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The cellular response to the extracellular matrix (ECM) microenvironment mediated by integrin adhesion is of fundamental
importance, in both developmental and pathological processes. In particular, mechanotransduction is of growing importance in
groundbreaking cellular models such as induced pluripotent stem cells (iPSC), since this process may strongly influence cell fate
and, thus, augment the precision of differentiation into specific cell types, e.g., cardiomyocytes. The decryption of the cellular
machinery starting from ECM sensing to iPSC differentiation calls for new in vitro methods. Conveniently, engineered
biomaterials activating controlled integrin-mediated responses through chemical, physical, and geometrical designs are key to
resolving this issue and could foster clinical translation of optimized iPSC-based technology. This review introduces the main
integrin-dependent mechanisms and signalling pathways involved in mechanotransduction. Special consideration is given to the
integrin-iPSC linkage signalling chain in the cardiovascular field, focusing on biomaterial-based in vitro models to evaluate the
relevance of this process in iPSC differentiation into cardiomyocytes.

1. Introduction

The integrin protein family is a large group of transmem-
brane receptors, particularly involved in cell-extracellular
matrix (ECM) proteins and cell-cell adhesion. Moreover,
integrins constitute an important and functional bridge
between the ECM and the cytoskeleton and are able to
activate several intracellular signalling pathways. After the
first report of their identification [1, 2], in the last 30 years,
how the integrin protein family assumed a key role in
mechanotransduction biology, particularly as mediators of
a bidirectional signalling mode, has been extensively
reported. Integrins are able to read and transmit signals from
the extracellular microenvironment to the internal cellular
milieu, including the cytoplasm and nucleus (outside-in),
leading to a cellular reaction that may alter cell behaviour
and/or also the composition of the ECM (inside-out). Several
downstream mechanisms of integrins activate biochemical
signalling cascades which have impact on different cell

functions by regulating crucial molecular pathways involved
in cell survival, proliferation, motility, and differentiation,
both in physiological and pathological scenarios [3–6].

In 2007, the groundbreaking discovery of a universal
protocol to reprogram mammalian somatic cells into induced
pluripotent stem cells (iPSC) [7], made by Takahashi and col-
leagues, brought immense potential to the fields of regenerative
and personalized medicine. In fact, these cells can differentiate
into cell types from all the three developmental germ layers:
ectoderm, mesoderm, and endoderm. iPSC-derived cells have
modelled, previously unreproducible, human diseases, e.g.,
long QT (LQT) syndrome [8], and have already been used in
two clinical trials for age-related macular degeneration [9]
and advanced heart failure [10].

The efficacy of iPSC as a model system for the study of
the molecular mechanisms guiding pathological develop-
ment is tightly linked to the success of in vitro simulation
of the environmental cues responsible for cell fate in vivo.
Mechanosensing-mediated pathways are relevant not only

Hindawi
Stem Cells International
Volume 2019, Article ID 8203950, 20 pages
https://doi.org/10.1155/2019/8203950

http://orcid.org/0000-0003-3980-1959
http://orcid.org/0000-0002-4758-6040
http://orcid.org/0000-0002-7590-6777
http://orcid.org/0000-0003-2581-5735
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/8203950


for enhancing iPSC reprogramming efficiency [11] but also
for supporting iPSC-derived cardiomyocyte (iPSC-d-CM)
maturation [12]. Thus, several techniques have been proposed
for the design of substrates regulating integrin activation by
tuning chemical, geometrical, or mechanical parameters.
The last part of this review is dedicated to the discussion of
thesemethods and their relevance to spearheading the clinical
translation of the iPSC technology.

2. Integrin Structure, Extracellular Ligands, and
Focal Adhesion (FA) Complexes

The integrin family was firstly identified by using antibodies
against integrin β subunits which unveiled several coimmu-
noprecipitating proteins. Integrin heterodimers are com-
posed of noncovalently associated α and β subunits [3].
The heterodimeric structure and functionality of these recep-
tors were made clear only after the use of specific peptides,
e.g., arginine-glycine-aspartic acid (Arg-Gly-Asp; RGD tri-
peptide) and integrin α subunit-recognizing antibodies. To
date, it is well known that the integrin family is constituted
by 18 α subunits and 8 β subunits, possibly assembled in 24
different heterodimers [13]. Depending on integrin subunit
composition, these molecules show specific extracellular
ligand properties and can be classified into 4 main subgroups
[14] listed in Table 1. This feature implies that the expression
pattern of integrins is tissue specific [3]. In addition to a large
extracellular domain, each heterodimer also has a transmem-
brane domain and a short cytoplasmic domain, which forms
a fundamental functional link with the cytoskeleton [14].

As shown in Table 1, cells expressing β1 integrin are gen-
erally outbound to collagen when associated with α1, α2, α10,
and α11 subunits. Otherwise, when β1 integrin is bound to
laminin, it is complexed with α3, α6, and α7 subunits.
Depending on which specific α subunit it heterodimerizes
with, β1 integrin recognizes the RGD motif (ανβ1, α5β1,
or α8β1) or leukocyte-specific receptors (α9β1, α4β1).
All integrin heterodimers containing αν subunits are specifi-
cally associated with substrates with the RGD sequence. Sim-
ilarly, all integrins expressing β2 subunit are members of the
leukocyte-specific receptor-binding integrin subgroup. Lastly,
α6β4 integrin belongs to the previously mentioned laminin
receptor binding group [15].

It has been reported that β1 subunit-containing integ-
rins, such as α5β1, are predominantly recruited to the lead-
ing edge of cells moving on a 2D surface [16], whereas β3
subunit-containing integrins are responsible for the increase
in the number of focal adhesions (FA) and cell spreading
area because of its role in structural reinforcement of
adhesion [17, 18].

