1408.1585v1 [math.FA] 7 Aug 2014

arxXiv

ASYMPTOTIC GAUGES: GENERALIZATION OF COLOMBEAU
TYPE ALGEBRAS

PAOLO GIORDANO AND LORENZO LUPERI BAGLINI

ABsTrRACT. We use the general notion of set of indices to construct algebras of
nonlinear generalized functions of Colombeau type. They are formally defined
in the same way as the special Colombeau algebra, but based on more general
“growth condition” formalized by the notion of asymptotic gauge. This gener-
alization includes the special, full and nonstandard analysis based Colombeau
type algebras in a unique framework. We compare Colombeau algebras gen-
erated by asymptotic gauges with other analogous construction, and we study
systematically their properties, with particular attention to the existence and
definition of embeddings of distributions. We finally prove that, in our frame-
work, for every linear homogeneous ODE with generalized coefficients there
exists a minimal Colombeau algebra generated by asymptotic gauges in which
the ODE can be uniquely solved. This marks a main difference with the
Colombeau special algebra, where only linear homogeneous ODEs satisfying
some restriction on the coefficients can be solved.

1. INTRODUCTION

Currently, a successful approach to modeling singularities as generalized func-
tions in a nonlinear context is the theory of Colombeau-type algebras of generalized
functions. The basic underlying idea is to regularize distributions (or even more
singular quantities) through nets of smooth functions depending on a regulariza-
tion parameter € and then to quantify asymptotically the strength of singularities
in terms of this parameter €. In particular, these algebras contain the space of
Schwartz distributions as a linear subspace and the algebra of smooth functions as
a faithful subalgebra. We suppose the reader to have a certain familiarity with this
topic and refer to [2, 3, 1, 4, 7, 6] for detailed information; as for terminology and
notations we mainly follow [6].

Since the beginning of this theory, it was natural to generalize Colombeau con-
struction replacing the family (¢")_. (0,1],neN with different “scales”. So, we have the
notions of asymptotic scales (see e.g. [10, 11]), (C,&,P)-algebras (see e.g. [3, 14]
and references therein), and sequence spaces with exponent weights ([9]).

In realizing this generalization, one can ask problems like:

e When do we obtain an algebra?
e When can we embed Schwartz distributions using the common method of
regularization by means of a mollifier?
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e How can we use this generalization to solve differential problems having a
singular growth, i.e. growing more than polynomially with €7

The present work inscribes in this research thread. It is hence natural to clarify the
relationship between our approach and the cited articles, and to highlight what we
obtain more with respect to them. In this introduction, we start this clarification,
so that the reader can more easily understand the general picture.

Smooth functions: First of all, a general approach is frequently preferred,
e.g. by considering a sheaf £ of topological algebras, and suitable families of semi-
norms. On the contrary, in the present work we will only consider the usual sheaf
of smooth functions C*(Q2), for Q open in R", and the usual family of seminorms
sup,c i |0%f ()|, where K € Q and « € N™. In spite of our choice, as it is clearly
stated in [3, pag. 394|: “Except in a few cases, the sheaf £ is chosen to be the
sheaf of smooth functions”. In this way, we can focus on the conditions we need
to impose to the more general family of scales. We can thus avoid to add further
conditions which trivially hold in the (almost) unique case that most of the readers
will consider. We hence left to the interested reader the natural generalization of
the present work to a more abstract framework.

Set of indices: The results of this paper are proved for a generic set of in-
dices, a new unifying structure introduced in [12]. This permits to include several
Colombeau algebras in the same framework and notations: the special algebra G°,
the full algebra G° and the nonstandard analysis based algebra of asymptotic func-
tions G. Even if in the present article we are going to develop only the cases G°,
G° and G, we are strongly convinced that with minor modifications (see [12]), the
results we are going to present can also be applied to the diffeomorphism invariant
algebras G4, G2 and G of [6].

Both asymptotic scales and (C, &, P)-algebras apply only to the special case.
Sequence spaces with exponent weights applies to G%, G, G4 but not to G.

Logical structure: One of the key features in using a set of indices is that for
all the algebras G5, G¢, Q, G4, G? and G of [6], we have the same logical structure of
the simple Colombeau algebra, i.e. VK Va 3N and VK Vo Vm, followed by a suitable
big-O asymptotic relation. Both G° and G can be seen as sequence spaces with
exponent, weights, but continuing to use the usual more involved logical structure
(hidden by the use of infinite intersections and unions). On the other hand, this
permits to [9] to underscore the relationship between sequence spaces with exponent
weights and Maddox sequence spaces.

Scales as primitive data: Like in [10, 9], we take the choice of the “scale”
as one of the primitive data. This approach is methodologically a little different
from (C, &, P)-algebras, where the scale is hidden in the pair (A, I) of the ring A
of moderate and the ideal I of negligible scalars, but where the ring A usually
contains much more than only the scales. For example, when A is polynomially
overgenerated, it contains both infinitesimals and infinite nets. Moreover, polyno-
mially overgenerated rings do not permit to obtain an algebra closed with respect
to exponential (see [3]). This represents a limitation e.g. in solving even linear
ODE with generalized constant coefficients. On the contrary, we prove in Thm.
51 that every linear ODE with constant (generalized) coefficients whose scale is of
type B has a unique solution whose scale is of type ¢ (see Def. 46). Moreover, the
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Colombeau-like algebra defined starting from the scale €8 is the smallest among
this type of algebras where every ODE of this type has a solution (see Thm. 56).

Embedding of distributions: In Thm. 44, we characterize which scales per-
mit to embed distributions using a mollifier and respecting the product of smooth
functions. Our results also clarify when, in other approaches, embeddings of distri-
butions are possible and when they are not. About this problem, see also [11, pag.
1-2] and [9].

Generality: Considering [14, 9], it is already known that the (C, £, P)-algebras
approach is the most general one. In section 3.0.1, we prove that when we consider
the usual sheaf of smooth functions, and we consider only the special algebra case,
the (C, &, P)-algebras approach is equivalent to our approach.

1.1. Set of indices. In this section, we recall notations and notions from [12] that
we will use in the present work. For all the proofs, we refer to [12]. In the naturals
N we always include zero.

If p € D(R™), r € Ryo and z € R™, we use the notations r ® ¢ for the function
zeR" — Tin ¢ (%) eR and 2 @ ¢ for the function y € R™ — ¢(y — ) € R. These
new notations permit to highlight that © is a free action of the multiplicative
group (R=g,-, 1) on D(R™) and @ is a free action of the additive group (Rxq, +,0)
on D(R™). We also have the distributive property r ® (z @ ) = re ®r O ¢.

Definition 1. We say that I = (I, <,Z) is a set of indices if the following conditions
hold:

(i)  (I,<) is a pre-ordered set, i.e. it is a non empty set I with a reflexive and
transitive relation <.

(ii) 7 is a set of subsets of I such that @J ¢ Z and I € Z.

(ili) VA,BeZ3CeI: C< AnB.

Forallee I, set (J,e] :={e €l |e<e}. Asusual, wesaye <eife <eande #e.

Using these notations, we state the last condition in the definition of set of indices:

(iv) Ife<ae AeZ, the set Ac. := (J,e] n A is downward directed by <, i.e.,
it is non empty and

Vbce Ac.dde Ace: d<b, d<ec. (1.1)

Henceforward, functions of the type f : I — R will also be called nets, and
for their evaluation we will both use the notations f. or f(e), in case the subscript
notation is too cumbersome. When the domain I is clear, we use also the notation
f = (fe) for the whole net. Analogous notations will be used for nets of smooth
functions u = (u:) € C(Q)1.

Example 2.

(i)  Conditions (ii) and (iii) can be summarized saying that Z is a filter base on
I which contains 1.

(ii)  The simplest example of set of indices is given by I® := (0, 1] € R, the relation
< is the usual order relation on R, and Z° := {(0,e9] | €g € I}. We denote
by I := (I®,<,Z°) this set of indices which, of course, is that used for the
special algebra G°.

(iii) In the context of [18], we set [ := Dy = D(R?). The pre-order relation is
defined by ¢ < ¢ iff p < 1, where p := diam (supp(p)) if ¢ # 0 and ¢ := 1
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otherwise. 7 is the free ultrafilter on Dy used in [18]. Then I := (I,<,7) is
a set of indices.

(iv) With the usual notations of [6] for the full algebra G°, we define I°® := Ay,
¢ :={A, | g N}, and for ¢, e € I®, we define £ < e iff there exists r € R¢
such that r <1 and e = r ®e. Then I° := (I°,<,Z°) is a set of indices.

As we mentioned in the introduction, in the present work we will actually con-
sider only these examples of set of indices.

In each set of indices, we can define two notions of big-O that formally behave in
the usual way. Since each set of the form A<, = (J, e] n A is downward directed,
the first big-O is the usual one:

Definition 3. Let I = (I,<,Z) be a set of indices. Let a € A € T and (x.),
(ye) € RY be two nets of real numbers defined in I. We write

e = Og a(y:) asecel (1.2)
if
JH e Rogdep € Aca Ve € Acey t 2| < H - |yel. (1.3)

Definition 4. Let I = (I,< Z) be a set of indices. Let J < Z be a non empty
subset of Z such that

VA,BeJ3CeJ: C< AnB. (1.4)
Finally, let (z.), (y-) € R! be nets of real numbers. Then we say
2. =0g(y:) ase€el
if
JAe JVae A: z. = 04 a(ye).
We simply write 2. = O(y.) (as € € I) when J = Z, i.e. to denote x. = Oz (y.).

