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Abstract 
This paper contributes to the computer ethics debate on software ownership           
protection by examining the ontological, methodological, and ethical problems         
related to property rights infringement that should come prior to any legal            
discussion. The ontological problem consists in determining precisely what it is           
for a computer program to be a copy of another one, a largely neglected              
problem in computer ethics. ​The methodological problem is defined as the           
difficulty of deciding whether a given software system is a copy of another             
system. And the ethical problem corresponds to establishing when a copy           
constitutes, or does not constitute, a property rights infringement. The          
ontological problem is solved on the logical analysis of abstract machines, and            
the latter are argued to be the appropriate level of abstraction for software at              
which the methodological and the ethical problems can be successfully          
addressed.  
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1. Introduction 
The identification of property rights related to software systems is one of the most discussed 
topics in computer ethics and it is still to be addressed in full by policy makers and legislators 
(Johnson 2009). On the one hand, the debate focuses on the problem of determining 
whether, and to which extent, intellectual property rights should be exerted on software ​qua 
abstract entity. On the other hand, the choice of which legal framework among copyright, 
patent, and trade secrets better grants intellectual property rights protection for software 
owners, without hindering innovation in the software industry, is still open. These debates 
involve different philosophical issues that ought to be addressed in advance, as they 
determine possible answers to the above problems. In particular, we argue, an ​ontological 
problem​, a ​methodological problem​, and an ​ethical problem​ to software ownership should be 
clearly articulated. The philosophical analysis of software systems and their relations here 
proposed is aimed to pave the way to a legally oriented discussion. 

The main problem around which the present philosophical analysis is developed is that of 
property right​ infringement​ for software. In general terms, an infringement concerning 
software may take place in case a copy is used in the development of a distinct software 
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system. However, determining precisely what it is for a computer program to be a copy of 
another one is a largely neglected problem in the current debates in computer ethics. We 
refer to this as the ​ontological problem for software copies. ​This problem has been tackled 
formally in Angius and Primiero (2018), by proposing a taxonomy of the logical relations for 
software systems distinguishing among exact, inexact, and approximate copies. This paper 
will develop upon such taxonomy to address the fundamental ontological problem of 
identifying the most appropriate level of abstraction (LoA) (Floridi 2008) at which software 
should be legally protected. 

Once the ontology of copies is determined with some precision, it is essential to provide a 
decision method for establishing whether​ ​a piece of software is an exact, inexact or 
approximate copy of another piece of software. We refer to this as the ​methodological 
problem for software copies, ​which constitutes one main difficulty of the copyright scheme 
for software code. The methodological problem is the problem of determining whether a 
piece of software copies the functionalities of another piece of software. ​By functionality of a 
software system one normally intends any operation that can be performed by the said 
system. In this sense, a software copy is a system which has the same functionalities of 
another software system. Section 2 will show how functionalities cannot be subject to 
protection at this level of definition. More technically, a functionality can be expressed in 
terms of the behaviour of a system which allows it to satisfy a given requirement. In this 
more precise sense, a software copy is a system which has the same behaviour of another 
software system.  

Understanding when property right infringement occurs comes prior to the problem of setting 
out the legal framework under which programs should be protected. As it will be extensively 
shown, exploring the methodological problem will offer additional arguments supporting or 
opposing the advanced legal schemes.  

Focusing on the ontological and methodological problems first, allows one to engage in the 

examination of the ​ethical problem​ ​for software copies​: the violation of intellectual property 

rights, as expressed by the article 1.5 of the ACM Code of Ethics , can be addressed in legal 1

1 See ​https://www.acm.org/code-of-ethics​: “​Developing new ideas, inventions, creative works, and 
computing artifacts creates value for society, and those who expend this effort should expect to gain 
value from their work. Computing professionals should therefore credit the creators of ideas, 
inventions, work, and artifacts, and respect copyrights, patents, trade secrets, license agreements, 
and other methods of protecting authors’ works. Both custom and the law recognize that some 
exceptions to a creator’s control of a work are necessary for the public good. Computing professionals 
should not unduly oppose reasonable uses of their intellectual works. Efforts to help others by 
contributing time and energy to projects that help society illustrate a positive aspect of this principle. 
Such efforts include free and open source software and work put into the public domain. Computing 
professionals should not claim private ownership of work that they or others have shared as public 
resources”. 
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terms by the identification of whether an artefact is an exact, inexact, or approximate copy. 

Most legislations allow software systems’ ownership to be protected through copyright of the 

high-level language program​. The high-level programming language is the set of instructions 

that linguistically implement the intended functionalities of the system, and hence its 

behaviour. Copyright protection at the level of computer programs has been opposed mainly 

for two distinct reasons: first, the copyright system offers limited capabilities to protect from 

copying; second, it hinders innovation in software developments (Samuelson et al 1989). 

Some have argued that patenting ​algorithms​ is a more straightforward way of protecting 

software property rights (Chisum 1986). Allen Newell (1986) opposed the patentability of 

algorithms arguing that our understanding of them is insufficient to define when they satisfy 

patent eligibility criteria. Intellectual property laws specify that ideas can never be protected 

nor their ownership be claimed; only expressions of those ideas into a physical medium, be it 

a written text or a physical process, are amenable to protection.  According to Newell, it is 

not always feasible to distinguish ideas from processes in algorithms. Others have argued 

that an ​ad hoc ​legal framework for intellectual property rights protection should be envisaged 

to protect ​observable executions​ of implemented programs (Samuelson et al 1994).  

This paper argues that this debate is better reconsidered in the light of the different LoAs 

that each approach chooses for protection, and it highlights some of the difficulties 

associated to each. Section 2 recalls the computer ethics debate on legal protection of 

software ownership focusing on LoAs. Section 3 challenges Newell’s thesis by providing an 

ontological analysis of algorithms distinguishing as many as three software LoAs with which 

algorithms can be identified. Section 4 addresses the methodological problem of determining 

when a given software system S' is a copy of a system S. Except the elementary case of 

code duplication, frequent in the context of piracy but mostly uncommon in software 

development, establishing whether S' is an exact, inexact, or approximate copy of S is quite 

a hard but crucial task. The problem, which has been underestimated by the software 

property rights debate, is here examined for each LoA. Section 5 reviews the literature on 

intellectual property rights applied to software systems and considers infringements at the 

different LoAs. It is argued that approximate copies may not violate software intellectual 

property rights and should therefore be allowed to a certain extent. Section 6 shows how our 

ontological, methodological, and ethical analysis applies to a case study.​ ​Section 7 

concludes by highlighting future applications of the present analysis, in particular to the 

problem of identifying properties shared by copied computational artefacts. 
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2. The ontological problem 

Property rights laws are conceived on the basis of the type of objects whose property is 

claimed, such as real estates, chattels, or intellectual objects. The latter category covers an 

extended range of entities: ideas, processes, artefacts, machines, textual expressions, 

drawings, artworks, or marks. Distinct schemes for the legal protection of intellectual 

property have been formulated for different types of objects, provided that no legal protection 

can be afforded for ideas. These schemes may take the form of patent, copyright, trade 

secret, or registered trademark laws (Moore and Himma 2018).   2

It follows that the ontological problem of identifying what kind of object is software foreruns 

both the problem of inquiring whether software systems are eligible for intellectual property 

rights protection, and the problem of identifying the legal scheme that better supplies such 

protection (Koepsell 2003). Indeed, most of the ongoing legal and ethical debates on 

copyright and patents for software struggles to understand which ontological status should 

be assigned to software systems: machines, processes, or textual expressions. The choice 

is notoriously difficult. The debate presents several possible positions on what is the right 

object to protect, because software systems can be analysed at several LoAs. A first step in 

an attempt at reconsidering this vexing problem seems therefore to require an ontological 

analysis which has often been dismissed or not considered in sufficient depth in the debate 

(Koepsell 2003). One position that stresses the need for an analysis of the LoA in the 

description of the ontology and epistemology of software system is presented in Primiero 

(2016) and it distinguishes among: 

● Intention: at this level one reflects on, and expresses, the computational problem to 

be solved; 

● Specification: at this level the set of requirements needed by the solution of the 

problem is stated; 

● Algorithm: at this level a procedure is formulated which satisfies the requirements 

and provides a solution to the problem; 

2 These distinctions broadly refer to the Anglo-American legislations, but they can well be applied to 
most western legislations. Since the aim of this paper is to carry out a philosophical analysis of 
software systems that precedes the legal debate, reference to specific State legislations is avoided. 
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● High-level programming language instructions: at this level the task resolution 

provided by the algorithm is implemented in linguistic constructs appropriate for the 

chosen language; 

● Assembly/machine code operations: at this level the operations which need to be 

performed for the implementation of the high-level programming language 

instructions are translated into low-level constructs required by the related hardware; 

● Execution: at this level, operations are executed by electrical charges and the 

information flow on the hardware.  