Since integrins work as receptors of several ECM compo-
nents, they strongly contribute individually to FA-mediated
signalling and rigidity sensing by mechanically changing
their structural conformation. In external force mechanosen-
sing, this integrin function can be considered as a primary
step, followed by a series of secondary mechanosensor
activities, which respond intracellularly to force-dependent
alterations. Thus, extracellular tension transmitted through
integrins elicits the binding of several intracellular elements,

which in turn activate themselves and strengthen the integrin
connection to actin (Figure 1(a)). Among these intracellular
factors, the main ones involved in mechanotransduction
are talin, vinculin, kindlin, α-actinin, zyxin, filamin, and
p130Cas. The interaction of integrin cytoplasmic tails with
one of these adaptor proteins, such as talin, is the main
mechanism leading to full integrin activation. For example,
talin, together with vinculin, plays a crucial role in the
force-dependent stabilization of FA by changing its con-
formation after tension. Talin binds through its FERM
(four-point-one protein/ezrin/radixin/moesin) domain to
the NPxY amino acid motifs on integrin tails, inducing their
activation [19–21]. Vinculin presents a self-inhibited state,
exerted by its head and tail domain interaction [22], and
becomes activated after its tail domain binds to α-actinin
alone or together with actin and phosphatidyl-inositol-4,5-
bisphosphate (PIP2) [23–26]. An increase in cellular tension,
which is strictly related to ECM stiffness and cytoskeletal
recruitment, stabilizes vinculin in the activated conforma-
tion, and leads to its FA recruitment [27, 28]. Another coop-
erating adaptor protein is kindlin which contributes to
integrin activation [29, 30]. Until this link of the mechano-
transduction chain, talin and vinculin act as direct mechani-
cal sensors, able to feel ECM properties, while α-actinin, a
spectrin superfamily component important for the structural
organization of the cell, also provides a scaffold to connect
the mechanotransduction chain with the previously men-
tioned downstream effectors [31]. Thus, α-actinin is an indi-
rect link in the mechanotransduction chain. For this reason,
cell stretching could result in the dissociation of several pro-
teins that are weakly bound to α-actinin at multiple sites [32].
Among these weakly bound proteins, zyxin binds a central
region of α-actinin [33]; when a certain type of mechanical
stimulus occurs, this molecule translocates from FA to stress
fibres [34]. Other connecting proteins between integrins and
actin such as filamins [35] play a mechanoprotective role
by stabilizing the actin cytoskeleton through linkage to
the cytoplasmatic membrane. In fact, under mechanical
stress, filamin domains change their conformational status
considerably [36]. This event leads to extension and revers-
ible unfolding [37], which allows filamin stretching and sub-
sequent protection of the linkage between F-actin and the
cytoplasmatic membrane [38]. Interestingly, force applied
through clustered β1 integrins leads to the transcriptional
upregulation of filamin A [39].

Lastly, Src family kinase p130Cas (Cas: Crk-associated
substrate) contains a N-terminal SH3 domain, which binds
the polyproline motifs of the tyrosine kinases, FA kinase
(FAK) [40, 41], and other proteins such as vinculin [42].
The SH3 domain is followed by a large substrate domain with
15 repetitions of the YxxP motif (where x is any amino acid),
which is a main site of tyrosine phosphorylation on the Cas
molecule [43]. Once phosphorylated, the p130Cas SH3
domain serves as a docking site for the SH2 domains of Crk
or Nck adaptor proteins [44, 45]. In nonadherent cells,
p130Cas is localized in the cytoplasm and, after integrin
receptor activation, translocates to FA where the phos-
phorylation of substrate domain tyrosine residues takes
place [46]. p130Cas activation after integrin engagement
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regulates the reorganization of the actin cytoskeleton and
cell processes, such as spreading and migration [47]. More-
over, this tyrosine phosphorylation triggers signalling path-
ways leading to the regulation of cell survival and
proliferation [48, 49]. Recently, investigators highlighted
how p130Cas is able to influence actin remodelling and con-
comitant muscle-specific gene expression [42, 50].

2.1. Mechanical Stress-Reactive Nuclear Complexes. Based on
the previous discussion, it can be said that cells perceive,
adapt themselves to, and modify the ECM microenviron-
ment physical features by using specific protein structures
including the mechanosensing machinery of cell-ECM
and cell-cell interactions, secondary mechanosensors, and

different mechanotransduction pathways. Interestingly, this
mechanism is mediated by a direct effect of mechanical
linkage which is specific and sufficient to transmit the
extracellular stimuli into the nuclei [42, 54, 55].

The strong and intimate relationship between integrins,
FA, actin cytoskeleton, and nuclear structures has been well
documented in the last years. Several lines of evidence report
that actin fibres communicate the mechanical properties of
the internal cellular environment to the nucleus and conse-
quently strongly affecting gene regulation and expression
[56, 57]. The nucleus contains a stratified network of media-
tors, linking the nuclear envelope to the nucleoskeleton and
chromatin (Figure 1(b)). Structural alterations of nuclei are
responsible for gene modulation of multiple mediators such

Table 1: Integrin heterodimers, extracellular ligands and downstream signalling pathways.

Integrin
heterodimers

Ligands Pathway Ref.

Collagen receptor

α1β1 Collagen (IV, I, and IX) (i) RhoA/ROCK [51]

α2β1 Collagen (I, IV, and IX)
(i) RhoA/ROCK
(ii) YAP/TAZ

[52]

α10β1 Collagen (IV, VI, II, and IX) (i) RhoA/ROCK
[51]

α11β1 Collagen (I, IV, and IX) (i) RhoA/ROCK

Laminin receptor

α3β1 Laminin (LN-511, LN-332, and LN-211) (i) RhoA/ROCK

[51]
α7β1

Laminin (LN-511, LN-211, LN-411,
and LN-111)

(i) RhoA/ROCK

α6β1
Laminin (LN-511, LN-332, LN-111,

and LN-411)
(i) RhoA/ROCK

α6β4 Laminin (LN-332, LN-511) /

RGD receptor

ανβ1 Fibronectin, vitronectin (RGD) (i) RhoA/mDia

ανβ3 Vitronectin, fibronectin, and fibrinogen
(RGD)

(i) RhoA/mDia
(ii) MKL-1/SRF

(Responsible for the increase in the
number

of FA and cell spreading areas)

[17, 18, 50,
53]

ανβ5 Vitronectin (RGD)

(i) RhoA/mDia
(Responsible for the increase in the

number
of FA and cell spreading areas)

[17, 53]

ανβ6 Fibronectin, TGF-β-LAP (RGD) /

ανβ8 Vitronectin, TGF-β-LAP (RGD) /

α5β1 Fibronectin (RGD)
In the leading edge of moving cells

in the 2D surface
[16]

α8β1
Fibronectin, vitronectin, and nephronectin

(RGD)
/

αIIbβ3 Fibrinogen, fibronectin (RGD) /

Leucocyte-specific
receptor

α9β1 Tenascin-C, VEGF-C, and VEGF-D /

α4β1 Fibronectin, VCAM-1 (LDV) /

α4β7
MadCAM-1 (LDV), fibronectin, and

VCAM-1
/

αDβ2 ICAM-3, VCAM-1 /

αEβ2 E-cadherin /

αLβ2 ICAM-1, ICAM-2, ICAM-3, and ICAM-5 /

αMβ2 iC3b, fibrinogen /

αXβ2 iC3b, fibrinogen /
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Figure 1: Cytoplasmatic membrane and nuclear envelope mechanotransduction protein complexes. (a) The image depicts the main
mediators involved in the mechanotransduction chain, starting from the integrin subunits, specifically binding ECM compounds, to
cytoskeleton polymerization, through the activity of focal adhesion effectors. (b) The figure summarizes the link between cytoskeleton and
nuclear lamin A/C, through the nuclear envelope complexes, responsible for the gene expression modulation downstream to
mechanotransduction.

