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Abstract: Cell migration is a critical process that is highly involved with normal and pathological
conditions such as angiogenesis and wound healing. Important members of the RHO GTPase family
are capable of controlling cytoskeleton conformation and altering motility characteristics of cells.
There is a well-known relationship between small GTPases and the PI3K/AKT pathway. Endothelial
cell migration can lead to angiogenesis, which is highly linked to wound healing processes. Phenolics,
flavonoids, and anthocyanins are major groups of phytochemicals and are abundant in many
natural products. Their antioxidant, antimicrobial, anti-inflammatory, antidiabetic, angiogenenic,
neuroprotective, hepatoprotective, and cardioprotective properties have been extensively documented.
This comprehensive review focuses on the in vitro and in vivo role of berry extracts and single
anthocyanin and phenolic acid compounds on cell migration and angiogenesis. We aim to summarize
the most recent published studies focusing on the experimental model, type of berry extract, source,
dose/concentration and overall effect(s) of berry extracts, anthocyanins, and phenolic acids on the
above processes.

Keywords: cell migration; angiogenesis; anthocyanins; phenolic acids; berries; extracts; polyphenols;
HUVECs

1. Introduction

1.1. Cell Migration

One fundamental process common to cell morphogenesis, immune function, regeneration, and
disease is cell migration [1,2]. Cellular crosstalk exists during migration which allows for collective
cell movement in the same direction and at a similar speed [1]. Chemotaxis, haptotaxis, and
mechanotaxis are the three major mechanisms that are utilized by endothelial cells during migration
and angiogenesis [2,3]. Growth factors, i.e., vascular endothelial growth factor (VEGF), cytokines,
and high blood glucose, induce cell migration [2]. Additionally, the production of NO from eNOS,
activated by AKT/PKB plays a significant role in endothelial cell migration [3].

Early studies demonstrate the importance of small G proteins on cell motility [4–7]. During cell
migration, the cell establishes a front-to-rear polarity axis involving small GTPases including RHOA,
RAC and CDC42, members of the Rho family and RAC is involved in the formation of lamellipodia at
the leading edge of migrating cells [4]. At the rear, RHOA promotes actin–myosin contraction and is
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required during focal adhesions while CDC42 is not directly involved in cell migration/movement but
is essential for cell polarity that controls the direction of cell movement [4].

Promotion of cell migration is crucial in processes such as wound healing and tissue
regeneration/renewal associated with burns, diabetes mellitus, ischemic conditions, and aging. However,
in many chronic diseases such as atherosclerosis, tumor growth, and various fibrotic conditions, excessive
cell migration results in enhanced invasion of cells across an extracellular matrix [3].

1.2. Angiogenesis

In cardiovascular biology there are three different types of blood vessel formation (angiogenesis,
arteriogenesis, and vasculogenesis) [8]. The formation of blood vessels from pre-existing ones is
known as angiogenesis, a highly complex and coordinated process [9,10]. Arteriogenesis is the de
novo formation of blood vessels [11,12]; vasculogenesis is the in situ formation of blood vessels from
vascular progenitor cells and circulating endothelial progenitor cells (EPCs) [13,14]. All three processes
are subcategories of neovascularization that can occur in adults when there is a state of ischemia [8].
Angiogenesis is a normal biological process that starts in the early stages of biological development [15].
Normally angiogenesis is active after birth, and in adulthood it occurs during the ovarian cycle, in
pregnancy [15], and during wound healing and repair [16]. A member of the AGC kinases, AKT kinase,
plays a key role in angiogenesis [17]. Upstream regulators of AKT in the cardiovascular system are
platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epithelial growth
factor (EGF), and basic fibroblast growth factor (bFGF) [17–19]. Secretion of VEGF can be stimulated
by AKT through the AKT-PI3K pathway [20–22] and AKT can directly phosphorylate eNOS which
plays a major role in angiogenesis and vascular permeability [23].

Control of angiogenesis can be a therapeutic tool during chronic diseases (cardiovascular disease,
tumor growth, diabetic angiopathy, ischemic conditions), wound healing, tissue regeneration and
remodeling, where the balance of blood vessel formation is controlled by pro-and anti-angiogenic
factors [24]. Even though a plethora of angiogenic factors have been reported, the primary pathway
that modulates angiogenesis is initiated mainly from hypoxia-inducible factor (HIF)-1α expression [8].
Nearly four decades ago, it was hypothesized that inhibition of angiogenesis could be a modality to
treat human cancer effectively [25]. Clinical trials have documented promising results that inhibition
of angiogenesis can be an important target for cancer and other diseases [25]. Therapeutic promotion
of angiogenesis can also play a significant role in diseases such as ischemic disorders [26], tissue
remodeling [27], and wound healing [28–30]. Chronic diseases such as diabetes mellitus lead to
impaired wound healing, a result of unbalanced angiogenesis due to ischemia in the extremities [28–30].
A better understanding of molecular pathways involved in angiogenesis is critical [25].

