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Summary. We prove existence of quasiperiodic breathers in Hamiltonian lat-
tices of weakly coupled oscillators having some integrals of motion indepen-
dent of the Hamiltonian. The proof is obtained by constructing quasiperi-
odic breathers in the anticontinuoum limit and using a recent theorem by N.N.
Nekhoroshev [8] as extended in [5] to continue them to the coupled case. Ap-
plications to several models are given.

1 Introduction.

Existence of breathers (i.e. time periodic space localized solutions) in infinite
Hamiltonian lattices of weakly coupled oscillators has been proved by Mac Kay
and Aubry [6] (see also [3, 15]) starting from the anticontinuoum limit.

Existence of (time) quasiperiodic breathers has also been investigated, but
such objects are expected not to exist in generic models due to the presence of
linear combinations of the frequencies which fall in the continuous spectrum.
As pointed out in [11, 12] such “resonances” are expected to lead to a decay in
time of “quasiperiodic breather like solution”.

Nevertheless existence of quasiperiodic breathers has been proved in some
special models: in particular (1) quasiperiodic breathers with two frequencies
have been constructed in two models which have a non trivial symmetry, namely
the discrete nonlinear Schrödinger equation [10] and the adiabatic Holstein
model [1]; (2) KAM theory has been used to construct breathers with an arbi-
trary number of independent frequencies in the case where the oscillators are
coupled via a first neighborhood potential which is at least cubic [17].
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In the present paper we start from the anticontinuoum limit and construct
quasi periodic breathers in Hamiltonian systems having some integrals of motion
independent of the Hamiltonian. Our approach is based on a theorem by N.N.
Nekhoroshev [8] that was recently reformulated in a form suitable for our appli-
cations in [5]. This theorem is an extension of the Poincaré–Lyapunov theorem
of continuation of periodic orbits to the case where some integrals of motion
independent of the Hamiltonian exist. It allows to continue families of invariant
tori to perturbations of the original system, and to describe precisely the dy-
namics on them. Applying this theorem one can reproduce the known results on
the DNLS and on the Holstein model, and more generally obtain quasiperiodic
breathers in any model with symmetries. Here we will explicitly reconstruct the
quasiperiodic breathers of [10] for the DNLS, and we will construct a new type
of quasiperiodic breathers in the Holstein model. As an example possessing 3–
frequencies quasiperiodic breathers we also study the vector discrete nonlinear
Schrödinger equation. We think that similar results could be obtained also by
the approach of [7, 16].

We point out that the present approach allows also to give more details on
the breather’s dynamics. In particular breathers will appear as invariant tori,
which form smooth families with as many parameters and as many dimensions
as the number of independent integrals of motion of the system. In many cases
the frequencies can be used to parametrize the family (in particular this is true
for the models studied here), so, in particular the set of the tori on which the
motion is dense has full measure.

We close this section by mentioning the very recent works [2, 9] in which the
authors prove existence of breathers in FPU type systems by new approaches.
We did not investigate the possibility of finding quasiperiodic breathers in sys-
tems with symmetry using such approaches.
Acknowledgement. We thank Andrea Carati for suggesting the coordinate trans-
formation 3.15, 3.16.

2 The abstract theorem

2.1 Statement

We state here Nekhoroshev’s theorem [8] in the improved form of [5]. For the
proof see [5].

Let (B,Ω) be a (weakly) symplectic Banach space (with symplectic form Ω).
Let Hε := {Hε

1, ...,H
ε
s} be s real functions on B, defined for ε in a neighbourhood

E of zero.
Consider the Hamiltonian vector field Xε

i of Hε
i (defined as the unique vector

field such that dHε
iX = Ω(Xε

i , X) ∀X ∈ B).
We assume that there exists an s dimensional compact submanifold Λ ⊂ B,

invariant under the flows of the fields X0
i ≡ Xε

i

∣∣
ε=0

for all i = 1, ..., s. We also
assume that
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i the functions Hε
i and the vector fields Xε

i are of class C∞ in U ×E, where
U is a neighborhood of Λ,

ii the vector fields Xε
i are independent on Λ

iii the functions Hε are in involution in U , namely{
Hε
i , H

ε
j

}
≡ dHε

iX
ε
j = 0 , ∀i, j = 1, ..., s

Remark that by our assumptions the manifold Λ is diffeomorphic to an s
dimensional torus.