The simplification consequent to the use of the second notion of big-O is due to
the following theorem, which states that also the second big-O formally behaves as
expected:

Theorem 5. Under the assumptions of Def. 4, the following properties of O 7, as
ee€l, hold:

(i) . =0g(xe);

(i) if ve = Og(ye) and y. = Og(z2e) then xe = O7(ze);

(iii) Og(xe)-Og(ye) = Og (@ - ye);

(iv) Og(z:) +O0g(ye) = OF (|ze| + |ye);

()  ze-Og(y:) = Og(ze - ye);

(vi) Og(z:) +Og(ze) = Og(a.);

(vit) if xe,ye =0 for alle € I, then zc + Oz (y:) = Og(xc + ye);
(UZZZ) vkER#O : Oj(kxg) =OJ($€),'

(ixr) VkeR: k-Ogz(x.) =07(x.).

An analogue of Thm. 5 holds also for the first notion of big-O, i.e. for the relation
e = Og a(ye) asecell
The unifying properties of these notions are explained in the following results:
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Corollary 6. Let Q@ < R™ be an open set and (u;) € C*(,R) be a net of
smooth functions. We use the notations of [6] for moderate and negligible nets
related to the special algebra G5(2), and the notations of [18] for similar notions

related to the algebra G(Q) of asymptotic functions. Moreover, we recall that £ :=
min{diam (supp(¢)), 1}, where ¢ € D(R?). Then

(i) (ue) € E,() if and only if

VK € QVae N"IN e N: sup |0%u.(z)| = O(c™) as c e I¥;
reK

(i) (ue) € N5(Q) if and only if

VK € QVaeN"Vm e N: sup |0%c(z)] = O(e™) as e € T%
reK

(iii) (uec) € M (E(Q)P°) if and only if

VK € QVa e N*"IN e N: sup |0%u.(z)] = Oe™N) as e e I;
reK

() (uc) € N (E(Q)P0) if and only if

VK € QVa e N"Vm e N: sup|0®u.(z)] = O(™) as e L.
zeK

To arrive at a similar unifying result for the full algebra, we need the following

Definition 7. Let 2 € R™ be an open set.

(i) Ifee Ay, then Q. := Qn {z e R" |supp(e) € Q —z}.

(i)  P) :=]l.cpe CP(Q2, R).

(iii) Ifg: X — ZY is a map, then g¥ : (x,y) € X x Y > g(z)(y) € Z.

We can say that elements of P¢(f2) are I°-indexed nets (u) such that u. € C*(Q,R).
In [13] it is proved that P°(Q) is isomorphic (as diffeological space, and hence also
as set) to the usual space £°(2) (see [0]).

Theorem 8. Let u = (u.) € P¢(), then
(i) u¥ €& (Q) if and only if

VK €QVaeN"IN eN: sup|d®u-(z)| =0 (V) aseel
zeK

(i) w” € N¢(Q) if and only if

VK € QVaeN"Vm e N: sup |[0%c(z)] = O (g™) aseel".
zeK
The same unifying and simple formulation can be used for the diffeomorphism
invariant algebra G4, with only one difference: in the definition of moderate net we
use a big-O relation of the type O for a suitable J < Z (see [12]). For this reason,
we are strongly convinced that the following results can be generalized also to G9.

2. AsympTOTIC GAUGES

In this section, we are going to introduce some notions for a set of indices which
permit to define what an asymptotic gauge is.
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2.1. “For ¢ sufficiently small” in a set of indices. We start by introducing a
useful notation which corresponds, in the set of indices for the special algebra I®,
to the usual “for e sufficiently small”.

Definition 9. Let I = (I,<,7) be a set of indices. Let a € A € Z and P(—) be a
property, then we say
Viee Ac,: Ple),
and we read it for e sufficiently small in A<, the property P(e) holds, if
Je<aVee Ag.: Ple). (2.1)

Moreover, we say that

Vie: P(e),
and we read it for e sufficiently small in 1 the property P(e) holds, if 3A € TVa €
AViee Ac, @ Ple).

Example 10.

(i) By condition (iv) of Def. 1 of set of indices, it follows that A<, # .
Therefore, (2.1) is equivalent to

Jee Aca Ve € Ao P(e).

Analogously, we can reformulate similar properties we will see below.
(ii) We have z. = O, a(ye) if and only if 3H € Rog Ve € A, @ |oe| < H - |ye.
(iii) In the set of indices I*, the following properties are equivalent:
(a) Jeg e IFVe € (0,e0] : P(e);
(b) 3IAeT°3aec AV e e Ac, : P(e);
(c) JAe IT°Vae AV e e Ac, = P(e);
(d) VAeT*3ae AV e e Ac, = P(e).

(iv) In the set of indices I, we recall that a property P(e) is said to hold almost ev-
erywhere iff {e € Dy | P(e)} € T (see [18]). Using this language, the following
properties are equivalent:

(a) P(e) holds almost everywhere;
(b) JAeZ3ae AVie e A, : Ple);
(c) JAeIVae AVlee Ay = Ple).

(v)  In the set of indices I°, assume that ¢ € A, then the following properties are

equivalent
(a) V'ee (Ag)c, = Pe);
(b) Ire(0,1]Vse (0,7] : P(s®O ).

2.2. Order relation in a set of indices. All the scales (¢7™),, of the special
algebra are positive functions. Of course, if we change the function € — =", only
for € > ¢¢, so that it is not globally positive anymore, this will not change anything
in the definition of G5(€2). In this section, we are going to define this order relation
for functions of the type I — R.

Definition 11. Let I = (I,<,Z) be a set of indices, and ¢, j : I —> R be maps.
Then we say ¢ > j if
Vie: i > j..
Following the intuitive interpretation given in [12], we can say that i >y j if we

can find an accuracy class A € Z such that for each measuring instrument a € A in
that class, we have i. > j. for € € A<, sufficiently small.
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Theorem 12. Let I = (I,<,7) be a set of indices, and i, j, k, z : I —> R be
maps. Then we have:

(i) Q>4

(ZZ) Ifi>]1j >1 k, theni>]1 k.

(i) Ifi>yp0 and k >y g, theni-k>pi-j.

(i) Ifi>pjandk>ypz, theni+k>1j+ z.

(v) If3AeIVae AV'ee Ac,: i. <j., theni. = O(j.) aseel.

Proof. (i): By contradiction, assume that i >y 4, i.e.
JAeIVae AVee Acy : i > ie. (2.2)

But Ja € A since & ¢ Z. This, (2.2) and (i) of Example 10 yield that for some
e € A¢, we have i. > i, for all € € A¢.. This yields the contradiction i, > ..
(ii): We can write the assumptions of this claim as

JAeIVaec AVee Ayt i > je (2.3)
JBeZVbe BY'ee By j. > k.. (2.4)

By (iii) we get the existence of C' € Z which is contained in A n B, i.e. where both
(2.3) and (2.4) hold. Fix a generic ¢ € C. Both the relations i, > j. and j. > k.
hold for ¢ sufficiently small in A<, and B¢, respectively. Hence

e’ < cVee Acer @ e > Je (2.5)
Je”" < cVee Ager : je > ke. (2.6)

But (&, ¢] is downward directed so that there exists e < ¢ such that e < ¢’ and
e < €’. For each ¢ € Cg., from (2.5) and (2.6) we hence get the conclusion
fe > Je > ke.

Properties (iii) and (iv) can be proved analogously. Property (v) also follows directly
from the definitions. g

Example 13.

(i)  In the set of indices I¥, we have i > j if and only if i. > j. for e sufficiently
small.

(ii)  In the set of indices I° we have i > j if and only if there exists ¢ € N such
that for each ¢ € A we have i(e © ¢) > j(e © ¢) for € € (0, 1] sufficiently
small.

(iii) In the set of indices [ we have i >; j if and only if i. > j. almost everywhere.

2.3. Limits in a set of indices. All the scales (¢7™). y, of the special algebra have
limit +oo for € — 0. In this section, we want to define the notion of limit in a set
of indices for functions of the type I — R. This notion can be easily generalized
to generic f : I — T, where T is a topological space.

Definition 14. Let I = (I,<,Z) be a set of indices, f : I — R a map, and
leR U {4+, —00,0}. Then we say that [ is the limit of f in I if

JAeIVae A: I =lim fla(e), (2.7)

where the limit (2.7) is taken in the downward directed set (), a].

Remark.
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(i)  Writing lim.<, f|a(e) we mean (in case [ is finite)
VreRopdag<aVee A: e<ag = |l—f|<mr (2.8)

that is
VreRooVee Ay [l — fo] <. (2.9)
From this, the following properties easily follow
o If | =lim.<, fla(e) and B < A, B € Z, then | = lim.<, f|5(e).
e There exists at most one [ verifying (2.8).

(ii) Let us assume that I; and Il are both limits of f in I. So, for some A,
B e T we have [; = lim.<, f|a(e) for all e € A, and I3 = lim.<. f|p(g) for all
e € B. We can always find C € 7 and e € C such that C € A n B, so that
Iy = lim.<, flc(e) = la. Therefore, if this limit exists, it is unique and we
can use the notation

[ =lim f = lim f..
I eel

Example 15.