Each LoA expresses a control structure for the level below and, at the same time, it 

constitutes an ​implementation​ of the level above. The execution level is the only ​physical 

implementation level, in that it makes reference to the physical hardware executing the 

machine code operations. If the control structure is preserved throughout each level, the 

resulting software system is ​in principle ​correct. According to this stratified ontology, no LoA 

taken in isolation reflects the full nature of a software system. Instead, the whole hierarchy in 

which each layer can be multiply realized by many different lower levels is required. From 

the point of view of the computer ethics debate, the problem concerning the appropriate 

legal schemes for software ownership protection should be classified depending on the LoA 

chosen for protection.  

First, neither intention nor specification can be elected for legal protection. This stems from 

the fact that ideas and other abstract entities, like mathematical statements or the 

formulation of natural laws, are denied ownership claims. Neither copyright nor patent 

protection allows one to cover ideas. The principle for such a restriction on what is eligible 

for intellectual property rights protection is that ideas pertain to the public domain, while 

expressions of those ideas in a written text or picture, or realizations of those ideas in a 

process or artefact, can be protected in that those ideas are conveyed to others through 

human labour. Written texts, musical recordings, artworks, and other creative, non-utilitarian, 

expressions can be protected by copyright.  Copyright gives owners the “right to copy”, sell, 3

distribute, translate, work on derivative versions thereof, and to make public performance 

based on a published text. Processes, machines, manufacturers, and other artefacts 

carrying out specific tasks, and which can be considered “inventions” in that they are new or 

are new improvements of existing articles, can be patented. Patents give inventors the 

3 Articles of utility, non-creative expressions such as automatically generated texts, and public domain 
texts are usually out of the scope of copyright protection. 
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monopoly over their inventions, that is, only patent holders are allowed to implement and sell 

their inventions; independent discoveries of an already patented machine or process cannot 

be patented, nor traded. Hence, software should not be investigated at either the intention or 

the specification level for the purposes of protection. 

Second, we can consider software at the level of algorithms and their implementations in 

high-level programming language instructions and low-level machine-code operations. The 

legal debate on software property rights and their protection started in the 70’s and it was 

mostly concerned with the question of whether the ownership of software systems should be 

defended through copyright or patent. Most of the software released today is copyrighted; 

however, some difficulties related to the copyrighting of high-level language programs keep 

the debate still going.  This debate mainly concerns the ontological problem of whether the 4

algorithm (as a process) or the code (as a text expressed either in a high-level programming 

language or in a machine code language) should be subject to legal protection. Among the 

first ones in doing so, Calvin Mooers (1975) argued that copyright is the best available legal 

scheme for software property rights protection. Framed in the model of LoAs, the argument 

for copyright reflects the principle that ideas conveyed by the intention and specification 

LoAs, which as such are not covered by intellectual property laws, can instead be protected 

once fixed in any tangible medium of expression one finds at lower LoAs. Tangible 

expressions of this sort include, according to Mooers, expressions of algorithms, either in the 

form of diagrams or of other textual expressions, as well as source codes and object codes 

of developed programs, i.e. high-level programming language instructions or machine code 

operations. Copyright is to be preferred in that any text can be copyrighted without 

restrictions, and it prevents not only from copying, but also from translating or making 

modified versions of it, thereby covering the case of copied programs which are expressed in 

a different high-level programming language.  

One difficulty associated with the copyright protection of the high-level language set of 

instructions is that of assessing the so-called ​non-literal ​infringement. With this term one 

refers to the infringement of copyright concerning elements that go beyond the actual text. 

Consider a published novel: plot, incident, characters, and setting are all non-literal 

expressions that cannot be copied by a distinct novel under copyright laws. Different novels 

4  Just after the implementation of programmable computing machines, computer programs were 
developed and freely exchanged among programmers. As a result of the marketing of general 
purpose personal computers, software was sold and thus its ownership protected. In the US, software 
was initially patented until 1976, when an amendment of the Copyright Act extended copyright 
protection to software code (see Koepsell 2003, ch. 5 for an historical overview of the copyright/patent 
legal debate for software). 
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are nonetheless allowed to develop upon the very same idea (e.g. a man has been killed 

and the police looks for the guilty). In the case of software, non-literal elements include data, 

data types, models, design processes and so on. ​ ​In the US, in 1992 (Computer Associates 

vs​ Altai) it was ruled that non-literal structures of computer programs are protected by 

copyright.​ ​Distinguishing the unprotectable ideas from non-literal protectable elements of a 

released software is not an easy task when the source or object code is copyrighted.  

Samuelson (2016) identifies as many as five ways in which US Courts carry out such a task 

in software copyright infringement lawsuits. The most widely used, often called the 

‘abstraction-filtration-comparison’ test, breaks down the high-level program into parts, such 

as routines and subroutines, which are then analysed to establish whether it contains 

non-protectable ideas and public-domain material, in order to filter them out. Whatever 

remains is compared for infringement. The main result of the applications of this method is 

that copyright may extend even to non-literal elements of a computer program expressed in 

a high-level language, but it does not cover its structural elements, expressed by the 

implemented abstract machine.  

Moon (2015) reviews the case Karum vs. Fisher & Paykel Finance from 2004, in which 

syntactically and structurally different high-level code was observed in the legacy evolution 

and adaptation of a software platform and treated as non-literal infringement of software 

copyright. He suggests the necessity of identifying the levels of abstraction undergone by the 

product at the level of design: while this choice is methodologically close in spirit to our 

identification of LoAs, identifying levels of abstraction within the design process makes the 

‘abstraction-filtration-comparison’ test dependent on the contextual and accidental 

development process followed, and therefore it presents limited generalizability.  Moreover, 5

with current distributed large software, the identification of a precise design method becomes 

an extremely complex task. Courts have already ruled against the copyright protectability of 

the non-literal abstractions represented by functionalities of the whole system, functional 

characteristics of individual software elements and business logic, business rules or any 

algorithm. Moon (2015) then suggests that the problem of infringement should be accounted 

for code as performing the corresponding functionalities, which means that text is merged 

with the idea. In particular, the data flow diagram could be considered for infringement 

5 Software development methods, such as the Waterfall, Spiral, or Agile models, focus, in principle, on 
three LoAs, namely the levels of requirements, design of algorithms and their relations, and 
implementation of algorithms in high-level language programs (Turner 2018). However, actual 
applications of those methods may not refer to all of those LoAs in practice; for instance, Agile 
methods often move from the elicitation of the software requirements directly to the implementation of 
a high-level program.  
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analysis. We argue that an identification of LoAs independent of a specific development 

process is a more appropriate method and that, in particular, the identification of code as 

performing functionalities can indeed be obtained under a very specific reading of algorithms 

as abstract state machines, as widely shown in the next section. 

Also Koespell (2003) highlighted how the idea/expression dichotomy, which feasibly fits with 

the protection of ordinary literary works, is far from being clearly applicable in the context of 

software systems and their stratified ontology. Specifications themselves, once written in a 

physical medium, can be considered textual expressions of intentions, and algorithms can as 

well be considered expressions of specifications (see also Rapaport W. J. 2018, ch. 13). 

Protecting algorithms, in particular, concerns the larger and more fundamental problem of 

the way in which algorithms and specifications are defined and are related to each other. An 

analysis which distinguishes algorithms as specifications and their formal translation is 

therefore essential in determining the difference between abstract and implemented 

processes.  

