ F pt, xptqq is well-defined

in GpB,Z,Ωqn, i.e. if Ω Ď R
1`n and F P GpB,Z,Ωqn, then we will have to deal

with moderate solutions bounded by terms of the form eb :“
`
ebε

˘
, for some b P B.

It is therefore natural to set the following

Definition 46. Let B be an AG, then

eB :“
 
eH¨b | H P Rą0, b P B

(

is called the exponential of B.

The problem with eB is that it is never a principal AG since it always contains
(bounds of) eb

m

, whereas a single generator gives terms of the form emb.

Lemma. Let B be an AG, then:

(i) eB is a positive AG;
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(ii) RM pBq Ď RM

`
eB

˘
;

(iii) RM peBq “ RM peRM pBqq;
(iv) if B “ AGpbq then RM

`
eB

˘
“ RM ptebk | k P Nuq “

Ť
kPN RM pAGpebkqq Ď

RM

´
AG

´
ee

b
¯¯

;

(v) eB is not a principal AG.

Proof. We only prove (v) since the other properties follow almost directly from
the definitions. Assume that eB “ AG

`
eH¨b˘, where H P Rą0 and b P B. Then

b2 “ Opcq, for some c P Bą0. Therefore, for ε P I sufficiently small we have

eb
2

ε ď eK¨cε (5.2)

for some K P Rą0. But eKc P eB “ AG
`
eHb

˘
so eKc “

`
eHb

˘m “ emHb for some

m P N. From this and (5.2) we get b2ε ď mHbε for ε small. This implies that b
is bounded, so eHb is also bounded and it cannot generate ei, where i P Bą0 is
infinite. �

We want to consider linear ODE whose coefficients are, in some sense, “bounded
by B”, but whose solutions are in GpB1,Z 1,Rq, where RM pB1q Ě RM

`
eB

˘
. We have

to clarify this point, also because it is desirable to have some kind of preservation
of old solutions: if x is a solution already in GpB,Z,Rq, e.g. because the coefficients
have a growth of logarithmic type, then x must also be (in some sense) the unique
solution in the new space GpB1,Z 1,Rq. To have a relation between GpB,Z,Rq
and GpB1,Z 1,Rq, a condition like (5.1) is too strong because if e.g. B “ Z are of
polynomial type, then (5.1) implies that B1 and Z 1 cannot be of exponential type.
On the other hand, it is clear how to set the following

Definition 47. Let B, B1, Z 1 be AG such that RM pBq Ď RM pB1q Ď RM pZ 1q and
let u P GpB1,Z 1,Ωq. We say that u is bounded by B if

Dpuεq P EM pB,Ωq : u “ ruεs.

We also set

GBpB1,Z 1,Ωq :“
 
u P GpB1,Z,Ωq | u is bounded by B

(
.

Since element of rRpB1,Z 1q can be identified with constant functions of GpB1,Z 1,Rq,
we have an analogous notion for elements of the ring rRpB1,Z 1q.

Like in Lem. 28, we can prove that u is bounded by B if and only if whenever we
consider a representative u “ ruεs, we have that puεq P EM pB,Ωq. In the statement
of the next result, we use the point value of a Colombeau generalized function.
We recall (see e.g. [12] and references therein) that this point value characterizes
Colombeau generalized functions:

Definition 48. Let B, Z be AG such that RM pBq Ď RM pZq, then

(i) rxεs P rΩcpB,Zq iff rxεs P rΩpB,Zq and DK Ť Ω@Iε : xε P K.

(ii) If u “ ruεs P GpB,Z,Ωq and x P rΩcpB,Zq, then upxq :“ ruεpxεqs.
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Lemma 49. Let B, Z, B1, Z 1 be AG such that

RM pBq � � //
� _

��

RM pZq
� _

��

RM pB1q � � // RM pZ 1q

(5.3)

Then the following properties hold:

(i) GBpB1,Z 1,Ωq is a differential subalgebra of GpB1,Z 1,Ωq.
(ii) The map

¯p´q : ruεs P GBpB1,Z 1,Ωq ÞÑ puεq ` N pZ,Ωq P GpB,Z,Ωq
is a surjective morphism of differential algebras.