Recent evidence documents the important pro- and/or antiangiogenic role of phytochemicals
(polyphenols) on angiogenesis [31] and their role in chronic diseases [32–35]. Studies have focused
on the HIF autoregulated vascular growth factor (VEGF) gene expression as well as the targeted
therapeutic delivery of phytochemical compounds to tissues [36].

1.3. Phytochemicals

Epidemiologic, clinical, and experimental studies have documented that the consumption of
nutraceutical products have health-promoting effects. Bioactive compounds (BACs) are essential and
non-essential nutrients that naturally occur in nature, particularly in plants and plant products [37].
Phytochemicals are identified as plant products that are non-essential BAC. These compounds are
secondary metabolites that play an essential role in the plant’s reproduction, growth, protective
mechanisms, odor, taste, and color [38]. The plant’s composition of these phytochemicals differs
depending on the plant type, light intensity, maturity, storage, climate, and soil conditions. Collectively
there are more than 10,000 identified compounds but still a large percentage remains unknown [39].

Major classes of these chemical structures are carotenoids, phenolics, alkaloids, nitrogen-containing
and organosulfur compounds [39]. Polyphenols are the largest group of phytochemicals and are
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classified by the arrangement of the carbon atoms and their substituents [40]. They contain a benzene
ring, a carboxylic group, and one or more hydroxyl and/or methoxyl group [41] and are divided into
two major groups; flavonoids and non-flavonoids [40,42]. They are further divided into 16 classes
based on their carbon chain [41]. Non-flavonoids consist of phenolic acids, stilbenes, coumarins, and
tannins. Flavonoids consist of a variety of classes including flavonols, flavones, flavanols, flavanones,
isoflavonoids, and anthocyanins [43].

Flavonoids are the most studied group of polyphenolic compounds, that are characterized by
their benzo-γ-prone structure [44]. They are naturally found in teas, fruits, vegetables, seeds, and
nuts, with small amounts in red wine, coffee, and cocoa [45]. Flavonols have a 3-hydroxyflavone
skeleton found most abundant in onions, leafy vegetables, broccoli, and berries [46]. Flavones have a
2-phenylchromen-4-one backbone, found in cereals and herbs [47]. The richest source of flavanols is
cocoa and tea, with a 2-phenyl-3, 4-dihydro-2 H-chromen-3-ol skeleton [48]. Flavanones are highly
present in citrus plants [49]. Isoflavonoids possess a 3-phenylchroman backbone, with the highest
content found in soya and legumes [50].

Anthocyanins are the glycosylated version of flavylium (2-phenylchromenylium), which is found
more frequently in the 3-OH position [51]. They are the largest group of water-soluble molecules
contributing to the bright pigment of berry fruit [52]. Scientists have reported over 500 different
anthocyanins isolated from plant products [51]. The most abundant anthocyanins are: pelargonidin
(Pg-3-glc), cyanidin (Cy-3-glc), peonidin (Pn-3-glc), delphinidin (Dp-3-glc), petunidin (Pt-3-glc), and
malvidin (Mv-3-glc) [51,53,54]. Anthocyanins are highly reactive molecules and are very sensitive to
many factors such as light, temperature, oxygen, enzymes, and pH [51].

An individual on average can consume 180–215 mg/day of anthocyanins [55,56]. However,
anthocyanins are not highly bioavailable resulting in low concentrations of native forms in the blood
and they are excreted in the urine within 2–8 h [52,57,58]. Absorption of anthocyanins and other
flavonoids takes place rapidly in the stomach and the small intestine [53,59]. Bilitranslocase is an
enzyme involved in this process [59] and acts as a flavonoid membrane transporter [60]. After entering
the circulatory system, they pass through the liver before reaching target organs [53]. Anthocyanins
that are not absorbed within 15 min–2 h, are exposed to gut microbiota mainly in the colon [53].