The distinction introduced above between abstract formulation of processes and their 

implementation reflects the distinction between algorithms and their displayed behaviour at 

running time. As behaviour is largely independent from text, it is a good candidate to be 

protected in order to defend software property rights (Samuelson et. al. 1994). Moreover, 

most of the arguments that are usually carried in front of the Court to prove a copyright 

infringement levers on the observational equivalence between the two involved pieces of 

software.  At the same time, there is no way of establishing, with a satisfiable level of 6

precision, the sameness of what has been called the “look and feel” of software (Samuelson 

et. al. 1994).  One way out of this impasse may be that of considering sameness of 

prescribed behaviours​, rather than of ​observed behaviours​. Prescribed behaviours are 

computations described by algorithms, i.e. what a machine running a program that 

implements an algorithm ​should ​do according to that program. Two algorithms are the same 

if and only if they prescribe the very same set of behaviours. Provided that any software LoA 

is a correct implementation of its upper LoA, the sameness of prescribed behaviours is 

inherited down throughout the cascade of abstraction levels. This means that any two 

high-level language programs P and Q prescribe the same set of behaviours if they 

implement the same algorithm A, independently of the high-level language chosen to 

implement A. And two machine-code programs X and Y prescribe the very same set of 

6 Samuelson ​et. al. ​(1994) offer many concrete examples of actual US lawsuit cases of this sort. 
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executions if they are two correct implementations of the same high-level language program 

P, independently of the architecture chosen for compiling P.  

The execution level is defined by observable behaviours and no further prescriptions are 

made, being the lowest LoA in the hierarchy. Even assuming that each LoA is a correct 

implementation of the upper levels, the sameness of prescribed behaviours may not result in 

a sameness of observed behaviours. This may be due to malfunctioning software (Floridi et 

al. 2015): a malfunctioning program which was developed as a copy of another program may 

nonetheless carry out some different executions. 

Hence, the crux of the problem appears to be the precise identification of algorithms and 

their implementations. Choosing algorithms as candidates for legal protection has given rise 

to a long debate on the patentability of algorithms (Samuelson 1990). Allen Newell (1985) 

highlighted some of the difficulties that are connected with the legal protection of algorithms. 

In particular, available models of what an algorithm is are of no help in determining whether 

algorithms can be identified with patentable processes. Newell starts with the definition of 

algorithms as step-by-step procedures for the solution of a specified class of problems;  as 7

such, algorithms could be patented. However, it is not uncommon to see, in the development 

of a given software, algorithms expressed in terms of informal and non-procedural 

specifications, leaving to the interpreter the duty of including the steps to be executed to 

implement the specified behaviour. And programs written in high-level programming 

languages can be considered algorithms themselves, which are nonetheless subject to yet 

another different form of legal protection, namely copyright. ​“Fixing the models is an 

important intellectual task” ​(Newell 1985, p. 1035) to understand whether algorithms can be 

the object of legal protection for software. Indeed, what algorithms are is an important 

question still to be answered (Hill 2016, Vardi 2012). ​“It is a job for lawyers and, importantly, 

theoretical computer scientists. It could also use some philosophers of computation, if we 

could ever grow some” ​(Newell 1985, p. 1035). 

The problem is conceptual: there are different readings of the term ‘algorithm’ denoting them 

(again) at different levels of abstraction. ​ ​The next section offers a model of the ontology of 

algorithms that aims at clarifying in which form they can be understood as candidates for 

legal protection​. 

7 Seemingly, this definition would exclude non-terminating procedures such as those characterizing 
reactive concurrent systems. It should be nonetheless noted that finite fragments of non-terminating 
procedures, and carrying out a specific computational task, do satisfy Newell’s starting definition of 
algorithms. 
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3. Algorithms as layered artefacts 

Most of the discussion on the eligibility of algorithms to legal protection for software 

ownership started with the famous 1972 Benson lawsuit case in the US. Benson submitted 

to the US patent office an algorithm for transforming binary coded numerals in pure binary 

numerals. The patent office denied granting patent to Benson’s algorithm and the Supreme 

Court agreed in stating that the converting algorithm is to be considered in the same manner 

as a set of mathematical statements. Here a first observation comes to the fore: under a 

certain interpretation, algorithms are manifestation of ideas, and as such are not patentable. 

Chisum (1986) criticised the Supreme Court decision on the Benson case arguing that a 

categorical mistake was made in failing to distinguish the mathematical problem, i.e. 

converting decimals to binary numerals, from the algorithm conceived to solve the problem. 

Algorithms are step-by-step effective methods which can be understood as processes and, 

as such, they can in fact be subject to patent protection.  

This divergence of views highlights the complex nature of algorithms, object of inquiry both 

in formal (Moschovakis 2001, Gurevich 2012) and in philosophical discussion (Hill 2016). 

This distinction has explicitly emerged in the debate under investigation, for example in 

Newell (1986) where more than one algorithmic level is identified in the definition of 

software. But a major limitation in the analysis of software protection is the understanding 

available to lawyers and lawmakers of the layered ontology of algorithms at the basis of 

software. In this section we review such issue. 

From the point of view of the software development process, a first high-level sense of the 

notion of algorithm is that of an ​informal description of an input/output relation​. For a 

standard example, consider the informal specification of a sorting algorithm in natural 

language: 

“Given an unordered list L, order each element and the successive one according to the 

less-than relation, and repeat the operation between pairs until you obtain an ordered list L' 

containing all and only the elements of L”​. 

Note how this specification for a program is not an algorithm from a technical point of view, 

as it does not describe precisely all procedural steps required to proceed with the ordering. 

When a process (to be realised algorithmically) is understood in this sense, it subsumes a 

denotational reading of processes: two distinct processes which denote the same 

Inupt/Output (I/O) relation are, to all effects and purposes, indistinguishable from each other 

at this level. Obviously, from a legal viewpoint this is highly unsatisfactory. One would want 
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to be able to identify when one instance of a common I/O relation has been formulated which 

is (not) original with respect to other existing ones.  In order to restore such a 8

characterization which reflects more closely the step-by-step nature of algorithms at lower 

LoAs, it is essential to focus on two important properties: linguistic formulation and 

implementation. Adding the former characteristic means to provide a structural or procedural 

way to instantiate those I/O relations in ways that allow to describe how the algorithm should 

be executed. This sense of the notion of algorithm corresponds to a ​procedural description in 

a given informal language​. ​Mergesort​, for example, will specify the input data type as a list, 

use a cardinality condition on the sorting process, specify what and how to merge the head 

and the tail of the list given as input through a recursive step: 

“Given an array of elements as input, divide it in two halves, and proceed dividing until the 

subarray is reduced to a single item. Then each subarray is by definition sorted (because it 

has only one element). Then take two sorted subarrays and start merging by respecting the 

less-than relation. Continue merging until all subarrays have been included and an order 

array obtained”​.  

This level of definition has the advantage of allowing to identify equivalence classes of 

algorithms: in this sense, two different procedures of the same I/O relation can be identified if 

they reflect distinct recursive constructs.  