Then we have to add the nonresonance assumption which extends that by
the Poincaré Lyapunov theorem to the quasiperiodic case. To this end it is
useful to restrict to the case where there exists a system of canonical coordinates
(J, ψ, p, q) with ψ ∈ Ts and (J, p, q) in an open set of a suitable Banach space,
in which the manifold Λ has equation p = q = J = 0, and the functions
H0
i ≡ Hε

i

∣∣
ε=0

take the form

H0
i =

s∑
j=1

ω
(i)
j Jj +

∑
j≥1

ν
(i)
j

p2j + q2j
2

+ H̃0
i (2.1)

where H̃0
i denotes a function with the property that the coefficients of its Taylor

expansion in (J, p, q) are at least quadratic in J, p, q if they depend on J , while
coefficients independent of J are at least cubic in p, q. As proved by Kuksin
[13], such coordinates exist in quite general situations.

Consider the matrix A ≡
{
ω
(i)
j

}i=1,...,s

j=1,...,s
constituted by the frequencies of

motion in the invariant torus Λ, and the matrix B ≡
{
ν
(i)
j

}i=1,...,s

j=1,...,∞
consti-

tuted by the frequencies of small oscillations in the transversal directions to the
invariant torus.

We will denote by A(k;j) the matrix obtained from A by substituting its k-th
column with the j-th column of B. In the forthcoming theorem we will denote
by |A| the determinant of the matrix A.

Theorem 2.2 In the above situation, assume that there exists n ≡ (n1, n2, ..., ns) ∈
Zs and γ > 0 such that∣∣∣∣∣

s∑
k=1

nk |A(k;j)| − N |A|

∣∣∣∣∣ ≥ γ ∀N ∈ Z , ∀j = 1, ...,∞ . (2.3)

Then there exists ε∗ > 0, such that, for all ε ∈ E0, E0 := (−ε∗, ε∗), the
following holds true:
(1) there exists a family of symplectic submanifolds N ε, of dimension 2s, which
is the union of s–dimensional tori Tε

β, with β ∈ <s small. For each ε ∈ E0, the
tori Tε

β are invariant under the flow of Xε
i ; the tori Tε

β and the manifold N ε

depend in a C∞ way on ε ∈ E0; one has Λ = T0
0.
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(2) There exist symplectic action angle coordinates (Iε1, ..., I
ε
s ;ϕ

ε
1, ..., ϕ

ε
s) in N ε,

such that the functions Hε
i

∣∣
Nε

depend only on the actions Iεj , namely

Hε
i

∣∣
Nε
≡ Hε

i

∣∣
Nε

(Iε1, ..., I
ε
s) ,

with i = 1, ..., s. The coordinates (Iε;ϕε) depend in a C∞ way on ε ∈ E0, and
so do the functions Hε

i

∣∣
Nε

(Iε1, ..., I
ε
s).

We remark that while statement (1) ensures the existence of the invariant
tori and describes their shape, statement (2) describes completely the motion
on the invariant tori. Indeed, in the coordinates I, ϕ (where we drop ε) the
equations of motion of Hε

i , in N ε, have the form

İk = 0 , ϕ̇k =
∂Hε

i

∂Ik
(I) ,

which shows that on each of the tori the motion is quasiperiodic. Moreover, the
fact that the invariant tori, the coordinates, and the Hamiltonians depend in a
smooth way on ε ensures that the frequencies of the perturbed system are close
to those of the unperturbed one. Moreover, if for example one has (for a fixed
i) ∣∣∣∣ ∂2H0

i

∂Il∂Ik

∣∣∣∣ 6= 0

then the same holds for the perturbed system. In particular in this case one
has that the action to frequency map is one to one, and therefore the tori can
be parametrized by the frequencies.

2.2 Idea of the proof

First we recall the scheme of the proof of the Poincaré–Lyapunov theorem (cor-
responding to s = 1). In this case the manifold Λ reduces to a periodic orbit.
Consider a Poincaré section and the corresponding Poincaré map P ε; then pe-
riodic orbits of Xε

1 are found as solutions of P ε(x) = x; such solutions are con-
structed by using the implicit function theorem. The standard condition that
the Floquet multiplier 1 have multiplicity 2 ensures that the implicit function
theorem applies.

In the case s ≥ 2 one tries to mimic the above proof. To define the Poincaré
map remark that, by the first step of the proof of Arnold’s theorem, there exists
a function Kε(p, q) :=

∑
j αjH

ε
j (p, q) with the property that all solution of the

Hamilton equations of K0 with initial data in Λ are periodic with a definite
period (actually there exist s different functions with this property). Then
define a Poincaré section of one of these periodic orbits and the corresponding
Poincaré map P ε. Due to the symmetries of the problem there exists a local
foliation which is invariant under the flow of the Xε

i , and moreover it turns out
that P ε defines a natural map P̃ ε from one leaf of the foliation to an other.
It turns out that fixed points of P̃ ε give rise to invariant tori. To find such
fixed points one uses again the implicit function theorem: the corresponding
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invertibility condition is ensured by assuming that 1 is an isolated eigenvalue
of multiplicity 2s of the Floquet operator. Finally it can be proved that such a
condition is equivalent to 2.3.

