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Abstract

We present general sufficient and necessary conditions for the par-
tition regularity of Diophantine equations, which extend the classic
Rado’s Theorem by covering large classes of nonlinear equations. The
goal is to contribute to an overall theory of Ramsey properties of (non-
linear) Diophantine equations that encompasses the known results in
this area under a unified framework.

Sufficient conditions are obtained by exploiting algebraic properties
in the space of ultrafilters βN, grounding on combinatorial properties
of positive density sets and IP sets. Necessary conditions are proved
by a new technique in nonstandard analysis, based on the use of the
relation of u-equivalence for the hypernatural numbers ∗N.
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Introduction
Ramsey theory studies structural combinatorial properties that are pre-

served under finite partitions. An active area of research in this framework
has overlaps with additive number theory, and it focuses on partition proper-
ties of the natural numbers related to their semiring structure. Historically,
the first result of this kind dates back to 1916; it is a combinatorial lemma
that I. Schur [49] used to prove the existence of non-trivial solutions to Fermat
equations xn+yn = zn modulo p for all sufficiently large primes p. Precisely,
Schur’s Lemma states that in every finite coloring (partition) of the natural
numbers, one finds a monochromatic triple of the form a, b, a + b. Such a
property can be phrased by saying that the equation x + y = z is partition
regular on N. Another simple equation that is partition regular is x+y = 2z;
indeed, this amounts to saying that in every finite coloring of N one finds a
3-term monochromatic arithmetic progression a, a+d, a+2d. (We recall that
by van der Waerden’s Theorem [51], another classic result in Ramsey theory
that was proved in 1927, in every finite coloring of N one finds arbitrarily
long monochromatic arithmetic progressions.) However, simple examples of
equations that are not partition regular are easily found: e.g., x+ y = 3z.

In 1933, R. Rado [47] completely characterized partition regular systems
of linear Diophantine equations on N, by isolating a simple sufficient and
necessary condition on the coefficients, the so-called column property. Here
is the formulation for a single equation.1

Rado’s Theorem. A linear Diophantine equation with no constant term

c1x1 + · · ·+ cnxn = 0

is partition regular on N if and only if the following condition is satisfied:

• “There exists a nonempty set J ⊆ {1, . . . , n} such that
∑

j∈J cj = 0.”

An active research focused on possible extensions of Rado’s Theorem in
several directions; in particular, a large amount of interesting results have
been obtained during the last twenty years about the various aspects of par-
tition regularity of finite and infinite systems of linear equations (see, e.g.,
[1, 4, 10, 12, 25, 29, 30, 31, 33, 34, 36, 40, 50]). However, progress on the non-
linear case has been sporadic, and structural theorems that provide an overall

1 For a full treatment of Rado’s Theorem, see §3.2 and §3.3 of [22].
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understanding of Ramsey properties of nonlinear Diophantine equations are
still missing.

Let us briefly recall all the relevant results on this last topic that we are
aware of. The simplest result is the multiplicative formulation of Rado’s
Theorem.
Multiplicative Rado’s Theorem. A nonlinear Diophantine equation

n∏
i=1

xcii = 1

is partition regular on N if and only if the following condition is satisfied:

• “There exists a nonempty set J ⊆ {1, . . . , n} such that
∑

j∈J cj = 0.”

The first attempt for a systematic study of the nonlinear case is found in
the paper [41] of 1991, where H. Lefmann proved several results about the
partition regularity of systems of homogeneous polynomials. In particular,
he gave a simple characterization in the case where every monomial contains
a single variable raised to the same exponent 1/k. Here is the formulation
for a single equation.
Lefmann’s Theorem. Let k ∈ N. A Diophantine equation of the form

c1x
1/k
1 + · · ·+ cnx

1/k
n = 0

is partition regular on N if and only if “Rado’s condition” is satisfied:

• “There exists a nonempty set J ⊆ {1, . . . , n} such that
∑

j∈J cj = 0.”

H. Lefmann also proved a similar characterization when all exponents of
variables xi are −1. For instance, the analog of Schur’s Lemma for reciprocals
is valid, i.e. the equation 1/x+1/y = 1/z is partition regular. More generally,
T.C. Brown and V. Rődl [8] showed that the family of partition regular
homogeneous functions is closed under the operation of taking reciprocals of
variables: f(x1, . . . , xn) = 0 7→ f(1/x1, . . . , 1/xn) = 0 (see Theorem 2.6 in
the next section).

In 1996, grounding on a classic density result by A. Sárkőzy and H.
Furstenberg, V. Bergelson [2] showed the partition regularity of all Diophan-
tine equations of the form x − y = P (z) where the polynomial P (z) ∈ Z[z]
has no constant term (see the remarks preceding Question 11).2

2 Precisely, A. Sárkőzy [48] and H. Furstenberg [20] proved independently that for every
P (z) ∈ Z[z] with no constant term and for every set A ⊆ N of positive upper density there
exist pairs x, y ∈ A having distance x− y = P (n) for some n ∈ N.
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With the few exceptions mentioned above, all research on the partition
regularity of nonlinear Diophantine equations has been developed in the past
10 years, and the great part of it appeared in the last two years.

In 2006, A. Khalfalah and E. Szemerédi [39] proved that if P (z) ∈ Z[z]
takes even values on some integer, then the equation x + y = P (z) is “par-
tially” partition regular in the variables x and y, i.e., for every finite coloring
of N one finds a solution x, y, z where x and y are monochromatic.

In 2010, P. Csikvári, K. Gyarmati and A. Sárkőzy [9] proved density re-
sults involving nonlinear problems over N and over finite fields. In particular,
they proved that the equation x + y = z2 is not partition regular.3 At the
foot of the paper, they left as an open problem the partition regularity of
x + y = tz, which is particularly relevant as the most basic equation that
mixes additive and multiplicative structure on N.

In 2010, by using algebra in the space of ultrafilters βN, V. Bergelson
[3] solved that problem in the positive. Independently, also N. Hindman
[32] proved that property and, more generally, the partition regularity of
all equations of the form

∑n
i=1 xi =

∏n
i=1 yi. In 2014, the second named

author [44] extended Hindman’s result, and by nonstandard methods he
proved the following: For every choice of sets Fi ⊆ {1, . . . ,m}, the equa-
tion

∑n
=1 ci xi(

∏
j∈Fi

yj) = 0 is partition regular whenever
∑

i∈J cj = 0 for
some nonempty J ⊆ {1, . . . ,m}. (It is agreed that

∏
j∈∅ yj = 1.)

An important contribution in the case of quadratic equations was given by
N. Frantzikinakis and B. Host [19] (the first version of their paper was made
available on the web in 2014). As a consequence of their structural theorem
for multiplicative functions, they proved that the equations 16x2 + 9y2 = z2

and x2−xy+ y2 = z2 are partially partition regular in the variables x and y.
In [18], M. Riggio and the first named author used nonstandard analysis to

identify a large class of Fermat-like equations that are not partition regular,
the simplest cases being xm + yn = zk where k /∈ {n,m}.4

The partition regularity of nonlinear Diophantine equations can be seen
as a particular case of the study of monochromatic polynomial configurations.
Arguably, the most interesting open problem in this field, asked on numer-
ous occasions by several researchers (see, e.g., [2, Question 11 (ii)], or [35,

3 The paper [9] appeared only in 2012, but its first draft circulated since 2010. There,
one finds also a proof of the partition regularity of x(y+ z) = yz, which is the same as the
“reciprocal Schur-equation” mentioned above, as well as a proof of the partition regularity
of xy = z2, which is a particular case of the multiplicative Rado’s Theorem.

4 Here we do not count the constant solution z = y = z = 2 of xn + yn = zn+1.
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Question 3]) is the partition regularity of the configuration {x, y, x+ y, xy}.
As reported in [28], already in the last years of the 1970s, R. Graham proved
with computer assistance that one finds monochromatic a, b, a+b, ab in every
2-coloring of {1, . . . , 252}, and that the same property fails in {1, . . . , 251}.
Notice that this gives no answer to the general problem where one considers
partitions with an arbitrary finite number of pieces.

Several papers over the last few months have investigated around that
problem on additive-multiplicative structure of the integers.

V. Bergelson and J. Moreira [6, 7] showed that patterns {x + y, xy} are
partition regular on infinite fields. In January 2015, V. Bergelson, J.H. John-
son jr. and J. Moreira [4] proved the partition regularity of many polynomial
configurations, including {x, y + x2, z, z + y2}, by using a generalization of
the notion of (m, p, c)-set, originally introduced by W. Deuber [11].

In February of this year 2016, B. Green and T. Sanders [24] solved posi-
tively the partition regularity problem of {x, y, x+y, xy} on every finite field
Fp.

In May 2016, when this paper was already completed and under a final
revision, J. Moreira [46] proved the partition regularity of a large class of
configurations, including {x, x+ y, xy}. As a corollary of his main theorem,
one gets the partition regularity of all Diophantine equations of the form
c1x

2
1 + . . .+cnx

2
n = y where the sum of coefficients c1 + . . .+cn = 0. (So, e.g.,

x2 + y = z2 is partition regular.) We remark that the above equations where∑
i∈J ci 6= 0 for every nonempty J ⊆ {1, . . . , n} are not partition regular, as

we will show in Section 3 (see Corollary 3.13).
Finally, in the last days of May 2016, it was breaking news that M. J. H.

Heule, O. Kullmann and V. W. Marek [26] solved an old problem that was
posed by P. Erdős and R. Graham in 1975 (see, e.g. [23]), namely the Boolean
Pythagorean triples problem, that asked whether the equation x2 + y2 = z2 is
partition regular for 2-colorings of N. By means of a computer-assisted proof,
they proved that any 2-coloring of {1, 2, . . . , 7825} contains a monochromatic
Pythagorean triple, and that 7825 is the least number with such a property.5
Notice that the huge proof, contained in a file of 200 terabytes, still does not
solve the full problem of partition regularity of the Pythagorean equation
x2 + y2 = z2, where a finite (but arbitrary) number of colors is allowed in
partitions.