It should be noted here that only algorithms intended as specifications or, at best,  as their 

linguistic constructions may fall under the common objection that, as being identifiable with 

ideas or mathematical statements, they cannot be subject to legal protection. Chisum’s 

(1986) contention that the definition of the computational problem should be clearly 

distinguished from the algorithm for the solution of the defined computational problem can be 

now addressed by further specifying the layered nature of algorithms. The way algorithms 

are classified is by their complexity properties, and while certain complexity measures can 

be already identified at the level of their (in)formal linguistic construction, essential 

algorithmic aspects require us to add the second characteristic mentioned above, namely 

implementation. The highest level at which implementation can be reflected is by considering 

algorithms as descriptions of the execution of a given program ​P​ on an abstract machine ​M 

for the process corresponding to an I/O relation. An abstract machine can be translated into 

a State Transition System (TS) defined by a set of states, state transitions, initial and final 

8 The general problem of determining whether a semantic property has a corresponding I/O procedure 
satisfying it is in general undecidable by Rice’s Theorem (Rice 1953). The current formulation is 
decidable, as it compares to an existing algorithm. 
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states. At this level, ​algorithms are implementations of mathematical statements by abstract 

machines​. The abstract machine implementation of a given algorithm​ specifies all the 

prescribed behaviours of any program implementing that algorithm. ​At this LoA, two 

algorithms as abstract machines A and B are the same algorithm if and only if they prescribe 

the very same set of computations.  Mergesort can, for example, be implemented by an 

abstract machine of  the following kind: 

Algorithm MergeSort(A)  

Input : true  

Output : (Permutation A) ∧ (A sorted)  

Method : if |A| > 1 then 

   B ← A[0..|A|/2];  

   C ← A[|A|/2..|A|];  

   MergeSort(B);  

   MergeSort(C);  

   Merge(A, B, C) 

As different machines can implement the MergeSort algorithm as a procedure, here the 

problem of legal protection seems to be addressable. Note that we did not reach yet the 

level of high-level programming language instructions executable by ​physical​ machines: 

abstract machines specify all the processes that any implementing physical machine is 

allowed to carry out, thereby satisfying the need of focusing on the system execution level. 

On the other hand, those processes are specified independently of any chosen high-level 

programming language instructions to be executed by the physical machines, thereby 

dodging the underlying problems associated with code protection. The abstract machine for 

MergeSort can, for example, be implemented by the following Java high-level language 

instructions: 

 

public static void mergeSort(int[] a, int n) { 

    if (n < 2) { 

        Return; 

    } 

    int mid = n / 2; 

    int[] l = new int[mid]; 

    int[] r = new int[n - mid]; 

    for (int i = 0; i < mid; i++) { 
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        l[i] = a[i]; 

    } 

    for (int i = mid; i < n; i++) { 

        r[i - mid] = a[i]; 

    } 

    mergeSort(l, mid); 

    mergeSort(r, n - mid);  

merge(a, l, r, mid, n - mid); 

}  

In conclusion, the ontological analysis of algorithms and their layers referred to in this 

section requires that algorithms be understood at three LoAs, distinguishing among: 

● Algorithms as specifications; 

● Algorithms as procedures; 

● Algorithms as abstract machines. 

If algorithms are themselves layered entities, the ontological analysis of software system into 

a hierarchy of LoAs, assumed in the philosophy of computer science and summarised in the 

previous section, is to be completed as follows: 

● Intention: at this level one reflects on and expresses the computational problem to be 

solved; 

● Algorithm 

- as a specification: at this level the set of requirements needed by the solution 

of the problem is specified in terms of an informal description of an 

input/output relation; 

- as a procedure: at this level a procedural description in a given informal 

language is provided that implements the input/output relation provided by the 

upper level; 

- as an abstract machine: at this level procedures are implemented as 

prescriptions​ of the executions of a given program ​P​ on a machine ​M​ for the 

process corresponding to an I/O relation;  
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● High-level programming language instructions: at this level the task resolution 

provided by the algorithm as an abstract machine is implemented in linguistic 

constructs for the chosen language; 

● Assembly/machine code operations: at this level the operations which need to be 

performed for the realization of the programming language instructions are 

implemented into the low-level constructs required by the hardware; 

● Execution: at this level, operations are physically implemented, e.i. executed by 

electrical charges, and thus ​observable​; the information flow on the hardware.  

The reformulation of the hierarchy of software LoAs just provided, on the one hand makes 

sense of Newell’s remark that the term ‘algorithm’ is polysemous and may refer to a variety 

of computational entities. On the other hand it allows one to distinguish unprotectable from 

protectable expressions of algorithms. Algorithms as specifications and algorithms as 

procedures, by being identifiable with ideas and mathematical statements, cannot be 

granted legal protection. Claiming ownership protection of the high-level language 

instructions, or even of the execution LoA, is limited by the difficulties discussed in the 

computer ethics literature recalled in the previous section.  

We argue that the algorithm as abstract machine is the only LoA at which legal protection is 

feasible, independently from the legal framework chosen for protection. We claim that such 

approach covers all properties in the software development process which should be 

covered by protection, including optimization properties of programs which can be expressed 

by refinement operations on abstract machines.  Protecting software property rights at the 9

abstract machine level allows one to take advantage of formal tools, such as process 

algebra, used in theoretical computer science to examine the formal relations holding 

between two or more distinct algorithms as abstract machines. Angius and Primiero (2018) 

provide a taxonomy of identity and copy relations between two software systems S and S' in 

terms of the formal relations holding between the abstract machines realized by S and S'. In 

particular a distinction is made among ​exact​, ​inexac​t and ​approximate​ copies, providing a 

formal analysis of the potential copy relations considered in (Samuelson et al 1994). This 

shows two decisive advantages of protecting algorithms as abstract machines: on the one 

9 For the translation of abstract machines into TSs, given a relation of equivalence over (initial and 
final) states, an abstract machine M' is called a correct refinement of an abstract machine M if and 
only if for each execution of M' there is an execution of M such that initial states of each are 
equivalent, there are reachable equivalent states, both executions terminate and their final states are 
the last pair of equivalent states; or both executions are infinite. 
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hand, they provide a fair solution to the methodological problem of establishing whether a 

software system S' is a copy of a system S, which we turn to analyse in the next section. On 

the other hand, distinguishing inexact and approximate copies from exact copies allows to 

address the ethical problem of establishing when, and to which extent, one is authorised to 

reuse protected algorithms as abstract machines in the development of distinct software 

systems. 

4. The methodological problem 

The debate on the software intellectual property rights almost unconditionally starts from the 

assumption of two software systems of which one is a copy of the other. But the difficulty of 

the methodological problem of establishing under which conditions this is the case, seems 

an underestimated issue (Samuelson 2016). This limitation appears even more troublesome 

if one considers that the notion of copy requires a qualitative and quantitative specification: 

on the one hand, one needs to understand what type of copy one is observing; on the other 

hand, for some of such types, it is crucial to know how much of a given system has been 

copied. This latter aspect is especially important: how many of the functionalities have been 

copied? Being able to answer this question means to offer a solution to the ​methodological 

problem, which in turn provides an additional argument in favour of the legal protection of 

algorithms as abstract machines. Let us consider what types of copy relations for two 

software systems S and S' can be identified as soon as one considers a functional analysis 

in terms of their abstract machines.  

According to the taxonomy of the copy relations provided in (Angius and Primiero 2018), the 

notion of exact copy​ ​captures the most common sense under which S' is a duplication, or 

replica (Carrara and Soavi 2010), of S. This is for example the case in which a piece of 

software is copied from one medium (say a flash drive) to another medium (such as a hard 

drive). At the algorithm as abstract machine LoA, S' is an exact copy of S in case S' 

prescribes the very same set of behaviours prescribed by S. Exact copies at the high-level 

programming language instructions LoA should be characterized by the very same code, 

that is, expressed in the same programming language. When considering the programming 

language LoA an implementation of the algorithm as abstract machine LoA, then it is 

possible to verify the exact copy relation also for different codes expressed in different 

languages, even pertaining to distinct programming paradigms. In other words: given two 

programs, one encoded using, say, a procedural high-level language and the other a 

functional language, if they are in an exact copy relation then they prescribe the very same 

set of behaviours. This is the case since, by being exact copies, they correctly implement the 
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same algorithm as abstract machine. At the execution LoA, S' is said to be an exact copy of 

S only in case S' is able to perform the same set of observable executions. Note however 

that the latter case can be induced even by structurally different programs. 

A weaker relation is instantiated by ​inexact copies. ​S' is an ​inexact copy ​of S if S' copies all 

the functionalities of S, but implements additional functionalities not realized by S. At the 

algorithm as abstract machine LoA, if the abstract machine for S is given by a set-theoretic 

structure like a TS, then the corresponding abstract machine for S' will be a superset of the 

abstract machine for S. In other words, states and transitions of the latter are in the set of 

states and allowed transitions of the former. Provided that lower LoAs of S and S' implement 

correctly the two algorithms as abstract machines, the inexact copy relation is inherited down 

throughout the abstraction hierarchy. In particular, if abstract machines for S and S' are 

implemented using the same high-level programming language the instruction set of S' 

contains the instruction set of S as a subset. In case implementations involve different 

high-level languages, even choosing different programming language paradigms, the two 

programs are in a inexact copy relations in that they correctly implement two algorithms as 

abstract machines which are in a inexact copy relation (and there must exist a translation 

between the different chosen languages). The same holds for the execution LoA: here S' is 

capable of executing all the behaviours of S together with a set of executions not executable 

by S.  