Phenolic acids are a subcategory of phenolics that are divided in two major groups, hydroxybenzoic
acids and hydroxycinnamic acids. Phenolic acids are characterized by hydroxylated aromatic rings [61].
Hydroxybenzoic acids are mainly found in complex structures such as lignin, while hydroxycinnamic
acids are found in cell wall structure components [62]. Limited information is available regarding
phenolic acid metabolism in the human body after consumption [63]. It is suggested that phenolic acids
are metabolized quickly after consumption and undergo conjugation reactions after absorption from
the gastrointestinal tract [62]. These conjugate forms have been documented to alter the bioavailability
of the initial structure [62].

Berry fruits contain an abundance of anthocyanin and phenolic acid compounds. Due to their
favorable aroma and taste, they are common in the human diet. In the United States, commonly
consumed berries are blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry,
each with a unique polyphenolic profile [52].

An abundance of research demonstrates that polyphenols have a wide range of biological effects,
including antioxidant, antimicrobial, anti-inflammatory, antidiabetic, angiogenenic, neuroprotective,
hepatoprotective, and cardioprotective properties [42,63–67]. These compounds individually or in
combination may be responsible for their protective effects such as delaying the aging process and
reducing the risk of chronic diseases and cancers [68]. As mentioned earlier, their beneficial effects
and targeted tissue delivery is of great interest for further investigation associated with their pro- or
anti-angiogenic potential [31].

In this review, we focused on the in vitro and in vivo studies using berry extracts and single
anthocyanin and phenolic acid compounds and their role on cell migration and angiogenesis (Tables 1
and 2). PubMed (www.ncbi.nlm.nih.gov/pubmed) and Web of Science (www.webofknowledge.com)

www.ncbi.nlm.nih.gov/pubmed
www.webofknowledge.com
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databases were screened for studies published in English between 2000–January 2019 excluding cancer
cell models and applications. Various combinations of several key terms were used: (phytochemical
OR polyphenols OR anthocyanins OR phenolic acids OR fruit OR berries OR berry extracts) AND
(angiogenesis OR neovascularization OR arteriogenesis OR cell migration).

2. Endothelial Cell Migration and Angiogenesis: Role of Anthocyanins

Table 1 presents the role of berry anthocyanin extracts or single compounds on cell migration
and angiogenesis in vivo and in vitro. Martin et al. [69], exposed bovine aortic endothelial cells
(BAECs) with commercially obtained delphinidin (10−2 g/L) and demonstrated that delphinidin exerted
antiproliferative characteristics. Similarly, Lamy et al. [70] studied the effects of commercially obtained
delphinidin (25 µM) on HUVECs and documented inhibition of vessel (tube) formation, antiangiogenic
activity, and inhibition of VEGF-induced migration [70]. Furthermore, HUVEC and pulmonary aortic
smooth muscle cells (PASMCs) treated with commercially obtained delphinidin (25 µM), inhibited
activation of the platelet-derived growth factor receptor β [71]. In other studies, HUVECs were exposed
to 10−2 g/L delphinidin in the presence or absence of proangiogenic factor VEGF [72]. In the presence
of VEGF, delphinidin-treated HUVECs were unable to promote mitochondrial biogenesis and activate
the Akt pathway [72].

In 2010, Matsunaga et al. [73] treated HUVECs with commercially obtained delphinidin, cyanidin,
and malvidin (0.3, 1, 3, and 10 µM). Exposure of HUVECs to all three compounds individually,
resulted in an equal inhibition of VEGF-induced angiogenesis [73]. In other experiments, HUVEC and
human dermal microvascular endothelial cells (HMVECs) were treated with 5, 10, 15, 10, or 25 µM of
each apigenin, delphinidin, ellagic acid or luteolin respectively [74]. Each compound inhibited cell
migration in the presence of IL-6. The role of apigenin and luteolin on proliferation and migration
may be mediated through JAK/STAT3 and MAPK signaling pathways [74]. Commercially obtained
quercetin (0.1, 1, 10, 25, and 50 µM/L) treated HUVECs, suppressed inflammatory angiogenesis via the
attenuation of stimulated COX-2 expression, prostanoid production, and MMP-9 release [75]. Similarly,
quercetin (50, 100, and 200 µM) inhibited the development of intersegmental vessel, dorsa aorta, and
posterior cardinal vein in a transgenic zebrafish model [76]. In addition, quercetin effectively inhibited
HUVEC migration, proliferation, and tube formation [76].

