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Using the paradigm of information backflow to characterize a non-Markovian evolution, we introduce so-
called precursors of non-Markovianity, i.e. necessary properties that the system and environment state must
exhibit at earlier times in order for an ensuing dynamics to be non-Markovian. In particular, we consider a quan-
titative framework to assess the role that established system-environment correlations together with changes in
environmental states play in an emerging non-Markovian dynamics. By defining the relevant contributions in
terms of the Bures distance, which is conveniently expressed by means of the quantum state fidelity, these quan-
tities are well defined and easily applicable to a wide range of physical settings. We exemplify this by studying
our precursors of non-Markovianity in discrete and continuous variable non-Markovian collision models.

I. INTRODUCTION

Open quantum systems provide the framework for describ-
ing how a system of interest interacts with its surroundings.
The ubiquity of this paradigm has led to a wide variety of
techniques to model, characterize, and exploit the manner in
which an environment affects a system’s evolution [1–4]. In
the context of open quantum systems, typically the system of
interest is much smaller than its environment and in this case,
if the coupling is weak, the dynamics of the system can be
well captured by a memoryless or Markovian evolution.

The failure of such an approximation in the presence of
strong coupling, structured reservoirs, or non-negligible sys-
tem effects on the environment, naturally leads us to ex-
plore dynamics with some form of memory. Dynamics of
this sort are typically referred to by the catch-all term non-
Markovianity and have been the subject of intense activity,
evidenced by the development of a range of techniques to sim-
ulate and characterize a wide range of non-Markovian dynam-
ics, see e.g. the recent reviews [5–9]. Indeed beyond being
a topic of interest in itself, recent work has shown that non-
Markovianity of the dynamics can provide an enhancement
in a diverse array of settings and tasks, including quantum-
metrology, quantum memories, information processing, and
thermodynamic cycles [10–16].

Despite the clear relevance of the field and its success in
showing potential applications, understanding the fundamen-
tal mechanisms and features that give rise to quantum non-
Markovianity remains a difficult task. Indeed the very foun-
dations of the theory are still the object of intense investi-
gations [17, 18], the reason for which is due to the fact that
different approaches to defining non-Markovianity have been
devised, whose relationship is currently under study [19–22].

In this work we attempt to underpin some fingerprints of a
non-Markovian evolution by considering precursors of non-
Markovianity, i.e. features of the system and environment
state at some time, s, that serve as necessary (but not suffi-
cient) indicators that the dynamics can show a non-Markovian
behavior at a later time t > s. These quantities can be in-
troduced in the framework of non-Markovianity described
as a backflow of information from the environment to the

system [6, 23]. In this picture, bounds can be introduced
that explicitly relate the behavior of a particular indicator
of non-Markovianity with the features of the joint system-
environment state [24, 25]. Precursors of non-Markovianity
provide necessary conditions for tracing revivals in a suitable
distinguishability quantifier back to a combination of estab-
lished system-environment correlations and changes in the en-
vironmental state. A significant limitation of the approach
is that it calls for evaluation of features of both the system
and the total environment, which is generally too demand-
ing a task, and as such investigations along these lines have
rarely been considered [26–28]. However, it has been shown
that when the environment can be described as a collection of
individual subsystems, often only a small subset of the total
environmental degrees of freedom plays a significant role in
driving the evolution [29, 30]. By relying on the Bures dis-
tance and considering collision models of open quantum sys-
tem dynamics [31–34], where the environment is modelled
by an ensemble of individual ancillae with which the system
sequentially interacts, we are able to introduce and study a hi-
erarchy of precursors of non-Markovianity for systems in both
discrete and continuous variable settings. Our work paves the
way for considering the relevance of such precursors in a vari-
ety of settings which allow for the systematic introduction of
environmental degrees of freedom, e.g. within the framework
of reaction coordinate models or chain mappings [35–41].

