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Abstract

Site occupancy‐detection models (SODMs) are statistical models widely used for

biodiversity surveys where imperfect detection of species occurs. For instance,

SODMs are increasingly used to analyse environmental DNA (eDNA) data, taking

into account the occurrence of both false‐positive and false‐negative errors. How-

ever, species occurrence data are often characterized by spatial and temporal auto-

correlation, which might challenge the use of standard SODMs. Here we reviewed

the literature of eDNA biodiversity surveys and found that most of studies do not

take into account spatial or temporal autocorrelation. We then demonstrated how

the analysis of data with spatial or temporal autocorrelation can be improved by

using a conditionally autoregressive SODM, and show its application to environmen-

tal DNA data. We tested the autoregressive model on both simulated and real data

sets, including chronosequences with different degrees of autocorrelation, and a

spatial data set on a virtual landscape. Analyses of simulated data showed that

autoregressive SODMs perform better than traditional SODMs in the estimation of

key parameters such as true‐/false‐positive rates and show a better discrimination

capacity (e.g., higher true skill statistics). The usefulness of autoregressive SODMs

was particularly high in data sets with strong autocorrelation. When applied to real

eDNA data sets (eDNA from lake sediment cores and freshwater), autoregressive

SODM provided more precise estimation of true‐/false‐positive rates, resulting in

more reasonable inference of occupancy states. Our results suggest that analyses of

occurrence data, such as many applications of eDNA, can be largely improved by

applying conditionally autoregressive specifications to SODMs.
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1 | INTRODUCTION

Inferring species occurrence is fundamental in biodiversity studies.

However, methods for species detection are often imperfect, as they

can fail to detect present species and can even be prone to false

positives (Guillera‐Arroita, 2017; Royle & Link, 2006). Failing to take

into account these errors can lead to biased inference; therefore, in

the last years, there was a development of site occupancy‐detection
models (SODMs) to deal with such issues. SODMs are able to esti-

mate occupancy rates with imperfect detection (Mackenzie et al.,
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2002) and have been generalized to deal with false positives (Cham-

bert, Miller, & Nichols, 2015; Miller et al., 2011; Royle & Link, 2006).

In short, SODMs estimate the probability that a sample is occupied

by a species given its detections on that sample, by considering the

occupancy probability and true‐positive (TP) and false‐positive (FP)

probabilities over the whole sample set. SODMs were originally

developed to deal with the issues of traditional field surveys, but in

the last years, they are increasingly applied to a wide range of envi-

ronmental data, including environmental DNA data (eDNA; Dorazio

& Erickson, 2018; Ficetola et al., 2015; Lahoz‐Monfort, Guillera‐
Arroita, & Tingley, 2016; Schmidt, Kéry, Ursenbacher, Hyman, & Col-

lins, 2013).

As with all the biodiversity data, eDNA generally does not detect

all the present taxa (false negatives [FNs]), but is also subjected to

FPs, which can arise through multiple processes such as contamina-

tion and PCR/sequencing errors (Ficetola et al., 2015). In many stud-

ies, scientific inference relies on the accurate assessment of

occupancy state (presence or absence) of a given species in a partic-

ular sample, and both false presences and false absences can lead to

severe issues (Ficetola, Taberlet, & Coissac, 2016). For example, in a

study aiming at dating the introduction of alien species (e.g., Ficetola,

Poulenard, et al., 2018; Sjögren et al., 2017), FPs of the target spe-

cies may increase the uncertainty of date estimates and even lead to

misleading conclusions.

With traditional field survey data, SODMs can integrate calibra-

tion design (Chambert et al., 2015) or unbiased detections (Chambert

et al., 2015; Miller et al., 2011) to account for detection errors.

However, these approaches demand extra sampling efforts and may

even be unfeasible for some eDNA applications, such as when eDNA

is used to assess biodiversity in ancient samples (Capo, Debroas,

Arnaud, & Domaizon, 2015; Epp et al., 2015; Giguet‐Covex et al.,

2014; Pansu et al., 2015). In such cases, FPs must be estimated from

the detection data set itself, even though negative and positive can

provide some prior information on the frequency of these errors

(Parducci et al., 2017).

Site occupancy‐detection models are increasingly used to analyse

ecological data, including eDNA (Pansu et al., 2015). These models

generally assume independence of observations and thus do not take

into account the spatial or temporal autocorrelation among samples.