By contrast, when S' is an ​approximate copy​ of S, S' is said to copy only ​some ​of the 

functionalities of S, thereby allowing, for both S' and S, to have functionalities not 

implemented by the other system. At the algorithm as abstract machine LoA, this can be 

expressed by requiring that the intersection of the prescribed behaviour sets of S' and S is 

not empty. The programming language used to implement the two abstract machines in a 

set of instructions being or not the same, the two high-level instruction sets inherit the 

approximate copy relation. Observationally, the approximate copy relation is given by the 

fact that some executions characterise both S' and S while some executions are performed 

only by S' and some others only by S.   10

This paper takes the methodological problem in the software property rights debate to be the 

problem of establishing whether two different software systems, independently developed 

10 See (Angius and Primiero 2018) for the corresponding formal treatment of the exact, inexact, and 
approximate copy relations. 
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and released to the market, are in an exact, inexact, or approximate copy relation. Except 

the case of exact copies, this is far from being an easy task. 

A bitwise operation at the source code level may be able to reveal whether S' is an exact 

copy of S by comparing bit patterns of S' with bit patterns of S.  Nevertheless, bitwise 11

operations of this sort do not allow to evaluate whether S' is an exact copy of S in case the 

two systems are implemented within two different programming languages. Assuming that 

exact copies are characterized by observational equivalence of executions, one may argue 

that observers could detect whether two running systems are implementations of the same 

high-level language program. Again, observational equivalence is the kind of evidence that is 

usually carried in lawsuits regarding software copyright or patent infringements (Samuelson 

et. al. ​1994). However, the methodological limitations affecting observational equivalence, 

analysed in details below in this section, may prevent one from distinguishing exact, from 

inexact and approximate copies at the execution LoA. 

Even in case S' and S are encoded in the same high-level programming language, neither 

bitwise operation, nor observational equivalence, may be sufficient to evaluate whether S' is 

an inexact or an approximate copy of S. For the purpose of the present discussion, this 

means that the legal protection of the source code, or even of the software execution set, do 

not safeguard developers and owners from property rights infringements.  

Suppose that a bitwise operation brought to the conclusion that not all bit patterns of S' are 

bit patterns of S; in other words, S' contains additional code lines. This does not necessarily 

mean that S' is an inexact copy of S. To evaluate so, one has to show that the additional 

code lines in S' implement some additional function not realized by S. This can only be done 

by considering the abstract machines specifying the prescribed behaviours of S' and S.  

The problem is even more troublesome for approximate copies. In order to show that S' is an 

approximate copy of S after a bitwise operation ended with a negative answer, one has to 

ascertain whether the additional code lines of both S' and S implement some supplementary 

functionalities not implemented by the other system. Therefore, the methodological problem 

of establishing whether S' is an inexact or approximate copy of S, independently of the 

11 We are assuming to perform a bitwise operation at the source code level only and not also at 
machine code level since, assuming correctness of implementations, any result of a bitwise operation 
at the high-level language instruction set level is inherited at the assembly/machine operation code 
level but not ​vice versa​. Suppose a bitwise operation at the machine code level reveals that bit 
patterns are different. This does not imply that the source code is different. For instance, two copied 
and thereby identical high-level instruction sets result into different machine code operation sets in 
case different compiler implement the source codes into two different architectures. 
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high-level languages used for encoding, reduces to the problem of establishing the logical 

relations holding between the algorithms as abstract machines of S and S'. At the basis of 

such reduction is the choice of defining copy relations on the basis of prescribed behaviours. 

While the behavioural aspect of our analysis complies with the shared view, in computer 

ethics, that the software’s “look and feel” is what should determine whether a property right 

infringement occurred, one may argue that the execution LoA better fits to compare the “look 

and feel” aspect of software, that is, that observable behaviours should be compared.  

Comparing the executions of S' with those of S implies testing both systems. Accordingly, 

the methodological problem of evaluating whether S' is a copy of S at the execution level is 

constrained by the same impediments of the engineering practice of ​software testing 

(Ammann and Offutt 2016). In general terms, software testing is the practice of launching a 

program for a given interval of time to see whether the executed behaviours comply or do 

not comply with a given (set of) algorithm(s), expressed as specification, procedure, or 

abstract machine. In the latter case, software testing consists in evaluating whether 

observed behaviours match with prescribed behaviours.  

Determining whether S' is or is not a copy of S on an observational basis would require to 

observe S running and then testing S' against the observed behaviours of S. In other words, 

observed behaviours of S act as prescribed behaviours for testing S'. Evaluating whether S' 

is an exact copy of S turns out to be, in principle, the most difficult case. It implies testing 

whether all the executions of S are executions of S' and whether all the executions of S' are 

executions of S. However, it is a well-known fact that testing all the observable executions of 

a software system is not a feasible task: possible inputs of non-naive software are potentially 

infinite, testing embedded and reactive software being cases in point. This would require 

testing the two systems for an infinite interval of time (Ammann and Offutt 2016). Moreover, 

the path complexity of even minimally non-trivial system makes testing a limited source of 

certainty for software reliability (Symons and Horner 2014). Testing whether a given system 

executes a specified behaviour gives rise to a problem of enumerative induction and only 

probabilistic evaluations on the executable computations of a system are available through 

software testing (Angius 2014). Since, as it will be extensively shown in the last part of this 

section, decision methods for the exact copy relation are available at the algorithm as 

abstract machine level, it is preferable to avoid probabilistic methods to evaluate whether a 

property right infringement occurred. 

The same methodological problem arises when evaluating whether S' is an inexact copy of 

S, in that one needs to test all the executions of S to evaluate whether they are also 
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executions of S'. Things may be easier, but still not unproblematic, for the approximate copy 

relation. In this case one needs to test that a non empty set of executions of S are also 

executions of S'. Even though this may not constitute a property right infringement (see next 

section), it is formally sufficient, for S' to be an approximate copy of S, to test whether S' is 

able to perform at least one behaviour observed in the execution of S. Therefore the task 

reduces to test whether a given behavioural property of S is also a property of S'. The 

difficulty of such a task depends on the kind of behavioural property that is to be tested. 

Temporal properties, specifying that a defined state will eventually be reached or that a 

specified state will never be reached (or not reached), cannot be easily evaluated through 

testing (Ammann and Offutt 2016). The former often go under the name of ​liveness 

properties, when requiring that something good, like a final state, will eventually occur. The 

latter constitute the so-called ​safety ​properties, when specifying that something bad, such as 

a deadlock, won’t ever happen. Suppose one is testing a software against a given liveness 

property; observing a running program for a finite amount of time may reveal that the state 

has been reached. Assume now that the specified state was not reached during the testing 

time interval; this does not mean that the system will not eventually reach it. Again, 

ascertaining that would require running the program for an indefinite amount of time. 

This main drawback of software testing is often summarised with Dijkstra’s motto: “Program 

testing can be used to show the presence of bugs, but never to show their absence” (Dijkstra 

1970, p.7). In these cases, software engineers only test those executions that may reveal a 

violation of the behavioural property to be checked. For instance, a way out to test, say, a 

safety property is to keep on observing those executions that may violate the required 

property, such as executions going through the undesired state. Those executions are 

selected by considering ​models​ of the software system’s executions, which may take the 

forms of data flow graphs, boolean models, input domain models (see Ammann and Offutt 

2016), or even TSs for abstract machines (Callahan ​et al. ​1996). In case TSs are being 

used, paths violating the liveness property are isolated in the formal model and the software 

system is subsequently tested using inputs corresponding to the initial state of the selected 

paths.  12

Without going any further in the analysis of the software testing engineering practice, it can 

be concluded that testing whether S' is a copy of S is either infeasible (for exact and inexact 

12 A path from an initial to a final state of a TS is given as a set of states and a set of transitions such 
that each state holds a transition relation with its successor state. For a more detailed and formal 
epistemological analysis of the practice of using abstract machines to improve software testing see 
(Angius 2013). 