(iii) Let J :“ pa, bq Ď R, x P GBpB1,Z 1, pa, bqq, F P GBpB1,Z 1, pa, bq ˆ Ωq be such
that

@t P rJcpB1,Z 1q : t is bounded by B ñ 9xptq “ F pt, xptqq (5.4)

holds in rRpB1,Z 1q. Then

9̄xptq “ F̄ pt, x̄ptqq @t P rJcpB,Zq (5.5)

holds in rRpB,Zq.
Proof. Property (i) follows by Lem. 29 and by the closure of EM pB,Ωq with respect
to derivatives.

Property (ii) follows by the ε-pointwise definitions of all the operations. The
counter-image of puεq ` N pZ,Ωq P GpB,Z,Ωq is ruεs, which is bounded by B since
puεq P EM pB,Ωq.

Assumption (5.4) means that for each t “ rtεs P rJcpB1,Z 1q, if t is bounded by B

then
rxεptεqs P rΩcpB1,Z 1q and r 9xεptεqs “ rFεptε, xεptεqqs. (5.6)

For simplicity, we use the symbol vuεw :“ puεq`N pZ,Ωq for the equivalence classes

in GpB,Z,Ωq (and hence also in rRpB,Zq). If t “ vtεw P rJcpB,Zq, then rtεs P
rRpB1,Z 1q is bounded by B and (5.6) yields r 9xεptεqs “ rFεptε, xεptεqqs. Both sides of
this equality are bounded by B, so that we can apply the morphism ¯p´q obtaining

v 9xεptεqw “ vFεptε, xεptεqqw. Moreover, vxεptεqw P rΩcpB,Zq because rxεs and rtεs are
both bounded by B. We therefore have

9̄xptq “ d

dt
pvxεwq pvtεwq “ v 9xεwpvtεwq “

“ v 9xεptεqw “ vFεptε, xεptεqqw “ vFεw pvtε, xεptεqwq “
“ vFεw pvtεw, vxεwpvtεwqq “
“ F̄ pt, x̄ptqq

�

Condition (iii) states that any ODE framed in GpB1,Z 1,Ωq, but restricted to
elements which are bounded by B, corresponds, via the morphisms ¯p´q, to an ODE
framed in GpB,Z,Ωq. This is our way to formalize that any bounded solution of
an ODE of bounded type in the “bigger” algebra GpB1,Z 1,Ωq is also a solution in
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the “smaller” algebra GpB,Z,Ωq. The use of this order relation between algebras is
formally introduced in the following

Definition 50. Let B, Z, B1, Z 1 be AG, then we write GpB,Z,Ωq ĺ GpB1,Z 1,Ωq,
and we say that GpB,Z,Ωq is smaller than GpB1,Z 1,Ωq if (5.3) holds.

The relation ĺ is an order and, if Z “ Z 1, then GpB,Z,Ωq ĺ GpB1,Z,Ωq if and
only if GpB,Z,Ωq Ď GpB1,Z,Ωq if and only if RM pBq Ď RM pB1q. In this case, the
morphism ¯p´q of Lem. 49 is also injective, and we have GBpB1,Z,Ωq » GpB,Z,Ωq.
We will use later the order relation ĺ.

In the following result, the main assumption is the inclusion RM

`
eB

˘
Ď RM pB1q;

in it we can therefore set B1 “ eB or B1 “ AG
´
ee

b
¯

if we are interested to a principal

AG.