5 See also the article of E. Lamb appeared online in the journal Nature on May 26,
2016.
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The several contributions appeared over the very last months give evi-
dence on the rising interest of researchers in Ramsey properties of nonlinear
Diophantine equations.

In this paper we consider Diophantine equations in their full generality,
aiming at finding simple conditions on coefficients and exponents that imply
either partition regularity or non-partition regularity. The ultimate goal is to
extend Rado’s Theorem and develop a general Ramsey theory of Diophantine
equations.

The techniques that are used here are twofold. On the side of sufficient
conditions for partition regularity (Section 2), we use the algebraic structure
of the space of ultrafilters βN, combined with properties of difference sets
of sets of positive asymptotic density. On the side of necessary conditions
(Section 3), we work in the setting of hypernatural numbers ∗N of nonstan-
dard analysis, the instrumental tool being the relation of u-equivalence and
its properties. Basically, u-equivalence formalizes the well-known character-
ization of partition regularity in terms of ultrafilters within a nonstandard
framework. However, whilst this technique is based on nonstandard analysis,
the arguments used are of a purely combinatorial nature.

1 Preliminary definitions and results

1.1 Asymptotic density

Following a common practice in number theory, with N we denote the set
of positive integers; and with N0 = N∪{0} we denote the set of non-negative
integers. Recall that the upper asymptotic density of a set A ⊆ N is defined
as follows:

d(A) = lim sup
n→∞

|A ∩ [1, n]|
n

.

By replacing initial intervals [1, n] with arbitrary intervals, one obtains
the following generalization.

Definition 1.1. The Banach density BD(E) of a set E ⊆ Zt is the greatest
of the following superior limits of relative densities

lim sup
n→∞

|E ∩Rn|
|Rn|
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where (Rn =
∏t

i=1[ani, bni])n∈N are sequences of rectangles whose size in every
direction approaches infinity, i.e. limn→∞(bni − ani) = +∞ for i = 1, . . . , t.

It can be checked that such a greatest value is actually attained. In
the one-dimensional case, equivalently one can define BD(E) = limn en/n =
inf en/n, where en is the greatest cardinality of an intersection E ∩ I where
I is an interval of length n. Clearly, d(A) ≤ BD(A) for every A ⊆ N.

1.2 IP-sets

A relevant notion in combinatorial number theory is that of IP-set.

Definition 1.2. Let G = (gi)i∈N be an increasing sequence of natural num-
bers. The IP-set generated by G is the set of finite sums

FS(G) = FS(gi)i∈N =

{
k∑
j=1

gij

∣∣∣ i1 < i2 < · · · < ik

}
.

A set A ⊆ N is called IP-large if it contains an IP-set. Multiplicative IP-sets
and multiplicative IP-large sets are defined similarly.

By the celebrated Hindman’s Theorem [27], in every finite partition of
the natural numbers N = C1 ∪ . . . ∪ Cr, one of the pieces is IP-large; this
result can be improved to obtain the existence of a single piece that is both
additively and multiplicatively IP-large (see §5.3 of [37]).

An instrumental tool for the main result of the next section is a theorem
proved by V. Bergelson, H. Furstenberg and R. McCutcheon [5, Theorem C],
that we now recall.

Let us first fix a convenient notation. Let Fin denote the family of all
nonempty finite subsets of N. Given an increasing sequence G = (gi)i∈N of
natural numbers, for α ∈ Fin denote by nα =

∑
i∈α gi. Clearly, nα + nβ =

nα∪β whenever α ∩ β = ∅, and the IP-set FS(G) is obtained as the range
of the sequence (nα)α∈Fin. Conversely, if (nα)α∈Fin is a sequence such that
nα + nβ = nα∪β whenever α ∩ β = ∅, then its range is an IP-set, namely
{nα | α ∈ Fin} = FS(G) where G = (n{i})i∈N. So, in a precise sense, the two
notions are equivalent.

Theorem 1.3. ([5, Theorem C]) Let E ⊆ Zt have positive Banach density,
and let
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• P1, . . . , Pt ∈ Z[x1, . . . , xk] be polynomials with no constant terms ;

• (n
(1)
α )α∈Fin, . . . , (n

(k)
α )α∈Fin be IP-sets.

Then there exist e1, e2 ∈ E and α ∈ Fin such that

e1 − e2 =
(
P1(n(1)

α , . . . , n(k)
α ), . . . , Pt(n

(1)
α , . . . , n(k)

α )
)
.

1.3 Algebra in the space of ultrafilters βN
In this paper we assume the reader to be familiar with the fundamental

properties of the space βN of ultrafilters on N endowed with the operations
of pseudo-sum ⊕ and pseudo-product �:

• A ∈ U⊕V ⇔ {n | A−n ∈ V} ∈ U , where A−n = {m ∈ N | m+n ∈ A};

• A ∈ U � V ⇔ {n | A/n ∈ V} ∈ U , where A/n = {m ∈ N | mn ∈ A}.

In particular, we assume some knowledge of idempotent ultrafilters and
left and right ideals in the compact topological right semigroups (βN,⊕) and
(βN,�). For simplicity, we will use the adjective “additive” when referring
to the former, and “multiplicative” when referring to the latter. So, for
instance, the ultrafilter U is additively idempotent if U ⊕ U = U , and U is
multiplicatively idempotent if U�U = U . We will use the following notation.

• K(⊕) is the minimal additive two sided ideal ;

• K(�) is the minimal multiplicative two sided ideal ;

• I(⊕) is the set of additively idempotent ultrafilters ;

• I(�) is the set of multiplicatively idempotent ultrafilters ;

• M(⊕) = I(⊕) ∩K(⊕) is the set of minimal additive idempotents ;

• M(�) = I(�)∩K(�) is the set of minimal multiplicative idempotents ;

• BD = {U ∈ βN | ∀A ∈ U BD(A) > 0};

• D = {U ∈ βN | ∀A ∈ U d(A) > 0} ⊆ BD.

8



For convenience, we itemize the known results about algebra in βN that
we will use in this paper. A comprehensive reference is Hindman and Strauss’
book [37], where all proofs can be found.6

(B1) The closure I(⊕) = {U ∈ βN | ∀A ∈ U A is IP-large} ;

(B2) I(⊕) is a multiplicative left ideal ;

(B3) The closure I(�) = {U ∈ βN | ∀A ∈ U A is multiplicative IP-large};

(B4) M(⊕) is a multiplicative left ideal ;

(B5) BD is a closed additive two sided ideal ;

(B6) BD is a closed multiplicative left ideal ;

(B7) D is a closed additive left ideal ;

(B8) D is a closed multiplicative left ideal ;

(B9) D ∩M(⊕) ∩M(�) 6= ∅.

Ultrafilters in D ∩ M(⊕) ∩ M(�) are particularly relevant. They were
first isolated and studied by N. Hindman and D. Strauss, who named them
combinatorially rich ([37, Definition 17.1]).

1.4 Partition regularity of functions

By finite coloring we mean a finite partition of the natural numbers.
Elements a1, . . . , ak are called monochromatic with respect to a given finite
coloring N = C1 ∪ . . . ∪ Cr if there exists Ci such that a1, . . . , ak ∈ Ci.

Definition 1.4. A function f(x1, . . . , xn) is called partition regular on N (or
simply PR) if in every finite coloring of N one finds a monochromatic root
(or solution), i.e. monochromatic elements a1, . . . , an with f(a1, . . . , an) = 0.

6 Precisely, property (B1) and (B3) are particular cases of Lemma 5.11; property (B2)
is Theorem 5.20; property (B4) is Theorem 5.20. A proof of properties (B5) and (B6)
is found in §20.1, where BD is denoted ∆∗(N,+); and properties (B7) and (B8) are in
Theorem 6.79, where D is denoted ∆(N,+). Finally, property (B9) is Lemma 17.2 where
our set M(⊕) is denoted M.
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When it is possible to find such elements ai that are pairwise different,
the function is called injectively PR.7

More generally, if {xi1 , . . . , xip} ⊆ {x1, . . . , xn}, the function f(x1, . . . , xn)
is called partition regular with injectivity |{xi1 , . . . , xip}| ≥ s if in every finite
coloring one finds a monochromatic root a1, . . . , an with |{ai1 , . . . , aip}| ≥ s.

A function f(x1, . . . , xn) is called non-trivially PR if it is partition regular
with injectivity |{x1, . . . , xn}| ≥ 2.

The above definitions of partition regularity are extended to equations
f(x1, . . . , xn) = g(y1, . . . , yk) in the obvious way, by considering the cor-
responding notions for the function f − g. So, for instance, the classic
Schur’s Theorem [49] of 1916 can be equivalently formulated as: “The func-
tion f(x, y, z) = x+ y − z is injectively PR”, or as: “The equation x+ y = z
is injectively PR”.

A fundamental result about partition regularity that dramatically gener-
alizes the result of Shur’s mentioned above, was proved in 1933 by R. Rado
[47], who completely solved the linear Diophantine case.

Theorem 1.5 (Rado). A linear Diophantine homogeneous equation

c1x1 + · · ·+ cnxn = 0

is PR on N if and only if the following “Rado’s condition” is satisfied:

• “There exists a nonempty set J ⊆ {1, . . . , n} such that
∑

j∈J cj = 0.”

Moreover, a linear Diophantine inhomogeneous equation

c1x1 + · · ·+ cnxn = d

is PR on N if and only if

• either there exists a natural number k such that
∑n

i=1 cik = d,

• or there exists an integer z such that
∑n

i=1 ciz = d and there exists a
nonempty subset J ⊆ {1, ..., n} such that

∑
j∈J cj = 0.

7 The expression “injectively PR” is commonly used in the literature (see, e.g., [31]).
Let us remark that the word “injectively” in this definition is not related to the injectivity
of the function f(x1, . . . , xn).
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Notice that one cannot have injective PR when the number of variables
n = 2 because, in this case, Rado’s condition implies that c1 = −c2 and
the equation reduces to the trivial equality x1 = x2. On the other hand, as
recently shown by N. Hindman and I. Leader in a more general setting, the
following holds:

Theorem 1.6. ([31, Theorem 3.1]) A linear Diophantine equation in more
than two variables is PR on N if and only if it is injectively PR on N.