However, ecological variables commonly have some form of internal

dependence, such as autocorrelation in space or time (Dormann,

2007; Roberts et al., 2017). When autocorrelation is present, samples

that are nearby in space or in time often have similar occupancy

because of both intrinsic processes (e.g., dispersion) and extrinsic

mechanisms which in turn show autocorrelation (e.g., climate forcing;

Beale, Lennon, Yearsley, Brewer, & Elston, 2010; Ficetola, Manenti,

De Bernardi, & Padoa‐Schioppa, 2012; Wagner & Fortin, 2005). Auto-

correlation is particularly important in ecological time series (Legendre

& Gauthier, 2014; Legendre & Legendre, 2012), and ignoring the cor-

relation between nearby samples violates a central assumption of

many statistical methods and may result in biased inferences.

Approaches exist to integrate autocorrelation into SODMs, which

have been sometimes applied to traditional biodiversity surveys. To

name a few, Sargeant, Sovada, Slivinski, and Johnson (2011) showed

that Markov random fields (multidimensional extensions of Markov

chains) can allow modelling spatial dependencies in estimating spe-

cies distribution. Royle and Dorazio (2008) proposed the autologistic

structure to account for temporal autocorrelation; Hines et al. (2010)

used Markov process to model the probability of presence of tiger

along consecutive trail segments; while Aing, Halls, Oken, Dobrow,

and Fieberg (2011) modelled the occupancy of river otter on snow

track with an intrinsic conditional autoregressive (iCAR) term. How-

ever, despite the wide awareness of the potential biases introduced

by the autocorrelation in spatially or temporally structured data,

most eDNA surveys using SODMs to analyse such data did not

explicitly consider autocorrelation.

Here, we demonstrate the needs and benefits to consider spatial

and temporal autocorrelation in eDNA biodiversity surveys. We

begin with an analysis of the literature to identify the frequency of

SODM analyses in the eDNA literature and to assess to what extent

conditionally autoregressive SODM could improve analyses. Then,

we show how SODMs with explicit autocorrelation structure can

improve occupancy analyses on spatially or temporally structured

eDNA data. To this end, we added a conditionally autoregressive

(CAR) component into the Royle and Link (2006) SODM to take into

account that occupancy can be affected by autocorrelation. The

Royle and Link (2006) model can be applied to survey data without

calibration designs or unbiased detection data, and also takes into

account the probability of FPs, which makes it suitable for general

eDNA‐based surveys (Ficetola et al., 2015; Lahoz‐Monfort et al.,

2016). CAR models had been demonstrated to be useful to model

spatial autocorrelation in species distribution data, are easy to imple-

ment and interpret (Dormann, 2007) and, using CAR or closely

related restricted spatial regression models to account for autocorre-

lation in occupancy models, can yield satisfying results (Aing et al.,

2011; Johnson, Conn, Hooten, Ray, & Pond, 2013). Our approach

can be particularly important in eDNA studies, where contamination

can occur (Parducci et al., 2017), and at the same time, TP rates can

be low (Epp et al., 2015), as a result of low DNA content in samples;

nevertheless, similar issues also apply to other approaches to biodi-

versity assessment. We assessed the capacity of a CAR approach to

improve the performance of SODM models and to better estimate

true occupancy. We tested and compared the CAR‐SODM with the

original Royle and Link (2006) SODM by applying them to (a) simu-

lated chronosequences of occupancy data, (b) simulated spatial sam-

ples and (c) true eDNA data sets from the literature. Our study

identifies the cases in which the CAR‐SODMs perform better than

the original SODMs, and provides easy‐to‐follow instructions to

implement CAR‐SODMs.

2 | MATERIALS AND METHODS

2.1 | Analysis of the literature

To elucidate the issues of data autocorrelation in current literature

of eDNA biodiversity studies that involved species occupancy

164 | CHEN AND FICETOLA



modelling, we collected relevant studies from the Web of Science

database (June 2018), using search keywords “DNA occupancy

NEAR/2 model” and “DNA detection probability.” Each resulting

study was screened based on these criteria: (a) whether it reported

empirical eDNA data; (b) whether the data showed a temporal or

spatial structure; (c) whether studies applied SODMs on those data;

and (d) whether the SODMs used took autocorrelation into account

if the data were temporally or spatially structured.

2.2 | CAR‐SODM

We adopted here an extended SODM based on the Royle and Link

(2006) model, which can be specified in a Bayesian framework as

follows:

zi ∼ Bernoulli ψ0ð Þ (1)

yi ∼ binomial zip11 þ 1� zið Þp10;Kð Þ (2)

where i = 1, 2, …, n, n being the total number of samples; ψ0 is the

overall occupancy probability in all samples; zi is the state of occu-

pancy in sample i (zi = 1 when the site is occupied, otherwise zi = 0);

yi is the number of positive detections in sample i; p11 and p10 are

the TP and FP probabilities, respectively; and K is the number of

replicated observations. For instance, in eDNA studies, K can be the

number of PCRs or of replicated DNA extractions performed on a

given sample (Ficetola et al., 2015). We note that the likelihood

function of this model would have two equally high peaks, because

of the symmetry between zi × p11 and (1 − zi) × p10 in (Equation 2).

