Elevated blood pressure (BP) is a growing burden worldwide, leading to over 10 million deaths each year. May Measurement Month (MMM) is a global initiative organized by the International Society of Hypertension aimed at raising awareness of high BP and to act as a temporary solution to the lack of screening programs worldwide. A similar approach has been used in Italy since 2012, showing inadequate awareness of the consequences of hypertension, a generally increased cardiovascular risk and unsatisfactory BP control in 36% of interviewed individuals.

An opportunistic cross-sectional survey of volunteers aged ≥18 was carried out in May 2017, during the joint MMM and World Hypertension Day events. Blood pressure measurement, the definition of hypertension and statistical analysis followed the standard MMM protocol. Screenings were conducted both in cities and villages, indoor and outdoor, by health personnel. Eighty-five sites, involving approximately 300 investigators, took part in MMM17/World Hypertension Day in Italy, screening 10,076 individuals during a month-long period. After multiple imputation, 3099 participants were found (30.8%) to have high BP levels. This was the biggest opportunistic BP screening in a single time-point ever reported in Italy. A significant proportion of individuals had high BP, although it was not possible to differentiate between known treated hypertensive patients with inadequate BP control and as yet undiagnosed hypertensive individuals. Opportunistic screening can reach a significant number of individuals, being a powerful tool for raising awareness and carrying out BP screening.
Introduction

Atherosclerosis-related cardiovascular diseases (CVD) represent a burden on western countries’ health systems. In spite of the many efforts towards primary and secondary prevention, CVDs prevalence is constantly increasing, partly because of unhealthy lifestyle and partly because of the improvements of acute coronary syndromes therapy, which has led to a decrease in the mortality due to coronary events at the cost of a growing number of individuals who live with a damaged heart. Among all, arterial hypertension, known as the “silent killer”, is the most important independent risk factor for CVDs.4

The scientific community and the World Health Organisation (WHO) jointly identify primary prevention, and specifically the correction of modifiable risk factors, as the key step towards the goal of CVDs reduction. 2,3 Among all arterial hypertension, known as the “silent killer”, is the most important independent risk factor for CVDs.4

Reported HT prevalence in Italy ranges from 55% to 59% of the whole population >18 years of age, 5 with a worrisome rate of 11% in the 18-35 years age range.6 Moreover, data collected in Italy during the 2014 World Hypertension Day, promoted by the International Society of Hypertension, the World Hypertension League and the Italian Society of Hypertension, showed that individuals are aware of healthy life habits useful to reduce blood pressure (BP) but are not equally aware of the risks linked with hypertension.7 As a consequence, they may lack motivation in following healthy lifestyle changes and medical prescription. Thus, we believe that large-scale health campaigns ‘in the field’ may play a pivotal role not only in screening and assessment of the BP situation at a given time point, but also in educating people regarding the risks and consequences connected to high BP, thus improving adherence to lifestyle modification and medical prescription.

By being part of the May Measurement Month (MMM17) project organized by the International Society of Hypertension, we were able to increase the number of days of data collection, thus reaching more people and involving more health personnel than ever before.

Methods

MMM17 activities in Italy were coordinated by G.P. with the help of C.T. and with the support of the Italian Society of Hypertension. Informed consent was obtained for each participant onsite. No personal information was requested, as all forms were anonymous.

During the month ofMay 2017, 85 sites in Italy operated for a different number of days (from 1 to 10 days depending on the site), interviewing and measuring the BP of individuals aged 18 and over who decided to stop by. A total estimated number of 300 volunteers were involved in the campaign.

Blood pressure measuring stations were available inside hospitals and at crossroads, with the logistical support of the Italian Red Cross, both in cities and villages. Also, thanks to the support of Italian Navy, BP measurements were available for people visiting the sail training ship ‘Amerigo Vespucci’ in a number of ports where this historical and world-famous ship made scheduled calls along the peninsula. The initiative was also supported by national government agencies, with many politicians agreeing to take part in this initiative and have their BP measured.

All the staff had a certain degree of training in health care and received specific training on BP measurements. Either doctors, nurses, paramedics and medical students performed the BP recordings and administered an ad hoc created questionnaire. Additionally, outdoor measurements were performed in gazebos, in order to keep the ambient temperature controlled and even, and to allow seated rest before the measurement. All selected devices had been validated accordingly to the ESH-IP approach and BP measurements were performed according to the European Society of Hypertension/European Society of Cardiology (ESH/ESC) 2013 guidelines. Briefly, three consecutive measurements were collected in the sitting position, at rest with back and arm supported, after a 5-min rest. Hypertension was defined as BP ≥140/90 mmHg and/or taking antihypertensive medication.