E.g., for n ≥ 2 the following equations are injectively PR:

x1 = x2 + a1y1 + . . .+ anyn.

It is well-known that partition regularity can be equivalently expressed
in terms of ultrafilters (see, e.g., [37, Theorem 5.7]). Here we refine the
equivalence by also considering injectivity conditions.

Definition 1.7. An ultrafilter U on N is called a PR-witness of the function
f(x1, . . . , xn) with injectivity |{xi1 , . . . , xip}| ≥ s if for every A ∈ U there
exist a1, . . . , an ∈ A such that f(a1, . . . , an) = 0 and |{ai1 , . . . , aip}| ≥ s.

Proposition 1.8. A function f(x1, . . . , xn) is partition regular with injectiv-
ity |{xi1 , . . . , xip}| ≥ s if and only if there exists a PR-witness of f(x1, . . . , xn)
with injectivity |{xi1 , . . . , xip}| ≥ s.

Proof. One direction is trivial because in every finite coloring, one and only
one of the colors belongs to U , by the property of ultrafilter. Conversely,
notice that the following family

F = {A ⊆ N | ∀a1, . . . , an ∈ Ac |{ai1 , . . . , aip}| ≥ s⇒ f(a1, . . . , an) 6= 0}

has the finite intersection property. Indeed, if by contradiction A1, . . . , An ∈
F were such that

⋂n
i=1Ai = ∅, then the finite coloring N = Ac1 ∪ . . . ∪ Acn

would provide a counter-example to the PR of f(x1, . . . , xn) with injectivity
|{xi1 , . . . , xip}| ≥ s. Finally, notice that any ultrafilter U ⊇ F is the desired
PR-witness; indeed, if B ∈ U was a counter-example, then its complement
Bc ∈ F ⊆ U , and hence ∅ = B ∩Bc ∈ U , a contradiction.
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2 Sufficient conditions for PR
Let us first prove a useful property about ultrafilters that simultaneously

witness several equations.

Lemma 2.1. Assume that for i = 1, . . . , k, the same ultrafilter U is a PR-
witness of fi(xi,1, . . . , xi,ni

) = 0 with injectivity |{xi,j1 , . . . , xi,jpi}| ≥ si. If
the functions fi have pairwise disjoint sets of variables8 then U is also a
PR-witness of the following system of equations:{

fi(xi,1, . . . , xi,ni
) = 0 i = 1, . . . , k;

x1,1 = . . . = xk,1

with injectivity |{xi,j1 , . . . , xi,jpi}| ≥ si for i = 1, . . . , k.

Proof. Let A ∈ U be fixed. For every i = 1, . . . , k let

Λi = { a ∈ A | ∃ ai,2, . . . , ai,ni
∈ A s.t. |{ai,j1 , . . . , ai,jpi}| ≥ si

& fi(a, ai,2, . . . , ai,ni
) = 0 }.

(If j1 = 1, we agree that ai,1 = a.) Notice that Λi ∈ U , as otherwise

Λc
i ∩ A = { a ∈ A | ∀ ai,2, . . . , ai,ni

∈ A |{ai,j1 , . . . , ai,jpi}| ≥ si ⇒
fi(a, ai,2, . . . , ai,ni

) 6= 0 }

would belong to U , contradicting the hypothesis that U is a PR-witness
of fi with injectivity |{xi,j1 , . . . , xi,jpi}| ≥ si. Then the intersection Λ =⋂k
i=1 Λi ∈ U is nonempty and we can pick an element ai,1 ∈ Λ ⊆ A. It

directly follows from the definitions that there are elements ai,2, . . . , ai,ni
∈ A

with |{ai,j1 , . . . , ai,jpi}| ≥ si and such that fi(ai,1, ai,2, . . . , ai,ni
) = 0 for i =

1, . . . , k. This shows the existence of solutions in A to the considered system,
with the desired injectivity properties.

Example 2.2. As shown by V. Bergelson [2], the equation u− v = t2 is PR.
By Lemma 2.1, if U is a witness of its PR, then U is a witness also of the PR
of the system 

u1 − y = x2;

u2 − z = t2;

y = t.

8 That is, {xi,1, . . . , xi,ki
} ∩ {xj,1, . . . , xj,kj

} = ∅ for j 6= i.
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It is readily seen that this is equivalent to the PR of the configuration
{x, y, z, y + x2, z + y2}. Notice that this improves on a result contained
in [4], namely the PR of {x, y + x2, z, z + y2}.

Example 2.3. Let P1, . . . , Pn ∈ Z[x] be polynomials with no constant terms.
By Theorem 1.3, it follows that there exists an ultrafilter U that is a common
PR-witness of all equations xi − yi = Pi(zi).9 Then one can apply Lemma
2.1 and obtain that U also witnesses the PR of the system{

xi − yi = Pi(zi) i = 1, . . . , n ;

yi = zi+1 i = 1, . . . , n− 1.

As a consequence, one obtains the PR of the system{
x1 − y1 = P1(z1) ;

xi − yi = Pi(yi−1) i = 2, . . . , n.

Notice that this is precisely Corollary 1.11 of [4].

Recall that a function f(x1, . . . , xn) is homogeneous if there exists ` such
that for every λ, x1, . . . , xn one has f(λx1, . . . , λxn) = λ`f(x1, . . . , xn). In
this case ` is called the degree of homogeneity of f .

The following ultrafilter property was first proved by the second named
author by nonstandard analysis; the proof given below uses an essentially
equivalent ultrafilter argument.

Theorem 2.4. ([44, Theorem 3.1]) Assume that the equation f(x1, . . . , xn)
is PR with injectivity |{xi1 , . . . , xip}| ≥ s. If f is homogeneous then the set
of PR-witnesses

Wf = {U ∈ βN | U is a PR-witness of f with injectivity |{xi1 , . . . , xip}| ≥ s}

is a closed multiplicative two sided ideal.

Proof. Let U ∈ Wf and V ∈ βN. By definition, B ∈ U � V if and only
if B̂ = {m ∈ N | B/m ∈ V} ∈ U . Now let b1, . . . , bn ∈ B̂ be such that
f(b1, . . . , bn) = 0 and |{bi1 , . . . , bip}| ≥ s, pick any λ ∈

⋂p
j=1 B/bij ∈ V , and

consider the elements λb1, . . . , λbn ∈ B. By homogeneity, f(λb1, . . . , λbn) =

9 A strenghtening of this fact will be proved in Theorem 2.9.
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λ`f(b1, . . . , bn) = 0; moreover, |{λbi1 , . . . , λbip}| = |{bi1 , . . . , bip}| ≥ s. This
shows that U �V ∈Wf , and hence we can conclude that Wf is a multiplica-
tive right ideal. Moreover, it is verified in a straightforward manner that Wf

is (topologically) closed in βN. Finally, recall that every closed right ideal is
also a left ideal (see [37, Theorem 2.19]).

The intersection of all closed two sided ideals equals the closure of the
minimal ideal, and so:

Corollary 2.5. Let f(x1, . . . , xn) be a homogeneous function that is PR with
injectivity |{xi1 , . . . , xip}| ≥ s. Then every U ∈ K(�) is a PR-witness of f
with injectivity |{xi1 , . . . , xip}| ≥ s.

Next, we give an ultrafilter proof of a result by T.C. Brown and V. Rődl
[8], showing that the class of PR homogeneous functions is stable under the
operation of “inverting variables”.

Theorem 2.6. [8, Theorem 2.1]) If a homogeneous function f(x1, . . . , xn)
is PR with injectivity |{xi1 , . . . , xip}| ≥ s then also f(1/x1, . . . , 1/xn) is PR
with injectivity |{xi1 , . . . , xip}| ≥ s.

Proof. Pick a non-principal ultrafilter U on N that is a PR-witness of f .
Let ρ : N → Q be the “reciprocal map” ρ(n) = 1/n, let ϕ : N → Q be
“factorial map” ϕ(n) = n!, and consider the image ultrafilters U1 = ρ(U) and
U2 = ϕ(U).10 Since U1,U2 are ultrafilters on Q, it makes sense to consider
their pseudo-product V = U1�U2 in βQ, which is defined similarly as pseudo-
products in βN. We want to show that N ∈ V , and that the ultrafilter
VN = V ∩ P(N) is a PR-witness of f(1/x1, . . . , 1/xn). By the definitions,

N ∈ V ⇔ {u ∈ Q | N/u ∈ U2} ∈ U1 ⇔ Λ = {n ∈ N | N/1/n ∈ U2} ∈ U .

For every n ∈ N, we have that

N/1/n ∈ U2 ⇔ Γn = {m ∈ N | m! ∈ N/1/n} = {m ∈ N | m!/n ∈ N} ∈ U .

Notice that Γn ∈ U because it contains all m ≥ n and U is non-principal.
So, Λ = N ∈ U , and this proves that N ∈ V . Now let B ∈ VN. Since
B ∈ V , the set Λ(B) = {n ∈ N | B/1/n ∈ U2} ∈ U , and hence there exist

10 Recall that if U is an ultrafilter on a set I and f : I → J is a function, the image
f(U) is the ultrafilter on J where A ∈ f(U)⇔ {i ∈ I | f(i) ∈ A} ∈ U for every A ⊆ J .
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a1, . . . , an ∈ Λ(B) such that |{ai1 , . . . , aip}| ≥ s and f(a1, . . . , an) = 0. Now
recall that B/1/ai ∈ U2 ⇔ Γi(B) = {m ∈ N | m!/ai ∈ B} ∈ U ; in particular
we can pick k ∈

⋂n
i=1 Γi(B) ∈ U . Finally, notice that elements bi = k!/ai ∈ B

are such that |{bi1 , . . . , bip}| ≥ s, since |{ai1 , . . . , aip}| ≥ s; moreover,

f(1/b1, . . . , 1/bn) = f
(a1

k!
, . . . ,

an
k!

)
=

(
1

k!

)̀
· f(a1, . . . , an) = 0 ,

where ` is the degree of homogeneity of f .

We are now ready to extend Rado’s Theorem on the side of sufficient
conditions for PR. Let us start with the following consequence of Theorem
1.3, which is particularly relevant to our purposes.