4 Stem Cells International



as those related to mechanotransduction and differentiation
[58]. The nuclear lamina consists in filamentous lamin pro-
teins (lamins A, B, and C) that form the mechanical support
of the inner nuclear membrane. Several other membrane
proteins, including LAP2, emerin, and MAN1, are essential
nuclear constituents [59]. To date, it is well known that the
cytoskeleton is strongly linked with the nuclear lamina [60];
nevertheless, most of the current information is derived
from studies on isolated nuclei [61]. Two distinct protein
families, the SYNE/nesprin family and the SUN family
[62] colocalize in the nuclear membrane and are connected
both with cytoskeleton and nuclear lamina. Studies on C.
elegans revealed that homologues of nesprin 2 and SUN1/2
were associated with actin, at their N- and C-terminals,
respectively. For this reason, the term LINC was coined,
indicating that these protein structures were linkers of
nucleoskeleton and cytoskeleton [63, 64]. Every molecular
component of this important complex shows distinct bind-
ing peculiarity; while nesprins 1 and 2 are specialized in
actin, microtubule, and kinesin binding, on the other hand,
nesprins 3 and 4 are able to bind intermediate filaments
and microtubules, respectively [65–67]. Concerning the
SUN protein family, the oligomerization as a trimer of
these molecules is strongly required for nesprin binding
[68]. These molecular events, which were experimentally
observed on isolated nuclei, suggested their effectiveness
in whole cell systems, thus supporting their contribution
to mechanical cues. Thus, isolated nuclei react to the phys-
ical forces in a similar manner to complete cells, because of
the presence of LINC complex, by which nuclei display
adhesion ability acting as force-sensitive signalling hubs
for cytoplasmic proteins and tuning nuclear responses to
various mechanosensory inputs [61]. Finally, among LINC
complex members, emerin plays a strategic role on the
inner nuclear membrane, since it can be phosphorylated
by Src kinases after a tension stimulus applied on isolated
nuclei through nesprin 1 [61]. This event overlaps lamin
A/C accumulation, which leads to the strengthening of
the nuclear membrane. It is important to point out that
Emery-Dreifuss muscular dystrophy is predominantly due
to emerin gene mutations [69]; moreover, cells derived
from emerin knockout transgenic mice show mechano-
transduction impairments [62, 70].

2.2. Mechanosensing Signalling Pathways. The major chemi-
cal signals elicited by mechanical stress at the cell surface
are as follows: (i) calcium influx through cation channels
activated by stretch stimuli, (ii) activation of nuclear factor
kappa-B (NF-κB), (iii) stimulation of mitogen-activated pro-
tein kinases (MAPKs), and (iv) changes in the activity of
small GTPases, e.g., Ras, Rac1, and RhoA [71–79].

Peculiar mechanisms have been unveiled, e.g., the adap-
tor protein p130Cas which is physically stretched in response
to applied force both in vivo and in vitro. This stimulus
exposes the previously masked phosphorylatable sites of
p130Cas [80], that are substrates for Src family kinases which
trigger further downstream responses [81].

Among the previously mentioned signalling pathways,
there are two cascades which are strongly involved in the

context of integrin-mediated mechanotransduction, namely,
Rac1 and RhoA. In fact, these two members of the small Rho
family GTPases regulate actin assembly and contraction
[82, 83]. While active Rac1 controls actin polymerization
at the leading edges of motile cells and is involved in
lamellipodia focal complex formation, active RhoA is neces-
sary for stress fibre formation. Notably, the two main RhoA
downstream effectors are the diaphanous-related formin
protein mDia1, a formin family member that serves as an
actin nucleating factor and so facilitates actin polymerization
and assembly [42, 84–86] and the protein kinases ROCK-1
and ROCK-2, which promote actin contraction mediated
by nonmuscle myosin-II [82, 83].

One important feature of Rac1 and RhoA is that each of
these two mediators negatively regulates the other, leading
to a discrimination of the activity in certain cell subareas
[82], as depicted in Figure 2. Indeed, while some cell regions
show higher Rac1 activity responsible for moving and pro-
trusion, other subareas of the same cell with higher RhoA
activity are more concentrated on adhesion and contraction.
Several studies addressed the strong relationship between the
integrin-dependent mechanical stress and the sustained
modulation in Rac1 and RhoA activity [87–91]. As previ-
ously mentioned, several information on different features
of small GTPase response to integrin-derived mechanical
stimulation are, to date, still missing, e.g., the exact signalling
time course and the types of cells and stresses involved. How-
ever, it is well established that mechanical stimulation leads
to small GTPase activity driving the cell to undergo a strong
and complex actin cytoskeleton remodelling which also
influences the adhesion features [92].

The main molecular events leading to the activation of
these numerous pathways are considerably distinct and
depend on the signal being activated. Activation of tyrosine
kinases and protein tyrosine phosphorylation play crucial
roles in the assembly and turnover of FA, as well as in
mechanotransduction. FAK and members of the Src family
are key tyrosine kinases, controlling FA functions and com-
plex stability [93]. After integrin engagement, FAK is
recruited to adhesion areas to provide both scaffolding and
kinase activity. The autophosphorylation of FAK defines a
docking site for Src kinase, which subsequently phosphory-
lates FAK on multiple tyrosine residues. All these events are
helpful for full FAK activation [94]. Following this, the
FAK-Src complex recruits the p130Cas protein and several
other adaptor proteins, phosphorylating multiple residues
on their sequence. After FAK autophosphorylation and the
generation of docking substrates for the SH2 domains of
the adaptor protein Crk (also known as p38), this interaction
leads to the activation of downstream signalling cascades,
such as Rac1 GTPase, previously reported as the pathway
involved in actin polymerization and the formation of new
focal complexes at the leading edge of the cell [95, 96]. It
has been demonstrated that inhibitors of actomyosin con-
tractility lead to a loss of tension due to a rapid dismantling
of FA [23, 27]. Mechanical tension activates guanine nucleo-
tide exchange factors (GEFs) for Rho, such as Vav2, GEF-H1,
or LARG, which subsequently induce GTP loading of Rho.
This leads, in turn, to the activation of downstream effectors
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ROCK and mDia. Furthermore, several integrins containing
β1 subunits (e.g., α5β1) activate the pathway mediated by
Rho-ROCK-myosin-II to induce forces mediated by actomy-
osin (Figure 2), whereas αν subunit-containing integrins,
e.g., ανβ3 and ανβ5, are more involved in external force
adaptation and regulate both the stress fibre synthesis and
FA area expansion through the pathway mediated by
Rho-mDia [97]. ROCK-mediated activation of myosin light
chain, together with inhibition of myosin light chain phos-
phatase, rapidly increases myosin-II activity and actomyosin
contractility (Figure 2). Overall, ROCK activity leads to actin
stress fibre stabilization.