The remainder of the paper is organized as follows. In
Sec. II we define the precursors of non-Markovianity, and in
particular the bound, Eq. (2), that is central to our analysis.
In Sec. III we apply our framework to both discrete and con-
tinuous variable collision models, and qualitatively compare
and contrast the emergence of non-Markovianity in the dis-
parate dimensional systems. Finally, in Sec. IV we draw our
conclusions.

II. PRECURSORS OF NON-MARKOVIANITY

In a seminal work, the non-Markovianity of a reduced quan-
tum dynamics has been introduced as an indicator of informa-
tion backflow from the environment to the system [23]. In or-
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der to detect and estimate this backflow a distance on the state
space, namely the so-called trace distance, has been consid-
ered. Apart from a normalization factor, this distance, given
for any pair of states ρ and σ by

D(ρ, σ) =
1
2
‖ρ − σ‖1,

corresponds to the natural topology on the state space and has
two basic features, which makes it suitable as an estimator of
information backflow: (i) it is directly related to a notion of
distinguishability among states; (ii) it is a contraction under
the action of positive, and in particular completely positive,
trace preserving maps. Consequently, it has been possible to
consider the evolution in time of the trace distance between
two evolved distinct initial states ρ1

S (0) and ρ2
S (0) as an indi-

cator of non-Markovianity, associated to revivals in time of
the corresponding trace distance

D(ρ1
S (t), ρ2

S (t)) − D(ρ1
S (s), ρ2

S (s)) > 0,

for some t > s and a pair ρ1
S (0) and ρ2

S (0), as detailed for ex-
ample in Ref. [6]. Revivals in the trace distance correspond to
revivals in distinguishability, i.e. the capability to ascertain the
actual initial state by performing measurements on the system
only. The information backflow associated to these revivals
has been traced back to the establishment of correlations be-
tween system and environment as well as to changes in the
state of the environment.

This notion of information backflow can be formalized as
follows. Let us identify the total amount of information at
time t as the distinguishability of the states of both system
and environment

Itot(t) = D(ρ1
S E(t), ρ2

S E(t)).

This quantity is a constant and can be naturally written as
the sum of two contributions referring to the information
that can be obtained by performing local measurements only,
namely Iint(t) = D(ρ1

S (t), ρ2
S (t)), and to the residual informa-

tion which can only be accessed measuring also the environ-
ment Iext(t) = D(ρ1

S E(t), ρ2
S E(t)) − D(ρ1

S (t), ρ2
S (t)). While their

sum is a constant, i.e.

d
dt
Itot(t) =

d
dt

(Iint(t) + Iext(t)) = 0,

nevertheless revivals in the internal information can take
place, such that Iint(t) > Iint(s) for t > s, and they are in-
terpreted as information backflow. This interpretation is sub-
stantiated by the following inequality

D(ρ1
S (t), ρ2

S (t)) − D(ρ1
S (s), ρ2

S (s)) 6 D(ρ1
E(s), ρ2

E(s))

+ D(ρ1
S E(s), ρ1

S (s) ⊗ ρ1
E(s)) + D(ρ2

S E(s), ρ2
S (s) ⊗ ρ2

E(s)), (1)

valid for arbitrary t> s, thus extending previous seminal work
on the study of initial correlations [24, 25]. It appears that to
have a local revival of the trace distance at a time t greater
than s, that is a positive contribution on the l.h.s., at least one
of the contributions on the r.h.s., referring to time s, has to be

positive. In this respect such quantities act as precursors of
non-Markovianity, in that their positivity at time s is a neces-
sary, but not sufficient, condition in order to have a larger trace
distance at a later time t. Let us further remark that in the case
in which the environment is not affected by the system and
no correlations are established, corresponding to a perfectly
Markovian dynamics, the r.h.s. of the bound is strictly zero,
thus forbidding any revival of distinguishability. Evaluation of
Eq. (1) is however quite demanding since it calls for the calcu-
lation of the trace distance between both system and environ-
ment states, where the latter is in general high-dimensional.
Indeed, even the evaluation of the trace distance for the sys-
tem is a difficult task if one considers higher, possibly infinite,
dimensional systems. To overcome these difficulties we will
consider a different quantifier of the distinguishability among
states and build on the structure of the environment in order to
obtain alternative bounds, which still provide necessary con-
ditions for the revivals in distinguishability without calling for
measurements on both the system and the whole environment.