(i)  In the set of indices I*, we have [ = limys f if and only if I = lim,_g+ f-.

(ii) In the set of indices I°, we have | = limge f if and only if there exists ¢ € N
such that for each ¢ € A, we have | = lim_ g+ f(e ® ).

(iii) In the set of indices I, assume that Z is a P-point ([5]), and denote by *R the
hyperreals constructed as the ultrapower R’ /f . Then we have
(a) 3lim; f = [ € R if and only if f is finite and [ is the standard part of
(b) 3lim; f = 400 if and only if f > 0 and [f]; is infinite.
(c) 3lim; f = —oo if and only if f < 0 and [f]; is infinite.
(d) 3lim; f = co if and only if [| f|]; is infinite.

An expected result is the following

Theorem 16. Let I = (I,<,Z) be a set of indices and f, g, h : I — R be maps
such that the limits limy f, limy g exists and are finite. Then

(i)  Flimg(f + g) = limg f + limy g.

(i) Flimg(f - g) = limy f - limg g.

(i) YreR: Flimpr =r.

(i) Iflimpg # 0, then Hlimﬂg = %

(v) If f <th<pg andlimy f =limjg =: 1, then Ilimph = L.

(vi) If Ilimy f > 0, then f >10.

The proof is a direct consequence of our definition of limit and, as usual, property
(iii) of Def. 1.

2.4. Asymptotic gauges. Asymptotic gauges represent our definition of scale for
Colombeau like algebras. The idea is, essentially, to ask the asymptotic closure of
B < R! with respect to algebraic operations.

Definition 17. Let I = (I, <,Z) be a set of indices. All the big-O in this definition
have to be meant as Oy (see Def. 4). Then we say that B is an asymptotic gauge
on I (briefly: AG on I) if

(i) Bc Rl

(i) JieB: limpi = oo;

(iii) Vi,jeBIpeB: i-j=O0(p);



ASYMPTOTIC GAUGES: GENERALIZATION OF COLOMBEAU TYPE ALGEBRAS 9

(iv) VieBVreR3ceB: r-i=0(0);
(v) Vi,jeB3seB: s>10, i+ 7] = O(s).
Moreover, we say that:

e 3 >10, and we read it as B is positive, if i >1 0 for each i € B;
o B is totally ordered if for all i, j € B either i = O(j) or j = O(4);
o Bog:={ieB|i>0}.

Of course, any solid subalgebra (see [11, Def. 9]) of R! containing at least an
infinite net is a trivial asymptotic gauge. To include this case, we only asked an
existence in (ii) of the previous definition.

The name gauge gives the idea that using the infinities of B, we are going to
define moderate nets for our Colombeau-like algebras. To define negligible nets, we
can use b—! for all b € B or another asymptotic gauge Z “at least as strong as B”.

The first example corresponds, of course, to the special algebra and so it starts
from the set of indices I* and it is defined as B® := {(¢7%) | a € Ro¢}. This AG is
positive and totally ordered.

Property (v) of Def. 17 is equivalent to ask for the asymptotic closure of B with
respect to sum and to absolute value, as it is stated in the following

Lemma 18. Let B < RY, then property (v) of Def. 17 is equivalent to

(i) Vi,jeB3iseB: i+j=0(s);

(ii) VieBIaeB: a>10, i=0(a).

Proof. That Def. 17.(v) is sufficient follows from i + j < |¢| + |j], ¢ < |i] + |¢| and
Thm. 12.(v). The condition is also necessary: if i, j € B, then from (ii) we get
a, b € Bsg such that i = O(a) and j = O(b); from (i) we have the existence of

s € B such that a + b = O(s). Once again from (ii), we can assume s > 0. Thus
il + 151 = O(Jal + [b]) = O(a + b) = O(s). O

A general way to obtain an asymptotic gauge on a generic set of indices I is to
find a map p : I — (0, 1] such that limyp = 0 and to take the composition of p
with the nets of an asymptotic gauge B on I*, i.e.

Bop:={iop|ieB}.
For example, for the set of indices I° we can consider

p(p) := min {diam (suppp),1} Ve e I® = Ay. (2.10)

An analogue function p can be defined for the set of indices I and in both cases they
have limit zero. Several of the definitions we have introduced so far are motivated
by the wish to obtain the following

Theorem 19. Let I = (I,<,Z) be a set of indices, and p : I —> (0,1] be a map
such that limg p = 0. Let B be an asymptotic gauge on I¥, then

(i)  Bop is an asymptotic gauge on L.

(ZZ) IfB >HSO th@nBOp>H 0.

(ii) If B is totally ordered, then also B o p is totally ordered.

Proof. Property (i) of Def. 17 is clear. To prove (ii) of Def. 17, assume that i € B
is such that lim,_,q+ 4, = 00. Since limy p = 0, we get

JAeZIVae A: 0=limp|a(e). (2.11)

e<a
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For each R € R there exists § € R.¢ such that |i,| > R for r € (0,6]. But for
each a € A, 2.11 yields

Jeg<eVee A: e<ey = |p| <.

Therefore, |i(p:)| > r for the same € € A¢.,. This proves that limji(p.) =

Take i, j € B. We want to prove that both |i o p| + |j o p| and (i o p) (j )
are asymptotically in B o p. From the analogous property of the AG B, we get
the existence of o, m € B such that |i| + |j| = Or(o) and ¢ - j = Op(w), that
is ||ir] + |37l < H - |o| and iy - j.| < K - |7, for some H, K € R.¢ and for
each r € (0,r0]. It suffices to take A as in 2.11 and a € A to have |p:| < 79
for each ¢ € Ag.,, for a suitable ¢ < a. For all these ¢ € A<., we hence get
[|i(pe)| + 17 (p)ll < H-[o(p)] and |i(pe)-j(pe)| < K-|m(pe)|, which is our conclusion.
Analogously, we can prove the asymptotic closure with respect to the product by
scalars.

To prove (ii), assume that ¢ € B > 0, so that 4, > 0 for r € (0,rp]. From
(2.11) for each a € A we have that |p.| < ro for all € € A<, and for some &; < a.
Therefore i(p.) > 0 for the same . This proves that i(p:) > 0 Ve € A<,, and
hence also that i o p >1 0.

Finally, to prove (iii), take i, j € B such that i, = Or(j,) as r € I>. We want
to prove that i(pe) = Or1(j(p:)) as € € I. Assume that |i,| < H - |j,| for r € (0,70].
The limit relation (2.11) yields the existence of A € Z such that for each a € A we
have

Jeg < aVee Ace, @ |pe| < ro,
and thus |i(ps)] < H - |j(pe)| for the same e. By (iv) of Def. 1 of set of indices, we
get A<c, # & which yields
Je1 € Aco Ve € A<ey t |ipe)| < H - [ (pe)l,
which proves that i(pe) = Oq,4(j(pe)), that is our conclusion. O

Example 20.

(i)  Let p be the function defined in (2.10), then {(p-%) | a € R~¢} is a totally
ordered asymptotic gauge of positive functions on I°. In the same way, we
can proceed for I.

(ii) Define exp(z) := e® for x € R, and exp” := expo...k.. o exp, then B :=
{exp” (1) | k € N4} and BLP := {(exp[{l](a_l)“> |ae R>o}, where [z] is
the integer part of = € R, are totally ordered asymptotic gauges of positive
functions. R R R

(iii) Assuming that Z is a P-point on I = D(R?), then the condition p : I — R+
and lim; p = 0 are equivalent to say that [p]; € *R = R’ /T is infinitesimal.
Therefore, Thm. 19 gives that B, := {p~ | a € R=o}, BEP := {expF(p~!) |
ke Nyo} and BSP = {exp[pfl] (p™H ace R>0} are totally ordered asymp-
totic gauges of positive functions on I.

Definition 21. Let B be an AG on the set of indices I = (I,<,Z). The set of
moderate nets generated by B is

Ry(B):={zeR"|FbeB: z. =O0(b.) as c e I}.
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It is immediate to see that B < Rps(B). Let us introduce also the following
definition:

Definition 22. We say that an AG B is an asymptotically closed ring if
B =Ry (B). (2.12)
The following holds:

Theorem 23. If B is an AG then Ry(B) is the minimal (with respect to inclusion)
asymptotically closed solid ring containing B.

Proof. From Def. 17.(ii) and Thm. 12 we get 0 € Ry (B). If z. = O(b.) and
ye = O(ce) for b,c € B, then z. + y. = O(|be| + |cc|). But |be| + |cc| = O(d;) for
some d € B~ by Def. 17.(v). Therefore, z. + y. = O(d.). Analogously, we can
prove the closure of Ry, (B) with respect to the product. It is immediate to see that
Rar(Rpr(B)) = Rps(B). Let us prove the minimality: let R be an asymptotically
closed ring containing B. Let « € Rys(B), and let a € B~ be such that z = O(a).
Then, since a € B € R, we get x € Ry (R). But R = Ry (R) because R is
asymptotically closed, and we get that z € R. So Ry/(B) € R. The definition of
Ry (B) directly gives that it is also asymptotically solid. O

Definition 24. Given two asymptotic gauges B1, B> we say that B and By are
equivalent if Rps(B1) = Ras(B2).

Example 25.

(i)  Every AG B is equivalent to Rys(B).

(ii) The asymptotic gauges By = {(¢7%) | a € R}, B = {(¢72%) | a € R} and
B3 ={(¢7™) | ne N} on I = (0,1] are all equivalent.