3. Integrins and iPSC

Human embryonic stem cells (ESC) and iPSC, obtained by
somatic cell reprogramming, are promising pluripotent stem
cells, with the potential for recapitulating monogenic diseases
and producing cell-based therapies [98]. In order to maxi-
mize the full potential of these cells, it is mandatory to
enhance investigation and knowledge on the best culture
conditions able to maintain plasticity, self-renewal, and
external stimuli responsiveness as well as attenuate cell death
events. Despite the lack of knowledge, there is increasing evi-
dence regarding the contribution of integrins on pluripotent
cell-ECM interaction [98–101].

The intricate and incompletely understood nature of cell
fate and potency routes was succinctly represented in the
self-acknowledged oversimplified [102]Waddington diagram
[103]which is based on original artwork created by John Piper
[104]. We have reimagined this iconic diagram to better
summarize integrin engagement for cell-cell and cell-ECM
binding and how these interactions affect cell fate (Figure 2).
Mechanisms governing the transition from a somatic cell to
an iPSC, which is initiated by the expression of exogenously
acquired transcription factors, are continuously evolving,

and much effort is directed to optimize the stochastic process
of cell fate rewinding, in order to achieve a fully predictable
process [105]. Reprogramming involves three sequential
steps: initiation, stabilization, and maturation [106]. Indeed,
molecular mediators, e.g., microRNA, or biophysical cues,
e.g., nanotopography, can supplement or replace some of
the classical reprogramming factors commonly used to
enhance reprogramming efficiency [107–113].

In this context, the activation of the transforming growth
factor-β (TGF-β) pathway and the expression of E-cadherin
are of interest. While the former is a potent inhibitor of
mesenchymal-to-epithelial transition, which is essential for
a successful reprogramming [114], the latter is not only
important for the maintenance of pluripotency and proper
colony morphology but is also an absolute requirement for
iPSC generation as well as the primary gatekeeper to the dif-
ferentiation progression [115]. Moreover, iPSC kinome-wide
functional analysis during reprogramming found a critical
role in the cytoskeletal remodelling process. Specifically, the
key serine/threonine kinases, testicular protein kinase-1 and
LIM kinase-2, phosphorylate the actin-binding protein cofi-
lin to modulate the cell reprogramming process.

Attempts have been made to transfer from the traditional
2D culture of iPSC to 3D culture in large-scale bioreactors, a
step which would facilitate iPSC culture on industrially and
clinically relevant scales [116, 117]. Since iPSC normally exist
in tightly packed colonies, their dissociation into single
cells, which is needed to ensure uniform cell distribution
and diffusion of treatments, is a major stressor and ini-
tially caused high rates of cell death before the routine
use of ROCK inhibitors during passaging [118]. Indeed,
approaches that prevent actin-myosin contraction, such
as downregulation of myosin heavy or light chains and
ROCK inhibition [119], protect cells fromcell deathprocesses.
Moreover, it has been demonstrated that a direct inhibition
of Rho-ROCK-myosin-II activation involving E-cadherin
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Figure 2: Integrin expression in iPSC at different stages of differentiation. The picture on (a), inspired by the Waddington diagram and John
Piper’s original artwork [103], represents iPSC undergoing cardiomyocyte differentiation. During these early stages, cells lose their potency,
acquiring, in parallel, cardiomyocyte features. This process is linked to a specific integrin expression, further exacerbated by the growing
substrates. As displayed in (b), cells with a higher potency and a lower degree of differentiation express, on compliant substrates, a higher
amount of integrin heterodimers, preferentially containing αν integrin subunits. On the other hand, iPSC on rigid substrates lose potency
in favour of differentiation and express integrins with β1 integrin subunits.
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leads to a uniform differentiation of pluripotent stem cell
colonies [115].

To date, the generation of iPSC in two parallel states of
pluripotency has been described: naïve and primed [120].
Naïve iPSC are considered closer to a ground state, similar
to preimplantation epiblasts, while primed iPSC correspond
to cells found in the postimplantation epiblasts which are
ready or “primed” to differentiate [121–123]. The impor-
tance of the pluripotency state is crucial to understand and
to harness in research field, as it is currently appreciated that
naïve and primed states have differing biological functions,
e.g., developmental potency and chimeric contribution abil-
ity [124]. However, most of human iPSC are cultured in a
primed state; therefore, much attention focuses on defining
the factors (frequently soluble factors) that can revert primed
cells to a naïve state [125–129]. A major driver to appreciate
the role of culture substrates in pluripotency continuum
came from the clearly recognizable morphological differ-
ences in naïve and primed colonies: naïve cells form
dome-shaped 3D colonies, while colonies consisting of
primed cells possess a flattened appearance. Despite the
lack of information on the effect of growth substrates on
the pluripotency status, suppression of ECM-integrin sig-
nalling has been linked to the maintenance of naïve
human iPSC [130, 131].

Much of the information concerning ESC- and
iPSC-integrin interaction stems from the gradual transition
of feeder layer-cultured cell lines to more defined matrices
such as Matrigel®, Cultrex BME®, Geltrex®, fibronectin, col-
lagen IV, laminins, and vitronectin. A comparison of ESC
and iPSC mRNA microarray data revealed that the expres-
sion profiles of integrins are similar in both types of pluripo-
tent stem cells. Specifically, α5, α6, αν, β1, and β5 are all
abundantly expressed on iPSC; however, not all iPSC lines
displayed identical integrin profiles [132, 133]. Similarly,
the integrin α3, α5, α6, α9, αν, and β1 subunits, but not the
α1, α2, α4, α7, and α8 subunits, were identified as markers
of undifferentiated porcine-primed ESC, with a subsequent
significant increase in their adhesion features on fibronectin,
tenascin C, and vitronectin coatings. The blockade of integrin
heterodimers α5β1, α9β1, and ανβ1 lead to a strong inhibi-
tion in cell-ECM adhesion [134]. Moreover, ανβ3, α6β1,
and α2β1 play a significant role in the initial adhesion of
the human ESC to Matrigel [135]. Interestingly, human but
not porcine ESC display the active integrin heterodimer
α6β1 [136] suggesting species-dependent differences in the
mechanotransduction signalling context. Concerning iPSC
features, the parental cell-type origin impacts integrin expres-
sion, with enhanced levels of certain integrins observed in
iPSC derived from adherent cell types, e.g., foreskin fibro-
blasts. Interestingly, Rowland and colleagues uncovered
important differences between human ESC and iPSC in terms
of the essential integrins necessary for initial adhesion and
subsequent proliferation on different matrices. Specifically,
they showed thatβ1 is necessary for both functionswhen each
cell type was grown on Matrigel® whereas ανβ5 and β1 are
important for iPSC attachment and proliferation when cul-
tured on vitronectin as described in Section 2. Lastly, integrins
and integrin-mediated signalling are important in