Theorem 2.7. Let c (x1 − x2) = P (y1, . . . , yk) be a Diophantine equation
where the polynomial P has no constant term and c 6= 0. If the set A ⊆
N is IP-large and has positive Banach density then there exist ξ1, ξ2 ∈ A
and mutually distinct η1, . . . , ηk ∈ A such that c (ξ1 − ξ2) = P (η1, . . . , ηk).
Moreover, if k = 1 then one can take ξ1 6= ξ2.

Proof. First of all, notice that we can pick an IP-set (nα)α∈Fin ⊆ A such that
nα 6= nβ for α 6= β. Indeed, given any IP-set FS(gi)i∈N, one can inductively
define a sub-IP-set FS(g′i) ⊆ FS(gi) with the desired property, by setting
g′1 = g1 and gi+1 = min{gj | gj > g′1 + . . .+ g′i}.

Now fix a permutation σ : N → N with no finite cycles, i.e. such that
for every s ∈ N, the iterated composition σs(n) 6= n for all n ∈ N. This
ensures that for every α ∈ Fin, the sets αs = {σs(i) | i ∈ α} are pairwise
distinct. Indeed, if αs+` = αs for some s, ` ∈ N, then α` = α and σ` would
have a finite cycle, contradicting our assumption on σ. In consequence, by
our choice of the IP-set, we have nαs 6= nαs′

for s 6= s′. Moreover, for every
s, the set {nαs | α ∈ Fin} is an IP-set, because for every α, β ∈ Fin one
has that n(α∪β)s

= nαs + nβs whenever α ∩ β = ∅. (Notice that (α ∪ β)s =
σs(α ∪ β) = σs(α) ∪ σs(β) = αs ∪ βs, where αs ∩ βs = ∅ because α ∩ β = ∅.)

Now consider the set cA = {ca | a ∈ A}. As BD(cA) = BD(A)
|c| > 0, we can

apply Theorem 1.3 with t = 1, E = cA, P1 = P (y1, . . . , yk), and the IP-sets
(n

(s)
α ) where n(s)

α = nαs for s = 1, . . . , k. We obtain the existence of elements
x1 = c ξ1, x2 = c ξ2 where ξ1, ξ2 ∈ A, and of numbers η1 = n

(1)
α , . . . , ηk = n

(k)
α

such that
x1 − x2 = c · (ξ1 − ξ2) = P (η1, . . . , ηk).
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By our definition of the IP-sets (n
(s)
α ), the elements η1, . . . , ηk are mutually

distinct. Finally, notice that when k = 1 the polynomial P (y1) can only
have finitely many roots, and so the above arguments also apply to A′ =
A\{roots of P}, which is still an IP-large set with positive Banach density.11

Clearly, in this case ξ1 6= ξ2 because c(ξ1 − ξ2) = P (η1) 6= 0.

We can now isolate a simple sufficient condition for a Diophantine non-
linear equation to be PR.

Definition 2.8. A polynomial with integer coefficients is called a Rado poly-
nomial if it can be written in the form

c1x1 + · · ·+ cnxn + P (y1, . . . , yk)

where n ≥ 2, P has no constant term, and there exists a nonempty subset
J ⊆ {1, . . . , n} such that

∑
j∈J cj = 0.12

Notice that, by Rado’s Theorem, a linear polynomial with integer coeffi-
cients is PR if and only if it is a Rado polynomial. We now show that one
implication in Rado’s theorem (namely, that every Rado polynomial is PR
with certain injectivity conditions) can be extended to all Rado polynomials.

Theorem 2.9. Let

R(x1, . . . , xn, y1, . . . , yk) = c1x1 + . . .+ cnxn + P (y1, . . . , yk)

be a Rado polynomial. Then every ultrafilter U ∈ K(�) ∩ I(⊕) ∩ BD is a
PR-witness of R with injectivity |{x1, . . . , xn}| ≥ n−1 and |{y1, . . . , yk}| = k.

When n = 2, every U ∈ I(⊕) ∩ BD satisfies the above property, and one
has injectivity |{x1, x2}| = 2 if k = 1. Moreover, if P 6= 0 is linear then every
U ∈ K(�) is a PR-witness of R with full injectivity |{x1, . . . , xn, y1, . . . , yk}| =
n+ k.

Notice that the set K(�) ∩ I(⊕) ∩ BD is nonempty; indeed, it contains
all combinatorially rich ultrafilters (see [37, Definition 17.1]).

11 This argument does not apply to the general case k > 1; indeed, while A′ still has
positive Banach density, it may no longer be additively IP-large.

12 It is assumed that the sets of variables {x1, . . . , xn} and {y1, . . . , yk} are disjoint.
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Proof. Assume first that n ≥ 3, and consider the following system:
c1z + c2x2 + . . .+ cnxn = 0;

c1(w − x1) = P (y1, . . . , yk);

z = w.

The first equation is injectively PR by Theorem 1.6 and, since it is ho-
mogeneous, it is witnessed by any U ∈ K(�), by Corollary 2.5. More-
over, if U ∈ I(⊕) ∩ BD, every A ∈ U is additively IP-large and has pos-
itive Banach density and so, by Theorem 2.7, the second equation is wit-
nessed by U with injectivity |{y1, . . . , yk}| = k. Then, by Lemma 2.1, every
U ∈ K(�) ∩ I(⊕) ∩ BD is a witness of the above system with injectivity
|{z, x2, . . . , xn}| = n and |{y1, . . . , yk}| = k. By combining, we finally obtain
that U is a witness of the equation

c1x1 + c2x2 + . . .+ cnxn + P (y1, . . . , yk) = 0

with the desired injectivity properties.
When n = 2, by the hypothesis of Rado polynomial, one has that c1 =

−c2 = c. In this case, the equation R = 0 reduces to the equation in Theorem
2.7, that applies to every set A ∈ U ∈ I(⊕) ∩ BD.

If P 6= 0 is linear, then the injective PR of R is given by Theorem 1.6.
In this linear case, R is trivially homogeneous and so every U ∈ K(�) is a
witness, by Corollary 2.5.

For completeness, we now present an ultrafilter proof of a theorem proved
by the second named author in [44] by using nonstandard analysis.13 It is
a generalization of a previous result by N. Hindman [32], namely the PR
of equations

∑n
i=1 xi =

∏k
j=1 yj with injectivity |{x1, . . . , xn}| = n and

|{y1, . . . , yk}| = k (for n > 2). The particular case n = 2, k = 2 of this
last result was independently proved by V. Bergelson [3, Theorem 6.1].

Theorem 2.10. Let R(x1, . . . , xn) = c1x1 + . . . + cnxn be a linear Rado
polynomial, and let F1, . . . , Fn ⊆ {1, . . . ,m}. Then every U ∈ I(�) ∩K(�)

13 Precisely, this is [44, Theorem 3.3]. In that paper it is also proved a (rather technical)
generalization that shows also the PR of certain polynomials where some of the variables
may have a degree larger than one (see [44, Theorem 4.2]).
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is a witness of the partition regularity of the equation14

n∑
i=1

ci xi

(∏
j∈Fi

yj

)
= 0

with full injectivity when n > 2, and with injectivity |{x1, x2, y1, . . . , ym}| ≥
m+ 1 when n = 2.

Proof. Since U ∈ K(�) and the equation R(x1, . . . , xn) = 0 is homogeneous,
U witnesses its PR, by Corollary 2.5. Given A ∈ U , set B0 = A and induc-
tively define

Bk = {x ∈ Bk−1 | {y ∈ Bk−1 | x · y ∈ Bk−1} ∈ U}.

Clearly, Bm ⊆ Bm−1 ⊆ · · · ⊆ B1 ⊆ B0 = A. Moreover, since U is multiplica-
tively idempotent and B0 ∈ U , it directly follows by induction that all sets
B1, . . . , Bm ∈ U . Since U is a witness of R, we can pick a1, . . . , an ∈ Bm such
that c1a1 + . . . + cnan = 0 and where |{a1, . . . , an}| = n if n > 2. Now let
a = max{a1, . . . , an}.

Claim: There exist natural numbers b1, . . . , bm such that:

1. bk > a ·
∏

j<k bj for every k = 1, . . . ,m,

2. bk ∈ Bm−k for every k = 1, . . . ,m,

3. ai ·
∏

j∈G bj ∈ Bm−maxG for every i and for every set G ⊆ {1, . . . ,m}.15

Let us see first how the thesis follows from the claim. For i = 1, . . . , n,
let

di := ai ·
∏
j∈F c

i

bj.

The di are pairwise distinct when n > 2; indeed, let us assume by contra-
diction that there are indexes s 6= t such that ds = dt. If Fs = Ft then∏

j∈F c
s
bj =

∏
j∈F c

t
bj, and this is impossible because it would imply that

as = at. If Fs 6= Ft, let j = maxF c
s4F c

t , and let H1 = {j ∈ F c
s | j < j},

14 We agree that
∏

j∈F yj = 1 when F = ∅.
15 We agree that

∏
j∈G bj = 1 and maxG = 0 when G = ∅.
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H2 = {j ∈ F c
t | j < j}, and H3 = {j ∈ F c

s | j > j} = {j ∈ F c
t | j > j}.

Without loss of generality, let us assume that j ∈ F c
s . Then

ds = as · bj ·

(∏
j∈H1

bj

)(∏
j∈H3

bj

)
and dt = at ·

(∏
j∈H2

bj

)(∏
j∈H3

bj

)
.

Since ds = dt, it follows that

as · bj ·
∏
j∈H1

bj = at ·
∏
j∈H2

bj,

which is absurd because, by the definition of the bj, one has

as · bj ·
∏
j∈H1

bj ≥ bj > a ·
∏
j<j

bj ≥ at ·
∏
j∈H2

bj.

Elements di, bj ∈ A are a solution of
n∑
i=1

ci xi

(∏
j∈Fi

yj

)
= 0. Indeed, by

the claim, we have that di ∈ Bm−maxF c
i
⊆ A and bj ∈ Bm−j ⊆ A. Moreover,

n∑
i=1

ci di

(∏
j∈Fi

bj

)
=

n∑
i=1

ci ai

∏
j∈F c

i

bj

(∏
j∈Fi

bj

)
=

(
m∏
j=1

bj

)(
n∑
i=1

ciai

)
= 0.