3. COLOMBEAU ALGEBRAS GENERATED BY TWO ASYMPTOTIC GAUGES

As we have already stated, every asymptotic gauge formalizes a notion of "growth
conditions". For example, B° (see Sec. 2.4) formalizes the idea of polynomial
growth. We can hence use an asymptotic gauge B to define moderate nets and
the reciprocals of nets taken from another asymptotic gauge Z to define negligible
nets. From this point of view, it is natural to introduce the following definition:

Definition 26. Let Q2 < R™ be an open set, let 5, Z be AG on a set of indices
[ =(I,<,Z) and let A be a subalgebra of C*(Q)!. The set of B-moderate nets in
Ais

Emv(B,QA) :={ue A| VK € QVa e N"

3be B: sup |0%uc(z)] = O(b.) as € € I}.
reK

The set of Z-negligible nets in A is
N(Z,QA) ={ue A|VK € QVa e N"

Vz e Z-: sup |0%u.(z)] = O(2.') as e eI}, (3.1)
zeK

Moreover we set

En(B,Q) = Er(B,Q,C7° ()Y

and
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N(Z,9Q) :=N(Z,9,C*(Q)).

Remark.

(i) If z € Z-¢ then Ve € A<, : 2. > 0 for some a € A € Z, so that we can
consider z71. It is implicit in (3.1) that we are considering only these ¢.

(i)  Em(B,Q) nRI = Ry (B) (by identifying a constant function Q@ — R with
its value).

(iii) gM(B,Q,A) =5M(B,Q) N A.

(iv) N(Z,Q,A4):=N(Z,0Q)n A

We want to find conditions that ensure that the quotient £ (B, Q)/N(Z,Q) is
an algebra. When this happens, we will use the following definition:

Definition 27. Let B,Z be AG and let A be a subalgebra of C*(Q)!. The
Colombeau AG algebra generated by B and Z on A is the quotient
g(szvA) = EM(B,Q,A)/N(Z,Q,A)
We also set G(B, Z,C*(Q)1) = G(B, Z,Q).
In the following, we will only consider the case A = C*(Q)! and real valued
nets of smooth functions. Nevertheless, all the results that we prove in this section

can be easily generalized to the case of a generic subalgebra A < C*(22)! and to
complex valued nets.

Let us observe that G*(Q) = G(B*,5%,Q). A known result is that, having fixed
Z = B*, B = Z is the maximal choice such that G(B, Z,) is an algebra. We will
prove that a similar property holds in our general setting.

Lemma 28. For every B, Z asymptotic gauges and 2 S R™ the inclusion N (Z,Q) <
En (B, Q) holds.

Proof. Let b € B and z € Z be infinite nets: lim.cb. = lim.eyze = 0. Then
limeer 221 = 0, so that, for some a € A € Z, |27} < 1 Ve € A<,. Analogously,
1 < |be| Ve € Bgp, for some b € B € Z. Therefore, 21 = O(b.). Now, let K € (,
aeN"and ue N (Z,Q). As

sup |0%ue (2)] = O(27")
reK

and 22! = O(b.), we obtain that

sup |0%ucs(z)| = O(be),
zeK

so (ue) € Ep(B, Q). O
Lemma 29. For every B, Z AG and Q = R" open set, both Err(B,Q) and N(Z,Q)

are rings.
Proof. Let u,v e Ey(B,Q). Let K € Q, « € N* and let b, ¢ € B> be such that
sup |0%ue(z)] = O(b2), sup|a®ve(2)] = O(ce).
reK zeK
Finally, let d € B~ be such that |b.| + |cc| = O(de). Then
sul];; [0%(ue + ve)(z)| = O(be) + O(ce) = O(|be| + |ee]) = O(de),
xTEe

so u+v € Ep (B, Q). Similarly, we can proceed for the product.
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Now let u,v e N(Z,9Q). Let K € Q, a € N* and let 2 € Z-¢. Then
sup |0%(ue +v:)(2)] = Oz 1) + O(z1) = O(22),
TE

so u+ v e N(Z,Q). Similarly, we can proceed for the product. O

To have that G(B, Z,Q) is an algebra, we need that the product of a moderate
net by a negligible one is always negligible. This implies that if b € B and z € Z-,
then we can find a w € Z~¢, depending on b and sufficiently small, such that w-*-b.
is bounded by z-!. This forces a relation between the AG B and Z which can be
summarized by saying that the scale Z is stronger or equal to that of B, as it is
precisely stated in the following theorem.

Theorem 30. Let B, Z be AG and Q2 € R™ be an open set. Then the following

properties are equivalent

(i) Ru(B) = Rum(2);

(ii)) YbeBVze Z.0dwe Z50: wy

If these hold, then

(i1i) N(Z,9Q) is a multiplicative ideal in Err(B,Q) (so, in particular, the quotient
G(B, Z,Q) is an algebra).

Moreover, if

Lobe =007,

€

Vbe BYze Z: b. =O0(z:) or ze = O(be) (3.2)
then (iii) entails (1).
Proof. (i) = (ii): Let b € B and z € Z.(, we have to prove that z - b € Ry (Z).
But be BS Ry (B) S Ry (2) and z € 259 € Ry (Z). Since Ry (Z2) is a ring, the
conclusion follows.
(ii) = (i): Take x € Rps(B), so that . = O(b.) for some b € B. Take an infinite
net z € Z: limger 2z = 0. Then b, = O(zc - b:) and hence z. = O(zc - b:). By (ii)
we get w € Z5¢ such that z. - b. = O(w,), which implies x € Ry (Z).
(i) = (iii): Let ue N(Z,Q) and v € Ey(B,Q), let K € 2, a € N". Since

sup [0%(ue - ve)(z)| < Z (a) sup ‘8'8%(33)‘ - sup ‘8“"81)5(3:)‘ Veel,
zeK BeN™ ﬁ ze K zeK
B<a

for each 8 < a we can find bg = (bg:) € B>¢ such that
sup |3a75v8(x)| = O(bge).
zeK

Therefore, for all w € Z-y we obtain

sup (a0 = 3 (§)0twr)0(0a) -

zeK BeN™ ﬂ
B<a
=0 (w:")- 0 > bse |- (3.3)
BeN™
B<a
Let b € Bso such that > gennbge = O(b:) and z € Z.y. By (ii) there exists

B<a
(we) € Z=g such that w:1-b. = O(271), and hence sup,¢ i [0%(ue - ve)(2)] = O(271)
by (3.3).
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(iii) and (3.2) = (i): Let us assume that (i) does not hold. Then there exists
x € Ry (B\Rpy(Z2), ie. . = O(be) for some b € Bsg. Since z ¢ Ry/(2), it is easy
to see that b ¢ Ry (Z). From b ¢ Ry (Z), we get b # O(z.) for all (z.) € Z. Thus,
(3.2) yields z. = O(b.) for all (z.) € Z. Hence b = O(z71) for all (z.) € Z-0, so
we have that

(be) € Enr (B, Q);

()" e N(2,9);

(be) - (021) ¢ N(2,9),

so N(Z,9Q) is not a multiplicative ideal in Eps (B, ), which is absurd. O

Let us note that, in particular, when (3.2) holds, G(B, Z,Q) is an algebra if
and only if Ry (B) € Ry (Z2), so the maximal possible choice for B is to take B
equivalent to Z. This is the generalization to our context of the known result for
G* ().

We conclude this section by proving that equivalent asymptotic gauges give the
same Colombeau AG algebras:

Theorem 31. Let B, Z be AG, and let Q € R™. The following conditions hold:
(i) Em(B,Q) = Ep (R (B), Q);
(1) N(Z,Q)=NRyu(Z2),0).

In particular, G(B, Z,Q) = G(Ry(B), Ry (2), Q).

Proof. The proofs follow from the definitions. (I

A consequence of Theorem 31 and Proposition 23 is that the theory could be
developed in terms of asymptotically closed rings. This is the point of view followed
by [8, 14]. Nevertheless, we think that it is useful to consider the notion of asymp-
totic gauge because many growth conditions are more easily expressed in terms of
asymptotic gauges than in terms of asymptotically closed rings: note e.g. that the
assumption (3.2) is too restrictive if B is a ring.

Example 32. Let B be an AG on I¥, then Thm. 19 yields that

B i= {(b) en, 10E B} Bim {(b:) gy | b€ B}

are AG on I¢ and I respectively. Therefore, if Ry (B) < Ry (Z) then G(B¢, Z¢,Q)
and G(B, Z,9Q) generalize the full Colombeau algebra G¢(Q) and the algebra G(€2)
of asymptotic functions (see also Cor. 6 and Thm. 8).

3.0.1. A comparison with asymptotic scales, (C,E,P) algebras and exponent weights.
To study the relations between AG and the generalizations of Colombeau algebras
cited in the title, in this section we only consider the set of indices I° of the special
algebra, the sheaf C*of ordinary smooth functions, and the usual family of norms

Si={[0% |pox) | K € QaeN"}.