In other words, for a given data set, a parameter set with zi ¼ z0i ,

p11 ¼ p011 and p10 ¼ p010 has the same likelihood as another set with

zi ¼ 1� z0i , p11 ¼ p010 and p10 ¼ p011. Therefore, there are several

solutions for a given data set of yi, so that additional data or restric-

tions on parameters are needed to get unambiguous estimation. As a

result, for models with a TP/FP setting, additional data are needed to

break such symmetry and obtain an unambiguous solution (Guillera‐
Arroita, Lahoz‐Monfort, van Rooyen, Weeks, & Tingley, 2017; Lahoz‐
Monfort et al., 2016; Royle & Link, 2006).

In the CAR‐SODM here proposed, instead of treating ψ0 as a

constant parameter over the whole sample set, we note the occu-

pancy probability at sample i as ψi, which can take different values

for different is. To model the autocorrelation of ψi, we assume that

ψi can be expressed by a baseline constant ψb and an autoregressive

term φi drawn from a multivariate normal distribution (Jin, Carlin, &

Banerjee, 2005):

ψ i ¼ logistic ψb þ φið Þ (3)

φi ∼ multinormal 0; σ2 Diag mð Þ � αW½ ��1
� �

(4)

The term σ2[Diag(m) − αW]−1 is the covariance matrix of the

multivariate normal distribution. Diag(m) is an n by n diagonal matrix

with m = mi, that is, the number of neighbours for sample i as its

diagonal elements. W is the adjacency matrix: Wij = 1 if i ≠ j and

samples i and j are neighbours, otherwise Wij = 0. The α parameter

measures the degree of dependence among samples. α = 0 corre-

sponds to a model without temporal/spatial dependence. σ2 is the

variance parameter to the multivariate normal distribution (Jin et al.,

2005; Wall, 2004).

2.3 | Parameter estimation

One of our aims was using CAR‐SODM to better estimate the true

occupancy state on the basis of detection data, for instance by

assessing the probability that a sample i is actually occupied, given

the number of positive detections in that sample. This can be calcu-

lated from other parameters specified above (Lahoz‐Monfort et al.,

2016):

PiðoccupiedjyÞ ¼ P zi ¼ 1jyi ¼ yð Þ

¼ ψ ip
y
11 1� p11ð ÞK�y

ψ ip
y
11 1� p11ð ÞK�yþð1� ψ iÞpy10 1� p10ð ÞK�y

(5)

In this study, we compare the CAR‐SODM with the Royle and

Link (2006) model by observing their behaviour and performance.

We estimated all parameters involved in the CAR‐SODM (p11, p10,

φi, ψb, τ and α) and in the Royle and Link model (p11, p10 and ψ0) in a

Bayesian framework. For both models, uniform priors were used for

most parameters with boundaries adjusted to their proper definitions

((0, 1) for probabilities and (−1, 1) for the autocorrelation parameter

α). For p10, we used a uniform prior between 0 and 0.1 to reflect

prior information obtained from positive controls (Pansu et al., 2015)

and to break the symmetry between p11 and p10 in the likelihood

function (Lahoz‐Monfort et al., 2016). For σ2, we used a γ(2, 1) prior.

Sampling was performed by using Markov chain Monte Carlo

(MCMC) sampling provided by the Stan statistical computation plat-

form from the RStan interface (Stan Development Team, 2016). Each

sampling run used three MCMC chains for 10,000 iterations, the

first of which 5,000 were discarded as burn in. The convergence of

chains was checked by the Gelman–Rubin statistic (Gelman, Rubin,

Gelman, & Rubin, 1992). In all models, input data included number

of replicates for each sample K, the observed number of positive

detections y, the adjacency matrix W and the corresponding mi. In

fact, W can be specified according to the sampling scheme for each

application.

