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Master equations are typically adopted to describe the dynamics of open quantum systems. Such
equations are either in integro-differential or in time-local form, with the latter class more frequently
adopted due to the simpler numerical methods developed to obtain the corresponding solution. Here
we show that any time-local master equation with positive rates in the generator, i.e. any CP-
divisible quantum process, admits a microscopic model whose reduced dynamics is well described
by the given equation.

Introduction. In the theory of open quantum systems,
master equations are widely adopted to describe the re-
duced dynamics. Such equations are typically derived
from the full system-environment evolution via projec-
tion operator techniques, once an average over the envi-
ronmental degrees of freedom is performed, and can be
divided in two categories: integro-differential and time-
local equations, respectively called Nakajima-Zwanzig
and time-convolutionless master equations [1–6]. Re-
cently, various results have been obtained for the char-
acterization of memory kernels leading to well-defined
integro-differential quantum evolution equations [7–12],
also pointing to connection with microscopic models
[13, 14]. However, the numerical implementation of
integro-differential equations remains quite demanding
[15, 16], so that time-convolutionless master equations
often provide a more convenient approach. Moreover, in
recent years such master equations also attracted a lot
of interest because of their wide use in studying quan-
tum non-Markovianity [17–19]. In fact, if one consid-
ers master equations with the same operator structure
as the so-called Gorini-Kossakowski-Sudarshan-Lindblad
generator [20, 21], which warrants hermiticity and trace
preservation of the statistical operator, the relationship
between the rates and the Lindblad operators allows to
assess the divisibility character of the time evolution.
Namely, whether the evolution map can be written as
composition of maps referring to arbitrary intermediate
time intervals. In particular, if the time evolution can be
expressed as a composition of completely positive maps,
the dynamics is said to be CP-divisible [17, 19]. In ac-
cordance with different recently proposed definitions and
measures of quantum non-Markovianity, this divisibility
enables a characterization of quantum memory effects,
which are absent in the case of a CP-divisible dynam-
ics [22–26]. The solutions of time-convolutionless master
equations characterized by positive rates in the gener-
ator, besides describing a well-defined evolution equa-
tion, do provide CP-divisible time evolutions [17, 19].
Nonetheless, master equations are not always derived
from an underlying Hamiltonian model, they are of-

ten rather adopted to describe phenomenologically the
non unitary dynamics of open quantum systems. It is
hence an important task to clarify whether or not such
equations actually correspond to a well-defined physical
model.
The goal of this work is indeed to show that a system-

environment interaction Hamiltonian can always be as-
sociated to any CP-divisible master equation, so that the
reduced dynamics of the open system is described by the
given equation. This is obtained considering the inter-
action of the system with multiple independent bosonic
baths, truncated to the Born approximation, in the limit
of infinite spectral densities bandwidth and assuring that
there is no contribution to the two-time environmental
correlation function due to negative frequencies compo-
nents of the spectral density. This result shows that
Markovian master equations are always connected to a
modelling via the introduction of a bosonic environment
and a suitable system-environment interaction Hamilto-
nian, for which they give an accurate description of the
reduced dynamics, once some approximation, like weak-
coupling and separation of relevant time-scales between
system and environment, are adopted. Our work further
opens the way to considering actual physical models in
which such microscopic interaction can be realized.
Given an open quantum system S, with associated

Hilbert space HS such that dimHS = n, it is possible
to describe its non unitary dynamics via the following
time-convolutionless master equation

d
dtρS(t) = − i

~
[HS(t), ρS(t)] (1)

+
n2−1∑
k=1

γk(t)
[
Ak(t)ρS(t)A†k(t)− 1

2{A
†
k(t)Ak(t), ρS(t)}

]
,

where {Ak(t)}k are the so-called Lindblad operators and
the real coefficients γk(t) are called rates. If all rates
are positive for t ≥ 0, the associated quantum process
is CP-divisible, according to the definition given above,
that is, it gives rise to an evolution map that can be
expressed as the composition of completely positive maps
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over any subdivision of the overall evolution time [17, 19].
In particular, positivity of the rates guarantees complete
positivity of the reduced dynamics.

The main result of this contribution is to present a
microscopic model, whose reduced dynamics is described,
in a suitable limit, by a master equation of the form (1).
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Figure 1. Schematic representation of the considered micro-
scopic model, in which the system S interacts with n2 − 1
independent bosonic environments Ek, each corresponding
to a dissipation channel in the master equation. The cou-
pling is given through the dressed Lindblad operators Jk(t) =√
γk(t)/γ0Ak(t) of Eq. (7) and the combination of field oper-

ators Bk as given in Eq. (8).