In order to consider arbitrary dimensional systems it is nat-
ural to introduce as a distance on the state space the so-called
Bures distance [42, 43]

B(ρ, σ) =
√

2(1 − F(ρ, σ)),

where F(ρ, σ) = Tr
√
√
ρσ
√
ρ denotes fidelity which is read-

ily computable for both finite dimensional and Gaussian con-
tinuous variable systems [44, 45]. The Bures distance is in-
deed a metric on the state space, thus satisfying in particular
the triangular inequality, and since it is defined in terms of the
fidelity, it is a contraction under the action of completely pos-
itive trace preserving maps. These properties together with
subadditivity with respect to the tensor product allow to re-
produce the inequality Eq. (1) in the form

B(ρ1
S (t), ρ2

S (t)) − B(ρ1
S (s), ρ2

S (s)) 6 B(ρ1
E(s), ρ2

E(s))

+ B(ρ1
S E(s), ρ1

S (s) ⊗ ρ1
E(s)) + B(ρ2

S E(s), ρ2
S (s) ⊗ ρ2

E(s)), (2)

while retaining its physical interpretation. In this formula-
tion we are, however, still bound to the evaluation of the Bu-
res distance involving all system and environment degrees of
freedom, which remains a very difficult task.

We now observe that for the case in which the environment
exhibits a natural structuring in terms of constituent subunits
(ancillae), as is the case in collision models [33, 34], we can
construct a hierarchy of environmental marginals by taking
the partial trace with respect to a growing number of environ-
mental ancillae. Exploiting the fact that the partial trace is
indeed a completely positive trace preserving transformation,
supposing the environment to be composed of N ancillae we
have the following chain of bounds for the quantifier of corre-
lations

B(TrE1,...,Ek+1 ρ
1
S E(s),TrE1,...,Ek+1 (ρ1

S (s) ⊗ ρ1
E(s))) 6

B(TrE1,...,Ek ρ
1
S E(s),TrE1,...,Ek (ρ

1
S (s) ⊗ ρ1

E(s))). (3)

For k = 0 we recover the original upper bound
B(ρ1

S E(s), ρ1
S (s) ⊗ ρ1

E(s)), while for k = N we have the triv-
ial bound B(ρ1

S (s), ρ1
S (s)) = 0. Similarly, for the difference in



3

environmental states we have

B(TrE1,...,Ek+1 ρ
1
E(s),TrE1,...,Ek+1 ρ

2
E(s)) 6

B(TrE1,...,Ek ρ
1
E(s),TrE1,...,Ek ρ

2
E(s)). (4)

Thus, it immediately appears that the different terms at the
r.h.s. of Eq. (2) can be lower bounded by a whole hierarchy
of positive quantities obtained by replacing the environmen-
tal states with suitable marginals obtained by tracing out dif-
ferent ancillae. In such a way one can obtain precursors of
non-Markovianity which can be more easily evaluated. It is
important to stress however that all of these quantities provide
lower bounds for the r.h.s., corresponding to quantities which
are increasingly easier to evaluate. In this respect, while strict
positivity of either of these quantities provides a necessary
condition for revivals of Bures distance between distinct pair
of initial system states, lower bounding the r.h.s. might lead
to a violation of the bound Eq. (2), in the sense that the lower
bound for the r.h.s. of Eq. (2) is no longer an upper bound to
the l.h.s. On the other hand, as we will show in the collision
framework in Sec. III, it turns out that even the simplest ap-
proximation can already lead to a very good estimate of Bures
distance revivals. Indeed as shown in Sec. III C, in the col-
lision model framework it appears that already the “minimal
approximation” for the environment, treated as being a single
ancilla, actually provides quite reasonable bounds, indicating
that the contributions arising from the system interacting with
this particular ancilla are the most relevant ones for character-
izing the dynamics. This is complementary to Ref. [30] from
which we know that the incoming single ancilla is the only
really relevant player in dictating the non-Markovianity of the
evolution in the corresponding collision model.