maintaining iPSC self-renewal and pluripotency as indicated
by reduced Nanog, Oct-4, and Sox2 levels in α6-silenced iPSC
lines, localization of the FAK N-terminal domain in nuclei,
and AKT signalling activation [136, 137]. Similarly, murine
ESC interaction with the RGD peptide plays a role in the
expression of core transcription factors, i.e., Oct-4, Sox2,
and Nanog. Cyclic RGD synthetic compound supplementa-
tion was sufficient to mimic the effect of a mechanical stimu-
lus, in terms of pluripotent gene expression. Specifically, this
molecule or mechanical stimulus significantly influenced
ESC pluripotency by downregulating core transcription
factors. Moreover, RGD peptide, by inhibiting integrin
binding and, in turn, integrin expression [6], upregulated
early lineage markers (mesoderm and ectoderm) by leukae-
mia inhibitory factor (LIF) signalling [138]. Interestingly,
human ESC, expressing integrin α6β1, preferentially bind
human recombinant laminin-111, laminin-332, and lami-
nin-511, which are good substrates able to maintain undiffer-
entiated pluripotent human ESC cultures [139].

The ultimate destination of iPSC is differentiation along
specific cell lineages culminating in the generation of func-
tional terminally differentiated cells. Tailored protocols now
exist to generate most cell types from each of the three germ
layers, e.g., neurons, pancreatic islet β-cells, and, of specific
relevance to this review, cardiomyocytes. Subsequently, these
iPSC-derived cells can be used to model various diseases and
screen novel drugs. Early cardiomyocyte differentiation
protocols relied on the appearance of beating clusters within
stochastically formed embryoid bodies (EB). The inefficient
nature of producing cardiomyocytes from EB leads to the dis-
covery of more efficient methods for cardiogenesis. One
option considered here is the employment of small molecules
modulating the key stages of embryonic cardiac develop-
ment, i.e., early mesoderm formation by molecules targeting
bone morphogenetic proteins, the wingless/INT (Wnt) pro-
teins, and fibroblast growth factors, followed by activation
of the conserved cardiac transcriptional program, i.e.,
Nkx2.5, Tbx5, Isl1, GATA4, and SRP. This program ulti-
mately leads to the expression of the structural proteins
essential for the function of cardiomyocytes, e.g., actin, myo-
sin light/heavy chains, desmin, and the troponins (elegantly
reviewed in [140]). Zeng et al. demonstrated that EB growth
and cardiac differentiation of EB rely on collagen/integrin β1
interaction [141]. Specifically, they observed a synergistic
upregulation of collagen and integrin β1 which peaked on
the third post differentiation induction day [141]. Interest-
ingly, the size and shape of EB as well as the confluence of
iPSC are strongly linked to cardiogenic capacity [142–146].
The Wnt pathway is a pivotal pathway strongly linked to
iPSC self-renewal and differentiation which is exploited
by cardiomyocyte differentiation protocols relying on its
temporal activation and inhibition in order to achieve highly
efficient cardiomyogenesis [145, 147]. The noncanonical
Wnt-planar cell polarity (PCP) pathway is able to induce
actin cytoskeleton change promotion through Rac1, RhoA,
and small GTPase signalling, which controls cell movement
and tissue geometrical features. Good examples are the
RhoA signalling cascade activated by DAAM1 and DAAM2
formin homology proteins or the JNK signalling cascade,
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which is activated by MAPKKK andMAPKK 4/7 [148, 149].
Critically, following prolonged Wnt/β-catenin activation,
the E-cadherin suppressors, SLUG and SNAIL, act as
watershed factors that turn the iPSC fate from self-renewal
to committed differentiation [150]. Lastly and more interest-
ingly, for the clinical relevance, is the observation of Zhao
and colleagues [151] who showed that the ROCK inhibitor,
Y-27632, enhanced the transplantation success (in terms of
engraftment) of human iPSC in a murine myocardial infarc-
tion model. The same compound revealed positive effects
also on human ESC, e.g., increasing migration and support-
ing differentiation into EB. In the same study, integrin β1
blockade abolished the adhesion of ESC which decreased
their survival and pluripotent status [152].

3.1. Mechanotransduction and Cell Differentiation. The genes
under the direct control of the signalling pathways described
in Section 3 are multiple. In this section, we will focus on the
genes and pathways involved in pluripotent stem cell differ-
entiation into cardiomyocytes.

An interesting 2013 study highlighted how
integrin-mediated response to strain can be modulated by
cell geometry more than by the cell area. Indeed, given
the relevance of cell geometrical cues in mechanotransduc-
tion, in several cell types, efficient RhoA activation leads to
megakaryocytic leukaemia-1 (MKL-1) protein translocation
into the nucleus, in a cell shape-independent manner [153].
MKL-1 is a member of the so-called myocardin-related tran-
scription factor family and physically interacts with the serum
response factor (SRF) which activates SRF-dependent down-
stream gene transcription [154], e.g., actin cytoskeletal/-
FA-related proteins [155, 156].

In a previous study, it was shown that the skeletal α-actin
promoter activation, which is downstream of RhoA, was
strongly potentiated by β1 integrin expression and function.
These events were demonstrated to be specifically displayed
by cardiomyocytes, but not by NIH 3T3 fibroblasts. This
observation further supported RhoA/SRF-dependent cardio-
myocyte gene expression by the β1 integrin signalling path-
way [157]. Concerning the role of SRF in stem cells, the
study of murine SRF−/− ESC showed that SRF deficiency
causes impairments in cell spreading, adhesion, and migra-
tion, due to cytoskeletal structure modifications in terms of
actin stress fibres and FA. Moreover, stem cells lacking SRF
displayed downregulated FA, FAK, β1 integrin, talin, zyxin,
and vinculin [158]. Furthermore, depletion of the adhesion
molecule integrin β3, a key regulator of myogenic differenti-
ation and actin organization, attenuated p130Cas phosphor-
ylation and MKL nuclear localization during myoblast
in vitro differentiation [50].