Let B, Z be AG, with Ry/(B) € Ry (Z). We already know (Thm. 23) that
Ry (B) is a solid ring. Set

Jz = {xeRIS |Vze 2. xszO(zgl)}. (3.4)
If be Ry (B), x € Jz and 2z € Z~¢, then Thm. 30.(ii) yields wz ! - b. = O(271) for
some w € Z~g. By the definition (3.4), we have z. = O(w_!), so that z. - b. =
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O(wzt - b.) = O(2-1), which proves that z - b € Jz, i.e. that Jz is an ideal of

€

Rps(B). Directly from the definitions, we get

ARM(B)/JZ,COO7S = g(Ba Za 7)5 (35)

where the left hand side is the (C, £, P)-algebra associated to the ring Ry (B)/Jz.
Vice versa, let us assume that A is a solid subring of R’" containing at least one
infinite net
dae A: lima, = .
e—0

Then B := A is an AG. We can now consider the solid ideal associated to A, i.e.
Iy = {xeRIS | Va e A* : 3:=O(a)}.

It is easy to prove that I, = {z € R |Vae A%, : z = O(a™1)} so that we can set
Z := 14, which is an AG. Directly from the definitions, we get

Apjracrs =GB, 2,-). (3.6)

This proves that, in the framework of the special algebra, (C,&,P)-algebras and
Colombeau AG algebra are essentially equivalent.

In [14], the relations between (C,&,P)-algebras and asymptotic algebras gen-
erated by an asymptotic scales are already clarified, so that our previous (3.5),
(3.6) would also give the relations with the latter. Anyway, let us assume that
a = (am)mez, Gm € RI:O, is an asymptotic scale:

1
VmeZ: ams1 = 0(am),a0—m =—,AM € Z: apy = O(a?n).
am

Then, we can define the AG B:= Z := {z € R |ImeZ: z. = O(ame)}, and this
yields

Aa(C*,8) = G(B, Z,-).
Finally, let » : N — R be a sequence of weights (see [9]) and, instead of the set

of indices I*, we counsider the set of indices I* := (N, <, F), where < is the usual
order relation on N and F is the Fréchet filter on N. Setting

B:i=Z:={zeRY|¥peS: ||z|,, <o}

we get an AG and
gS,T = g(B; Za 7)'

See [9] for more details and for the notations || — |

p.r and Gg .

4. EMBEDDINGS OF DISTRIBUTIONS

In this section we let Q@ € R”™ be a fixed open set and we let B, Z be two fixed
asymptotic gauges with Rp;(B) € Rys(Z). We will define an embedding

i:D'(Q)—G(B,Z,9Q)
by slightly modifying the construction usually considered in G*(£2). Our construc-
tion will follow the same approach used by [6]. We start by defining our mollificator.

Definition 33. Let b € B~ be infinite: limyb = +o00; for simplicity, we can assume
that b > 0 for all € € I. Let p € S(R™) be such that

() Jo()de =1
(i) §p(x)z*dx =0 for every k > 1.
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We set
pe :==b " Op,
so that pe(x) = b2 - p(bez) for all z € R™.

Lemma 34. Let we £'(Q) and p € D(QY), then

lim Q(w % pe) - = (W, ).

eel

Proof. As usual, by the continuity of convolution, the conclusion is equivalent to

lim | p: - ¢ = ¢(0), (4.1)

e<e

where e € I. In fact, this would prove that (pe)e<e — ¢ in D’ with respect to the
directed set (¢, e]. To prove (4.1), we consider

[oewp@as w0 = [[s0]¢ (1) - o0)] o] <
( ©(0)

<J|p(t)|’s0 é) - Oldt-

Since ¢ is compactly supported, we have
t
Vr e Rogdeg < eVe < gy Vt € suppy : ’gﬁ <b_> — <p(0)’ <,
€

SO
Vr € RagJep < Upa z)dz — ¢ )‘@“JI/}I-
O
Theorem 35. For every open 2 < R™ the map
io: E'(Q) — G(B, Z,0)
w = [(w = pe)le] (4.2)

is a linear embedding.

Proof. We have to prove that

(i)  ip is linear;

(ii) Ywel&(Q): (w=pe:)la € (B, Q);

(i) Ker(ig) = {0}.

That 4¢ is linear follows immediately by the definition, since the convolution is a
linear operator. Let us prove (ii). By the local structure theorem for distributions,
it suffices to consider the case w = 0% f € £'(Q2), with f € D(Q) and o € N™. Let
re K €, then

(w pe)() = [+ 0°pe(a ffx— )% pel(y) dy

_ Jf(:z; — )bl (%) (b, - y) dy =

t

= plel J f (:c = bZ) L0%p(t) dt = O(b!) = O(c.),
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for some (c.) € B with bl = O(ce). The same argument applies to the derivative
aﬁ(f #0%e) = f* anrﬁps-

To prove (iii), let w € &'(Q) be such that [(w* pe)|a] = 0 and let p € D(Q).
Thus, setting K := supp(p), we have

Vie Zog: sup |(w s po)(@)] = O(2Y)
reK

and hence limeersup, e |(w # pe)(z)] = 0. From this and Lemma 34, we hence
obtain
(o] = tim | (0 pyg| < sl o)) - [ ol =0
eel Q e€l e K

O

Let us note that the embedding (4.2) depends on the open set Q. We will use
the notation ipn when we want to underline this dependence.

We denote by o the constant embedding of C*(€2) into G(B, Z, ), namely o(f) =
[f]. We would like to prove the analogue of [6, Prop. 1.2.11]. As usual, the idea is
to start with f € D(Q2) and to use Taylor’s formula obtaining

(f*pe— D) = j(f@c ) — F(@))pely) dy =

" Jaz_]mi, (—bi S (;v - eé) p(t) dt =
=0+ ™ f|a|z_:m$ (—t)* o> f (x — 6%) p(t)dt =
=0 (™). (4.3)

Therefore, to have (f — (f * pc)|a) € N(Z,9Q) we need a further condition of the
form
Vze ZoodmeN: b-™ =0(z201) ie. 2z =00™).
This implies Z-¢ € Ry (AG(b)) < Ras(B), where AG(d) is the AG
AG(b) := {b™ | m € N}.
We have thus Ry (2) = Ry (B) = Ry (AG(D)).

Definition 36. Let B be an AG. If b € B is such that Ry, (AG(d)) 2 Ry (B) then
we will say that b is a generator of B and that B is a principal AG.

Let us note that in the previous definition we could equivalently substitute the
condition Rps(AG(b)) 2 Ry (B) with Ry (AG(D)) = Rpr(B). Moreover if B is
principal AG then, if necessary, we can always find a positive generator of B: in
fact, if b is any generator of B and ¢ € B, ¢ € O(]b]), then also ¢ is a generator of
B.

Every AG of Ex. 20, other than BS® and BS>P, is principal; for example, e~
is a generator of B°. Moreover, a solid subalgebra of R! (containing an infinite
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net) generally speaking is not a principal AG. In the latter case, the embedding of
distributions using a mollifier is not possible (see Thm. 44).

By Theorem 31 we can also assume, without loss of generality, that B = Z,
which is the subject of our next

Assumption: Z = 3 is a principal AG. Moreover we assume that the
mollifier (p.) is constructed with a fixed generator b.

Let us observe that a generator of an asymptotic gauge is necessarily an infinite
element in R’, i.e. lim.c;b. = 00, and that every principal AG is totally ordered.
As a first consequence of our assumption, we have

N(Z,9) = N(B,Q) =

{u eCP()! |VK €QVaeN"VmeN: sup|d®u.(z)] = 00D ™) asce ]I} :
reK

Henceforward, we will thus use the simplified notation G(B, ) := G(B, B, Q).

Theorem 37. i0|D(Q) = 0. Consequently, ig is an injective homomorphism of
algebras on D(Q).

Proof. The second statement follows from the first like in [6]. The remaining part
is proved in (4.3). O

The notions of support supp(u) of a generalized function v € G(B, Q) and of restric-
tion ulg € G(B, Q') can be defined exactly like in [6, pag. 12].

Theorem 38. If we &'(Q) then supp(w) = supp(ig(w)).
Proof. Let us prove that supp(io(w)) < supp(w). We have to prove that

i0(w)]supp(w)e =0
in G(B,supp(w)®). Let K &€ supp(w), let @ € N™ be such that w = 0%*f, with
f e D(R™K). Then ig(w) = [(f * 0%pe)|a] and

(f * 0% p)(a) = f F(x — 1)o%pe(y) dy =

= ff(:b —y) - bl (bey) dy =

= f f <33 - i) -blelop(t) di+
It/ <+/b2 be

+J f (a: — i) -blelop(t) dt.
It1>+/b2 be

Recall that b. > 0 for each € € I. Since supp(f) n K = ¢, if © € K there exist
A € T such that for each a € A

t
Viee AoVt |t <A/b. — = = ¢ supp(f),
£

so the first integral is zero. For the same e sufficiently small, the second integral
can be estimated as follows:

t
J f (:c - b—) bllop(e) dt < bl £, - f \8‘“‘p(t>] dt.
|t|=>v/b2 e [t|=+/b2
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Since p € S(R™) for any m € N there exists a constant c,, > 0 such that |dl*lp(t)| <

Cm (14 [t))2m==1 Thus [0!°lp(t)] < ¢, (\/E)_%L (1+[t))~""! for |t| = +/b., and
f bl alalp(t)’ dt < epblel=m . J (14 [t)™""tdt = & - plol-m
[t|>+/b= [tI=v/be

Since m is arbitrary we can treat the derivative of io(w) in the same way, and this
gives the desired estimates that show that supp(io(w)) S supp(w).