Son et al. [77] treated aortic smooth muscle cells (HASMCs) and HUVECs with commercially
available pelargonidin and pelargonidin-3-glucoside (10, 20, and 40 µM) and demonstrated that
pelargonidin but not its glucoside conjugated form, pelargonidin-3-glucoside, exhibited strong
inhibitory effects of HASMC proliferation and migration. Further investigation with an aortic
ring-sprouting assay, documented that pelargonidin significantly reduced PDGF-BB-induced aortic
sprouting [77]. However, pelargonidin did not have inhibitory effects on the proliferation and
migration of HUVECs [77]. A similar study treated HASMCs with individual commercial compounds,
petunidin, delphinidin, cyanidin, pelargonidin, malvidin, and peonidin [78]. The six anthocyanins
demonstrated antiangiogenetic characteristics with petunidin exhibiting the strongest inhibitory effect
on HASMCs during cell migration [78]. In general, single anthocyanins potentially inhibit cell migration
and angiogenesis in HUVEC and MUVEC cell culture models at concentrations from 0.1–200 µM,
depending on cell type.

An ex vivo study evaluated the effects of the anthocyanin cyanidin-3-O-b-glucoside commercial
compound on cell adhesion, cell migration, and tube formation [79]. Zhang et al. [79] isolated
endothelial progenitor cells (EPCs) from blood and bone marrow of both nondiabetic and diabetic
apoE-/- mice. The diabetic mice were fed the AIN-93 diet, or an AIN-93 diet supplemented with
cyanidin-3-O-b-glucoside (0.2 % (wt/wt)) for six weeks. Cyanidin-3-O-b-glucoside improved cell
adhesion and cell migration indicating beneficial effects of anthocyanins. Moreover, tube formation was
normalized compared to the diabetic mice without the cyanidin-3-O-b-glucoside supplementation [79].

Treatment with both crude extracts (0.075% (w/v)) of black raspberries inhibited angiogenic
initiation and vessel growth in the human placental vein angiogenesis model (HPVAM) [80].
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Anthocyanin extracts (0.3, 1, 3, 10, and 30 µM) from bilberry inhibited angiogenesis both in vitro
(HUVECs) and in vivo (C57BL/6 mice) by the reduction in cell proliferation and migration through
inhibition of p-ERK 1/2 and p-Akt [81]. Similarly, dietary supplementation of a bilberry anthocyanin-rich
extract (0.02%) attenuated atherosclerotic lesion development in apolipoprotein E-deficient (apoE-/-)
mice [82]. After a two-week treatment period, nutrigenomic analysis identified that 1261 genes were
modulated by the bilberry extract in the isolated aorta. Bioinformatic analysis revealed that these genes
are implicated in different cellular processes such as oxidative stress, inflammation, trans-endothelial
migration, and angiogenesis processes associated with atherosclerosis development/protection [82].

Five rabbit-eye blueberry varieties (Centurion, Maru, Rahi, Ono, Tifblue) were used to extract
anthocyanin and chlorogenic acid [83]. The anthocyanin extracts demonstrated anti-angiogenic
properties in the Chicken Chorioallantoic Membrane (CAM) assay [83]. Bae et al. [84] investigated
the in vitro and in vivo anti-angiogenetic activity of ethanol extracts of Korean crowberry. Extract
concentrations of 31.3, 62.5, 125, 250, and 500 µg/mL used inhibited angiogenesis in HUVECs by
hindering tube formation and cell proliferation. Additionally, the ethanol extracts of Korean crowberry
suppressed angiogenetic activity in vivo using the CAM assay [84].

Recently, Tsakiroglou et al. [85] exposed HUVECs to an anthocyanin fraction extracted from wild
blueberry powder with the following concentrations 0.002, 8, 15, 60, and 120 µg/mL. The improved
wound healing assay was used to evaluate the effect of anthocyanins on endothelial cell migration.
Anthocyanins at 60 µg/mL were found to inhibit endothelial cell migration affecting not only the speed
of migrating cells but also expression levels of critical gene encoding molecules important for cell
movement and cytoskeletal arrangement and adhering junctions [85].

Thus, single anthocyanins as well as anthocyanin-rich fractions from several berry extracts
potentially inhibit cell migration and angiogenesis in vitro, in vivo, and ex vivo, having implications
for diseases that benefit from inhibition of cell migration and angiogenesis.

Table 1. Role of anthocyanins on cell migration and angiogenesis.