The MKL-1/SRF pathway is firmly linked to another
important signalling pathway, strongly involved in mechano-
sensing in cardiovascular cells, namely, yes-associated protein
(YAP) and transcriptional coactivator with PDZ-binding
motif (TAZ) [159, 160]. Tuning YAP transcriptional activity
leads to the modification of cell mechanics, force, and adhe-
sion and determines cell shape, migration, and differentiation
[161]. In the last years, this signalling pathway, deeply related
to the HIPPO pathway, which is strongly related to

developmental biology, is a hot topic inmechanotransduction
studies. Indeed, there are numerous papers describing the
involvement of YAP/TAZ in osteogenesis [159, 162].

Several studies underlined the indirect role of small
GTPase Rho in YAP/TAZ nuclear localization control,
exerted by promoting the actin bundles and stress fibre for-
mation in response to cell spreading on the ECM [163–
165]. Nardone et al. in 2017 demonstrated that YAP nuclear
localization is controlled through Rho/ROCK activation and
YAP transcriptionally controls FA formation and cytoskele-
ton stability which, in turn, determines cell adhesion to the
ECM [161].

Experiments on conditional mouse YAP−/− and TAZ−/−

in the skin resemble the profibrotic phenotype of
skin-specific loss of integrin β1, highlighting the strong
linkage and interplay of all these molecules in vivo [166].

Recently, β1 integrin-dependent cell adhesion was seen
as a critical element in mesenchymal cell proliferation, both
in vivo and in vitro. In fact, it was demonstrated that β1
integrin-dependent activation of the small GTPase Rac1
leads to YAP dephosphorylation and its nuclear shuttling,
confirming that β1 integrin-dependent Rac1 function plays a
key role in YAP regulation, triggered by cell adhesion [167].
Another recent paper identified a pathway involving both
activation of integrin α3 and a FAK cascade-controlling YAP
phosphorylation and thus its nuclear localization in
transit-amplifying stem cells. In this work, the authors
highlighted that this specific signalling pathway potentiates
mTOR signalling, driving cell proliferation, and that the
YAP/TAZ signallingmechanism coordinates stem cell expan-
sion and differentiation during organ self-renewal [51].

4. Integrin Relevance in iPSC-Derived Cells: In
Vitro Biomimetic Approaches

As discussed in the first section, mechanosensing, in general
and specifically integrin activation, can be used to guide
lineage-specific cell fate by activating mechanotransduction
pathways. In order to better elucidate the fundamental
mechanisms driving pathophysiological mechanisms, several
in vitro models, based on biomimetic approaches, have been
proposed and discussed. This section provides an overview of
the in vitro models (Figure 3), focusing on the potential of
biomimetic approaches to direct iPSC cardiomyocyte dif-
ferentiation and maturation, possibly supporting their use
in the field of cardiovascular regenerative medicine and
tissue engineering.

4.1. Surface Chemistry. Substrate chemical composition and
the motifs decorating a given surface have a strong effect
on selective integrin engagement. Here, we will discuss two
different approaches to engineering substrates: the first
employing ECM obtained by decellularization of biological
tissues and the second relying on the functionalization of
synthetic biomaterials.

4.1.1. Decellularized ECM. In vivoECM, thanks to its chemical
composition and mechanical/topographic properties, estab-
lishes the bases to support cell proliferation and differentiation
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[168, 169]. Indeed, the ECM surface does not only mediate cell
attachment by exhibiting anchorage sites for different cell sur-
face receptors and coreceptors but also regulates the diffusion
of soluble factors secreted by the neighbouring cells, e.g.,
ECM composition modifies chemical diffusion coefficient
and, as a product of its own remodelling, releases functional
fragments constituting additional soluble factors.

For this reason, the use of decellularized tissues, main-
taining composition, architecture, mechanical properties,
and, interestingly, cell-binding domains, has been widely
proposed as a suitable scaffold for in vitro cell seeding, expan-
sion, and differentiation [170–174]. In parallel, its specific
capacity to guide stem cell differentiation has been also
shown [168, 175–177]. In particular, the ability to selectively
increase the expression of integrins [171] has been demon-
strated, underlining the relevance of ECM protein composi-
tion, e.g., the ratio of collagen, fibronectin, laminin,
vitronectin [178], and their topology, supporting cell adhe-
sion and subsequently stimulating controlled cell differentia-
tion [171]. The potentiality of scaffolds realized by tissue
decellularization is maximized by the use of dynamic culture
methods, i.e., perfusion bioreactors supporting homogeneous
repopulation of the whole scaffold volume [179–181] and
recreating a controlled and reproducible 3D environment.

Nevertheless, although experiments are performed under
highly controlled culture conditions, the coexistence of
multiple parameters limits the understanding of the impact
of specific factors. Therefore, decellularized ECM scaffolds

are good multifactorial model systems, comprehensive of the
complexities of the in vivo scenarios, and are suitable for trans-
lational studies. On the other hand, biomaterials have been
designed and functionalized ad hoc, by means of either coating
with ECM components or generating specific cell-binding
domains, in order to interpret different mechanisms.

The intermediate link in this chain is constituted by
3D bioprinting technologies. The technological advances
in the field have allowed the use of liquefied decellularized
tissues for high-resolution precise simulation of native tis-
sue structures, with encapsulated cells [182, 183], thus
providing the chance to observe the biological effects
induced by fine tuning of local chemical/architectural
matrix modifications.

4.1.2. Engineered Biomaterials. Polymers, both synthetic
and natural, have been widely used for the manufacture
of substrates and scaffolds intended for in vitro cell culture
and cardiovascular tissue engineering [184]. The most
used synthetic polymers in the field are poly(ethylene-glycol)
(PEG), poly(lactic-acid) (PLA), poly(glycolic-acid) (PGA),
poly(ε-caprolactone) (PCL), and their copolymers such as
poly(lactide-co-glycolide) (PLGA) and polyurethanes (PU)
[185–190]. In contrast, natural materials include ECM con-
stituents, i.e., collagen, fibrin, and silk [178, 191, 192].
The advantages of using engineered biomaterials rely on
their amenability to fine-tune parameters, such as bio-
compatibility, local rigidity, micro/nanoarchitecture, and
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Figure 3: Engineered materials supporting in vitro modelling. Integrin-mediated pathways relevant for iPSC cardiac differentiation can be
enhanced in vitro by the use of ad hoc-designed biomaterials. Toward this aim, chemical, geometrical, mechanical, and physical properties
of the substrates are relevant.
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functionalization with ECM proteins, integrin-binding pep-
tides, or growth factors [186, 193].