19 



copies) or it requires algorithms as abstract machines (for approximate copies). In the case 

of approximate copies, one should also be careful to notice that testing whether an execution 

performed by S is also allowed by S' may give rise to false negatives, in case of 

malfunctioning of S' with respect to such behaviour. Additionally, false positives may be 

given as well in case the same execution is performed as implementations of two different 

abstract machines. It follows that the algorithm as abstract machine alone expresses the 

feasible LoA for checking whether two software systems are in a copy relation and that 

prescribed, rather than observable, behaviours are those that ought to be legally protected. 

What follows highlights how also exact and inexact copies can be easily detected at the 

abstract machine level. 

Process algebra​ (Fokkink 2013) provides automatable means to check whether S' is an 

exact, inexact, or approximate copy of S by considering the logic relations holding among 

abstract machines. The formal definitions of the three copy relations in Angius and Primiero 

(2018) are given in terms of the process algebra notions of ​bisimulation​ and ​simulation 

between any pair of TSs for the involved abstract machines. Then the three relations of copy 

receive appropriate formal counterparts as follows: 

- The ​exact copy​ relation between two systems S' and S can be represented by the 

bisimulation relation ≡ holding between the transition system TS' for S' and TS for S. 

TS ≡ TS' holds iff TS' simulates all the behaviours of TS and TS simulates all 

behaviours of TS', that is, iff TS' prescribes all and only the behaviours prescribed by 

TS.   13

- The ​inexact copy​ relation can be represented by the process algebra relation of 

simulation​ ≤ holding between the copying TS' and the copied TS. TS ≤ TS' holds iff 

TS' simulates all the behaviours of TS, that is, iff TS' prescribes all, but not 

necessarily only, the behaviours prescribed by TS.  

- The ​approximate copy​ relation TS ≅ TS', according to which TS' prescribes at least 

one of the behaviours prescribed by TS, can be represented by a partial simulation 

relation ≤, requiring that TS be able to simulate at least one path in the simulation 

quotient system of TS'.   14

13 For the bisimulation relation TS ≡ TS​'​ to hold it is also required that TS and TS​'​ have the same 
branching structure.  
14 Informally, the simulation quotient system of TS​'​ is the set of paths of TS​'​ that TS​' itself​ can 
simulate. Since every state transition system simulates itself, the simulation quotient system of TS​'​ is 
tantamount to the set of paths of TS​'​. If TS simulates at least one path in the simulation quotient 

20 



Bisimulation equivalence and simulation preorder can be checked in polynomial time (Baier 

and Katoen 2008). Accordingly, addressing what has been called here the methodological 

problem at the algorithm as abstract machine LoA supplies one with automatable means to 

check, for any two pairs of software systems, whether one is a copy of the other without 

incurring the difficulties limiting the protection of the source code or of observed executions. 

Indeed, abstract machines model all the prescribed behaviours of any implementing 

high-level program and of any consequent implementing physical machine. On the one 

hand, by comparing abstract machines one is directly aware of whether two software 

systems realise the same set of computable functions or whether additional functionalities 

are included. On the other hand, by considering all the behaviours of a software system that 

are prescribed by its TS one is able to overcome the running-time constraints of testing. 

Additionally, checking for approximate copies at the algorithm as abstract machine level also 

allows to examine whether the copying and the copied systems share specified liveness and 

safety properties.   15

The distinction among, and the formal definition of, exact, inexact, and approximate copies 

put forward new questions for the computer ethics debate on software ownership protection. 

The ethical, and thereupon legal, problem of whether, and under which circumstances, 

copying violates property rights for software (Nissenbaum 1995), can now be more profitably 

examined as the problem of whether exact, inexact, and approximate copies constitute 

infringements of intellectual property rights.  

5. The ethical problem 

In order to understand when an infringement occurs for software, and therefore when legal 

protection is needed, we need to preliminary recall when intellectual property rights in 

general can be claimed.  

A “​rule-utilitarian​” argument is usually put forward by consequentialists to contend that both 

copying​ and ​reusability​ of programs should not be allowed (Moore 2008). Whereas 

permitting copying implies producing replicas in the exact copy relation sense provided in the 

previous section, favouring reusability means, especially in the object-oriented programming 

paradigm, allowing for objects and methods of those objects to be taken from one developed 

software and included into another development project. According to the ‘“rule-utilitarian” 

system of TS​'​, than TS​'​ and TS have at least one path in common, that is, they prescribe at least one 
common behaviour. 
15 Liveness and safety properties correspond to paths in the checked TSs and copies share such 
properties in case they simulate, among others, exactly those paths.  
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argument, copying and reusability harm the software industry in that the decrease in income 

of developers results in minor investments towards innovation with a consequent loss of 

social utility (Moore 2008, pp. 110-119). Two fallouts foreseen by consequentialists are a 

decrease in software production, and the following increase in prices (Barwise 1989). But it 

may also be the case that permitting copying and reusability would cause a decrease in the 

prices of software insofar as developers can take advantage of available free objects and 

codes. In other words, developing software in a non-proprietary regime would be 

economically less appealing for programmers, developers, and software companies. 

A deontological argument for intellectual property right is also formulated by levering on John 

Locke’s theory of property contained in the ​Second Treatise on Government​ (Locke 1690). 

According to Locke, property of physical objects can be morally claimed provided that  

(i) they are the result of one’s labour upon some natural good which, as such, belongs to the 

community, and that  

(ii) ​“there is enough and as good left for others”​ (Locke 1690, section 27), that is, when the 

ownership claim of a given object does not prevent others from acquiring other objects of the 

same kind.   16

Moore (2008) argues that Locke’s theory of property can be extended to intellectual objects 

in so far as condition (ii) is always satisfied: the ownership claim of an intellectual object 

does not prevent others from owing the very same object (pp. 119-128). Also, abstract 

entities are infinite and not limited by physical constraints, as it is the case for physical goods 

whose ownership claim, by their being finite, results in a diminishing of available resources.  

This becomes particularly evident if one considers the legal protection of the high-level 

programming language instructions. One is allowed, according to the Lockean justification 

argument, to claim ownership protection over a program’s code in that  

(i) the development of the program required the design and encoding human labour, and  

16 Intellectual property rights may also be defended following the “​personality-based​” argument 
contained in Hegel’s ​Philosophy of Right ​(Moore 2008, 2011). Hegel claims that individuals possess 
property rights over products of physical or intellectual labour in that those products are 
externalizations of the author’s personality, feelings, and other features of her subjectivity. As long as 
the Anglo-American accounts of property rights dominate the software property rights debate, the 
present discussion will focus on the consequentialist and deontologist arguments only. 
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(ii) nothing prevents others from developing a different program that nonetheless implements 

the same algorithm as specification.  

Exerting property rights over, say, a text editor is morally sound in that others may exert their 

rights over different developed text editors implementing different algorithms as abstract 

machines and data structures.  

Others, such as Gordon (1993) and Breakey (2010), contend that condition (ii) is not fully 

satisfied when applied to intellectual objects. Even though the legal protection of one 

conceived process or expressed idea does not prevent someone else from the community 

from envisioning different processes or expressions, new ideas often condition society and 

culture to the point that new ideas need somehow to rely on the previously introduced 

intellectual object. This contention is in line with the worries of some consequentialists who 

stress that protecting programs’ code or algorithms (usually as procedures) hinders software 

innovation in that it does not allow for the reusability of those portions of code (classes, 

objects, functional structures), or of the corresponding algorithms, that could be fruitfully 

included in different software developments (Samuelson ​et. al​. 1994). Released software 

often implements innovative algorithms for the solution of crucial computational problems, 

including safety-critical and computer security problems.  