Let us now prove that supp(w) < supp(io(w)). Let z¢ € supp(w). For every
1 > 0 there exists ¢ # 0 in D(R) such that supp(¢) < B, (xo) and [{w, p)| =: ¢ > 0.
Since limeer w * pe = w in D'(Q) (Lemma 34), this implies that [(w * pc, p)| > § for
¢ € [ small. But setting K := B, (zo) we have

C
0< 5 <l pl = |[ (we o) plo)ae] < supl(a - [ Il 1

rxeK
The equality [(w * pe)|p, (z0)] = 0 in G(B, By (x0)) would imply
limsup |(w * pe) ()] = 0,

g€l zeK
which is impossible by (4.4), so io(w)|p, (z0) = [(w * pe)|B, (zo)] # 0 and therefore
o € supp(io(w)). O

To prove that ig can be extended to an embedding i : D'(Q) — G we can now
use the following result, whose proof can be conducted exactly like in [6]:

Theorem 39.
(i)  G(B,—):Q— G(B,Q) is a sheaf of differential algebras on R";
(i)  There is a unique sheaf morphism of real vector spaces i : D' — G(B,—)
such that:
(a) i extends the embedding i : &' —> G(B,—) defined in (4.2), i.e. such
that iQ|g/(Q) = ioQ.
(b) i commutes with partial deriatives, i.e. 0% (iq(T)) = iq (0*T) for each
TeD'(Q) and a € N.
(c) i|coc(7) :C®(=) — G(B,—) is a sheaf morphism of algebras.

4.1. Embedding with a strict é-net. A simpler way to embed distributions is
by means of a strict d-net rather than a model d-net (i.e. a net obtained by scaling
a single function p). This can be done for a generic set of indices and a principal
AG simply by generalizing [17, Lem. Al, Cor. A2]:

Theorem 40. Let I be a set of indices and B be a principal AG on 1 generated by
be B=o. There exists a net (1:)..; of D(R™) with the properties:

(i)  supp(ye) € B1(0) for alle € I;

(ii) S =1 foralleel;

(i) YaeN"3IpeN: supycpn |0Ye(z)| = O(B2) asc e

(iv) VjieNVie: 1<|a|<j= (2% ¢.(z)dz = 0;

(v) VYneR.oVe: (|| <1+n.

In particular

pe :=b'Oy. Veel
satisfies (i) - (v).
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Proof. For m € N and n € R5( define the sets

Ap = {s@ e D(E") | supp(i) < Bi(0), [0 =1, [ a7 p(e)dr =01 <o < m} ,

At = {e e An | [lol <10},

In [17] it is proved that A,, # & # Al (n). For each m € N+, we choose ¢,, €
Al (L) and we set
My, = sup [0%pm ()],

zeR™
|a]<m

1
Amei=1¢pe A, <E) | sup [0%p(z)| < be Vm € NogVee I.

Therefore, & # Amt1 S Am, and ¢, € A, . whenever M,, < b.. Since
limy,— o0 My, = 400 (see [17]), for each fixed € € I, we have b, < My, 41 for
m sufficiently big. We denote by m. the minimum m € N such that b. < M,,11, so
that

My, <be <My Veel (4.5)

and hence ¢, € A,,_ . for all ¢ € I. Define 1. := ¢,,_ for all ¢ € I, so that
Ve = Om. € Am..e S Ap., which proves (i), (ii). The remaining properties can be

proved like in [17]. We have only to note that if & € N™, then |a| < b; for e € I
sufficiently small because limgerb. = +00. Therefore, (4.5) yields |a| < m. and
hence Ajq).c 2 Am, e 3 Y. O

We finally have the following results, whose proof is just a mild variation of the
previous proofs about the embedding with a model -net.

Corollary 41. If (p.) is the net defined like in Thm. 40, then the mapping
iq: TeD(Q)— [T*p:]eG(B,Q)
is a sheaf morphism of real vector spaces i : D' — G(B,—), and satisfies the

following properties:

(i) i commutes with partial derivatives, i.e. 0% (iq(T)) = iq (0*T) for each T €
D'(Q) and v € N;

(i1) i|Coo(7) :CP(=) — G(B,—) is a sheaf morphism of algebras;

(i) If we E(Q) then supp(w) = supp(ia(w));

(w) io(T) ~ T for each T € D'(Q2), i.e. limeer §, (T % pe) - o = (T, ) for all
v € D(N).

4.2. Comparison of embeddings. We close this section by facing a natural prob-
lem: let us define two embeddings iy, i. like (4.2) but using two different generators
b, ceB:

ip(w) : = [w= (b1 O p)],
ic(w) = [wx (1 ©p)].
It is well known that i,(T) ~ T ~ i.(T), but when are they equal?
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Theorem 42. Let b, ¢ € B~ be generators of the AG B. Assume that p(0) # 0;
then iy, = i. if and only if [be] = [cc] in G(B,R), i.e. iff they generate the same
B-Colombeau generalized number.

Proof. If iy = i., then ip(6) = [bF - p(be - —)] = ic(d) = [¢Z - p(ce - —)]. Setting
K = {0} in the definition of negligible net, we get
Vme N [Bp(0) — cp(0)] = O:™),
that is [b] = [c¢”]. The conclusion follows by applying the smooth function {/— €
C”(Rxo).
Vice versa, assume that [b.] = [cc]; we want to prove that

[ws (0" Op—ctOp)] =0 Ywe&'(Q).
It suffices to prove that lim.e (b1 © p — cz* © p) = 0 in D'(Q). For each ¢ € D(Q)

)-
" e cone- fu (1) -o(2)] ao

The composition of the generalized functions ¢ € C*(R™) < G(B,R") and

[x — bi] - [x - 3] e G(B,R™)

Ce
is well defined since the latter is compactly supported. Therefore, for K := supp(y),
limeer SUPte e ‘cp (é) —p (i>‘ = 0. From this and (4.6) the conclusion follows. O

Ce

The assumption p(0) # 0 clearly holds if we define p as the inverse Fourier
transform of a positive function identically equal to 1 in a neighborhood of 0.

For example, i(.-~) and i(.-») permit to deal with different speeds at the origin
of different models of the Heaviside function H. Finally, as we already said at
the beginning of the present work, it could be interesting to apply these results
about different embeddings also to the full algebra G¢(B¢,), e.g. in case we need
particular properties like H(0) = 0. This is only a first step in the study of the
infinitesimal (and infinite) differences between two embeddings 4, and i.. In our
opinion, this study could be very useful in nonlinear modeling.

4.3. Necessity of a principal AG to embed distributions with a mollifier.
The assumption that B is a principal AG is quite natural if one looks at (4.3). In
this section we want to prove that this is indeed a necessary condition if we want
to have a pair g, o of embeddings (where iy is defined like in Thm. 35) which
coincide on a suitable set. More precisely, to state the following result, we set

Definition 43. Let B be an AG, then &,(B,Q) := Ey(B,Q2) n D(Q)! denotes the

set of moderate nets of compactly supported functions.

We also recall that if (zj)x is a sequence of A<, then we say (z;)r — & in Agq if
Vag € A< IK e NYk e No g 1 2z < ap.

The existence of such a sequence is always verified in all our examples of set of

indices (see [12]).

Theorem 44. Let B, Z be AG on the set of indices . Assume that for each
a € A €T there exists a sequence (zx)r — & in A<q. Let b, p, pe as in Def. 33.
Then the following are equivalent:
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(1) V(fe) € Ey(AG(D),R) Vo e R: (fe* pe) (z) = fe(a) + N(Z,R);
(i) b is a generator of Z.

Proof. We prove (i) = (ii) only for the case n = 1, even if slightly more general
notations can be used to repeat this proof for a generic dimension. As in (4.3), we
can use in (i) a Taylor formula of order m € N, with Peano remainder, at z € Q,
so that for each f. € D(2) we have a (unique) remainder R, = R(m, f,z) € D(2)
such that for each e € T

|(fe # pe) (x) — fe(x)] = 2™ - JRRS (:C - bt_s) -p(t)dt
R.(y) =o(ly — ") asy — x. (4.7)

We set c.(m, fe,z) := {; Re (3: — é) - p(t) dt. Without lack of generality, we can

assume that p(0) > 0; analogously, we can proceed if p(x) # 0 at another point
z e R.

Now, for each € € I and m € N5y, we want to define a function f.,, to use in
(4.7) such that:

e fom is equal to its Peano remainder of order m at x = 0. This permits to
directly have R, = f.;, in (4.7) and in the definition of ¢.(m, fem, 0).
o c.(m, fem,0) = Ly, > 0, where L, doesn’t depend on ¢ and is infinitesimal
for m — +oo0.
fem can be defined in infinite ways; in its definition we will always respect the
following criteria:

(i)  We firstly fix p, ¢ € R5 such that

(11) fsm € 5M(AG(b), ) and supp fsm [ ﬁ, bﬂ]
(iil)  fem(s) = 0 for each s.

(iv)  fem(s) = s¥™ - b2™ for each s € (—%, %) .

For example, we can take ¢ € D(R) such that supp(¢) < [—p,p], ¥ = 0, ¥(s) =
for s € [—q, q] and set fo,,,(s) = s2™ - b2™ - ) (be - s); let us note that limeey [ferm] =
s2m . p?m=n . 5(s) in G(AG(b), R) in the sharp topology, so that the limit of this net
is a nonlinear generalized Colombeau function.