The study was bottom funded, i.e. each centre which decided to take part in the activity printed its own questionnaires and BP forms and then sent the hard copies to the core lab for data entry. Data were checked and cleaned locally by E.M. and A.F. and analysed by the MMM team according to the standard analysis plan.

Results

A total of 10,076 people were screened during the month of May 2017.

Of these 10,076 individuals, 4,959 (49.2%) were females. Mean age (± standard deviation) was 53.7 years (±17.9 years). Blood pressure results across the three readings are shown in Table 1, showing a decline from the first, to second, to third readings.

For BP analysis, the mean of the second and third measurements were used (available in 10,014 individuals). The mean systolic BP was 129.7 mmHg, and mean diastolic BP was 78.1 mmHg. After imputation, a mean reading was available for 10,075 individuals. The total number with hypertension was 3099, representing 30.8% of the total.

Discussion

There is great awareness in the Italian scientific community and among officers of the Italian Health Care System about the hypertension problem, with the Italian Society of Hypertension being very active in educational campaigns and large-scale data collection. During the last few years, a yearly event focused on subjects’ education on hypertension among the Italian population and on BP measurements was organized, gaining progressively more and more attention and involving an increasing number of people.6 8

The present cross-sectional survey provides a contemporary update on BP values collected nation-wide from a remarkable sample of the Italian population. As described, a proportion of 30.8% of the screened individuals were found...
to be hypertensive, a percentage slightly less than the one reported by Torlasco et al., in a similar previous campaign (36% among a sample of 8657 individuals, focusing on data collected in year 2015 in a similar fashion). Similarly, the mean BP values of the current sample are similar to those that were reported by Tocci et al. from 2004 to 2010 (131/79 ± 19/11 mmHg) and by Torlasco et al. in 2015 (133/80 ± 18/10 mmHg).

Unfortunately, the available data do not allow differentiation between known treated hypertensive patients with inadequate BP control and yet undiagnosed hypertensive people. Moreover, the current lack of recommended BP thresholds and targets for BP values obtained in the frame of this ‘street epidemiology’ campaign, based on such a peculiar type of out-of-office BP measurement technique, makes it unclear how to properly interpret the data collected. Nevertheless, based on extrapolation from previous surveys, we believe that these results highlight a still unsatisfactory BP control in a large sample of the Italian population, which needs to be adequately dealt with, although a trend towards an improvement over the years seems to become apparent.

Joining the MMM Campaign, we have been able to interview the largest number of people approached in a single time point so far, also measuring their BP in a carefully standardized manner. The results we have obtained support the belief that population-based campaigns provide a significant contribution to spread awareness, stimulate curiosity and collect data in large numbers of individuals over a relatively short time window. Moreover, the results obtained in this and in previous campaigns demonstrate how this kind of population screening might be useful to reach specific subgroups in a population, e.g. the young adults, which are usually healthy and rarely feel the need to engage in primary prevention focusing on risk factors and subclinical conditions, also because of their limited interactions with general practitioners resulting, among other problems, in inadequate BP control and yet undiagnosed hypertensive patients over a relatively short time window.

**Table 1** Blood pressure results across each reading

<table>
<thead>
<tr>
<th></th>
<th>Reading 1</th>
<th>Reading 2</th>
<th>Reading 3</th>
<th>Mean of readings 2 and 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean systolic blood pressure (mmHg)</td>
<td>131.7</td>
<td>130.2</td>
<td>128.7</td>
<td>129.7</td>
</tr>
<tr>
<td>Mean diastolic blood pressure (mmHg)</td>
<td>78.6</td>
<td>78.2</td>
<td>77.6</td>
<td>78.1</td>
</tr>
</tbody>
</table>

Note: number of individuals with all three readings available

Total number of subjects with three readings: 10 007

**Contributors**


1Department of Clinical and Experimental Medicine, University of Pisa, Council of the Italian Society of Hypertension, Pisa, Italy; 2Centro per la Diagnosi e la Cura dell’Iperintensione Arteriosa, Council of the Italian Society of Hypertension, Policlinico di Foggia, Italy; 3Department of Medicine, University of Padova, Italy; Medicina I, Council of the Italian Society of Hypertension, Ospedale Ca’ Foncello, Treviso, Italy; 4Centro per la Diagnosi e Cura dell’Iperintensione Arteriosa, Council of the Italian Society of Hypertension, AOU San Martino, Italy; 5Direttore UO Medicina Interna & Stroke Unit “L. Scapellato”—Centro per la Diagnosi, la Cura e la Prevenzione delle Cardio e Cerebrovascolopatie—Ospedale “Umberto I”—ASP Siracusa, Council of the Italian Society of Hypertension, Italy.