Reference Model Fraction(s) Source Concentration Overall Effect

Martin, S., (2003)
[69] BAECS Delphinidin

chloride
Commercially

obtained 10−2 g/L Anti-angiogenesis

Lamy, S., et al.
(2006) [70] HUVECs Delphinidin Commercially

obtained 25 µM Anti-angiogenesis

Lamy, S. et al.
(2008) [71]

HUVECs
PASMCs

Cyanidin,
delphinidin,

pelargonidin,
and petunidin

Commercially
obtained 25 µM Anti-angiogenesis

Duluc, L., et al.
(2014) [72] HUVECs Delphinidin Commercially

obtained 10−2 g/L Anti-angiogenesis

Matsunaga, N.,
et al. (2010) [73] HUVECs

Delphinidin,
cyanidin, and

malvidin

Commercially
obtained 0.3, 1, 3 and 10 µM Anti-angiogenesis

Lamy, S., et al.
(2012) [74]

HUVECs
HMVECs

Apigenin,
delphinidin,

ellagic acid, and
luteolin

Commercially
obtained

5, 10, 15, 20 and
25 µM Anti-angiogenesis

Scodittie, E., et al.
(2012) [75] HUVEC Quercetin Commercially

obtained
0.1, 1, 10, 25 and

50 µMol/L Anti-angiogenesis

Zhao, D., et al.
(2014) [76]

HUVEC
Transgenic
zebrafish
embryos

Quercetin Commercially
obtained 50, 100 and 200 µM Anti-angiogenesis

Son, J., et al.
(2014) [77]

HASMCs
HUVECs

Pelargonidin
chloride and

pelargonidin-3-
glucoside
chloride

Commercially
obtained 10, 20 and 40 µM Anti-angiogenesis
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Table 1. Cont.

Reference Model Fraction(s) Source Concentration Overall Effect

Son, J., et al.
(2014) [78]

HASMCs
Sprague-

Dawley Rats

Petunidin,
Delphinidin,

Cyanidin,
Pelargonidin,
Malvidin, and

Peonidn

Commercially
obtained

2.5, 5, 10, 20 and
40 µM Anti-angiogenesis

Zhang, Y., et al.
(2013) [79]

apoE-/-

Mouse Model

Cyanidin-3-O-
b-glucoside

(C3G)

Commercially
obtained 0.2% (w/w) Pro-angiogenesis

Liu, Z., et al.
(2005) [80] HPVAM Crude Extract

Frozen whole
black

raspberries
0.075% (w/v) Anti-angiogenesis

Matsunaga, N.,
et al. (2010) [81]

C57BL/6 Mice
HUVECs Anthocyanins Bilberry 0.3, 1, 3, 10 and

30 µM Anti-angiogenesis

Mauray, A., et al.
(2012) [82]

apoE-/-
Mouse Model Anthocyanins Bilberry

Diet supplemented
with 0.02% of

Bilberry
Anti-angiogenesis

Vuthijumnonk, J.,
et al. (2015) [83] CAM Anthocyanins Rabbit-eye

Blueberry
30 µL from 180 mL

crude extract Anti-angiogenesis

Bae, K., et al.
(2016) [84]

HUVEC
CAM Ethanol Extract Crowberry

31.3, 62.5, 125, 250
and 500 µg/mL
25, 50, 100 and

200 µg

Anti-angiogenesis

Tsakiroglou, P.
et al., (2019) [85]

HUVEC
Ibidi wound
healing assay

Anthocyanin
extract

Wild
blueberry

0.002, 8, 15, 60 and
120 µg/mL Anti-angiogenesis

BAECs: Bovine aortic endothelial cells, HUVECs: Human umbilical vein endothelial cells; PASMCs: pulmonary
aortic smooth muscle cells; HMVECs: Human microvascular endothelial cells; HASMCs: Human aortic smooth
muscle cells; HPVAM: Human placental vein angiogenesis model; CAM: Chick Chorioallantoic Membrane.

3. Endothelial Cell Migration and Angiogenesis: Role of Phenolic Acids

Scant and conflicting evidence exists on the role of phenolic acids on cell migration and angiogenesis.
Studies conducted with individual phenolic acids as well as berry extracts are presented below.