We have fo,,(s) = o(s™*!) as s — 0 by (iv), so fem equals its Taylor remainder of

order m > 0. Moreover t € (—p, p) iff —bi € (—bﬂ, bﬂ), so that

(1 forns 0) = J Fom (i) p(t)dt = Jq 27 o) dt = Loy > 0, (4.8)
E —q

where we have used (iv), (iii) and (ii). Since ¢ < 1, t2™ - p(t) < p(t) for every
t € [—q,q]. So, by dominated convergence, lim,;,— 1o Ly, = 0. Now, (4.7) yields

|(fem # pe) (0) = fem(0)] = b2 - ce(m, fem,0) Ve, m,
so that, considering a generic z € Z-, assumption (i) gives

Vm e NogIA,, e IVae Ay i O™ - co(m, fom,0) = Oq.a,, (221). (4.9)
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We proceed by contradiction assuming that
YmeN: bZ™ # O(271).
Taking a generic m € N- g, this means
VAeZ3ae A: b.™ # Oqa(221).
We apply this with A = A,, obtaining
Jam € Ayt 0™ # O, oa,, (2271).

By Thm. 15 of [12], we obtain that for each H € R.q there exists a sequence
(ek)ken : N — (Am), ~(depending on m and H) such that:

(ex)k = Fin (Am)c,,
b" > H-z,' VkeN (4.10)

We set H := L2 > 0 in (4.10), obtaining a sequence () — & in (Ay,)
(depending only on m) such that

bz, > L Vk,meN. (4.11)
But from (4.9) with a = a,, and (4.8), we get
VmeNogIT e RogViee (Ap), = b2™ 2. <T-co(m, fom,0)" ' <T- L1

<am

<am

Applying this for € = e, with £ sufficiently big, we get b_ ™z, <T - L} which,
together with (4.11), yields L,? < T - L.} for each m. ThlS is impossible since
L,, — 0 for m — +oo0.

To prove (ii) = (i), we can proceed as in (4.3) considering that 0% f. is bounded,
on a fixed compact sets K € R, by a suitable power b-N>. Therefore, for z € R

fixed and e sufficiently small, x — é € Bi(x) =: K, and for each m € N, we can
write
—m (o7 t
(e pa) = Lol <0 S suplo®folo |j' o] at <
lo|=m
t
leel=
where N, := max||_,, No and Cp, Zlal w3 B2 o) dt. If z € 2, by (ii)

we get the existence of k € N such that b_F = O(z;l). It suffices to take m
sufficiently big so that m + N,, > k so that for this fixed m and for £ small,
b Nm Oy < BTF O

Let us note that condition (i) is stronger than the equality io|p ) = o, which can
be applied only to a single function f € D(Q) instead of a whole net. Indeed, in
the previous proof, we used this condition with the net (f.)e, which effectively
depend on €.

We can say that if b is a generator of Z, then the equality io(f) = o(f) for f € D(Q)
can be extended to any net of compactly supported function which are AG(b)-
moderated. Therefore, the only possibility to have an embedding using a mollifier
but without using a generator is to avoid a natural property like (i), which is unde-
sirable. We can summarize our results concerning the embedding of distributions
by saying:
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(i)  The embedding of distributions by using a mollifier forces us to take only one
principal AG: B = Z = AG(b).

(ii)  If we are interested in using two different AG, B # Z, or a non principal AG,
we have to consider a particular set of indices, e.g. the full one I°, where an
intrinsic embedding is possible. Of course, this is incompatible with particular
properties like H(0) = 0.

5. SOLVING LINEAR HOMOGENEOUS ODE WITH GENERALIZED COEFFICIENTS

Studying Colombeau theory, one senses a sort of delusion by seeing that these
algebras, invented to find solutions of differential equations which are not solvable in
D', are not able to find solutions of ODE of the simplest type. One way to bypass
this problem is to assume ad hoc growing conditions of logarithmic type, i.e. to
adapt the differential problem to the constraints of the theory (see e.g. [15, 16] for
linear ODE). Another solution is to guess that this deficiency is due to the chosen
polynomial growing condition, and that a generalization could be possible. This is
one of the basic motivations to generalize Colombeau theory by defining notions
like asymptotic scales, (C, £, P) algebras, exponent weights or AG. Here, the point
of view is more similar to that used in algebra: given an equation we have to find
the best space where it has a solution, i.e. we adapt the theory to the equation.

We start this section by defining the module of Colombeau generalized numbers
where we will take the coefficients of our linear ODE.

Definition 45. Let B, Z be AG on a set of indeces I such that Ry (B) € Ry (2),
and let d € N.q, then
(i) QuB):={(z.)eQ |FbeB: z.=O0(be)};
(ii) (N,TE) ~z (ye) it Vze Zo0: e —ye = O(z; ), where (z.), (y) € Qum(B);
(111) Q(B,Z) = QM(B)/ ~Z5
(iv) R%YB,Z):=R4,(B)/ ~z.

Like in Thm. 30, we have that I@(B,Z) is a ring. Moreover, HNQ(B,Z) can be
identified with a subring of R(8’, Z") if

RM(B) < RM(B/) o RM(Z/) c RM(Z) (51)

A sufficient condition for these inclusions is B € B’ < Z’ < Z. The proof of
Prop. 1.2.35 of [0] can be directly generalized to every set of indices, so that if {2 is

connected and u € G(B, Z,Q), then Du = 0 if and only if u € I@(B, Z).

As we mentioned above, if a differential equation &(t) = F(t,z(t)) is well-defined
in G(B, Z,0)", ie. if Q € R and F € G(B, Z,Q)", then we will have to deal
with moderate solutions bounded by terms of the form e’ := (eba), for some b € B.
It is therefore natural to set the following

Definition 46. Let 5 be an AG, then
5= {e"?| HeRoo,be B}
is called the exponential of B.

The problem with €8 is that it is never a principal AG since it always contains
(bounds of) e, whereas a single generator gives terms of the form e™?.
Lemma. Let B be an AG, then:

(i)  €® is a positive AG;
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(ZZ) RM(B) < Ry (66),‘
(iii) Rpr(eB) = Ry (eRm(B));
(iv) if B = AG(b) then Ry (¢8) = Ry({e”" | k € N}) = Upen Rur(AG(e?")) ©

(10 ()

(v) €8 is not a principal AG.

Proof. We only prove (v) since the other properties follow almost directly from
the definitions. Assume that ef = AG (eH'b), where H € R.g and b € B. Then
b2 = O(c), for some c € B=q. Therefore, for ¢ € I sufficiently small we have

eb? < e (5.2)

for some K € R-g. But ef¢ e ef = AG (eHb) so efc = (eHb)m = ™ for some
m € N. From this and (5.2) we get b2 < mHb, for ¢ small. This implies that b
is bounded, so e’ is also bounded and it cannot generate e’, where i € Bg is
infinite. O

We want to consider linear ODE whose coefficients are, in some sense, “bounded
by B”, but whose solutions are in G(B’, Z’, R), where Rp;(B") 2 Ry, (68). We have
to clarify this point, also because it is desirable to have some kind of preservation
of old solutions: if z is a solution already in G(B, Z,R), e.g. because the coefficients
have a growth of logarithmic type, then  must also be (in some sense) the unique
solution in the new space G(B’,Z’,R). To have a relation between G(B, Z,R)
and G(B', Z2',R), a condition like (5.1) is too strong because if e.g. B = Z are of
polynomial type, then (5.1) implies that B’ and Z’ cannot be of exponential type.
On the other hand, it is clear how to set the following

Definition 47. Let B, B, Z’ be AG such that Ry (B) € Ry (B') € Ry (2') and
let ue G(B', Z2',Q). We say that u is bounded by B if

F(ue) € Ep(B, Q) 1 u = [ue].
We also set
Ge(B',Z',Q) :=={ueG(B,Z,Q) | uis bounded by B}.

Since element of I@(B’, Z') can be identified with constant functions of G(B’, Z’, R),
we have an analogous notion for elements of the ring R(8’, Z’).

Like in Lem. 28, we can prove that u is bounded by B if and only if whenever we
consider a representative u = [u.], we have that (uc) € Ep/(B, ). In the statement
of the next result, we use the point value of a Colombeau generalized function.
We recall (see e.g. [12] and references therein) that this point value characterizes
Colombeau generalized functions:

Definition 48. Let B, Z be AG such that Ry;(B) € Ry (Z), then

() [z] € Qu(B, 2) iff [z.] € (B, Z) and IK € QV'e: 2. € K.
(i) Ifu=[u]eG(B,Z,Q) and x € O (B, Z), then u(x) := [uc(z.)].
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Lemma 49. Let B, Z, B’, Z’ be AG such that

Ry (B) —= Ry (2) (5.3)

I

Ry (B) —— Ru(2)

Then the following properties hold:
(i)  Ge(B,2',Q) is a differential subalgebra of G(B', Z2',Q).
(ii)  The map
(=) : [uc) € Go(B, 2',Q) = (u.) + N(2,Q) € G(B, Z,Q)
is a surjective morphism of differential algebras.

(i) Let J := (a,b) € R, x € Gg(B', Z', (a,b)), F € Gg(B', Z’,(a,b) x Q) be such

that
Vte J.(B,Z'): tis bounded by B = @(t) = F(t,z(t)) (5.4)
holds in R(B',Z'). Then
i(t) = F(t,z(t)) Vte J.(B,Z) (5.5)

holds in R(B, Z).