**Acknowledgments**

We would like to thank all the local investigators, without whom this data collection would not have been possible, the Italian Red Cross for its support with volunteers and means, the Italian Navy and the Presidency of the Italian Republic for their kind availability to endorse and host the campaign.
6 Centro per la prevenzione e cura dell’Ipertensione Arteriosa, Università degli studi di Brescia, Council of the Italian Society of Hypertension, Italy; 7 Dipartimento di Biomedicina, Federico II dell’Università di Napoli, Council of the Italian Society of Hypertension, Italy; 8 Centro per l’Aterosclerosi e l’Ipertensione Arteriosa, AO Chieti, Italy; 9 Centro Iper tensione, A.O.U. Federico II of Naples, Italy; 10 Medicina Interna, Ips terosoma, Prevenzione Cardiovascolare, A.O.U. Federico II of Naples, Italy; 11 Centro I pertensione e Prevenzione Cardiovascolare—ASL CE Distretto 14, Italy; 12 UOSS Di agno e Terapia dell’Ipertensione Arteriosa, A.O.R.N. A. Cardarelli, Italy; 13 Ambulatorio per l’Ipertensione Arteriosa e la Prevenzione del Rischio Cardiovascolare, Ospedale Fatebenefratelli, Italy; 14 Azienda Ospedaliera Universitaria San Giovanni di Dio e Ruggi d’Aragona, Italy; 15 U.O. Cardiologia, Ospedale Bellaria, Italy; 16 Centro Studi I pertensione Arteriosa e Malattie Cardio-Renali, Dipartimento Clinica Medica di Parma, Italy; 17 U.O.S. I pertensione Arteriosa e Malattie Cardiovascolari. Ospedale Guglielmo Da Saliceto, Italy; 18 Centro per la diagnosi e cura dell’Ipertensione Arteriosa, Pollo Santarorio Ravenna 33, Italy; 19 SC Medicina II—Angiologia, Arcispedale Santa Maria Nuova, Italy; 20 Centro I pertensione, Clinica Medica Università di Udine, Italy; 21 Centro per la Diagnosi e Cura dell’Ipertensione Arteriosa, A.O. Sant’Andrea, Italy; 22 Centro “Marcello Malpighi per la diagnosi e la cura dell’iper tensione arteriosa”, Azienda Policlinico Umberto I—UOC di Nefrologia B, La Sapienza Università di Roma, Italy; 23 I pertensione Geriatrica, Università “Sapienza” di Roma, Italy; 24 Ambulatorio per l’Ipertensione Arteriosa, A.O. San Camillo Roma, Italy; 25 Centro per lo Studio dell’Ipertensione Arteriosa e degli Altri Fattori di Rischio, Azienda Policlinico Umberto I di Roma, Italy; 26 Centro dell’Ipertensione Secondaria, Centro di Riferimento della Regione Lazio dell’Ipertensione Secondaria ed Endocrinopatie di difficile diagnosi, Università di Roma Sapienza, Azienda Policlinico Umberto I di Roma, Italy; 27 Centro I pertensione—A.O. S. Giovanni Addolorata di Roma, Italy; 28 Centro I pertensione Arteriosa e Gestazionale, Ospedale Fatebenefratelli Roma, Medica; 29 Policlinico Universitario Agostino Gemelli di Roma, Italy; 30 Centro I pertensione Arteriosa—UOC I pertensione e Nefrologia—Policlinico Tor Vergata, Italy; 31 S.C. Medicina Interna, Ospedale Santa Corona, Italy; 32 Ambulatorio I pertensione, Ospedale Niguarda Ca’ Granda e Università di Milano Bicocca, Italy; 33 Centro Studi I pertensione e Malattie Vasculari—Policlinico di Monza, Italy; 34 Azienda Ospedaliera Mellino Mellini, Italy; 35 Ambulatorio per la diagnosi e terapia dell’Ipertensione arteriosa, U.O. Nefrologia A.O. di Cremona, Italy; 36 Ambulatorio per l’Ipertensione Arteriosa, U.O. Medicina, A.O. di Cremona, Italy; 37 Ambulatorio I pertensione e Protezione Cardiovascolare Milano Nord, Italy; 38 Unità semplice