Since |{b1, . . . , bm}| = m and |{d1, . . . , dn}| = n when n > 2, the desired
injectivity properties follows by noticing that bk 6= dh for all k, h. Let us
show that no equality dh = ah ·

∏
j∈F c

h
bj = bk is possible. If F c

h = ∅ then
dh = ah < bk. Otherwise, let h∗ = maxF c

h. If k > h∗, then bk ≥ bh∗+1 > dh;
if k < h∗ then dh ≥ bh∗ > bk; and if k = h∗ then bk < ahbk ≤ dh (here we
assumed, without loss of generality, that all ah > 1).

We are left to prove the claim. We define bk recursively for k ≤ m.
Let k = 1. For every i = 1, . . . , n, the element ai ∈ Bm, and so

Ci = {y ∈ Bm−1 | ai · y ∈ Bm−1} ∈ U .

Pick b1 ∈ C1 ∩ · · · ∩Cn ∈ U with b1 > a. Trivially, b1 ∈ Bm−1. Moreover, for
every i, one has ai ·

∏
j∈{1} bj = ai ·b1 ∈ Bm−1 = Bm−max{1}, and ai ·

∏
j∈∅ bj =

ai ∈ Bm = Bm−max ∅.
At the inductive step, assume that numbers b1, . . . , bk where k ≤ m − 1

have been defined which fulfill the properties of the claim. We want to

19



define bk+1. For every set G ⊆ {1, . . . , k} and for every i, by the inductive
hypothesis ai ·

∏
j∈G bj ∈ Bm−maxG, and hence

CG,i =

{
y ∈ Bm−maxG−1

∣∣∣ ai ·∏
j∈G

bj · y ∈ Bm−maxG−1

}
∈ U .

Now pick a number bk+1 > a ·
∏k

j=1 bj with

bk+1 ∈
n⋂
i=1

 ⋂
G⊆{1,...,k}

CG,i

 ∈ U .
Notice that every CG,i ⊆ Bm−maxG−1 ⊆ Bm−(k+1), and so bk+1 ∈ Bm−(k+1).
Now let G ⊆ {1, . . . , k + 1}. If G ⊆ {1, . . . , k} then, by the inductive hy-
pothesis, ai ·

∏
j∈G bj ∈ Bm−maxG for every i. Now assume k + 1 ∈ G and let

G′ = G \ {k + 1}. For every i, by the inductive hypothesis on G′, we know
that

ai ·
∏
j∈G′

bj ∈ Bm−maxG′ ⊆ Bm−k,

and since bk+1 ∈ CG′,i, we conclude that

ai ·
∏
j∈G

bj = ai ·
∏
j∈G′

bj · bk+1 ∈ Bm−maxG′−1 ⊆ Bm−k−1 ⊆ Bm−maxG.

We are finally ready to state the following theorem, that puts together
all that we have proved so far, and further extends the class of nonlinear
polynomials proved to be PR.

Theorem 2.11. Let F be the family of functions whose PR on N is witnessed
by at least an ultrafilter U ∈ I(�) ∩K(�) ∩ I(⊕) ∩ BD. Then F includes:

1. Every Rado polynomial

c1x1 + . . .+ cnxn + P (y1, . . . , yk)

with injectivity |{x1, . . . , xn}| ≥ n− 1 and |{y1, . . . , yk}| = k, and with
injectivity |{x1, x2}| = 2 when n = 2 and k = 1, and with full injectivity
|{x1, . . . , xn, y1, . . . , yk}| = n+ k when P 6= 0 is linear ;
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2. Every polynomial of the form

n∑
i=1

ci xi

(∏
j∈Fi

yj

)

where
∑n

i=1 ci xi is a Rado polynomial and sets Fi ⊆ {1, . . . ,m}, with
full injectivity when n > 2, and with injectivity |{x1, x2, y1, . . . , ym}| ≥
m+ 1 when n = 2 ;

3. Every function f of the form

f(x, y1, . . . , yk) = x−
k∏
i=1

yi

with full injectivity |{x, y1, . . . , yk}| = k + 1;

4. Every function f of the form

f(x, y1, . . . , yk) = x−
k∏
i=1

yaii

with full injectivity |{x, y1, . . . , yk}| = k + 1, whenever the exponents
ai ∈ Z satisfy

∑n
i=1 ai = 1.

Moreover, the family F satisfies the following closure properties:

(i) Assume that f(z, y1, . . . , yk) ∈ F with injectivity |{yi1 , . . . , yip}| ≥ s and
that z − g(x1, . . . , xn) ∈ F with injectivity |{xj1 , . . . , xjq}| ≥ t. Then
f(g(x1, . . . , xn), y1, . . . , yk) ∈ F with injectivity |{xj1 , . . . , xjq}| ≥ t − 1
and |{yi1 , . . . , yip}| ≥ s− 1.

(ii) Assume that the homogeneous function f(x1, . . . , xn) ∈ F with injec-
tivity |{xi1 , . . . , xip}| ≥ s. Then f(1/x1, . . . , 1/xn) ∈ F with injectivity
|{xi1 , . . . , xip}| ≥ s.

Proof. (1) and (2) are given by Theorems 2.9 and 2.10, respectively.
(3). Since U ∈ I(�), every A ∈ U is multiplicatively IP-large, and so it

contains injective solutions to the equation x =
∏n

i=1 yi.
(4). Notice first that

∏n
i=1 y

ai
i = x is injectively PR. Indeed, given a finite

coloring N = C1 ∪ . . . ∪ Cr, one considers the partition as given by the sets

21



Ds = {n | 2n ∈ Cs}. By Theorem 1.6, one finds pairwise distinct monochro-
matic η1, . . . , ηn, ξ ∈ Ds such that

∑n
i=1 aiηi = ξ. Then 2η1 , . . . , 2ηn , 2ξ ∈ Cs

are an injective monochromatic solution of
∏n

i=1 y
ai
i = x. Now, the function

f(x, y1, . . . , yk) = x−
∏k

i=1 y
ai
i is homogeneous since

∑n
i=1 ai = 1 and so, by

Corollary 2.5, every ultrafilter U ∈M(�) ⊆ K(�) is an injective witness.
(i). It directly follows from Lemma 2.1.
(ii). By Theorem 2.6, we have that f(1/x1, . . . , 1/xn) is PR with injec-

tivity |{xj1 , . . . , xjq}| ≥ t. Since the function is homogeneous, such a PR is
witnessed by all ultrafilters U ∈ K(�), by Corollary 2.5.

Let us now give some examples of equations whose PR is obtained by
applying Theorem 2.11.

Example 2.12. Consider the injectively PR polynomials x1x2 = z2, y1+y2 =
y3 and t1−t2 = t3, which are in F. Then, by the closure property (i), it follows
that the following equations are PR with full injectivity.

• x(y1 + y2) = z2,

• x(t1 − t2) = z2,

• x1x2 = (y1 + y2)2,

• x1x2 = (t1 − t2)2,

• x(t1 − t2) = (y1 + y2)2,

• x(y1 + y2) = (t1 − t2)2,

• (y1 + y2)(t1 − t2) = z2,

Example 2.13. The example above generalizes as follows: Let n,m ∈ N
and assume that, for every i ≤ n, j ≤ m, the equations

xi,1 =

ri∑
h=1

ci,hxi,h, yj,1 =

sj∑
k=1

dj,kyj,k

are PR. Let a1, . . . , an, b1, . . . , bm be such that
∑n

i=1 ai =
∑m

j=1 bj and con-
sider the homogeneous PR equation

∏n
i=1 t

ai
i =

∏m
j=1 z

bj . All these equations
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are PR and homogeneous and therefore, by the closure property (i), also

n∏
i=1

(
ri∑
h=1

ci,hxi,h

)ai
=

m∏
j=1

(
sj∑
k=1

dj,kyj,k

)bj
is PR with full injectivity.

Example 2.14. Notice that all the equations considered in the previous
examples are homogeneous. Therefore by the closure property (ii) applied
to some of the equations of Example 2.12 we obtain, e.g., that the following
equations are PR with full injectivity.

• x2y1y2 = z2(y1 + y2) ;

• x2t1t2 = z2(t2 − t1) ;

• (y1 + y2)(t2 − t1)z2 = y1y2t1t2.

Example 2.15. Let c1x1 + . . .+ cnxn be a Rado polynomial with n ≥ 3, and
assume also that for j = 1, . . . ,m the following is a Rado polynomial:

bjzj −
nj∑
h=1

ah,jzh,j

For every F1, . . . , Fn ⊆ {1, . . . ,m}, the following polynomial is injectively
PR:

n∑
i=1

ci xi

(∏
j∈Fi

yj

)
.

All the above polynomials are in F, so we can apply the closure property
(i) with the conditions yj = zj for j = 1, . . . ,m, and deduce that the function

n∑
i=1

cixi

(∏
j∈Fi

1

bj

(
nj∑
h=1

ah,jzh,j

))
= 0

is in F, and it is PR with full injectivity. For example, in this way one obtains
the PR of

x1(2y1 + y2) + x2y3 − x3(2y1 + y2)y3 = 0.
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Example 2.16. For every n ∈ N, the function u − v − zn is in F with
full injectivity; moreover, for every k ≥ 2 the function x =

∏k
j=1 xj is in F

with full injectivity. Therefore, for every h, k ≥ 2 we can apply the closure
property (i) of F to the system

u− v = zn;

x =
∏h

j=1 xj;

y =
∏k

j=1 yj;

x = t;

y = v.

This shows that the equation

h∏
j=1

xj −
k∏
j=1

yj = zn

is in F with full injectivity.16

Let us notice that for n = h = k = 2, Example 2.16 reduces to

x1x2 = y1y2 + z2.

Such an equation can be considered as a modified version of the Pythagorean
equation x2 = y2 + z2.

The range of Theorem 2.11 includes most but not all of the known PR
polynomials.