Advocates of the free and open source software point at this problem as one of the main 

difficulties associated with software ownership, arguing that it is false that it results in higher 

innovations in the software industry. Quite to the contrary, giving property rights up allows for 

the liberal circulations of ideas and the consequent increase in software innovation, as it was 

at the beginning of the software era (Stallman 1985).  Rewards for programmers and 17

developers, they contend, may well come from governamental support, as it is done for other 

forms of intellectual labour, such as scientific research (Shavell and Ypersale 2001). 

Others claim that software innovation can still be fostered even in a proprietary software 

system in case the legal protection of software is somehow loosened (Koepsell 2003). Both 

Gordon (1993) and Breakey (2010) conclude that as long as condition (ii) in the Lockean 

property theory is not fully satisfied, a ​strong​ property right should not be granted for 

intellectual objects. And Nissenbaum (1995) agrees in saying that even though the legal 

17 Besides utilitarian arguments, free software promoters also advance “libertarian” and 
“communitarian” claims in supports of their thesis. Proprietary software denies the liberty of modifying 
source code thereby impeding users to interact with programs in the way they wish. Mostly, 
proprietary regulations prevent from sharing the code with the community, harming those who are in 
need (Rapaport J. 2018).  
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protection of software is morally justifiable under the Lockean property theory, prohibiting 

any form of copying dampens the software industry and some form of copying should 

therefore be allowed. In the computer ethics debate on software property rights, copy is 

often used as a synonym of duplication, that is, in the sense of exact copy introduced in its 

precise meaning above. This prevents from articulating such proposal into actionable 

principles. On the other hand, the distinction among exact, inexact, and approximate copies 

may allow one to do so, provided that algorithms as abstract machines define the LoA at 

which property rights are exerted. Indeed, as underlined in the previous section, neither the 

high-level language instruction set, nor the set of observed executions, permits to detect the 

three kinds of copy relations.  

Software ownership cannot be assured by protecting program executions, in that this would 

plainly fail to comply, on the other hand, with condition (ii) of the Lockean deontologist 

argument. Preventing executions from copying precludes the chance of developing a system 

that is able to perform the same observable behaviours but which implements different 

algorithms as abstract machines and uses different data structures. Granting legal protection 

of the observable behaviours of a text editor, for instance, implies denying the right to realize 

another text editor which does not exploit the design and encoding labor employed to 

develop the first editor. In Locke’s words, there would not be “enough and as good left for 

others”.   18

We have argued above that algorithms as specifications and algorithms as procedures 

cannot be object of ownership protection for the same reason ideas and mathematical 

statements are out of the scope of intellectual property right laws. We now stress how the 

algorithm as abstract machine is the only LoA that, besides avoiding the objections against 

the protectability of algorithms as specifications and as procedures, maximises the 

conditions put forward by both consequentialists and deontologists for software intellectual 

property rights protection.   19

First, algorithms as abstract machines do not need to be identified with any implementing 

high-level language program. Second, condition (ii) of the Lockean justification argument is 

18 It goes without saying that the intention, the algorithm as specification, and the algorithm as 
procedure LoAs, as being identified with cognitive processes and ideas, are not to be considered as 
the outcome of human labour, though they may well be creative processes. Accordingly, their legal 
protection would violate condition (i) of the Lockean justification of intellectual property. 
19 In the computer ethics debate, the rule-utilitarian argument and the Lockean justification are to be 
considered two distinct moral frameworks wherein to argue in favour, or against, software property 
rights. This section is highlighting that, despite the fact one is a consequentialist or a deontologist, she 
would find the algorithm as abstract machine level complying with her eligibility criteria for ownership 
protection.  
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satisfied: many different abstract machines can be built which implement the same algorithm 

as a specification but different algorithms as procedures. In other words, given an algorithm 

as a specification, that is, an informal description of an input/output relation, owning an 

algorithm as an abstract machine does not prevent others to develop a distinct abstract 

machine which satisfies the same input/output relation, together with other important 

properties including efficiency, but implementing a different algorithm as a procedure.   20

Furthermore, and most importantly, consequentialists and more in general those, like 

Gordon (1993) and Breaky (2010), who are worried about the denial of reusability of 

algorithms, may find the legal protection of abstract machines complying with their conditions 

under the following circumstances. Section 4 underlined how abstract machines allow for the 

formal definition of exact, inexact, and approximate copies in terms of process algebra 

relations holding between any couple of TSs representing those machines. Protecting 

algorithms as abstract machines does not dampen software innovation provided that 

approximate copies be authorized. Approximate copies permit the reusability of the 

simulated computational paths. Clearly, also admitting exact and inexact copying of released 

software does not impede other developers from taking advantage of any newly discovered 

solution to critical computational problems. Indeed, this is what is often promoted by 

advocates of free and open source software. However, allowing exact and inexact copies 

raises the objections of deontologists who claim that intellectual property would be violated 

in that one is exploiting the human labor involved in the development of the copied systems 

with no necessity: the same system could be indeed developed implementing different 

algorithms as abstract machines. 

Approximate copies may or may not violate intellectual property rights exerted on software. 

The definition of  TS' as an approximate copy of  TS when TS simulates at least one path in 

the simulation partitions of TS' allows for many systems of a given kind K to be approximate 

copies. A path in TS specifies a prescribed behaviour of the implementing software system; 

it is very likely that two systems of the same kind have at least one behaviour in common, 

especially when there are behaviours that can be modelled, at the abstract machine level, in 

very few ways. Consider, to give one simple example, two operating systems and the basic 

behaviours involved in the volume-up and volume-down operations to fine-tune the volume. 

20 For instance, the sorting algorithm as a specification defined in section 3 can be implemented in a 
varieties of algorithms as procedures and, in turn, in different algorithms as abstract machines. 
Besides the MergeSort​ ​procedure, abstract machines for the sorting specification can implement the 
Binary Tree Sort algorithm as a procedure, or the Tournament Sort Procedure, to give a couple of 
examples, which are nonetheless characterized by the same time complexity. 
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Approximate copies of this sort should not count as violations of property rights and may be 

considered as “​fair use​” of the copied abstract machines.  

It should be also noted that exact copies are approximate copy limit cases, in which the 

copied TS simulates all paths in the simulation partition of the copying TS. It should therefore 

be established a ​threshold of paths​ that an approximate copy is allowed to have in common 

with the copied system to count as a “fair use”, as it is done in the fair usage of copyrighted 

material, including written text or musical compositions, wherein one is allowed to quote a 

text or take a sample of a recorded song. On the one hand, approximate copies so 

understood do not violate intellectual property rights; on the other hand, they support the 

protection of ownership rights without hindering software innovation.  Functionalities of a 

software system correspond to paths in a TS; the opportunity to copy computational paths 

favours the reusability of some of those functionalities that are considered essential in the 

development of similar or different systems. Accordingly, allowing approximate copies to a 

specified extent defines when, and under which circumstances, protected algorithms as 

abstract machines can be reused in other software development projects. 

Not only approximate copies should be allowed, there are cases in which it should be 

requested for a software system S' of kind K to be an approximate copy of a system S of 

kind K taken as a model. Consider again software involved in safety-critical situations, such 

as traffic light controllers, nuclear plants, or robotic surgery systems. Safety and liveness 

properties play a crucial role in the developments of those systems in that they allow to 

specify, respectively, that something bad will not ever occur, or that something good will 

eventually occur. It may so be requested that, say, any software used in a nuclear plant 

should be an approximate copy of a model-software system with respect to selected paths 

successfully implementing safety and liveness properties of this sort.  

6. A Case Study 

A well-known case study appropriate to illustrate how the model proposed in this paper can 

be applied in the current legal landscape on software ownership is the dispute between 

Google and Oracle over the implementation of the Java Virtual Machine (JVM) Application 

Programming Interface (API) in the Dalvik VM for the Android Operating System (OS).  