2.4 | Simulations: Chronosequences

A first set of simulated data mimicked the occupancy data obtained

by the analysis of temporal series, such as eDNA data obtained from

the analysis of lake sediments. We generated the chronosequence

simulation data based on a combination of the autoregressive pro-

cess (AR1) and the binomial process. In each simulation replicate, the

sample numbers corresponded to their chronological order. First, a

series of Xt = −0.005 + αcXt−1 + εt was generated, where αc is the

autoregressive parameter and εt is an error term drawn from the

standard normal distribution. The probability of occupancy ψt was

obtained by applying the inverse‐logit function to Xt. The detection

count yt was then generated as in (Equation 2). We additionally

restricted the proportion of positive zi between 5% and 95% to

avoid unrealistic extreme cases. Different values of TP probability
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p11 (0.15, 0.25 and 0.4) and FP probability p10 (0.005, 0.015 and

0.03) were applied to the simulations. We kept p11 at relatively low

levels because these are the most challenging cases of in real‐world

studies, and large p11s (≥0.5) allow to obtain satisfying results even

by applying the Royle and Link (2006) model (Ficetola et al., 2015;

Lahoz‐Monfort et al., 2016). Besides, small p11s are common in both

classical monitoring and in eDNA studies, especially in ancient DNA

as a result of degradation (Ficetola, Romano, et al., 2018; Giguet‐
Covex et al., 2014; Pansu et al., 2015; Parducci et al., 2017). For

each parameter scenario (p11, p10, K, αc), 100 simulation replicates

were performed. We chose three K levels (4, 8 and 12) to reflect

common practices in eDNA analyses (Ficetola et al., 2015). Three

levels of αc (0.0001, 0.5, 0.95) were used to represent realistic levels

of temporal autocorrelation (see Results), ranging from practically

non‐correlated (αc = 0.0001) to highly correlated data (αc = 0.95).

Sample size S was set to 100 to represent typical ancient DNA data

sets. Both the CAR‐SORM and the Royle and Link (2006) models

were applied to the simulation data set. To build the adjacency

matrix of the CAR‐SODM, W was specified as such that consecutive

samples were considered to be chronologically adjacent.

2.5 | Simulations: Spatially autocorrelated data set

The data sets representing spatial data with autocorrelation were

generated in two steps. First, we generated artificial distribution data

for a virtual island using the SNOUTER data set (Dormann et al.,

2007). The original data set consists of the X‐Y coordinates in inte-

gers of more than 1000 sites and two uncorrelated environmental

variables for each site: “rain” and “djungle.” To reflect real‐world

applications, we used only a subset of sites for simulations (i.e., only

the sites with both coordinates that were multiples of 3 were

retained in the simulations, resulting in 120 sites). Following the

authors’ instructions, we calculated the presence probability pi for a

site i as

pi ¼ qi þ εi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi 1� qið Þ

p
; where qi ¼ e3�0:004 � rain

1þ e3�0:004 � rain
:

To produce the presence/absence data, we set zi = 1 if pi ≥ 0.5

and zi = 0 if pi < 0.5. The resulting data are spatially correlated

because “rain” is essentially determined by altitude with a rain sha-

dow in the east (the SNOUTER data set itself is based on the digital

elevation model of a volcano in New Zealand). Second, detection

data yi were generated by applying (Equation 2) to zi. The same sets

of parameter scenarios for p11, p10 and K as in the chronosequence

simulation section were used to generate the data sets. In the CAR‐
SODM, the adjacency matrix W was defined with a rook scheme.

2.6 | Model performance comparison

We first assessed the ability of models to correctly infer p11 and p10.

Furthermore, in many applications of SODMs, users are interested in

obtaining better information on the actual occupancy state of a sam-

ple (e.g., what is the probability that a given site is occupied, if I

have only one detection over eight sampling replicates?). We thus

obtained model estimations of the conditional probability of occu-

pancy of samples pi (Equation 5). To evaluate model performances in

assessing the actual states of the simulation samples, we then calcu-

lated the area under the curve of the receiver operating plot (AUC)

and the maximum true skill statistic (TSS). AUC is a threshold‐inde-
pendent measure for score‐ranking models (Bradley, 1997) that

reflects a model's overall classification accuracy. AUC values range

from 0 to 1. Usually, AUC values of 0.5–0.7 indicate low accuracy,

values of 0.7–0.9 indicate useful applications, and values of >0.9

indicate high discrimination capacity (Swets, 1988). However, AUC

has some limitations (Lobo, Jiménez‐valverde, & Real, 2008); thus,

we used the maximum TSS as a complementary measure of perfor-

mance. TSS is a simple and intuitive, threshold‐dependent measure

of accuracy in predicting presence–absence (Allouche, Tsoar, & Kad-

mon, 2006). TSS values range from −1 to 1. TSS values of 1 indicate

a perfect discrimination, while TSS values equal to or less than zero

indicate a performance no better than a random model (Allouche et

al., 2006). Because different statistical models can have different

optimal prediction thresholds (Bradley, 1997), we maximized the TSS

by varying the prediction threshold on the receiver operating charac-

teristic (ROC) curves for each model, in a similar manner to a previ-

ous study aimed at finding the optimal detection threshold for

eDNA qPCR assays (Serrao, Reid, & Wilson, 2017).