Example 2.17. The polynomial P (x1, x2, x3) = x1x2−2x3 is PR but it does
not belong to the family F of Theorem 2.11.17

Given a finite coloring N = C1 ∪ . . . ∪ Cr, consider the coloring N =
C ′1 ∪ . . . ∪ C ′r where C ′i = {n ∈ N | 2n ∈ Ci}. By the non-homogenous part
of Rado’s Theorem, the polynomial y1 + y2 − y3 − 1 is PR. Let a, b, c ∈ C ′i
be monochromatic numbers such that a+ b− c− 1 = 0. Then 2a, 2b, 2c ∈ Ci
are monochromatic solutions P (2a, 2b, 2c) = 0. This shows that P is PR.

16 However, as it will be shown in Section 3, the equation xn − ym = zk is not PR if
n /∈ {m, k}.

17 Other examples of PR polynomials not included in the family F of Theorem 2.11, can
be found in [44].
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Now assume by contradiction that P (x1, x2, x3) ∈ F. Notice that the poly-
nomial x3−y1y2 ∈ F, and so, by the closure property (4), also P (x1, x2, y1y2) :=
x1x2− 2y1y2 would belong to F. This is not possible because x1x2− 2y1y2 is
not PR. To see this, consider the partition N = C1 ∪ C2 where C1 is the set
of natural numbers n such that the greatest exponent k with 2k |n is even.
It is easily verified that if a1, a2, b1, b2 ∈ Ci then a1a2 6= 2b1b2 for i = 1, 2.

The previous example shows that being Rado is not a necessary condition
for a polynomial to be PR.

3 Necessary conditions for PR
In this section we isolate necessary conditions for a Diophantine equation

to be PR. Instead of working in the space of ultrafilters βN as done in the
previous section, here we will use a related but different non-elementary
technique, namely nonstandard analysis on the hypernatural numbers ∗N.

It is worth noticing that in the last years nonstandard methods have
fruitfully applied to prove combinatorial properties of integers, both in the
direction of density results and of Ramsey results (see, e.g., [38, 13, 44, 16,
17]).

We will assume the reader to be familiar with the fundamental notions
and results of nonstandard analysis, namely hyper-extensions (or nonstan-
dard extensions) of sets and functions, the transfer principle, the overspill
principle, the κ-enlargement and the κ-saturation properties. All such topics
can be found in any of the monographies on nonstandard analysis (see, e.g.,
the books [21, 42]).

3.1 u-equivalence

We will work in a c+-saturated extension of N. In addition to the funda-
mental principles of nonstandard analysis, our proofs will also use properties
of the relation of u-equivalence on hypernatural numbers, as introduced by
the first named author in [14]. (See also [15], where u-equivalent pairs are
named indiscernible, and [13, 43], where algebraic properties of u-equivalence
are proved by means of iterated hyper-extensions.)

Definition 3.1. Two hypernatural numbers ξ, ζ ∈ ∗N are u-equivalent if
they cannot be distinguished by any hyper-extension, i.e. if for every A ⊆ N
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one has either ξ, ξ′ ∈ ∗A or ξ, ξ′ /∈ ∗A.

The “u” in u-equivalence stands for “ultrafilter”. Indeed, to every ξ ∈ ∗N
is associated the ultrafilter Uξ = {A ⊆ N | ξ ∈ ∗A}, and ξ∼u ζ means that
the associated ultrafilters coincide: Uξ = Uζ .

We will use the following properties (see [14]).

(U1) If k ∈ N is finite and ξ∼u k then ξ = k ;

(U2) For every f : N→ N, if ξ∼u ζ then ∗f(ξ)∼u ∗f(ζ) ;

(U3) For every f : N→ N, if ∗f(ξ)∼u ξ then ∗f(ξ) = ξ.

(U4) If ξ∼u ζ and ξ < ζ then ζ − ξ is infinite.

In the language of nonstandard analysis, we have the following counter-
part of Proposition 1.8 (see also [43, Theorem 2.2.9], which gives a more
general version of this result).

Proposition 3.2. A function f(x1, . . . , xn) is partition regular with injec-
tivity |{xi1 , . . . , xip}| ≥ s if and only if there exist hypernatural numbers
ξ1∼u . . . ∼u ξn with ∗f(ξ1, . . . , ξn) = 0 and |{ξi1 , . . . , ξip}| ≥ s.

Proof. Assume first that there exist ξ1∼u . . . ∼u ξn with the above properties,
and consider the ultrafilter U = Uξ1 = . . . = Uξn . For every A ∈ U , the
elements ξi witness that the following is true:

∃ y1, . . . , yn ∈ ∗A s.t. ∗f(y1, . . . , yn) = 0 & |{yi1 , . . . , yip}| ≥ s.

By transfer, we obtain the existence of elements a1, . . . , an ∈ A such that
f(a1, . . . , an) = 0 and |{ai1 , . . . , aip}| ≥ s, thus showing that U is a PR-
witness of f with injectivity |{xi1 , . . . , xip}| ≥ s.

Conversely, pick a PR-witness U of f with injectivity |{xi1 , . . . , xip}| ≥ s.
Then for every A ∈ U the following set is nonempty:

Γ(A) =
{

(a1, . . . , an) ∈ An | f(a1, . . . , an) = 0 & |{ai1 , . . . , aip}| ≥ s
}
.

Since Γ(A1) ∩ . . . ∩ Γ(Ak) = Γ(A1 ∩ . . . ∩Ak), the family {Γ(A) | A ∈ U}
has the finite intersection property, and hence, by c+-enlargement (which
is implied by c+-saturation), we can pick (ξ1, . . . , ξn) ∈

⋂
A∈U

∗Γ(A). It is
readily verified that Uξ1 = . . . = Uξn = U , and that ξ1, . . . , ξn satisfy the
desired properties.
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In particular, we will use the following characterization.

Corollary 3.3. A function f(x1, . . . , xn) is non-trivially PR if and only if
there exist infinite hypernatural numbers ξ1∼u . . . ∼u ξn with ∗f(ξ1, . . . , ξn) = 0.

Proof. By the previous proposition, we can pick elements ξ1∼u . . . ∼u ξn with
∗f(ξ1, . . . , ξn) = 0 and |{ξ1, . . . , ξn}| > 1. If one of the ξi equals a finite
k ∈ N, then by property (U1) we would have ξj = k for all j = 1, . . . , n, a
contradiction.

As a first easy example of application of u-equivalence, let us prove the
following fact.18

Proposition 3.4. Let f : Nn → N and let ϕ : N→ N. If f(ϕ(x1), . . . , ϕ(xn))
is PR then f(x1, . . . , xn) is PR. Moreover, if ϕ is onto, then one has the
equivalence: f(x1, . . . , xn) is PR ⇔ f(ϕ(x1), . . . , ϕ(xn)) is PR.

Proof. Pick ξ1∼u . . . ∼u ξn such that ∗f(∗ϕ(ξ1), . . . , ∗ϕ(ξn)) = 0, and let ηi =
∗ϕ(ξi). Then η1∼u . . . ∼u ηn and trivially ∗f(η1, . . . , ηn) = 0. If ϕ is onto, pick
ψ : N → N such that ϕ ◦ ψ is the identity, and consider ηi = ∗ψ(ξi). Then
η1∼u . . . ∼u ηn are such that ∗f(∗ϕ(η1), . . . , ∗ϕ(ηn)) = ∗f(ξ1, . . . , ξn) = 0.

When dealing with polynomials in several variables, it is convenient to
use the multi-index notation. Let us fix the terminology.

• An n-dimensional multi-index is an n-tuple α = (α1, . . . , αn) ∈ Nn
0 ;

• α ≤ β means that αi ≤ βi for all i = 1, . . . , n ;

• α < β means that α ≤ β and α 6= β ;

• If x = (x1, . . . , xn) is vector and α = (α1, . . . , αn) is a multi-index, the
product

∏n
i=1 x

αi
i is denoted by xα ;

• The length of a multi-index α = (α1, . . . , αn) is |α| =
∑n

i=1 αi ;

• A set I of n-dimensional multi-indexes having all the same length is
called homogeneous ;

18 This basic property was first pointed out by H. Lefmann [41] for bijective functions
f , in the context of rings. Indeed, Proposition 3.4 also holds if one replaces N with an
arbitrary ring R (of course in this case “PR on N” is replaced by “PR on R”).
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• Polynomials P ∈ Z[x1, . . . , xn] are written in the form P (x) =
∑

α cαx
α

where α are multi-indexes ;

• The support of P is the finite set supp(P ) = {α | cα 6= 0} ;

• A polynomial P (x) =
∑

α cαx
α is homogeneous if supp(P ) is a homo-

geneous set of indexes.

Definition 3.5. Let P (x) =
∑

α cαx
α ∈ Z[x1, . . . , xn]. We say that a multi-

index α ∈ supp(P ) is minimal if there are no β ∈ supp(P ) with β < α. The
notion of maximal multi-index is defined similarly.

A nonempty set J ⊆ supp(P ) is called a Rado set of indexes if for every
α, β ∈ J there exists a nonempty Λ ⊆ {1, . . . , n} with

∑
i∈Λ αi =

∑
i∈Λ βi.

Notice that every singleton {α} ⊆ supp(P ) is trivially a Rado set. When
P (x1, . . . , xn) = c1x1 + . . . + cnxn is a linear polynomial with no constant
term, then we can write P =

∑n
s=1 csx

α(s) where α(s) is the multi-index
where the s-th entry is 1, and all other entries are 0. In this case, every
nonempty J ⊆ Supp(P ) = {α(1), . . . , α(n)} is a Rado set of both minimal
and maximal indexes.

Theorem 3.6. Let P (x) =
∑

α cαx
α ∈ Z[x1, . . . , xn] be a polynomial with

no constant term. Suppose there exists a prime p such that:

1.
∑

α cαz
|α| ≡ 0 mod p has no solutions z 6≡ 0 ;

2. For every Rado set J of minimal indexes,
∑

α∈J cαz
|α| ≡ 0 mod p has

no solutions z 6≡ 0.

Then P (x) is not PR, except possibly for constant solutions x1 = . . . = xn.