Proof. Property (i) follows by Lem. 29 and by the closure of £;(B, Q) with respect
to derivatives.

Property (ii) follows by the e-pointwise definitions of all the operations. The
counter-image of (u.) + N (Z,Q) € G(B, Z,Q) is [uc], which is bounded by B since
(ue) € Ep(B,Q). N

Assumption (5.4) means that for each ¢ = [t.] € J.(B', Z’), if t is bounded by B
then N

[2:(te)] € Qe(B', 2') and  [2:(te)] = [Fe(te, ze(t:))]. (5.6)
For simplicity, we use the symbol [u.] := (u:) + N (Z,Q) for the equivalence classes
in G(B,Z,9) (and hence also in R(B, 2)). If t = [t.] € J.(B,Z), then [t.] €
R(B', Z’) is bounded by B and (5.6) yields [#.(t.)] = [Fx(te, z<(t:))]. Both sides of
this equality are bounded by B, so that we can apply the morphism (;) obtaining
[ic(te)] = [Fe(te, z-(t:))]. Moreover, [z.(t.)] € Qc(B, Z) because [z.] and [t.] are
both bounded by B. We therefore have

(1) = 2 ([2]) ([1e]) = L2100 =
= [#= ()] = [Fe(te, we(to))] = [Fe] ([te, 2 (t)]) =
= [E] ([t [ ] ([EeD)) =
=F(t,z(t))
(]
Condition (iii) states that any ODE framed in G(B', Z’,Q), but restricted to

elements which are bounded by B, corresponds, via the morphisms (—), to an ODE
framed in G(B, Z,Q). This is our way to formalize that any bounded solution of

an ODE of bounded type in the “bigger” algebra G(B’, Z’,Q) is also a solution in
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the “smaller” algebra G(B, Z,€)). The use of this order relation between algebras is
formally introduced in the following

Definition 50. Let B, Z, B', Z’ be AG, then we write G(B, Z,Q) < G(B', Z',Q),
and we say that G(B, Z,9Q) is smaller than G(B', Z',Q) if (5.3) holds.

The relation < is an order and, if Z = Z’, then G(B, Z,Q) < G(B', Z,Q) if and
only if G(B, Z,Q) < G(B', 2,9Q) if and only if Ry (B) < Ry (B’). In this case, the
morphism (—) of Lem. 49 is also injective, and we have Gp(B’, Z,Q) ~ G(B, Z,Q).
We will use later the order relation <.

In the following result, the main assumption is the inclusion Ry (€8) = Ry (B');

in it we can therefore set B/ = €8 or B = AG (eeb) if we are interested to a principal
AG.
Theorem 51. Let B, B, Z' be AG such that

Ry (€F) € Ry (B') < Ry (2)). (5.7)
Letto e R, ce R(B',2")% and A € Myg(R(B', Z")) be a d x d matriz with entries in
the ring R(B', Z'). Assume that both ¢ and A are bounded by B. Then the problem

)+ A-z(t)=0
{ x(tg) = c. (5.8)
has a unique solution in G (B',Z',R)".

We split the proof of Theorem 51 in two parts: existence and uniqueness.
To prove exitence we will use the following

Lemma 52. Let d € Nog, let A = (ai5)ij<d € Ma(R) and let M = max; ; |a;].
Then for every entry x;;(t) of the matriz et we have

|45 ()] < M - M1,
Proof. For every k € N let A* =: (@ijk)ij<a and let My := max; ; |ai;x|. We claim
that, for every k > 1, M, < d*~'MP*. Let us prove this inequality by induction. If

k = 1 the conclusion is trivial. Let us assume that the claim is true for k. Let us
suppose that My1 = |a;jk+1|. Then

d d d
kark+1
Mk+1 = Z Qijrk * Asjl < Z |azrk as_]1| < Z Mk M<d°M
r,s=1 r,s=1 r,s=1
. . . o . kyk
The claim is proved. Therefore, since by definition e4? = koo:O Ak—f, we have
0 k 0 k 0 gk rk+1)4)k
] = aikt” | _ laiilt] _ <y d°M et M edMI
|$1]( )| - k! = k! = k! - t€e )
k=0 k=0 : k=0 :
hence the thesis is proved. (I

Lemma 53 (Existence). Under the assumptions of Thm. 51, the problem (5.8)
has a solution in G (B',Z',R)".

Proof. Let A =[A.] and ¢ = [c.]. For every ¢ € I let x. € C*(R,R?) be the unique
solution of the problem

{ 2'(t)+ A -x(t) =0 (5.9)

x(to) = ce.
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We claim that [z.] is a solution of (5.8) in G (B', Z’,R)*. Since Ry, (e®) < Ry (B),
in order to prove that [z.] is a solution in G (B, Z’,R)% it is sufficient to show that
(z2) € Enr (€5, R)d. In fact, since also x. verify the same equation (5.9), with initial
B-bounded value z/ (tg) = — A - c., we can proceed by proving moderateness of (x)
only. Without loss of generality, we suppose tg = 0. For every e € I and ¢t € R, we
have
z.(t) = e Aele,.

For every ¢, set A. =: (aijc)i,j<a for the entries of the matrix A, € M4(R), M, :=
max; j Gije, Te(t) =t (i (t))i<a, and c. =: (¢;<)i<a for the components of the vectors
zc(t), cc € R%. By lemma 52 we deduce that

d
|23 (1)] < Z M, - edMeltlc,
j=1

Since both [M.] and [c.] are bounded by B, we have that (Z?zl M, - e®™-ltle; ) e
Em (eB,R), therefore (z¢) € Emr (eB,R)d. O

Lemma 54 (Uniqueness). Under the assumptions of Thm. 51, ifx € G (B, Z', ]R)d
is such that

{ s o " @10
inG(B',Z R), then z = 0.

Proof. Without loss of generality we can suppose that to = 0. The generalized
function z € G (B, Z',R)" is a solution of (5.10) so there exist (n.), (v2) € N(Z,R)
such that, for every € € I,

{ 2L(t) + Ac - 2. (t) = ne
2:(0) = ve.
The unique solution of (5.11) is z.(t) = e *4=v, + Sé el

t
e ey, + J es=H4e L ds
0

< eItHAs||vs| + |t|e‘t”AE||n5|,

(5.11)

s=t)A: . _ds . So

ze(t)] = <

where we used the integral mean value theorem. If K € R, then

sup |z (t)] < e®4elju,| + ReftlA<ln |,
teK

where R := supc |k|. We have (efl4<l|v.| + Refl4<l|n.|) € N (2 R) since (v:), (n.) €
N(2',R) and (ef14<!) | (Refl4<l) € Ry (eB) € Ry (B') because A = [A.] is bounded
by B. O

The results of Lemma 53 and by Lemma 54 provide a proof of Theorem 51.

Example 55. Let I = (I,<,Z) be a set of indices, and p : I — (0, 1] be a map
such that limy p = 0. Let B® be the usual polynomial AG of the special Colombeau
algebra, so that B° o p is an AG on I by Thm. 19. As we showed in Ex. 32, this
framework generalizes the special, the full and the NSA based cases. The following
problem:
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{ o/ (t) + [2] - =(t) =0
z(0) =1
has not solution in G(B® o p,Q), but it has a unique solution in G (eBSOP,R) =
g (eBSO”, eBSOP,R) andin g (AG (eeé) o p, R) =g (AG (ee%) op, AG (eeé) o p,R),
namely

[e- (0] = |71].

where the equivalence class has to be meant differently in the two algebras. Let us
note explicitly that we have applied Thm. 51 with B = BSop and B/ = 2’ = ¢B°r

1
for the former algebra and B’ = Z' = AG (ees) for the latter. Moreover, this

problem has also a unique solution in the algebra G (AG (eé) op, R) . This shows

one particular feature of our construction: if we want to have an algebra in which
we can uniquely solve all the ODEs whose coeflicients are bounded by a given AG B
then (as we will show in Thm. 56) the minimal possible choice is G (eB, R), whilst if
we are interested only in a finite number of linear ODE with coefficients bounded by
B, then it is possible to find a solution to these ODE in the algebra G (AG (eb) ,R) ,
where b € B is any element such that |c| = O(b) for every coefficient ¢ that appears
in the finite set of ODE.
We note that Theorem 51 can be reformulated in the following way:

Theorem 56. Let B be an AG. Then G (eB,R) is the smallest Colombeau algebra
(with respect to the order relation < of Def. 50) in which every linear homogeneous

ODE with coefficients in Ry (B) can be solved.

Proof. By Theorem 51 we know that every linear homogeneous ODE with coeffi-
cients in Ry (B) can be solved in G (€5, €5, R). Now let B’ be an AG such that
every linear homogeneous ODE with coefficients bounded by B can be solved in
G (B, B',R). In particular, for every b € B we can solve the problem

() +b-z(t)=0
{ x(0) = 1.

As we showed in Lemma 53, the solution of this problem is [ebft]. This means that

(eb=t) € £(B',R) for every b € B. In particular this entails that (eff"*<) € Ry, (B')

for every b e B and H € R, so €8 < Ry (B') and Rys(e?) < Ry (B'). Therefore,

condition (5.3) holds for Z = €8 and 2’ = B’ so G (eB,e%,R) < G (BB ,R). O
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