2.7 | Analysis of empirical data

To demonstrate the usefulness of conditionally autoregressive mod-

els, we applied the model to published eDNA data available from

the literature search. Specifically, we analysed a subset of chronose-

quences in the Lake Anterne sedimentary ancient DNA data set

(Giguet‐Covex et al., 2014; Pansu et al., 2015), as well as spatially

structured survey data of animal species based on modern eDNA

collected from water samples. We considered the studies obtained

from the literature search that provided all the data required to

apply the CAR‐SODM model (i.e., geographic coordinates of sam-

pling sites and detection histories at sites; Dougherty et al., 2016;

Ostberg, Chase, Hayes, & Duda, 2018; Vörös, Márton, Schmidt, Gál,

& Jelić, 2017). For the ancient DNA data set, we chose six molecular

operative taxonomic units (MOTUs) representing two animal (Bos

and Ovis) and four plant taxa (Achillea macrophylla, Alchemilla MOTU,

Hypericum MOTU and Pinus MOTU) from the data set to evaluate

the behaviour of both models for taxa with different features. The

Dougherty et al. (2016) data set contains eDNA of rusty crayfish

(Orconectes rusticus) collected from water samples from 12 lakes in

Wisconsin, USA. We analysed the whole eDNA data set, considering

multiple collection sites in the same lake as adjacent. The Vörös et

al. (2017) data set contains eDNA data of olm salamander (Proteus

anguinus) from water samples collected from 15 cave systems in

Croatia. We analysed the eDNA data obtained with precipitation

method, using the Gabriel graph criterion (Legendre & Legendre,

2012) to determine site connectivity because it is an approximation

for an irregular spatial distribution to the rook scheme for a regular
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grid (Bini et al., 2009). The Ostberg et al. (2018) data set contains

eDNA of pacific lamprey (Entosphenus tridentatus) and Lampetra spp

from water samples collected from watersheds in Puget sound, USA.

We analysed the eDNA data of the 2015 spring survey, considering

consecutive sites on the Puget sound watershed line as adjacent.

Settings of the data sets (spatial/temporal structure, sample size S

and number of PCR replicates K) can be found in Table 2.

All simulations and analyses were performed in the R statistical

programming environment (version 3.3.3; R Core Team, 2017). ROC

curves and AUC values were generated by using the pROC package

(Robin et al., 2011). Spatial weights matrices used in generating the

spatially autocorrelated data set were created using the SPDEP pack-

age (Bivand, Hauke, & Kossowski, 2013; Bivand & Piras, 2015).

3 | RESULTS

3.1 | Literature analysis

The Web of Science database returned 134 journal articles as search

results. We discarded all articles that did not directly discuss eDNA

and those that did not report eDNA data from field surveys, includ-

ing pure simulation studies, theoretical analyses and those that

focused on experimental tests on DNA detectability under controlled

conditions. The remaining 51 articles, dating from 2008 to 2018

were analysed in detail (Table 1).

Spatial or temporal structures were frequent, as they were pre-

sent in 35 of 51 studies (69%). Twenty seven of 51 studies (52%)

used SODM to analyse eDNA data. However, just four of 27 (15%)

of them took into account FPs in their SODMs, and only two of 23

(9.5%) of studies using SODMs on spatially or temporally structured

data considered the autocorrelation issue (Table 1, see also Support-

ing Information Table for the list of the studies considered).

3.2 | Simulations: Chronosequences

With the non‐autoregressive models, the values of TP probability p11

were slightly overestimated when the number of replications K was

small and detection probability was low, while estimates of the

autoregressive model were less biased and more precise (Figure 1).

FP probability p10 and autocorrelation did not severely affect the

estimation of p11 with both models. In scenarios with large K (≥8) or

large p11 (≥0.25), both models estimated TP probability with high

accuracy. The autoregressive model also showed lower bias in the

estimation of FP probability p10, even though both approaches

tended to overestimate p10, unless a large number of replicates per

sample was available and TP probability was high (Figure 2).

The model performance in assessing the actual state (presence/

absence) of the samples was generally fair to good, with AUC values

generally >0.7, and TSS values often >0.5 (Figure 3, Supporting

Information Figure S1). With both metrics, performance was better

when TP probability was high and when p10 was low (Figure 3, Sup-

porting Information Figure S1). In most scenarios, the autoregressive

model outperformed the non‐autoregressive one. CAR‐SODM pro-

vided a particularly high improvement compared to the Royle and

Link (2006) model when autocorrelation was strong, when TP proba-

bility was low and when a few replicates were performed. In scenar-

ios with high autocorrelation and low replication level, the

autoregressive model outperformed its non‐autoregressive counter-

part by more than 10% in terms of AUC, even with relatively high

TP probability (p11 = 0.4). Both models showed excellent perfor-

mance (AUC and TSS close to one) if many replicates were per-

formed and TP probability was high (Figure 3, Supporting

Information Figure S1).