Let us recall the steps of the dispute so far. The case focused on 37 packages of source 

code developed by Oracle America (and its predecessor Sun Microsystems) in the 

development of the JVM. During the development of the Android OS, Google and Oracle 

negotiations for the licensing of the Java libraries on the mobile OS failed on various 
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grounds, and Google decided to develop a new version of the VM called Dalvik. The 37 API 

calls in question and over 11k lines of code involved in the dispute were extracted from the 

open-source development of Java by the Apache Software Foundation. Subsequently 

Oracle (who had meanwhile acquired Sun) sued Google for both copyright and patent 

infringement, and damages. The copyright claim referred to the use of a specific function 

rangeCheck, several test files, and structure, sequence and organization (SSO) of the APIs.  

In 2012 a first verdict on the copyright phase established that using a different 

implementation method left anyone free to write code to carry out the same function or 

specification, and that identity of declaration or method header lines does not matter. In this 

first verdict the APIs were declared not copyrightable. The Appeals Court reversed this 

decision, on the basis of the claim that Oracle’s APIs were the result of creative and original 

work, and stressing in particular that the APIs SSO were copyrightable. The amount of literal 

copying was not considered minimal. A second trial in 2016 followed this appeal and the jury 

decided that the re-implementation of the APIs was protected by fair-use, in that 

re-implementation of the APIs was required to assure the interoperability of the Android OS. 

Oracle appealed and in 2017 the Appeals Court established that Google had performed not 

minimal, untrasformative reuse with respect not only to the literal ​verbatim​ copying, but in 

particular of the SSO of the APIs, and it was harmful of Sun/Oracle interests. 

The difficulty of finding a straight solution to this case is testimony to the different 

assessments of the level of abstraction at which the ruling should be performed. The first 

ruling, by declaring APIs not copyrightable, focuses on algorithms as specifications or 

informal descriptions of procedures which, as such, are considered not protectable by 

copyright. This analysis obviously dismisses the creativity and originality of the procedures 

developed by Sun/Oracle, which are highlighted by the Appeals Court instead. The principle 

applies not so much at the level of the high-level language instructions, where the ​verbatim 

copying was easy to assess, but rather at the level of the SSO of the product. This can be 

roughly identified with the algorithm as abstract machine LoA, i.e. the linguistic 

implementation of the algorithm as a procedure in a formal structure which is independent of 

the specifics of the programming language, but able to preserve the logical structure of the 

processes.  

Protecting the algorithms as abstract machines of the APIs, rather than any high-level 

program implementing them, prevents both ​verbatim​ copying and copying using different 

high-level programming language instructions implementing the same SSO. It prevents from 

literal copying in that the copied source code inherits the SSO of the copied high-level 
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language instructions. Most importantly, it prevents from non-literal copying, that is, from 

developing a different code for the same SSO. Google was found involved in both activities. 

In the case of the development of the Dalvik VM, non-literal copying was achieved through a 

reverse engineering ​of the JVM APIs. Reverse engineering in software development is the 

practice of identifying functions and data structure of a software system by only analysing 

the machine code operations and the execution LoA of that system, in order to develop a 

new system implementing those functions and structure. In other words, given a developed 

system S, reverse engineering of S aims at developing a system S' implementing the same 

functionalities of S, usually using a different high-level programming language, but without 

having access to the source code of S. Reverse engineering is often performed when one 

needs to develop software which be interoperable with respect to a system whose source 

code is protected under copyright law. Reverse engineering allows one to copy a software 

system without incurring in any literal copyright infringement. According to the analysis 

provided in this paper, reverse engineering should count as a property right infringement if 

the algorithm as abstract machine is the legally protected LoA. Indeed, one is developing a 

different high-level language instruction set which implements copied algorithms as abstract 

machines.  

From the methodological viewpoint it should be noted here that, had Google implemented 

the SSO only through reverse engineering and using a different high-level programming 

language, it would have been less obvious to identify the result as a copy, and only an 

expression of the SSO at the level of the abstract machine would have allowed the 

identification of the same processes. In terms of the exact/inexact/approximate distinction, 

the Dalvik VM  is to be considered as an inexact copy of the JVM in that it copied 37 

packages and over 11k lines of code, that is, it did not copied all functionalities of the JVM. 

An analysis of the SSO at the algorithm as abstract machine level may reveal the exact 

amount of computational paths that were copied, both through literal and non-literal copying. 

This, in turn, may allow to shed light on whether the reusability of functions claimed by 

Google counts as a fair use or not, as declared by the 2016 trial and subsequently 

disavowed by the Appeals court.  

Under the ethical framework provided in this paper, reverse engineering should not be 

allowed in that the functionalities of a software system S can well be replicated by a system 

P defined by a different design, i.e. characterised by different algorithms as abstract 

machines and data structure. However, in order for any software system Q​ ​to interact with 

both S and P, it may be required that P share some of S’s design. Indeed, the legitimacy of 
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reverse engineering is often claimed under the fair use clause in order to assure for the 

interoperability of the developed systems. However, while one needs to preserve the 

principle of the Copyright Act which allows reuse of a function, one also needs to preserve 

the creativity in its implementation, which the abstract machine implementation allows. 

Properties of reuse can be quantitatively and qualitatively assessed through an analysis at 

this LoA, namely by means of the number of copied paths in simulation partitions. As 

specified in the previous section, fair use can be better delimited by specifying a threshold of 

paths of a TS for an abstract machine that one is allowed to copy, thereby providing a clear 

demarcation of fair use from property rights infringement.  This would in turn permit to 

determine whether Google’s development of the Dalvik VM of the Android OS involved or 

not a fair usage of the 37 API packages from the JVM. 

7. Conclusions 

This paper aimed at contributing to the computer ethics debate on software ownership 

protection by showing how the analysis of property rights infringement poses ontological, 

methodological, and ethical problems that come prior to the legal discussion characterizing 

the ongoing debate. It has been stressed how the copyright/patent debate presupposes the 

ontological problem of identifying the computational LoA that better fits for legal protection. It 

has been argued that both the high-level language instructions and the execution LoA do not 

successfully allow one to define property rights infringements. While it is at the algorithm 

level that such assessment should be done, we have also provided an ontological analysis 

of algorithms to show how their hierarchical ontology requires to distinguish between 

algorithms as informal specifications, algorithms as (linguistically construed) procedures, and 

algorithms as (implementable) abstract machines. Whereas algorithms as specifications and 

as procedures can be identified with ideas and mathematical statements which, as such, are 

not eligible for legal protection, the algorithm as abstract machine level has been recognized 

as the software LoA to be chosen for property rights claims on a methodological and ethical 

basis. 

From a methodological point of view, only algorithms as abstract machines allow one to 

establish when a software system is a copy of a former system. Abstract machines permit to 

define exact, inexact, and approximate copies relations in terms of process algebra relations 

between TSs representing them; additionally, those relations can be checked algorithmically.  

From an ethical viewpoint, the algorithm as abstract machine LoA is the only one able to 

comply with the constraints put forward by both deontologists and consequentialists for 
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property right allowance. On the one hand, protecting software systems at this LoA does not 

prevent others from developing software systems of the same kind, that is implementing the 

same algorithms as specifications, but using different algorithms as abstract machines. On 

the other hand, admitting approximate copies of abstract machines allows for the free 

circulation of innovative algorithmic solution to critical computational problems. Software 

innovation and security is not jeopardised in this way. 

Two further steps are required for the present work to be translated into actionable 

principles. First, the opportunity of fostering software innovation and security, by favouring 

simulations of relevant computational paths, requires some logical work on the formalization 

of computer security properties. Here the task is defining what types of properties are 

preserved through approximate copies and under which logical constraints. 

Second, the ontological, methodological, and ethical conclusions reached by this paper 

should guide the debate on the legal schemes for software ownership protection. As 

highlighted in the introduction, the present analysis is orthogonal with respect to the 

patent/copyright debate. Indeed, the algorithm as abstract machine LoA may well be 

protected using both schemes. Abstract machines are patentable ​qua ​processes, namely as 

being descriptions of the executions of any high-level program implementing them. ​And 

abstract machines are also copyrightable in that they can be given as a ​textual description​ of 

the prescribed behaviours of any implementing high-level program, as done for the 

MergeSort abstract machine in section 3. We leave to jurists and policy makers the task of 

choosing any or both of the two schemes. 
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