By coating synthetic materials, e.g., PU, with fibronectin
(REDV, PHSRN, RGD, and GRGDSP), laminin (IKLLI,
IKVAV, LRE, PDSGR, RGD, and YIGSR), and collagen
(DGEA) sequences [194–196] together with supplementing
cell culture media with selective integrin inhibitors [197],
the effect of integrin expression on cell attachment and pro-
liferation has been highlighted. In addition, polymer functio-
nalization with ECM peptides has been proposed to actively
promote cell differentiation. An example, performed with
an elegant and innovative approach, has been proposed by
Ovadia and colleagues [198]. Matrigel®, a commercial solubi-
lized basement membrane preparation extracted from the
Engelbreth-Holm-Swarm mouse sarcoma cells, consisting
of laminin, collagen IV, proteoglycans, and a number of
growth factors, is widely recommended as an iPSC culture
support. However, the specific reasons behind its success
have not been elucidated. In their work,Ovadia et al. proposed
iPSC single-cell encapsulation within 3D photopolymerized
with UV light (365 nm for 2 minutes) PEG-peptide-based
synthetic gels conveniently functionalized by a range ofmotifs
inspired by Matrigel and known to bind a variety of integrins
(including α6, αν, and β1), which generally promotes cell
adhesion. Knowing that ROCK inhibition increases the
expression of αν, α6, and β1 integrins during iPSC culture
on Matrigel®, in the proposed 3D culture system, the authors
showed that iPSC viability, growth, and differentiation were
enhanced in response to the environment, in particular to
β1 integrin activation.

Another parameter that needs to be taken into account
whenmodelling cell adhesion in vitro is the coupling strength
between integrin ligand and substrate. Human mesenchymal
stem cells exhibit enhanced osteogenesis in response to
high-strength binding which results from the activation of a
YAP-mediated pathway [199]. This result suggests that tradi-
tional covalent biological coatings could generate a bias in
data interpretation, which implies the need for novel coating
methods, such as noncovalent coatings [200]. Based on these
findings, it is clear that the study of integrin recruitment can
not omit the consideration of forces acting on thewhole chain,
from the substrate, e.g., substrate rigidity to the engaged
cytoskeleton filaments. Combinatorial approaches have been
implemented for the production of copolymers able to tune
cell-substrate interaction. An example of this approach is
provided by Cheng et al. [201], who demonstrated that novel
supramolecular PCL-containing self-complementary sextu-
ple hydrogen-bonded uracil-diamidopyridine moieties can
positively support cell attachment and proliferation. More-
over, as demonstrated by Chun et al. in 2015 [202], the
copolymer generated by polymerization of monomeric
ε-caprolactone with methoxy-PEG, in the ratio of 4%
PEG-96% PCL, was able to enhance iPSC-d-CM contractil-
ity, upregulating the expression of mature cardiomyocyte
markers such as myosin light chain-2ν and cardiac troponin
I. The authors demonstrated that these effects are linked to
the engagement of a subset of integrins which activate a
mechanosensory transduction pathway regulated by the
polymerization of intermediate filaments.

4.2. Surface Topography. In vivo cardiac tissue functionality is
aided by the anisotropic tissue structure which results from
ECM protein organization, cell orientation, and cell-ECM/-
cell-cell junctions. In vitro, the relevance of ECM architecture
in iPSC maturation has been demonstrated by means of
micro- and nanostructured substrates. Results demonstrated
how geometrical cues could support iPSC pluripotency and
differentiation [203, 204] by the formation of cell-cell junc-
tions, not only leading to the generation of more functional
grafts, increased beating rate, and enhancing tissue-specific
protein arrangement, e.g., sarcomeric-actinin, connexin 43,
and troponins, but also allowing better stratification of the
pathology, e.g., muscular dystrophy [203, 205–207].

At the aim of understanding the involvement of integrins
in geometrical feature-driven cell differentiation, substrates
controlling either cell shape and size or cell alignment or
spacing of adhesion ligands have been designed.

4.2.1. Cell Alignment. In vivo, physiological cardiac function-
ality is supported by coordinatedmuscular contraction, which
is allowed by highly organized cell alignment, guaranteeing
controlled anisotropic conduction of the electrical stimuli.
In vitro iPSC-d-CM assemble in heterogeneous randomly
organized clusters, missing accurate reproduction of the
in vivo scenario. This limits their level of maturation and
excludes from the in vitromodel the effects of possibly relevant
mechanotransduction-guidedmechanisms. The introduction
of nanotopographical features into culture substrates, i.e.,
grooves in the 700–1000 nm range [11], has been demon-
strated to improve cardiomyocyte development by acting
on one hand through a reorganization of the integrin activa-
tion of the single iPSC (i.e., enhancing integrin expression
and formation of FA and increasing F-actin polymerization)
and, on the other, geometrically organizing the colony polar-
ization. Culturing on grooved substrates finally impacts on
iPSC-d-CM intrinsic molecular machinery, i.e., through the
activation of the YAP-dependent pathway [208, 209],
resulting in more physiological behaviours, showing a
reduction of arrhythmias and inducing more mature Ca2+

spark patterns [210, 211]. The maturity level not only
would benefit from cell alignment but could permit a more
significant stratification of the pathology, as demonstrated
by the limited capacity of iPSC-d-CM from patients
affected by Duchenne muscular dystrophy versus healthy
donors in their ability to reorient when cultured on grooved
substrates [212].

More recently, the introduction of polymeric nanowires
offers the chance to couple cell alignment with electrical con-
ductivity and stimulation, reproducing preferential routes for
geometrical organization and electrical signal timing. The
application of this technology resulted in a significantly more
advanced cellular structure, i.e., showed by cell-cell junction
formation, and contractile function efficiency [213–215],
enhancing in vitro iPSC-d-CM maturation and functionality
and leading towards the design of a better model system for
the evaluation of the in vivo pathophysiological mechanisms.

4.2.2. Cell Shape and Size. In between, the geometrical fea-
tures able to guide in vitro stem cell differentiation, shape,
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and size have been widely studied [216]. Indeed, several
screening platforms, also commercial platforms, e.g., BioSur-
face Structure Array, Nano-TopoChip [217], have been used
to demonstrate that by regulating the width/length ratio, in
the presence or absence of soluble factors, cell fate can be
moved from osteogenic to adipogenic commitment.

Regarding iPSC, they are often cultured as aggregates and
not as single cells; therefore, the mechanotransduction-driven
effects of whole-colony size and shape should be taken into
account. Indeed, by controlling colony size, density, shape,
and spacing, Myers et al. [218] improved homogeneity in the
expression of pluripotency markers (SSEA4 and Nanog).
Moreover, the proposed micropatterning technique, through
the standardization of cell density, increased the percentage
of spontaneous beating cells. In particular, the generation of
circular patterns leads to the formation of connecting rings
of cardiomyocytes, supporting in vitro physiological electri-
cal behaviour, i.e., supporting the propagation of contractile
waves throughout the ring. Another example of how cell
shape, coupled with the supracellular structure, can be used
to promote in vitro cardiomyocyte maturation is provided
by the work of Xu et al. [211]. Here, by imposing
single-cell elongation by culturing on silicon-patterned sub-
strates, FA can be regulated to support alignment and
cell-cell contacts leading to increased cardiac differentiation
efficiency. Moreover, in their recent work, Grespan and col-
leagues [203] cultured iPSC onto microstructured (square
micropillars) silicon substrates and observed that, while
not affecting pluripotency, nuclear deformability is sensibly
regulated during germ layer specification, happening during
iPSC differentiation.