3.3 | Spatial data simulations

The analysis of data with spatial autocorrelation yielded results con-

sistent with the ones of the chronosequence simulations. In compar-

ison with the Royle and Link (2006) model, the CAR‐SODM

provided more accurate estimates of p11 and p10, particularly in sce-

narios of low TP probability and with a few replicates (Figure 4). In

terms of TSS and AUC, the autoregressive model outperformed the

non‐regressive one in most scenarios, except in scenarios of high

p11, K and low p10, where both models reached excellent perfor-

mance (Figure 4, Supporting Information Figure S2).

3.4 | Analysis of empirical eDNA data

We then applied both the CAR‐SODM and the Royle and Link

(2006) model to multiple real‐world data sets. When we analysed

the eDNA data from two mammal and four plant MOTUs from 44

samples of lake sediment (Giguet‐Covex et al., 2014; Pansu et al.,

2015), the CAR‐SODM detected strong positive autocorrelation for

all taxa (estimated α ≥ 0.78). The CAR‐SODM tended to estimate

lower values of both p10 and p11 than the Royle and Link (2006)

model. Furthermore, highest probability density intervals (HPDIs) for

TABLE 1 Analysis of the literature using eDNA for biodiversity
assessment. The table shows the number of studies that analysed
eDNA survey data with different typologies of autocorrelation
(spatial/temporal). We report whether papers analysed data using
site occupancy‐detection models (SODM), considering
autocorrelation and taking into account false positives. Numbers in
parentheses indicate the number of studies using SODMs to model
the effects of covariates on occupancy or detection probability

Structure
No
SODM

SODM

Autocorrelation
only

False
positive
only Both Neither

Spatially

structured

11 0 0 1 (1) 18 (17)

Temporally

structured

1 0 0 1 (0) 0

Both 0 0 0 0 3 (2)

Neither 12 0 2 (1) 0 2 (0)

Total 24 0 2 (1) 2 (1) 23 (19)
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corresponding parameters tended to be narrower for CAR‐SODM,

suggesting lower incertitude of estimates. CAR‐SODM models were

also applied to spatially structured data sets of modern eDNA col-

lected from water samples. When we analysed the data set on cray-

fish eDNA (Dougherty et al., 2016), we obtained results analogous

to those of the ancient DNA, with strong positive autocorrelation

(α = 0.932) and lower p10 and p11 estimated by the CAR‐SODM than

by the Royle and Link (2006) model. Conversely, the CAR‐SODM did

not detect significant autocorrelation in the olm salamander (Vörös

et al., 2017) and in the lamprey (Ostberg et al., 2018) eDNA data

sets (HPDIs of α included zero). In these two data sets, both models

yielded nearly identical results in the estimates of p10 and p11

(Table 1).

Posterior conditional probabilities of occupancy were not identi-

cal between CAR‐SODM and the Royle and Link (2006) models. For

a given number of positive amplifications, CAR‐SODM tended to

give more support to the samples nearby to other positive detec-

tions than to the ones in isolation (Figure 5), while the Royle and

Link (2006) model assigned the same probability of occurrence to all

samples sharing the same number of positive amplifications. This dis-

crepancy between the two models was most evident for samples

with a single positive amplification. For example, in the lake sedi-

ment data set, only 1/8 PCR detected Bos (i.e., cattle) eDNA within

the sample at 343 cal. years BP. The CAR‐SODM assigned to this

sample a high (>0.9) posterior conditional probability of occupancy,

as multiple positive detections occurred in the same period, while
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the Royle and Link (2006) model assigned a lower probability of

occupancy (0.56) to the same sample (Figure 5c).

4 | DISCUSSION

It is well known that both spatial and temporal autocorrelation can

introduce biases to ecological data analyses (Beale et al., 2010;

Brown et al., 2011; Lennon, 2000), and specifically, to species occu-

pancy modelling (Johnson et al., 2013). Despite repeated calls (Fice-

tola et al., 2015; Lahoz‐Monfort et al., 2016; Schmidt et al., 2013),

only half of studies used SODM to analyse eDNA data, and few of

them considered FPs in data analysis, though such issue might have

been accounted for in their laboratory processing. Furthermore, until

now very few studies using SODMs accounted for autocorrelation in

spatially or temporally structured eDNA data, while the vast majority

of papers did not report tests of autocorrelation before or after

applying SODMs. Our study allows elucidating how biodiversity

studies based on eDNA can benefit from SODMs taking both FPs

and autocorrelation into account.