di diagnosi e trattamento dell’Ipertensione arteriosa, P.O. Gardone Val Trompia, A.O. Spedali Civili di Brescia, Italy; 39 Azienda Ospedaliera Ospedale di Legnano, Italy; 40 ASST—Santi Paolo e Carlo, Italy; 41 Centro I pertensione Arteriosa, Ospedale Classificato San Giuseppe, Italy; 42 Centro di Fisiologia Clinica e I pertensione, Ospedale Maggiore Polinico, Italy; 43 Centro per lo Studio e la Cura dell’Ipertensione Arteriosa, Fondazione Salvatore Maugeri, Italy; 44 ASST Lariana—Ospedale Sant’Anna, Italy; 45 Istituto Ospedaliero di Sarnico U.O. Medicina Generale, Centro Cardiometabolico—Ambulatorio di I pertensione Arteriosa, Italy; 46 Ospedale Galmarini di Tradate, Italy; 47 Struttura Complessa Medicina Generale, Azienda Ospedaliera Treviglio, Ospedale Treviglio Caravaggio, Italy; 48 Centro per la diagnosi e Terapia dell’Ipertensione Arteriosa, U.O. Medicina1, Ospedale di Circolo e Fondazione Macchi ASST Sette Laghi, Italy; 49 Centro I pertensione Arteriosa e Malattie Cardiovascolari, AO “Ospedali Riuniti” Torrette di Ancona, Italy; 50 IRCCS Neuromed—Polo Didattico Sede disattaccata Molise, “Sapienza” Università di Roma, Italy; 51 Ambulatorio per I pertensione Nefrovascolare, AON S.S. Antonio e Biagio e Cesare Arrigo—Alessandria, Italy; 52 Servizio per I pertensione Medicina Interna, Ospedale di Chieri, Italy; 53 S.C. Nefrologia e Dialisi, Ospedale Martini, Italy; 54 Ambulatorio I pertensione, Ospedale Cottolengo, Italy; 55 Centro per l’Ipertensione Arteriosa U.O.C. Oncologia Medica Universitaria, A.O.U.P. Bari, Italy; 56 Centro di Prevenzione Cerebrovascolare ed Ipertensione Arteriosa “A.M. Pirrelli”, Italy; 57 Centro I pertensione Arteriosa, AOU Policlinico di Bari, Italy; 58 Centro I pertensione Ospedale Vito Fazzi, Lecce, Italy; 59 Ospedale Casa Sollievo della Sofferenza—IRCCS Dipartimento di Scienze Mediche—S.C. di Nefrologia e Dialisi, Italy; 60 Centro Prevenzione, Diagnosi e Terapia dell’Ipertensione Arteriosa e delle Complicanze Cardiovascolari—Azienda ASL di Sassari, Italy; 61 U.O. Dipartimentale di Nefrologia ed Ipertensione, Italy; 62 Struttura Complessa Cardiologia—UTIC Ospedale Maggiore di Modica, Italy; 63 Ambulatorio Monitoraggio della Pressione Arteriosa, Presidio Ospedaliero di Patti, Messina, Italy; 64 Centro Eccellenza ESH—Centro per la cura e la diagnosi dell’Ipertensione Arteriosa, A.O.U. Pisana, Italy; 65 Ambulatorio cardiologico per la diagnosi e terapia dell’Ipertensione arteriosa, Italy; 66 Centro I pertensione Arteriosa di II livello—U.O.C. Medicina Interna e Geriatria Ospedale San Donato USL8 Arezzo, Italy; 67 Centro di Riferimento Regionale per l’Ipertensione Arteriosa dell’anziano della Regione Toscana, Cardiologia e Medicina Geriatria, AOU Careggi e Università di Firenze, Italy; 68 Ambulatorio Specializzato per l’Ipertensione Arteriosa, U.O. Medicina Interna, Ospedale San Jacopo, Pistoia, ASL 3 Toscana, Italy; 69 Centro I pertensione Arteriosa, Ospedale di Assisi, Italy; 70 Centro I pertensione Arteriosa—Dipartimento di Medicina, Università degli Studi di Perugia, Struttura Complessa di Medicina Interna, A.O. S. Maria, Terni, Italy; 71 Centro Eccellenza ESH—Centro per l’Ipertensione Arteriosa, A.O. Padua, Italy; 72 U.O.C Medicina Generale per lo Studio ed il Trattamento della Malattia I pertensiva, Dipartimento di...
Conflict of interest: none declared.

References