We remark that our choice of the Bures distance over other
metrics goes beyond its comparative computational simplic-
ity and applicability to infinite dimensional settings already
mentioned. The crucial property that any candidate distin-
guishability measure must have is to be a contraction under the
action of completely positive trace preserving maps. While
this condition is met for the Bures and trace distances, other
norms, such as the Hilbert-Schmidt norm, fail to satisfy it [46]
and thus make them unsuitable choices. Moreover, in order
to explicitly relate the bounds to physically meaningful no-
tions, i.e. the established system-environment correlations or
environmental changes, one requires a norm so as to exploit
the triangular inequality. This requirement therefore rules out
quantifiers such as the relative entropy. For these reasons the
Bures distance emerges as the most natural metric for the task
at hand.

III. APPLICATION TO A COLLISION MODEL

Let us begin by outlining the basic collision model frame-
work [30, 33, 34, 47–52] which provides a versatile tool for
exploring the emergence of non-Markovianity and, due to
their construction, serves as the ideal testbed for studying the
precursors of non-Markovianity captured in Eq. (2) by ex-
ploiting Eqs. (3) and (4). Following Refs. [30, 47], the en-

vironment is composed of an array of individual ancillae, Ei,
initially factorized and all with the same initial state. The time
evolution is discretized such that at “time-step” n the system,
S , collides with ancilla, En, after which we retain all correla-
tions established by this system-ancilla (SA) interaction while
En subsequently collides with En+1. At this point we can trace
out the degrees of freedom associated with En, after which we
begin time-step n + 1 where the system collides with En+1 and
so on. Due to the intra-environment ancilla-ancilla (AA) col-
lisions, i.e. En-En+1, S may already share some correlations
with En+1 before they interact [30, 47]. Furthermore, due to
the AA collision the incoming state of the ancilla, En+1, that
the system interacts with is not typically its initialized state.
Thus, the collision model provides a natural setting to ex-
plore non-Markovianity arising due to both the establishment
of correlations between system and environment together with
changes in the state of the environment, as discussed in Sec. II
and captured succinctly by Eq. (2).

As shown in Ref. [30], when we restrict to only nearest
neighbor AA interactions this corresponds to a memory depth
of one and is termed “first-order Markovian” since we need
only concern ourselves with keeping track of the system and
one additional ancilla to faithfully simulate of the dynamics.
Thus, the evolution follows as

ρS E1E2 (0) = ρS (0) ⊗ ρE1 (0) ⊗ ρE2 (0)

ρS E1E2 (1) = UE1E2US E1

(
ρS E1E2 (0)

)
U
†

S E1
U
†

E1E2
(5)

ρS E2E3 (2) = UE2E3US E2

(
TrE1

[
ρS E1E2 (1)

]
⊗ ρE3 (0)

)
U
†

S E2
U
†

E2E3

...

where ρEi (0) denotes the initial ancilla state. We exactly re-
cover the standard evolution according to the Markovian mas-
ter equation when there are no AA collisions, under the con-
dition that the unitary U is an energy preserving exchange
interaction and all constituents have the same free Hamilto-
nian terms [47, 53]. Despite the framework is independent of
the dimensionality of system and ancilla, most studies restrict
to the discrete variable qubit states [30, 47–49], with only a
few exceptions [50]. Therefore in this work, we are inter-
ested in examining any effect that dimensionality may have
on the properties of the non-Markovian dynamics, and on the
precursors of non-Markovianity, by comparing and contrast-
ing when system and ancilla are discrete variable (DV) qubits
with when they are continuous variable (CV) Gaussian states.