Detection errors are barely avoidable in biodiversity surveys,

occur even with sessile species and can be particularly problematic

in environmental DNA studies (Guillera‐Arroita, 2017). In cases

where unambiguous detections are not available, the Royle and Link

(2006) model is usually recommended to account for FPs (Ficetola et

al., 2015, 2016; Lahoz‐Monfort et al., 2016; Lopes et al., 2017).

However, the fact that ecological data sets often show temporal or

spatial autocorrelation requires the application of appropriate

approaches. Here, we show that a conditionally autoregressive
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model allows to successfully deal with autocorrelated occupancy

data including both FPs and FNs and that considering the autocorre-

lation among samples provides an improved statistical inference that

can be extremely helpful in biodiversity studies.

In eDNA studies, the estimation of model parameters such as

TP/FP probabilities is important not only for correctly predicting site

occupancy but also for evaluating the appropriateness of molecular

protocols (e.g., Lopes et al., 2017) and for measuring data reliability

(Ficetola et al., 2015). In the occupancy models previously proposed

for eDNA studies, the occupancy probability ψ0 is one of such

parameters (Guillera‐Arroita et al., 2017; Mackenzie et al., 2002;

Miller et al., 2011; Royle & Link, 2006). However, if autocorrelation

occurs, this parameter is not constant for all samples. In the CAR‐
SODM, a fixed latent occupancy is replaced by the combination

between a fixed baseline occupancy term ψ0 and a varying autore-

gressive term (Equation 3). As a result, the CAR‐SODM was more

flexible to fit autocorrelated data than its non‐autoregressive coun-

terpart and therefore less biased in estimating p11 and p10 (Figures 1

and 2). Both approaches tended to overestimate p10 in most scenar-

ios, especially when K was small and p11 was low (Figure 2). The

overestimation of p10 might be partially caused by the fixed uniform

prior (0, 0.1), which may not be appropriate if the real p10 value is

much smaller than the prior's upper limit 0.1 and if there is not

enough information to determine p10 (e.g., when K is small). This
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would suggest that the p10 values might have been also overesti-

mated for the empirical data sets (Table 2). However, this is probably

not a major issue, given that in the empirical data all of the FPs are

extremely low or have intervals that include zero. In real‐world appli-

cations, one can adjust the prior based on knowledge about the FP

rate in question, and information obtained from negative controls

can help to provide realistic boundaries to p10. A different pair of

boundaries can be set to the uniform prior; alternatively, a beta prior

can be applied instead (Gelman, Carlin, Stern, & Rubin, 2004), with

parameters as the numbers of FP replicates and of true‐negative
replicates in the control samples, when such information is available.

Similarly, one can apply informative prior to other unknown

parameters in the SODMs, potentially improving the accuracy and

precision of their estimation. Additional analyses are required on the

effects of prior specification for important model parameters, such

as p11 and p10. On the other hand, the baseline latent occupancy

was poorly determined by the CAR‐SODM (Table 2; note the large

HPDIs), suggesting that the determination of this parameter

demands a sample size much larger than here applied. This should

not pose serious issues in most eDNA studies even with typical sam-

ple size (less than a hundred), if the estimation of this parameter is

not the focus of the study. Conversely, if autocorrelation is weak

(e.g., the salamander and lamprey data sets; Table 2), the CAR‐
SODM and the Royle and Link (2006) models provide highly
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consistent results. In this case, the Royle and Link (2006) model can

have advantages, as its convergence is faster and it does not have

the issue of the estimation of baseline latent occupancy.

It is no surprise that the CAR‐SODM performs best when the

samples are highly autocorrelated (αc ≥ 0.5, Figures 3 and 4).

Despite being high, these autocorrelation levels are frequent in real‐
world time data sets (e.g., Table 2); thus, the application of CAR‐
SODM can be useful for many studies dealing with species occu-