Proof. By contradiction, let us suppose that the polynomial P (x) is non-
trivially PR, and pick infinite ξ1∼u . . . ∼u ξn such that

P (ξ) =
∑
α

cαξ
α = 0.

Pick a prime p as given by the hypothesis, and write the numbers ξi in
the following form:

ξi = ai + ζi p
τi
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where 0 ≤ ai ≤ p−1, where ζi is not divisible by p, and where τi ≥ 1. Denote
by bi ∈ {1, . . . , p− 1} the number such that ζi ≡ bi mod p.

Let f : N → {0, 1, . . . , p − 1} be the function where f(m) ≡ m mod p;
let g : N→ N be the function where g(m) is the greatest exponent of p that
dividesm−f(m); and let h : N→ {1, . . . , p−1} be the function where h(m) ≡
(m−f(m))/pg(m) mod p. Notice that ∗f(ξi) = ai, ∗g(ξi) = τi and ∗h(ξi) = bi.
So, the u-equivalences ξ1∼u . . . ∼u ξn imply that a1∼u . . . ∼u an, τ1∼u . . . ∼u τn,
and ζ1∼u . . . ∼u ζn. Since finite u-equivalent numbers are necessarily equal,
there exist 0 ≤ a ≤ p− 1 and 1 ≤ b ≤ p− 1 such that ai = a and bi = b for
all i. Now,

0 = P (ξ) ≡
∑
α

cαa
|α| mod p,

and hence, by the hypothesis (1), it must be a = 0. In consequence, with the
multi-index notation,

ξα = ζα · p
∑n

i=1αiτi

where ζα ≡ b|α| 6≡ 0 mod p. Now let σ = min {
∑n

i=1 αiτi | α ∈ supp(P )},
and let J = {α |

∑n
i=1 αiτi = σ}. We have that

0 =
∑
α

cαξ
α = pσ ·

∑
α∈J

cαζ
α +

∑
β/∈J

cβ ζ
β p (

∑n
i=1βiτi)−σ

 .

Then ∑
α

cαζ
α ≡

∑
α∈J

cαb
|α| ≡ 0 mod p.

This shows that the equation∑
α∈J

cαz
|α| ≡ 0 mod p

has the solution b 6≡ 0 mod p. We will reach a contradiction with hypothesis
(2), by showing that J is a Rado set of minimal indexes. Notice first that J
only contains minimal indexes; indeed, if β < α ∈ J then σ −

∑n
i=1 βiτi =∑n

i=1(αi − βi)τi > 0 since all τi ≥ 1, and so β /∈ supp(P ). Let us now
prove that J is a Rado set. Take any two distinct indexes α, β ∈ J . (If J
is a singleton, the thesis is trivial.) Then

∑n
i=1 βiτi −

∑n
i=1 αiτi = σ − σ =

0. Since τ1∼u . . . ∼u τn, by the nonstandard characterization, the equation∑n
i=1(βi − αi)yi = 0 is PR. In consequence, by Rado’s theorem, there exists

a nonempty Λ ⊆ {1, . . . , n} such that
∑

i∈Λ(βi − αi) = 0, as desired.
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The range of Diophantine equations covered by Theorem 3.6 is quite large.
Two easy examples are the following.

Example 3.7. Let P (x1, x2, x3) = x2
1x2 − 2x3. Pick any prime number p

with p ≡ 3 or p ≡ 5 mod 8, so that 2 is not a quadratic residue modulo p.
Then condition (1) of Theorem 3.6 is satisfied because z3 − 2z ≡ 0 iff z ≡ 0,
and also condition (2) is easily verified. Since it has no constant solutions
x1 = x2 = x3, we can conclude that P (x1, x2, x3) is not PR.

Example 3.8. Let P (x1, . . . , xp, y, z) =
∏p

i=1 xi − py2 + z, where p > 2
is a prime number. Conditions (1) and (2) of Theorem 3.6 are satisfied as
immediate consequences of Fermat’s Little Theorem, and hence P is not PR.

As a particular case of Theorem 3.6, we obtain a result about homoge-
neous equations, first proved by the second named author in [43].

Corollary 3.9. Let P (x) =
∑

α cαx
α ∈ Z[x1, . . . , xn] be an homogeneous

polynomial. If for every nonempty J ⊆ supp(P ) one has
∑

α∈J cα 6= 0, then
P (x) is not PR.

Proof. If d is the degree of P (x), then for every prime number p >
∑

α |cα|,
we have that

∑
α∈J cαz

|α| =
(∑

α∈J cα
)
zd ≡ 0 mod p if and only if z ≡ 0

mod p, and so condition (1) of Theorem 3.6 is satisfied. Notice that the hy-
pothesis directly implies that also condition (2) holds, and so we can conclude
that P (x) is not PR.

While the above corollary provides a necessary condition for homogeneous
Diophantine equations to be PR, let us mention that H. Leifmann [41, Fact
2.8] isolated a sufficient condition for a special class of homogeneous quadratic
equations to be PR.19

Another necessary condition for PR applies when every monomial of P (x)
contains a single variable, i.e. when P has the form P1(x1) + . . .+ Pn(xn).

As the multi-index notation would make the statement of the following
theorem less transparent, we switch back the the usual notation for one-
variable polynomials.

19 Precisely,
∑n

i=1 cix
2
i is PR if there exists a nonempty J ⊆ {1, . . . , n} and there

exist numbers a ∈ N and bi ∈ Z such that: (1)
∑

i∈J ci = 0; (2)
∑

i∈J bici = 0; (3)∑
i∈J b

2
i ci + a2

∑
i/∈J ci = 0.
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Theorem 3.10. For every i = 1, . . . , n let Pi(xi) =
∑di

s=1 ci,sx
s
i be a polyno-

mial of degree di in the variable xi with no constant term. If the Diophantine
equation

n∑
i=1

Pi(xi) = 0

is PR then the following “Rado’s condition” is satisfied:

• “There exists a nonempty set J ⊆ {1, . . . , n} such that di = dj for every
i, j ∈ J , and

∑
j∈J cj,dj = 0.”

Proof. For every i, let Λ(i) = {s | ci,s 6= 0} be the support of Pi(xi), and for
every s, let Γ(s) = {i | ci,s 6= 0}. If we denote by

P (x) =
n∑
i=1

Pi(xi) =
n∑
i=1

∑
s∈Λ(i)

ci,sx
s
i ,

by the nonstandard characterization of non-trivial PR, we can pick infinite
ξ1∼u . . . ∼u ξn such that P (ξ) = 0. Now fix any finite number p ≥ 2, and
write the numbers ξi in base p:

ξi =

τi∑
t=0

ai,t p
τi−t

where 0 ≤ ai,t ≤ p− 1 and ai,0 6= 0. In particular, pτi ≤ ξi < pτi+1.
Let s∗τ∗ = max{s τi | i ∈ Γ(s)}. Let us observe that the values of s∗ (and,

henceforth, of τ∗) are uniquely determined: if there exist s1 6= s2, τi1 6= τi2
such that s1τi1 = s2τi2 then, as τi1 ∼u τi2 , we deduce that the equation

s1x− s2y = 0

is injectively PR, and this is false by Rado’s theorem. Notice also that di = s∗
for every i ∈ Γ(s∗), by the maximality of s∗τ∗.

Now let I∗ = {i ∈ Γ(s∗) | τi = τ∗}, and decompose P (ξ) = Θ + Ψ + Φ,
where:

• Θ =
∑

i∈I∗ ci,s∗ ξ
s∗
i ;

• Ψ =
∑

i∈Γ(s∗)\I∗ ci,s∗ ξ
s∗
i ;

• Φ =
∑

s 6=s∗
∑

i∈Γ(s) ci,s ξ
s
i .
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For numbers ξ, ξ′ ∈ ∗N, in the sequel we will write ξ ≪ ξ′ to mean that
ξ′ − ξ is infinite.

Lemma 3.11.

1. Θ =
(∑

i∈I∗ ci,s∗
)
ζ + Θ′ for suitable ζ ≥ ps∗τ∗ and |Θ′|≪ ps∗τ∗.

2. |Ψ|≪ ps∗τ∗.

3. |Φ|≪ ps∗τ∗.

Since P (ξ) = Θ + Ψ + Φ = 0, the above inequalities imply that the sum
of coefficients

∑
i∈I∗ ci,s∗ = 0. We claim that J = I∗ is the desired set of

indexes. In fact, I∗ is trivially nonempty; moreover, di = dj = s∗ for all
i, j ∈ J ; and

∑
j∈J cj,dj =

∑
j∈J cj,s∗ = 0.

We are left to prove the Lemma; let us start with some preparatory work.
Let ϕ : N→ N0 be the function where pϕ(m) ≤ m < pϕ(m)+1; and for every

t ∈ N0, let ψt(m) : N→ {0, 1, . . . , p− 1} be the function where ψt(m) is the
(t+1)-th digit from the left whenm is written in base p. Then ∗ϕ(ξi) = τi and
∗ψt(ξi) = ai,t, and the u-equivalences ξ1∼u . . . ∼u ξn imply that τ1∼u . . . ∼u τn
and a1,t∼u . . . ∼u an,t. Since finite u-equivalent numbers are necessarily equal,
it must be a1,t = . . . = an,t. Then, by overspill, there exists an infinite
ν ∈ ∗N and numbers bt ∈ {0, . . . , p− 1} for t ≤ ν such that ai,t = bt for every
i = 1, . . . , n and for every t ≤ ν. Let us denote by

ζi =
ν∑
t=0

bt p
τi−t.

We will use the following decomposition:

• For every a ∈ N one has ξai = ζai + ϑi,a where paτi ≤ ζai ≤ ξai < paτi+a

and ϑi,a ≪ paτi.