An in vitro study treated HUVECs with chlorogenic acid (10 µM) [86]. Chlorogenic acid
significantly inhibited hypoxia-induced network formation by inducing endothelial cells to form shorter
and broken tubes and reduced mobility of hypoxia-induced HUVECs. Additionally, chlorogenic acid
was able to significantly inhibit cell invasion due to hypoxic conditions [86]. However, commercially
obtained ferulic acid (10−6–10−4 M), classified under the same polyphenol family as chlorogenic acid,
induced cell migration and tube formation of HUVECs [87] by upregulating VEGF and PDGF pathways.
In other experiments (ferulic acid 10−6–10−5 M) resulted in increased percentage of neovascularization
utilizing the CAM assay [87]. Commercially obtained p-coumaric acid (0.5, and 1.0 mM) though,
suppressed sprouting of endothelial cells in rat aortic rings and inhibited tube formation and migration
of ECV304 cells [88].

Total phenolics were extracted from red raspberries and the extracts at various concentrations 10,
25, 50, or 100 µg GAE/mL were introduced to HMVECs. Results documented that the total phenolic
extract (GI50 = 87.64 ± 6.59 GAE/mL) of red raspberries reduced cell viability and proliferation in a
dose-dependent manner [89].

Chlorogenic acid extracts from five rabbit-eye blueberry varieties (30 µL from 180 mL crude
extract) correlated with antioxidant activity but not with anti-angiogenesis properties [83]. The same
study used anthocyanin extracts that resulted in anti-angiogenetic characteristics, suggesting that
angiogenic activity depends on the type of phytochemical and not on total antioxidant activity.

A recent study, utilizing an in vitro wound healing assay documented increased speed of
endothelial cell migration when HUVECs were treated with a phenolic acid extract from wild
blueberries, primarily containing chlorogenic acid at specific concentrations (0.002, 8, 15, 60, and
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120µg/mL). Concentrations of 0.002, 60, and 120µg/mL documented to significantly increase endothelial
cell migration compared to untreated cells. Moreover, the phenolic acid fraction increased markers
(RHOA and RAC1) critical for cell migration and cytoskeletal reformation not only at gene level but at
protein level as well [85].

Thus, the above studies have observed both anti- and proangiogenic properties of phenolic acids,
either as individual compounds or as extracts with the possible involvement of VEGF, PDGF, and
HIF-1a signaling pathways.

Table 2. Role of phenolic acids on cell migration and angiogenesis.

Reference Model Fraction(s) Source Concentration Overall Effect

Park, J., et al.
(2015) [86] HUVECs Chlorogenic Acid Commercially

obtained 2 and 10 µM Anti-angiogenesis

Lin, C.M., et al.
(2010) [87]

HUVECs
CAM Ferulic acid Commercially

obtained
(10−6–10−4 M)
(10−6–10−5 M)

Pro-angiogenesis

Kong, C., et al.
(2013) [88]

ECV304 cells
Sprague-

Dawley Rats
p-Coumaric Acid Commercially

obtained 0.5 and 1 mM Anti-angiogenesis

Sousa, M., et al.
(2016) [89] HMVECs Total Phenolic

Extract
Red

Raspberries
10, 25, 50 and

100 µg GAE/mL Anti-angiogenesis

Vuthijumnonk,
J., et al.

(2015) [83]
CAM Chlorogenic Acid Rabbit-eye

Blueberry
30 µL from 180 mL

crude extract Pro-angiogenesis

Tsakiroglou, P.,
et al., (2019) [85]

HUVEC
Ibidi wound
healing assay

Phenolic acid
fraction

Wild
blueberry

0.002, 8, 15, 60 and
120 µg/mL Pro-angiogenesis

HUVECs: Human umbilical vein endothelial cells; HMVECs: Human microvascular endothelial cells; CAM: Chick
Chorioallantoic Membrane.

4. Conclusions

We conclude that the majority of studies document the anti-angiogenic role of anthocyanins, but
results are mixed on the role of phenolic acids on cell migration and angiogenesis and the signaling
pathways they modulate as they relate to chronic disease. The contradicting results may be attributed
to the use of different types of phenolics and combinations, concentration ranges, their respective
metabolites, and use of extracts versus single compounds. Additional factors may be the use of single
cell types or co-cultures, the length of exposure and sampling at different exposure times, stimulated or
unstimulated cell cultures, and type of stimulation. For in vivo studies, the type of animal model used
and the disease state targeted may also contribute to the conflicting results. This calls for scientific
collaboration in the use of common extracts and/or bioactive compounds as well as similar experimental
design and protocols to make valid conclusions. Future studies should also target signaling pathways
and molecules associated with cell migration and angiogenesis to reveal the mechanisms by which the
above phytochemicals confer their differential action. Additionally, the potential and efficacy of berry
bioactive compounds for targeted cell delivery associated with chronic diseases and health conditions
should be explored.
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