When considering the DV case the interaction will be given
by the energy preserving partial swap operation

UDV ≡ S(θ) = cos θ11 + i sin θSWAP, (6)

with

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (7)

We will allow for a generic pure, real initial state of the sys-
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tem, written in the ordered basis {|0〉 , |1〉},

ρS (0) =

(
α2 α

√
1 − α2

α
√

1 − α2 1 − α2

)
. (8)

For the CV setting we will assume that SA collisions are de-
scribed by a beamsplitter

UCV-SA(θ) =


cos θ 0 sin θ 0

0 cos θ 0 sin θ
− sin θ 0 cos θ 0

0 − sin θ 0 cos θ

 , (9)

whereas AA collisions are defined by

UCV-AA(θ) =


sin θ 0 cos θ 0

0 sin θ 0 cos θ
− cos θ 0 sin θ 0

0 − cos θ 0 sin θ

 .
We observe that UCV-AA(θ) = UCV-SA(θ − π/2): the beam
splitter implementing the AA interaction has reflectivity and
transmittivity inverted w.r.t. the beam splitter realizing the SA
interaction. This corresponds to the shift of a phase factor
from the second environmental mode to the first one and al-
lows to avoid a “jagged” behaviour of the covariance matrix
phases (see [50]). We will consider thermal squeezed initial
states for the system with covariance matrices given by

σS (0) =
1 + 2n̄

2

(
cosh 2r + sinh 2r sinh 2r

sinh 2r cosh 2r − sinh 2r

)
. (10)

In what follows we will initialize all environmental ancil-
lae in their ground, respectively vacuum, state for both the
DV and CV settings and we will fix the SA (AA) interaction
strengths, Eqs. (6) and (9), for both the DV and CV cases to
be θ = 0.05 π

2 (θ = 0.9 π
2 ). The energy preserving nature of the

interaction ensures that the steady-state of system is driven to
is exactly the initial state of one of the environmental ancillae,
i.e. ρEi (0).

A. Discrete Variable case

For the DV setting we fix the initial state of all ancillae to be
ρEi (0)= |0〉〈0| and, in order to evaluate Eq. (2), we consider the
two initial system states to be ρ1

S (0)= |1〉〈1| and ρ2
S (0)= |0〉〈0|.

Since ρ2
S (0) is already the steady state of the dynamics, no evo-

lution takes place. This simplifies our evaluation of the vari-
ous components entering into Eq. (2) since the third term on
the r.h.s. will be identically zero. Nevertheless we can analyze
the non-Markovian dynamics arising in this picture as shown
in Fig. 1. Panel (a) shows the l.h.s of Eq. (2), which accounts
only for changes in the system states. As noted previously,
we can associate positive values of this quantity with a back-
flow of information to the environment and therefore periods
of non-Markovianity. These periods of non-Markovianity are
captured within the dashed, magenta contours. Consider first
fixing s = 0, we see from the ensuing evolution in t that the

(a)

(b)

B!ΡE1, ΡE2"

B!ΡSE1, ΡS " ΡE1"

0 20 40 60 80 100s0.0

0.2

0.4

0.6

0.8

1.0

(c)

FIG. 1. Discrete variable (DV) qubit results. We choose as initial
system states ρ1

S = |1〉〈1| and ρ2
S = |0〉〈0| and all ancillae are initial-

ized in their ground state. (a) l.h.s of Eq. (2). The thick, dashed,
magenta contour delineates when this quantity is zero. Regions con-
tained within this contour (hotter colours) correspond to revivals and
therefore regions of non-Markovianity. (b) rhs of Eq. (2). The bot-
tom, red curve corresponds to the first term related to the changes in
the environmental state and the top, blue curve is the correlation like
term. (c) Combined visualization of the previous panels. The gray
plane is at zero.

l.h.s of Eq. (2) remains negative for all t > s, corresponding
to the absence of initial correlations. In contrast, if we con-
sider larger values of s we observe that for t > s revivals can
appear. We can clearly see that there is a natural periodicity in
these revivals when we witness regions of non-Markovianity
in terms of the “reference-time” s. Furthermore, we see the



5

magnitude of the revivals diminishes as s increases, which is
to be expected since the state of the system is always driven
towards the steady state ρEi (0).