Theorem 51. Let B, B1, Z 1 be AG such that

RM

`
eB

˘
Ď RM pB1q Ď RM pZ 1q. (5.7)

Let t0 P R, c P rRpB1,Z 1qd and A P MdprRpB1,Z 1qq be a dˆ d matrix with entries in

the ring rRpB1,Z 1q. Assume that both c and A are bounded by B. Then the problem

"
x1ptq `A ¨ xptq “ 0

xpt0q “ c.
(5.8)

has a unique solution in G pB1,Z 1,Rqd.
We split the proof of Theorem 51 in two parts: existence and uniqueness.
To prove exitence we will use the following

Lemma 52. Let d P Ną0, let A “ paijqi,jďd P MdpRq and let M “ maxi,j |aij |.
Then for every entry xijptq of the matrix eAt, we have

|xijptq| ď M ¨ edM |t|.

Proof. For every k P N let Ak “: paijkqi,jďd and let Mk :“ maxi,j |aijk|. We claim
that, for every k ě 1, Mk ď dk´1Mk. Let us prove this inequality by induction. If
k “ 1 the conclusion is trivial. Let us assume that the claim is true for k. Let us
suppose that Mk`1 “ |aij,k`1|. Then

Mk`1 “
ˇ̌
ˇ̌
ˇ

dÿ

r,s“1

airk ¨ asj1

ˇ̌
ˇ̌
ˇ ď

dÿ

r,s“1

|airk ¨ asj1| ď
dÿ

r,s“1

Mk ¨ M ď dkMk`1.

The claim is proved. Therefore, since by definition eAt “
ř8

k“0

Aktk

k!
, we have

|xijptq| “
ˇ̌
ˇ̌
ˇ

8ÿ

k“0

aijkt
k

k!

ˇ̌
ˇ̌
ˇ ď

8ÿ

k“0

|aijk||t|k
k!

ď
8ÿ

k“0

dkMk`1|t|k
k!

“ M ¨ edM |t|,

hence the thesis is proved. �

Lemma 53 (Existence). Under the assumptions of Thm. 51, the problem (5.8)

has a solution in G pB1,Z 1,Rqd.
Proof. Let A “ rAεs and c “ rcεs. For every ε P I let xε P C8pR,Rdq be the unique
solution of the problem "

x1ptq `Aε ¨ xptq “ 0

xpt0q “ cε.
(5.9)



28 PAOLO GIORDANO AND LORENZO LUPERI BAGLINI

We claim that rxεs is a solution of (5.8) in G pB1,Z 1,Rqd. Since RM

`
eB

˘
Ď RM pB1q,

in order to prove that rxεs is a solution in G pB1,Z 1,Rqd it is sufficient to show that

pxεq P EM
`
eB,R

˘d
. In fact, since also x1

ε verify the same equation (5.9), with initial
B-bounded value x1

εpt0q “ ´Aε ¨cε, we can proceed by proving moderateness of pxεq
only. Without loss of generality, we suppose t0 “ 0. For every ε P I and t P R, we
have

xεptq “ e´Aεtcε.

For every ε, set Aε “: paij εqi,jďd for the entries of the matrix Aε P MdpRq, Mε :“
maxi,j aijε, xεptq “: pxiεptqqiďd, and cε “: pciεqiďd for the components of the vectors
xεptq, cε P R

d. By lemma 52 we deduce that

|xiεptq| ď
dÿ

j“1

Mε ¨ edMε|t|cjε.

Since both rMεs and rcεs are bounded by B, we have that přd
j“1

Mε ¨ edMε|t|cjεq P
EM

`
eB,R

˘
, therefore pxεq P EM

`
eB,R

˘d
. �

Lemma 54 (Uniqueness). Under the assumptions of Thm. 51, if x P G pB1,Z 1,Rqd
is such that

"
x1ptq `A ¨ xptq “ 0

xpt0q “ 0
(5.10)

in G pB1,Z 1,Rq, then x “ 0.