pancy data. CAR‐SODM provided a particularly high improvement of

performance when TP probability was low and only a few replicates

were available for detection. Actually, these are the conditions under

which inference is more challenging, and the use of SODM is essen-

tial to obtain unbiased biodiversity data. The performance of all the

approaches clearly increased when more replicates are available, as

shown by multiple studies on occupancy modelling (Ficetola et al.,

2015; Lahoz‐Monfort et al., 2016; Schmidt et al., 2013). For

instance, with 12 replicates, the maximum TSS of CAR‐SODM can

pass over 0.9 even if the TP rate was relatively low (p11 = 0.25) and

the FP probability was as high as 0.015 (Figure 3). Given that sce-

narios of very low p11, high p10 and autocorrelated sample are com-

mon in ancient DNA studies, the application of the CAR‐SODM to

such cases can be therefore promising. On the other hand, autore-

gressive models can be also helpful with moderate p11 (e.g.,

p11 = 0.4), particularly when only a few replicates are available

(K = 4). The simulation study presented here also lends insights to

the design of eDNA sampling and PCR schemes. For instance, when

dealing with highly correlated chronosequence data (αc = 0.95) with

low TP probability (p11 = 0.25), analysing eight PCR replicates with

the autoregressive model (K = 8) provided nearly the same discrimi-

nating power provided by the non‐autoregressive model with 12

PCR replicates (K = 12; Figure 3), thus allowing to improve the per-

formance of studies. On the other hand, it should be remarked that

the same improvement could not be reached by the autoregressive

model on data with just four replicates, compared with the non‐au-
toregressive model on data with eight replicates (Figure 3).

The CAR‐SODM is an extremely flexible approach that can be

applicable not only to time series data, but also to spatially explicit

data. Actually, the performance of the model when dealing with spa-

tially correlated data was coherent with the results of chronose-

quence analyses (compare Figures 1, 2 and 4a,b; see also Figures 3

and 4c). The only structural difference between these two applica-

tions is in the adjacency matrix W, which can be easily modified on

the basis of researcher's expectations on how error is autocorrelated

through space and time (Legendre & Gauthier, 2014). For instance,

in our spatial example, we used a rook scheme of adjacency, but dif-

ferent connection schemes can be used, for instance on the basis of

known dispersal distance of study species.

Given that latent occupancy was not strictly constant, in CAR‐
SODM, the probability of occupancy given a number of positive

replicates can be variable, depending on whether the positive is

nearby to other positives or not. For instance, one single detection

of cattle eDNA is more likely to be considered a true presence if it

occurs during periods in which cattle are frequently detected (Fig-

ure 5c). Considering the temporal coherence of observations has

been frequently considered a good criterion to assess the validity of

biodiversity data obtained through eDNA, particularly in ancient

DNA studies (Giguet‐Covex et al., 2014; Parducci et al., 2017). For

instance, Sjögren et al. (2017) considered positive PCR replicates of

sedimentary plant DNA in two stratigraphically adjacent samples to

be reliable, even if either or both of the two samples were amplified

in just one PCR replicate. The outcome of CAR‐SODMs is somehow

analogous, given that they inherently take into account the temporal

or spatial coherence of data, still CAR‐SODMs provide a more objec-

tive approach to assess the status of samples for which target spe-

cies have been detected only one or very few times. However, it

should be remarked that the conditionally autoregressive model con-

sidered here assumed that autocorrelation is homogeneous through

space and time, that is, that the same autocorrelation values hold

through the entire data set. Such an assumption is common in spa-

tially and temporally explicit analyses, but autocorrelation can be
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non‐homogeneous in real‐world data (non‐stationarity; Beale et al.,

2010). Non‐stationary of autocorrelation can greatly increase the

bias of model outcomes, but unfortunately, this issue remains chal-

lenging to address (Beale et al., 2010) and requires attention in

future methodological developments.

The focus of the present work was on occupancy and detection

probability estimation; therefore, we compared the two‐level Royle
and Link (2006) model and its conditionally autoregressive counter-

part, without considering any covariates to the model parameters.

Nevertheless, the CAR‐SODM can be easily modified, in order to meet

specific needs. First, covariates can be incorporated to identify the dri-

vers of temporal or spatial variations of TP/FP rates and to take them

into account. For example, DNA degradation may decrease detection

probability of older samples (Olajos et al., 2017). Second, FPs and FNs

can be generated by processes acting at different stages. For example,

an FN may be caused by contamination during sampling, as well as at

the PCR amplification stage. Therefore, multiple levels of latent states

and corresponding parameters could be modelled instead of the singe

level of the present work, especially when additional information is

available (e.g., unambiguous detections or laboratory calibration data;

Guillera‐Arroita et al., 2017).

5 | CONCLUSIONS

Current occupancy modelling analysing eDNA from spatially or tem-

porally structured data ignore autocorrelation, despite many studies

stressing the importance of autocorrelation in ecological data analy-

sis. Using a conditionally autoregressive SODM, we showed when

and how occupancy modelling in eDNA studies can benefit from

considering the autocorrelation among samples. In comparison with

the non‐autoregressive Royle and Link (2006) model, the condition-

ally autoregressive model can better estimate important parameters

such as TP/FP rates and more accurately predict the actual occu-

pancy of taxon, via discriminating detections according to their

neighbours’ states. The improvement was particularly high when the

autocorrelation among samples was strong. We thus recommend

using the autoregressive model in the frequent situations in which

researchers expect autocorrelation among samples according to tem-

poral or spatial structure, and when the TP rate is low.
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