We can understand these features by examining our precur-
sors of non-Markovianity. Turning our attention to Fig. 1 (b)
we consider the r.h.s of Eq. (2) where, by exploiting the hier-
archy of bounds in Eqs. (3) and (4), we approximate the en-
vironment to be a single ancilla, which for a given step is the
state of En+1, i.e. the state of the incoming ancilla after both
the SA and AA collisions have taken place. We see that the
contributions entering Eq. (2) behave qualitatively the same.
In particular, focusing on the extremal behaviours we clearly
see that when the contributions are largest for a given s, this
corresponds precisely to when the strongest non-Markovian
revivals are present in the l.h.s of Eq. (2) for some t > s. We
further put this behavior into evidence in panel (c) where we
combine the data from the preceding panels.

From these results we can conclude that in the DV case
the contributing factors leading to a non-Markovian evolution
appear equally important. We can clearly see from panel (c)
that large revivals in the l.h.s of Eq. (2) are associated with
both significant amounts of established correlations between
system and incoming ancilla and with significant changes to
the incoming ancilla state from its initial configuration.

B. Gaussian continuous variable case

While considerably less well studied, the case of CV col-
lision models provides an interesting platform for the realiza-
tion and study of non-Markovianity, particularly in light of the
remarkable advances in the manipulation of CV systems for
simulating open quantum system dynamics [54–56]. Inline
with the DV analysis, we initialize all ancillary modes in the
vacuum state. In order to evaluate Eq. (2), we again require
two initial system states. Similarly to the previous analysis
we fix ρ2

S to be the vacuum state such that no dynamics will
occur in this case, thus simplifying the evaluation of Eq. (2)
since the third term will again be identically zero. At variance
with the DV case, we cannot readily initialize our system in a
state orthogonal to ρ2

S . However, we can consider a strongly
squeezed vacuum state, setting n̄ = 0 and r = 0.5 in Eq. (10),
which is sufficient for our purposes.

In Fig. 2 (a) we evaluate the l.h.s of Eq. (2). Immediately
we can note that there are a number of qualitative similari-
ties with the DV setting. In particular, the clear periodicity
in the emergence of regions of non-Markovianity and the de-
creasing amplitude of the revivals for increasing s. However,
in contrast with the DV case, we now see that there are spe-
cial values of s which correspond to continual periods of non-
Markovianity. For the considered parameters, fixing s to 20,
60, or 100 collisions we see that the ensuing dynamics is al-
ways non-Markovian, while for s equal to 0, 40, or 80 the
dynamics is always Markovian. Such a behavior is notably
different to the DV case where periods of non-Markovianity
are always followed by at least a short period of Markovian-
ity, regardless of the value of s.

This behavior is captured by Fig. 2 (b) where we show the

(a)

(b)

B!ΡE1, ΡE2" B!ΡSE1, ΡS " ΡE1"

20 40 60 80 100s
0.1
0.2
0.3
0.4
0.5

(c)

FIG. 2. Continuous variable (CV) Gaussian results. For initial sys-
tem states we fix n̄ = 0 and r = 0.5 in Eq. (10) for S 1 while we fix
S 2 to be the vacuum state. All ancillae are initialized in the vacuum
state. (a) l.h.s of Eq. (2). The thick, dashed, magenta contour de-
lineates when this quantity is zero. Regions contained within this
contour (hot colours) correspond to revivals and therefore regions of
non-Markovianity. (b) r.h.s of Eq. (2). The red curve corresponds to
the first term related to the changes in the environmental state and the
blue curve is the correlation like term. (c) Combined visualization of
the previous panels. The gray plane is at zero.