Microscopic model. We let the system S interact with
independent bosonic baths Ek, as depicted in Fig. 1,
considering as an Ansatz the following total system-
environment Hamiltonian

H(t) = HS(t) +HE +Hint(t), (2)

with HS(t) the Hamiltonian appearing in the commuta-
tor term in Eq. (1), while HE is the free Hamiltonian of
the independent bosonic baths, so that

HE =
n2−1∑
k=1

HEk (3)

with

HEk =
∑
µ

~(ωk,µ − ω0)b†k,µbk,µ, (4)

where bk,µ and b†k,µ denote creation and annihilation
bosonic operators satisfying the canonical commutation
relations

[bk,µ, bk′,ν ] = [b†k,µ, b
†
k′,ν ] = 0, [bk,µ, b†k′,ν ] = δkk′δµν , (5)

and the associated frequencies are taken with respect to
a reference frequency ω0, resonant with the system [27].

The interaction Hamiltonian is taken to be of the form

Hint(t) =
n2−1∑
k=1

[Jk(t)⊗B†k + J†k(t)⊗Bk], (6)

where the system operators {Jk(t)}k appearing in the
coupling term are related to the original Lindblad oper-
ators according to

Jk(t) =
√
γk(t)/γ0Ak(t), (7)

where thanks to their positivity the rates, renormalized
to a reference rate γ0 which fixes the interaction strength,
have been absorbed in the coupling operators. Note in
particular that we do not put any constraint on the cou-
pling strength, we only require that the rates γk(t) are
bounded functions of t within the considered time inter-
val and that the Lindblad operators Ak(t) are bounded.
The environmental coupling operators are instead given
by

Bk =
∑
µ

gk,µbk,µ, (8)

with gk,µ coupling constants. The operators Jk(t) are
thus dimensionless, while Bk(t) have the dimension of
an inverse of time in units such that ~ = 1. We now
move to the interaction picture with respect to the free
Hamiltonian by means of the unitary transformation

V (t) = T← exp
{
−i
∫ t

0
dτ [HS(τ) +HE ]

}
(9)

= T← exp
{
−i
∫ t

0
dτ HS(τ)

}
⊗ exp {−iHEt} ,

which can be written V (t) = VS(t) ⊗ VE(t), since
[HS(t), HE ] = 0, and where T← denotes operator time-
ordering. Finally, the interaction Hamiltonian becomes

H̃int(t) =
n2−1∑
k=1

[
J̃k(t)⊗ B̃†k(t) + J̃†k(t)⊗ B̃k(t)

]
, (10)

where the operators in the interaction picture are indi-
cated by a tilde, so that J̃k(t) = V †S (t)Jk(t)VS(t) together
with B̃k(t) = V †E(t)BkVE(t) which, exploiting Eq. (5),
takes the form

B̃k(t) =
∑
µ

gk,µe
−i(ωk,µ−ω0)tbk,µ. (11)

The exact evolution of the composite system in the in-
teraction picture is thus described by the von Neumann
equation

d
dt ρ̃(t) = −i

[
H̃int(t), ρ̃(t)

]
≡ L(t)ρ̃(t), (12)

and in the case of a factorized initial condition

ρ(0) = ρS(0)⊗ σE (13)



3

warrants complete positivity of the reduced dynamics.
The state of the environment σE is taken to be the tensor
product of zero temperature states for each bosonic bath,
namely σE =

⊗n2−1
k=1 σEk where

σEk = |0〉 〈0|Ek , (14)

with bk,µ|0〉Ek = 0 ∀µ.
Time-local master equation. We now use the projec-

tion operator technique to derive a time-convolutionless
master equation for the reduced dynamics [1]. To this
aim, we consider a standard projection superoperator
acting on a generic state ω of the total system as

Pω = TrE ω ⊗ σE , (15)

with σE the state of the environment appearing in the ini-
tial condition (13), so that in particular P [ρ(0)] = ρ(0).
Using the Born approximation, namely considering terms
up to the second order in the interaction Hamiltonian,
starting from Eq. (12) one obtains

d
dtP ρ̃(t) =

∫ t

0
ds PL(t)L(s)P ρ̃(t). (16)

Tracing over the degrees of freedom of the environment,
by means of a change of integration variable, one easily
obtains the master equation

d
dt ρ̃S(t) = −

∫ t

0
dτ TrE [H̃int(t), [H̃int(t− τ), ρ̃S(t)⊗σE ]],

(17)
which is sometimes called Redfield equation. We fur-
ther expand the commutators and use the identities, valid
∀ i, k = 1, ..., n2 − 1 and ∀ t, s ≥ 0