Since pτi ≤ ζi ≤ ξi < pτi+1, it directly follows that paτi ≤ ζai ≤ ξai <
paτi+a; besides, the difference ηi = ξi − ζi =

∑τi
t=ν+1 ai,tp

τi−t < pτi−ν . Now,
ξai = (ζi + ηi)

a = ζai + ϑi,a where ϑi,a =
∑a

j=1

(
a
j

)
ζa−ji ηji . Pick a large enough
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`i ∈ N so that
(
a
j

)
< p`i for all j. Then

ϑi,a < p`i
a∑
j=1

ζa−ji ηji < p`i
a∑
j=1

(
pτi+1

)a−j · (pτi−ν)j =

= p`i
a∑
j=1

paτi+a−j(ν+1) < p2`i paτi+a−ν−1 = paτi−(ν−2`i−a+1) ≪ paτi .

Indeed, since ν is infinite, also ν − 2`i − a+ 1 is infinite.
We are now ready to prove points (1), (2) and (3) of Lemma 3.11.
1. With the notation introduced above,

Θ =
∑
i∈I∗

ci,s∗ζ
s∗
i +

∑
i∈I∗

ci,s∗ϑi,s∗ .

For every i ∈ I∗, ζi =
∑ν

t=0 btp
τ∗−t = ζ∗. By the above estimates we know

that ζ∗ ≥ pτ∗ and ϑi,s∗ ≪ ps∗τi = ps∗τ∗ . Then
∑

i∈I∗ ci,s∗ζ
s∗
i =

(∑
i∈I∗ ci,s∗

)
ζ

where ζ = ζs∗∗ ≥ ps∗τ∗ , and |Θ′| = |
∑

i∈I∗ ci,s∗ϑi,s∗| ≤
∑

i∈I∗ |ci,s∗|ϑi,s∗ ≪
ps∗τ∗ .

2. If i ∈ Γ(s∗) \ I∗ then s∗τi < s∗τ∗, and since s∗τi∼u s∗τ∗, it follows that
s∗τi ≪ s∗τ∗. Then

|Ψ| ≤
∑

i∈Γ(S∗)\I∗

|ci,s∗| ξs∗i <
∑

i∈Γ(S∗)\I∗

|ci,s∗| ps∗(τi+1) ≪ ps∗τ∗ .

3. Let us show that for every s 6= s∗ and for every i ∈ Γ(s), one has
sτi ≪ s∗τ∗. By the definition of s∗τ∗, clearly sτi ≤ s∗τ∗. If by contradiction
s∗τ∗ − sτi = h ∈ Z, then we would have ∗f(τi) = τ∗ where f : N → N is
the function f(m) = b(sm + h)/s∗c.20 Since τ∗∼u τi, it would follow that
∗f(τi) = τi, and hence (s∗ − s)τi = h. But τi is infinite while h ∈ Z, and so
we must conclude that s∗ = s, against our hypothesis. The thesis is directly
obtained by the following inequalities:

|Φ| ≤
∑
s 6=s∗

∑
i∈Γ(s)

|ci,s| ξsi <
∑
s6=s∗

∑
i∈Γ(s)

|ci,s| ps(τi+1) ≪ ps∗τ∗ .

20 By bx c we denote the integer part of x.
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Example 3.12. The polynomial

P (x, y) = x3 + 2x+ y3 − 2y

is not PR (even if it contains a partial sum of coefficients that equals zero).

A particular case of Theorem 3.10 is the following.

Corollary 3.13. Let us consider a Diophantine equation of the form

n∑
i=1

cix
k
i = P (y)

where P (y) is a polynomial of degree d 6= k with no constant term. If for
every nonempty set J ⊆ {1, . . . , n} one has

∑
i∈J ci 6= 0, then the above

equation is not PR.

Finally, by combining Theorems 2.9 and 3.10 one obtains an extension of
Rado’s Theorem to a large family of nonlinear polynomials.

Corollary 3.14. Let n ≥ 3. A polynomial of the form

Q(x1, . . . , xn, y) := c1x1 + · · ·+ cnxn + P (y)

where P is nonlinear is non-trivially PR if and only if there exists a nonempty
set J ⊆ {1, . . . , n} such that

∑
j∈J cj = 0.

Proof. The sufficient condition is Theorem 2.9; and the necessary condition
follows from Corollary 3.13 where k = 1 and d 6= k because P is nonlinear.

Let us itemize some explicit examples of polynomials whose non-PR is
proved by our results.

Example 3.15. The equation x−2y = P (z) is not partition regular for any
nonlinear polynomial P (z) ∈ Z[z]. This gives a negative answer to Question
11 (iii) posed by V. Bergelson in [2].

Example 3.16. The equation x+ y = z2 is not PR, except for the constant
solution x = y = z = 2. (This was first proved by P. Csikvári, K. Gyarmati
and A. Sárkőzy in [9].)
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Example 3.17. A. Khalfah and E. Szemerédi [39] proved that if P (z) ∈ Z[z]
takes even values on some integer, then for every finite coloring the equation
x + y = P (z) has a solution where x and y are monochromatic. However,
as a consequence of Corollary 3.14, it is never the case that x+ y = P (z) is
partition regular when P is nonlinear.

Example 3.18. In [18], it is proved that the polynomials xn + ym = zk are
not PR for k /∈ {n,m}. This result is a consequence of Theorem 3.10.

4 Final remarks and open questions
Over the last ten years, the interest in problems related to the partition

regularity of nonlinear Diophantine equations has been rising constantly (see,
e.g., [39, 32, 9, 50, 44, 45, 4, 18, 19, 46, 26]). We hope that this paper will
contribute to a general Ramsey theory of nonlinear Diophantine equations.
In this direction, we think that at least four distinct directions of research
are worth pursuing.

The first one is trying to extend our results so as to fully characterize
the class of nonlinear PR Diophantine equations in “Rado’s style”, i.e. by
means of decidable simple conditions on coefficients and exponents.21 As
the general problem seems highly complicated, it would surely be helpful to
start by isolating other classes of PR and non-PR equations. For example,
we think that it would be really interesting to find a solution to the following.

Open Problem 1. Under the additional assumption that the given equation
admits infinitely many solutions in N, can the implication in Theorem 3.10
or, at least, in Corollary 3.13, be reversed? 22

Notice that a positive answer to this question Theorem 3.10 would imply
the PR of the Pythagorean equation for x2 + y2 = z2, which is probably
the most investigated open problem in this field. It is our opinion that
nonstandard analysis may play an important role in this research, also in the
positive direction of PR results. Indeed, techniques based on u-equivalence

21 Here the word “decidable” has the precise sense as defined in computability theory to
formalize the idea of an “effective method” .

22 The hypothesis on the existence of solutions is needed, as otherwise the conjecture
would be false, as shown, e.g., by Fermat equations xn + yn = zn with n ≥ 3.
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have already been used by the second named author in [44] to prove the PR
of several classes of nonlinear equations.

A second possible direction of research is the study the PR of nonlinear
Diophantine equations on sets of numbers different from the natural numbers.
In this respect, let us point out a few facts.

1. A homogeneous Diophantine equation is PR on N if and only if it is
PR on Z if and only if it is PR on Q.

2. There are homogeneous Diophantine equations that are PR on the pos-
itive reals R>0 but not on N.

3. For non-homogeneous equations, the equivalences in (1) do not hold.

The “only if” implication in (1) is trivial. Conversely, let us observe that
if P (x1, . . . , xn) = 0 is a homogeneous Diophantine equation that is PR on
Q, then every ultrafilter U ∈ K(βQ,�) is a witness. (This follows from the
analogues of Theorem 2.4 and Corollary 2.5 for Q.) Since the set N is thick
in the group (Q, ·), and hence piecewise syndetic, we can pick an ultrafilter
U ∈ K(βQ,�) such that N ∈ U .23 Then UN = {B ∩ N | B ∈ U} is an
ultrafilter on N that witnesses the PR on N of the equation P (x1, . . . , xn) = 0.

Easy examples to show (2) are given by all Fermat equations xn+yn = zn

with n ≥ 3, which do not admit solutions in N but are PR on R>0. Indeed,
the Schur equation x + y = z is PR on N, and hence on R>0. By taking
the function ϕ(x) = xn, which is onto R>0, one can apply the analogue of
Proposition 3.4 to the semigroup R>0.

As for (3), consider, e.g., the equation x1y1−x2 = 0. By the multiplicative
Rado’s Theorem, that equation is PR on N, and hence it is PR on Z. Then,
by Proposition 3.4 for the group Z applied to the function f(x) = −x, we
obtain that also x1y1 + x2 = 0 is PR on Z, whilst it is has no solutions in N.

A general question that arises naturally is the following.

Open Problem 2. Are there simple decidable conditions under which a
given (non-homogeneous) Diophantine equation with no constant term is PR
on N if and only if it is PR on Z if and only if it is PR on Q?

A problem that seems to have its own peculiarities is the study of PR
of Diophantine equations on finite fields. About this, a relevant result has

23 Recall that a subset A ⊆ S of a semigroup (S, ·) is piecewise syndetic if and only if it
belongs to some ultrafilter in K(βS, ·) (see Corollary 4.41 in [37].)
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been recently obtained by P. Csikvári, K. Gyarmati and A. Sárkőzy [9], who
proved the PR of every Fermat equation xn + yn = zn on sufficiently large
finite fields Fp (with xyz 6= 0).

It seems natural to ask whether the techniques used in this paper may
help towards the following.

Open Problem 3. Are there simple “Rado-like” necessary and sufficient
conditions under which a given Diophantine equation with no constant term
is PR on sufficiently large finite fields Fp?

Finally, another really wide direction of research is investigating the PR of
finite and infinite systems of nonlinear Diophantine equations. Whilst certain
particular results are already known, such as the multiplicative version of
Hindman’s Theorem, general results in this area are still missing. It is worth
remarking that although extensively studied in the recent literature (see, e.g.,
[30, 12, 33, 34, 31, 29, 40, 10, 25, 50, 36, 1, 4]), infinite linear systems are not
fully understood yet. In order to adapt our nonstandard techniques to infinite
systems, one would need a characterization of PR systems in terms of u-
equivalence. The characterization given in Corollary 3.2 is easily generalized
to finite systems, but we do not see how to extend it to infinite systems.

Open Problem 4 Is there a characterization of PR infinite systems of Dio-
phantine equations in terms of u-equivalence? (Or, equivalently, by means of
ultrafilters?)
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