contributions from the r.h.s of Eq. (2). In contrast with the
DV case, we now see that the term capturing correlations and
the term encompassing environmental changes contribute in a
strikingly different manner. In particular, the correlations es-
tablished between the system and the environment have dou-
ble the period compared with the changes in the incoming
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(a)
(ρ ρ ⊗ρ )

(ρ ρ )
(b)

B!ΡSE1 , ΡS "ΡE1"

B!ΡE1, ΡE2"

20 40 60 80 100n
0.1
0.2
0.3
0.4
0.5

5 10 15 20
0.35
0.40
0.45
0.50
0.55

FIG. 3. We show the r.h.s of Eq. (2) for progressively more accurate
approximations of the environment. (a) DV case where we consider
up to 4 ancillae in the evaluation of the bound [from bottom to top].
(b) CV case where we approximate the environment as one [lower,
solid curves] or two [upper, dashed curves] ancillae in the calculation
of the bound. In both panels the insets show a representative zoomed
in region, showing the small contribution that storing these additional
environmental degrees of freedom provide.

environmental state. This has consequences when we exam-
ine the apparent causes of the most non-Markovian regions of
Fig. 2 (a). For the considered parameters, when s=20 we find
that for t > s, the l.h.s of Eq. (2) achieves its largest revivals.
This corresponds to when the first term on the r.h.s. of Eq. (2),
related to the change in the incoming environmental state, is at
its maximum, while the second term related to the correlations
shared between the system and environment is zero.

A qualitatively similar behavior to the DV case can be seen
considering a “reference-time” s for which the contributions
entering into the r.h.s of Eq. (2) are large and comparable in
magnitude. We again further put into evidence the relation
between the precursors of non-Markovianity and the ensuing
non-Markovian dynamics in in panel (c).

C. Validity of the Environmental-Size Approximation

In the preceding analyses, to evaluate Eq. (2) we made the
rather strong assumption that only a single environment an-
cilla was needed. In particular, we assumed that the incoming
ancilla encapsulated all the relevant information to determine
the bounds. Here we consider a more careful analysis of the
validity of this approximation. To this end we simply examine

how the various quantities on the r.h.s of Eq. (2) are affected
when more environmental degrees of freedom are kept dur-
ing the simulation. It should be noted that since all quantities
are positive, the minimal values observed for only a single an-
cilla approximation for the environment have already proven
to be remarkably good bounds. Indeed, examining Figs. 1
and 2 we see that even with such an extreme approximation
we achieve meaningful and insightful bounds. Furthermore
as shown in Ref. [30], since we know that the dynamics are
unaffected by storing more ancillae (and their associated cor-
relations) beyond the memory depth, one might expect that the
approximated bounds studied previously are robust. In Fig. 3
we show that this is indeed the case. The inclusion of more
environmental ancillae has only a small effect on the values
of the various contributions entering into the r.h.s of Eq. (2).
Here we see that the consideration of additional environmen-
tal degrees of freedom that are no longer playing an active role
in dictating the dynamics of the system provide only a mi-
nor contribution to the precursors of non-Markovianity. The
seemingly small contribution of these additional correlations
can be understood due to the fact that, despite not playing a
role in the dynamics, all previously interacted with ancillae
share some correlation with the system throughout the entire
dynamics [30]. While these correlations appear to be small,
they still provide a non-zero contribution to the bounds. These
contributions persist until the the system has fully equilibrated
with the environment, which corresponds to when the system
reaches a factorized state with the environment [57].