TrE{B̃i(t)B̃k(s)σE} = TrE{B̃†i (t)B̃
†
k(s)σE} = 0,

TrE{B̃†i (t)B̃k(s)σE} = 0,
(18)

together with

TrE{B̃i(t)B̃†k(s)σE} = 0 (19)

for i 6= k. The only nontrivial two-time correlation func-
tion is thus given by

TrE{B̃k(t)B̃†k(s)σE} = TrEk{B̃k(t)B̃†k(s)σEk}

≡ 〈B̃k(t)B̃†k(s)〉
(20)

so that, also exploiting the cyclic property of the partial
trace, we finally obtain

d
dt ρ̃S(t) =

n2−1∑
k=1

∫ t

0
dτKk(t, τ)[ρ̃S(t)], (21)

with
Kk(t, τ)[ρ̃S(t)]= J̃k(t− τ)ρ̃S(t)J̃†k(t)〈B̃k(t)B̃†k(t− τ)〉

+ J̃k(t)ρ̃S(t)J̃†k(t− τ)〈B̃k(t− τ)B̃†k(t)〉

− J̃†k(t)J̃k(t− τ)ρ̃S(t)〈B̃k(t)B̃†k(t− τ)〉

− ρ̃S(t)J̃†k(t− τ)J̃k(t)〈B̃k(t− τ)B̃†k(t)〉.

We stress that no secular approximation is involved in ob-
taining this expression, while the absence of cross terms
in the index k is due to Eq. (19). In particular, recalling
the expression of the environmental states [Eq. (14)] we
have

〈B̃k(t)B̃†k(s)〉 = 〈0| B̃k(t)B̃†k(s) |0〉

=
∑
µ

|gk,µ|2e−i(ωk,µ−ω0)(t−s). (22)

If we now consider a continuum of environmental modes
characterized by a given density of states, thus replac-
ing the sum over µ weighted by the coupling constants
gk,µ with an integral over ω with a suitable spectral den-
sity Ik(ω), these correlation functions can be expressed
according to [1] in the form

〈B̃k(t)B̃†k(s)〉 =
∫ +∞

0
dω Ik(ω)e−i(ω−ω0)(t−s). (23)

We now consider all spectral densities to be proportional
to the same Cauchy-Lorentz distribution

Ik(ω) = I(ω) = 1
2π

γ0λ
2

(ω − ω0)2 + λ2 , (24)

with resonant frequency ω0 corresponding to the refer-
ence frequency considered in Eq. (4) and a common fac-
tor γ0 given by the reference rate introduced in Eq. (7).
The spectral width λ in Eq. (24) is connected to the typ-
ical environmental correlation time τE by the relation

τE = λ−1, (25)

while the typical relaxation time scale for the system is
set by τR = γ−1

0 . As shown in [1] for this expression of
the spectral density the Born approximation considered
in Eq. (15) is indeed justified if γ0/λ� 1, corresponding
to a separation of time scales accounting for a Markovian
dynamics. We stress that in our derivation γk(t) and
Ak(t) are fixed by the master equation Eq. (1), while we
can freely choose the parameters γ0 and λ in order to
satisfy the constraints γk(t)/γ0 / 1 and γ0/λ � 1. Due
to its shape the spectral density in Eq. (24) is related, via
Fourier transform, to an exponential decaying function of
time, namely∫ +∞

−∞
dω I(ω)e−i(ω−ω0)τ = γ0λ

2 exp(−λ|τ |). (26)

Nevertheless, an exact calculation calls for an integration
over positive physical frequencies only, so that Eq. (23)
can be written as∫ +∞

0
dωI(ω)e−i(ω−ω0)τ = γ0λ

2 exp(−λ|τ |)−Rω0(τ),

(27)
with

Rω0(τ) ≡
∫ 0

−∞
dω I(ω)e−i(ω−ω0)τ . (28)
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The latter contribution, however, can be shown to vanish
in the limit ω0 → ∞, to be understood as ω0 � λ. As
a general argument, we have that I(ω) is integrable over
the negative real axis for ω0 > 0, and |I(ω)| ω0→∞−−−−→ 0.
In particular

|I(ω)| ≤ 1
2π

γ0λ
2

(ω − Ω)2 = g(ω) (29)

with Ω a positive frequency strictly smaller than ω0, i.e.
0 < Ω < ω0. We can thus apply the dominated conver-
gence theorem with respect to the dominating function
g(ω) to conclude

|Rω0(τ)| ω0→∞−−−−→ 0 (30)

and, therefore, in the same limit,∫ +∞

0
dω I(ω)e−i(ω−ω0)τ = 1

2γ0λ exp(−λ|τ |). (31)

Note that in this limit the correlation function Eq. (23)
becomes purely real, so that no Lamb shift correction
term appears. A closer inspection of Rω0(τ) for the case
of a Lorentzian spectral density, as considered in [28],
indeed shows that assuming for simplicity τ