These observations, taken together, finally call for the
design of more complex in vitro substrates, taking into
account mechanosensing mechanisms for better iPSC
differentiation.

4.2.3. Integrin Clustering Methods. The methods described in
the previous paragraphs are based either on functionalization
of substrates by random decoration with integrin-binding
domains or by induction of adhesion sites by geometrical
constraint and do not encompass the relevance of integrin
geometrical distribution. It has been made possible to involve
this aspect thanks to the development of novel nanotechnol-
ogies, which can be divided in three different approaches
[219]: (i) blending of polymers with different degrees of
ligand incorporation [220, 221], (ii) nanoprinting lithogra-
phy of nanoparticle arrays [222–224], and (iii) transfection
of proteins by chimera constructs [225]. Results demon-
strated that not only identity, abundance, and density of
adhesion sites but also their spatial confinement, including
global and local density, regulate cell adhesion [226],
migration, proliferation, and differentiation acting on both
cell-substrate and cell-cell contact [224]. Furthermore, the
capacity of nanoscale spatially organized cell-adhesive ligands
to direct stem cell fate was also demonstrated [210, 227].

4.3. Surface Elasticity. Substrate stiffness has been shown to
be a very strong mechanotransduction stimulus, regulating
physiopathological cell behaviour and cell reprogramming

and subsequently guiding the development of mature cell
phenotypes [164, 228–233]. In particular, regarding the
in vitro application of iPSC technology in the cardiac field,
matrix rigidity can guide iPSC-d-CM differentiation: the
use of a substrate with compliance similar to that of
native cardiac tissue [234–236] supports cardiac commit-
ment and enhances metabolic maturity, sarcomeric protein
subtype, cardiac troponin T expression, and force generation
[230, 235, 237, 238]. The molecular events transferring the
force from the substrate to the nuclei, through cytoskeleton
engagement, have been described by Zhou et al. [239], and
other reviews discussed this topic at length [240, 241]. Here,
we will underline some specific aspects about the involve-
ment of integrins in this phenomenon. Indeed, the selec-
tive switching from the activation of β3 to β1 integrins
in response to reduced substrate stiffness has been demon-
strated [197, 242, 243]. From a technological point of
view, it is interesting to underline the sensitivity of the
whole traction chain to integrin-substrate binding force.
Indeed, a modification in the substrate-anchoring strength
of integrin-binding ligands, i.e., choosing covalent binding
to obtain stable substrate coating, could lead to a misinter-
pretation of in vitro cell behaviour [15, 199, 244, 245],
thus highlighting the importance of considering mechani-
cal stimuli, i.e., surface elasticity, with the feeling of cells,
recognizing the role of all the nanoscale players.

4.4.Mechanical Stimulation.Mechanical stimulationhas been
demonstrated to regulate FA assembly,modulating the down-
stream pathways affecting cardiomyogenesis [246–249].
Based on this assumption, several methods have been
described for the application of controlled mechanical stimu-
lation (i.e., temporal, spatial, and amplitude), some of them
aiming to verify the positive impact of integrin-mediated
adhesion pathways on iPSC reprogramming [113] and differ-
entiation [250, 251]. Although far from being exhaustively
described, the pathways seem to be regulated by the change
in FA density and local conformation [252], followed by
impacting cytoskeleton rearrangement [56], finally regulating
cardiomyocyte maturity, e.g., cell-cell contact, sarcomeric
structure, and electrical activity. As an example, the intercon-
nection between the mechanical stimulation, in particular
shear stress, and the modulation of cellular electrical activity
was demonstrated by Roy andMathew [253], who underlined
how the gene encoding the α-subunit of human ether-a-go-
go-related gene (hERG) potassium ion channel could bemod-
ulated by integrins via a mechanoelectric feedback pathway.
Not only that mechanical stimulation enhances cell electrical
behaviour but that a positive effect on maturation of cardio-
myocytes in vitro has been demonstrated by coupling pacing
withmechanical stimulation [254]. Finally, the in vitro imple-
mentation of mechanical stimulation has been shown of
benefit in the model for the pathology stratification. Chun
and colleagues proposed [249] that the application of cyclic
or static strain modulated the gene expression of a cell-cell
connection-related protein (connexin-43) in iPSC-d-CM
which was more pronounced in iPSC-d-CM from patients
affected by primary dilated cardiomyopathy.
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5. Conclusions

Each integrin type is coupled to a different combination of
signalling cascades which drive specific cellular processes,
e.g., stem cell differentiation [255, 256]. Integrins are involved
not only in the recognition of substrate composition but also
in sensing ECM rigidity and adapting cell morphology, motil-
ity, and fate to the mechanical properties of the matrix,
through the activation of mechanotransduction pathways.

However, the high specificity in the link between
integrin-mediated cell response to tissue-specific microenvi-
ronment is far from being completely decrypted, both in gen-
eral [15] and more specifically in pluripotent stem cells [98].
A detailed understanding of the cellular machinery linking
mechanosensing to mechanotransduction would be benefi-
cial for effective in vitro modelling and the future clinical
translation of tissue-specific differentiated iPSC.

As discussed in this review, the implementation of in vitro
novel biomaterials, taking into account integrin-mediated
mechanotransduction signalling, coupled with controlled
systems, i.e., microfluidic bioreactors, could be relevant
to improving the study of iPSC-d-CM differentiation
and supporting maturation [12, 257], inspired by an
“organ/lab-on-chip” approach [227]. The design of such
models would benefit (i) in vitro modelling of the molecular
basis of the pathologies, (ii) in vitro evaluation of possible
mechanisms and specific molecular targets for personalized
pharmacological approaches, and (iii) development of a
mature cell source available for future transplantation per-
spectives. Indeed, the high risk of teratoma formation
intrinsic to transplantation of iPSC-derived cells is well
acknowledged. Moreover, the maturity of the implanted
cells, especially thinking about cardiac applications of
iPSC-d-CM, should guarantee their survival and function-
ality shortly after the procedure.

In conclusion, these aspects would raise the level of
iPSC-d-CM quality and provide an effective model system
for the study of different cardiac pathologies. Moreover,
in an optimal scenario, the use of bioactive scaffolds in
controlled culture systems could permit the utilization of
read-out parameters that provide a culture quality feedback
signal.
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