D. Non-Markovianity in discrete versus continuous variable
models

We have established that while DV and CV settings share
several qualitative features, there are notable differences aris-
ing. In particular, with regards to the precursors of non-
Markovianity we have seen that the various contributions be-
have quite differently in the two disparate dimensional set-
tings. We can gain a better understanding of the differences
between the two settings by considering how close the sys-
tem gets to the steady state during the dynamics. In Fig. 4 the
lighter, colored curves show the fidelity between the system
when it is initialized in ρ1

S with the steady state ρEi (0), while
the black curves show the fidelity of the incoming ancilla with
ρEi (0). In panel (a) for the DV case we see that the system
slowly approaches the steady state, while the incoming ancilla
periodically approaches close to its initial state. In contrast,
for the CV case in panel (b) we see that the system transients
the steady state repeatedly during the dynamics, and similarly
the incoming ancilla also periodically returns precisely to its
initial state, despite the AA collisions having taken place.

The different behavior of the precursors of non-
Markovianity between our considered settings also leads to
a final interesting difference. As shown in Ref. [47], a weaker
form of non-Markovianity can still be witnessed in the DV
collision model if, after the SA collision, the correlations
shared between system and ancilla are erased before the AA
interaction takes place. In order to see a non-Markovian dy-
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FIG. 4. Lighter, colored curves show the fidelity between the system
state S 1 and the steady state. The black curves show the fidelity be-
tween the incoming environmental ancilla En+1 and a “clean” ancilla.
(a) Discrete variable case. (b) Continuous variable case.

namics however, the initial state of the system must have some
coherence, e.g. the system should be initialized in |+〉 and/or
|−〉. Interestingly, if we consider the same correlation erasure
scheme in the CV case, we find that the dynamics is always
Markovian, even for strongly squeezed initial system states.

We remark that, while we presented results referring to
zero-temperature environment here, the behaviours described
above remain qualitatively the same for different environmen-
tal temperatures and different initial states of the system and
of the incoming ancillae.

IV. CONCLUSIONS

The description of non-Markovianity of quantum dynam-
ics being due to an information backflow between system and
environment leads us to identify the establishment of system-
environment correlations and changes in the state of the envi-
ronment as sources of non-Markovian behavior. In the trace
distance approach to non-Markovianity, a bound can be intro-
duced to relate revivals of distinguishability to such changes.
We have reformulated this bound in terms of the Bures dis-
tance, which is based on the quantum state fidelity. This al-

lows to assess a greater range of physical systems since the
fidelity is comparatively easier to compute than the trace dis-
tance, in particular when one wishes to consider infinite di-
mensional systems. Revivals in the l.h.s of the bound, indicat-
ing periods of non-Markovianity, can be understood in terms
of different contributions due to system-environment corre-
lations and changes in the environmental state at an earlier
time, thus establishing the r.h.s of the bound as capturing pre-
cursors of non-Markovianity. We have shown that the evalu-
ation of these precursors of non-Markovianity can be simpli-
fied when the environment can be decomposed into smaller
constituent parts, thus leading to a strategy of general appli-
cability. This is possible by considering a hierarchy of lower
bounds to the bound in Bures distance revivals set by the over-
all amount of established correlations and changes in environ-
mental state. Such lower bounds can be considered whenever
the environment exhibits a natural partition within its Hilbert
space. We applied this framework to a collision model, where
we explored both discrete variable (DV) and continuous vari-
able (CV) settings. Exploiting the considered bound we es-
tablished that the causes of non-Markovianity in such a colli-
sion model showed some qualitative differences between the
two disparate dimensional settings, in particular while in the
DV case the various contributions to non-Markovianity be-
haved largely the same, we found that the precursors of non-
Markovianity exhibited quite a different behavior in the CV
setting. While our results were based on zero-temperature en-
vironments, we stress that the same features persist for finite
temperature environments and for other choices of initial sys-
tem states. Our results provide a useful tool for studying the
causes of a non-Markovian evolution based on readily com-
putable quantities. Furthermore, we believe our analysis is
one of the first to comparatively assess the effect that dimen-
sionality can have on the ensuing non-Markovian character of
a given evolution.
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