√
ω2

0 + λ2 �
1, the neglected contribution reads

Rω0(τ) = i

2π
γ0

τ

λ2

ω2
0 + λ2 e

iω0τ . (32)

In particular in order to take Rω0 to be small one has to
take the limit ω0 →∞ before considering large λ. If also
the bandwidth of the spectral density goes to infinity, i.e.
λ→∞, the two-time environmental correlation function
is proportional to a Dirac delta function, namely

〈B̃k(t)B̃†k(t− τ)〉 = γ0λ

2 exp(−λ|τ |) λ→∞−−−−→ γ0δ(τ). (33)

The use of this limit in Eq. (21) is justified if the typ-
ical time scale τJ for the change of the operators J̃k(t)
appearing in the expression is much larger than the en-
vironmental time scale as set by Eq. (25), i.e. λ� 1/τJ ,
leading therefore to the following relationship for the va-
lidity of the different approximations

ω0 � λ� γ0, τ
−1
J . (34)

In this limit Eq. (21) finally reads

d
dt ρ̃S(t) = (35)

n2−1∑
k=1

γk(t)
[
Ãk(t)ρ̃S(t)Ã†k(t)− 1

2

{
Ã†k(t)Ãk(t), ρ̃S(t)

}]
,

where the time dependent rates γk(t) are exactly those
appearing in the original time-convolutionless generator
Eq. (1), which is recovered switching back again to the
Schrödinger picture.

Discussion. We note that the considered proof does
not actually rely on the specific choice of Cauchy-Lorentz
spectral density in Eq. (24). Only two general require-
ments have to be satisfied by the considered spectral den-
sity, namely: i) the integration of the spectral density
over negative frequencies in the limit ω0 → ∞ should
provide a vanishing contribution; ii) the two-time cor-
relation function of the environment obtained from the
Fourier transform of the spectral density, in the limit of
infinite bandwidth λ → ∞, should behave as a Dirac
delta function. Examples of spectral densities which sat-
isfy such conditions, for which an analogous calculation
can be performed, are e.g. Gaussian spectral densities

I(ω) = γ0λ√
2
e−

(ω−ω0)2

2λ2 , (36)

and spectral densities given by the squared sinc

I(ω) = γ0

2π sinc2
(
ω − ω0

λ

)
, (37)

as well as as general linear combination of spectral den-
sities with these properties.
It is well known that derivations of a master equation

in Lindblad form, for the case of constant rates, can be
obtained along different paths, see e.g. [29] for a review.
One can consider suitable mathematical limits once the
environmental degrees of freedom have been traced over
[30–32]. In a different formalism, one can obtain the
reduced dynamics in Lindblad form as an exact result
once suitable approximations have been introduced at the
level of the coupling term as in quantum stochastic cal-
culus [33–36]. In this paper we have shown that also for
the case of non-constant but positive rates a microscopic
model can be pointed out that leads in suitable limits to
the desired master equation. In particular, we have con-
sidered a weak-coupling situation and spectral densities
such that conditions corresponding to the flat spectrum
and broadband approximation used in standard deriva-
tions apply [27]. Alternatively one might consider the
continuous limit of memoryless collision models, which
presently has only been used for the derivation of the
standard Lindblad master equation with constant coeffi-
cients [37, 38].

Conclusions. We have thus shown that any master
equation in time-local form with positive rates can be
connected to a system-environment model, considering
a suitable Ansatz for the interaction Hamiltonian. The
proof relies on a microscopic model, where the system
of interest interacts with multiple independent bosonic
baths, each in the ground state, for which the master
equation of interest provides an accurate description of
the reduced dynamics. Our construction highlights the
relationship between Markovianity of the generated pro-
cess and typical limits considered in the literature, such
as weak coupling and separation of system and environ-
ment time scales. The development of other approaches,
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such as quantum stochastic calculus or, in a less rigor-
ous framework, collision models might lead to different
insights. We stress however that further work is anyhow
needed to connect the considered system-environment in-
teraction Hamiltonian with a specific physical implemen-
tation.

Note moreover that a crucial ingredient of our con-
struction is the assumption of the positivity of the rates
in the master equation of interest, which are then ab-
sorbed in the Lindblad operators. This prevents the
possibility to extend this construction, as well as simi-
lar ones, to master equations with negative rates and,
hence, a novel approach is necessary to connect master
equations in time-local form with rates that can take
on negative values with an underlying microscopic in-
teraction model. Indeed, when one allows for negativ-
ity of the coefficients appearing in the master equation,
even complete positivity of the obtained evolution is not
granted. The characterization of the most general struc-
ture of time-convolutionless master equation admitting
as solutions well-defined, i.e. completely positive trace
preserving maps, remains an important open problem.
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