Proof. Without loss of generality we can suppose that t0 “ 0. The generalized

function x P G pB1,Z 1,Rqd is a solution of (5.10) so there exist pnεq, pvεq P N pZ 1,Rq
such that, for every ε P I,

"
x1
εptq `Aε ¨ xεptq “ nε

xεp0q “ vε.
(5.11)

The unique solution of (5.11) is xεptq “ e´tAεvε `
şt
0
eps´tqAε ¨ nε ds . So

|xεptq| “
ˇ̌
ˇ̌e´tAεvε `

ż t

0

eps´tqAε ¨ nε ds

ˇ̌
ˇ̌ ď

ď e|t||Aε||vε| ` |t|e|t||Aε||nε|,
where we used the integral mean value theorem. If K Ť R, then

sup
tPK

|xεptq| ď eR|Aε||vε| `ReR|Aε||nε|,

whereR :“ supkPK |k|. We have
`
eR|Aε||vε| `ReR|Aε||nε|

˘
P N pZ 1,Rq since pvεq, pnεq P

N pZ 1,Rq and
`
eR|Aε|˘ ,

`
ReR|Aε|˘ P RM peBq Ď RM pB1q becauseA “ rAεs is bounded

by B. �

The results of Lemma 53 and by Lemma 54 provide a proof of Theorem 51.

Example 55. Let I “ pI,ď, Iq be a set of indices, and ρ : I ÝÑ p0, 1s be a map
such that limI ρ “ 0. Let Bs be the usual polynomial AG of the special Colombeau
algebra, so that Bs ˝ ρ is an AG on I by Thm. 19. As we showed in Ex. 32, this
framework generalizes the special, the full and the NSA based cases. The following
problem:
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"
x1ptq `

“
1

ε

‰
¨ xptq “ 0

xp0q “ 1

has not solution in GpBs ˝ ρ,Ωq, but it has a unique solution in G
`
eB

s˝ρ,R
˘

“
G
`
eB

s˝ρ, eB
s˝ρ,R

˘
and in G

´
AG

´
ee

1

ε

¯
˝ ρ,R

¯
“ G

´
AG

´
ee

1

ε

¯
˝ ρ,AG

´
ee

1

ε

¯
˝ ρ,R

¯
,

namely

rxεptqs “
”
e´ 1

ε
t
ı
,

where the equivalence class has to be meant differently in the two algebras. Let us
note explicitly that we have applied Thm. 51 with B “ Bs ˝ ρ and B1 “ Z 1 “ eB

s˝ρ

for the former algebra and B1 “ Z 1 “ AG
´
ee

1

ε

¯
for the latter. Moreover, this

problem has also a unique solution in the algebra G

´
AG

´
e

1

ε

¯
˝ ρ,R

¯
. This shows

one particular feature of our construction: if we want to have an algebra in which
we can uniquely solve all the ODEs whose coefficients are bounded by a given AG B

then (as we will show in Thm. 56) the minimal possible choice is G
`
eB,R

˘
, whilst if

we are interested only in a finite number of linear ODE with coefficients bounded by
B, then it is possible to find a solution to these ODE in the algebra G

`
AG

`
eb
˘
,R

˘
,

where b P Bą0 is any element such that |c| “ Opbq for every coefficient c that appears
in the finite set of ODE.

We note that Theorem 51 can be reformulated in the following way:

Theorem 56. Let B be an AG. Then G
`
eB,R

˘
is the smallest Colombeau algebra

(with respect to the order relation ĺ of Def. 50) in which every linear homogeneous
ODE with coefficients in RM pBq can be solved.

Proof. By Theorem 51 we know that every linear homogeneous ODE with coeffi-
cients in RM pBq can be solved in G

`
eB, eB,R

˘
. Now let B1 be an AG such that

every linear homogeneous ODE with coefficients bounded by B can be solved in
G pB1,B1,Rq. In particular, for every b P B we can solve the problem

"
x1ptq ` b ¨ xptq “ 0

xp0q “ 1.

As we showed in Lemma 53, the solution of this problem is
“
ebεt

‰
. This means that

pebεtq P EpB1,Rq for every b P B. In particular this entails that peH¨bεq P RM pB1q
for every b P B and H P Rą0, so eB Ď RM pB1q and RM peBq Ď RM pB1q. Therefore,
condition (5.3) holds for Z “ eB and Z 1 “ B1 so G

`
eB, eB,R

˘
ĺ G pB1,B1,Rq. �
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