3 Applications

All the applications will deal with systems of the form

Hε
1 :=

∑
k∈Z

Hos(Pk, Qk) + ε
∑
k∈Z

F (Pk − Pk−1, Qk −Qk−1) , (3.4)

where (Pk, Qk) ∈ <2j are canonically conjugated variables, and Hos is the
Hamiltonian of the on site system that we will assume to have j degrees of
freedom. In our cases we will have j = 1 or 2. The phase space is defined
formally as follows: Fix β > 0 and define the Banach space `β of the sequences
P = {Pk}, Pk ∈ <j , such that

‖P‖β := sup
k∈Z
‖Pk‖ eβ|k| <∞ (3.5)

where ‖Pk‖ denotes the euclidean norm. The phase space is (P,Q) ∈ `β × `β .
The system 3.4 will also have s independent integral of motion in involution

given by Hε
1 and by s − 1 more functions H2, ...,Hs, that will turn out to be

independent of ε. In our cases we will have s = 2 or 3.
Then we will proceed by first defining the manifold Λ for the different models

and then introducing the coordinates such that the system takes the form 2.1; we
will denote by ω1, ..., ωs the frequencies of motion of the unperturbed breather.
We point out that in our cases the unperturbed quasiperiodic breather will be
concentrated at the sites 1, ..., s of the lattice. Then we will write down explicitly
the nonresonance condition 2.3. Actually in all the cases that we will consider
it takes a quite simple form very similar to the nonresonance condition of the
Poincaré–Lyapunov theorem. To obtain such a simple form we will compute
explicitly the determinants involved in condition 2.3 and simplify as much as
possible the so obtained expression.

Proposition 3.6 Assume that the system satisfy a suitable nonresonance
condition that depends on the model (see 3.11, 3.14 and 3.18 below); then there
exists ε∗ and a function δ∗ = δ∗(ε) defined for |ε| < ε∗, such that for |ε| < ε∗ there
exists a 2s–dimensional manifold Nε invariant under the flows of Xε

1, ..., Xs;
moreover one has

Nε =
⋃

|δi|<δ∗,i=1,...,s

Tε
δ1,...,δs

with Tε
δ1,...,δs

an s–dimensional torus invariant under flow of Xε
1,..., Xs. On

Tε
δ1,...,δs

the dynamics of Xε
1 (i.e. of the model we are interested in) is quasiperi-

odic with the frequencies

(ω1 + δ1, ..., ωs + δs) ,
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The tori Tε
δ1,...,δs

depend smoothly on δi and on ε. In particular there exists a
constant C such that, for all points in Nε one has

‖Pk‖+ ‖Qk‖ < Cεe−β|k| , ∀k 6= 1, ..., s (3.7)

We point out that equation 3.7 is a consequence of smooth dependence of
the manifold Nε on ε in the topology of the phase space. The fact that it is
possible to parameterize the tori by the frequencies is a consequence of the fact
that in the case ε = 0 the application from the actions to the frequencies will
turn out to be one to one in all the models we are interested in.

3.1 Discrete nonlinear Schrödinger equation

Consider the discrete nonlinear Schrödinger equation

iψ̇k = ψk

(
|ψk|2

2

)n−1
+ ε [(ψk+1 − ψk) + (ψk−1 − ψk)] , k ∈ Z (3.8)

where n ≥ 2 is an arbitrary integer. The Hamiltonian is

Hε
1 =

∑
k∈Z

1

n

(
p2k + q2k

2

)n
+ ε

∑
k∈Z

(qk+1 − qk)2 + (pk+1 − pk)2

2
, (3.9)

with pk + iqk = ψk. The second integral of motion is given by

H2(p, q) :=
∑
k∈Z

p2k + q2k
2

.

In analogy with the standard Schrödinger such a quantity can be called electron
probability.

Fix positive ω1, ω2, then the manifold Λ is defined by

Λ :=

{
p21 + q21

2
= ω

1/(n−1)
1 ,

p22 + q22
2

= ω
1/(n−1)
2 , pk = qk = 0 , ∀k 6= 1, 2

}
and introduce action variables at the sites 1,2 by I1 = (p21 + q21)/2, I2 = (p22 +
q22)/2, and the corresponding angles. To introduce the coordinates we need in

order to apply theorem 2.2 define J1 := I1 − ω1/(n−1)
1 , and J2 := I2 − ω1/(n−1)

2

so that the Hamiltonians take the form

H0
1 = ω1J1 + ω2J2 + H̃1 , H2 = J1 + J2 +

∑
k 6=1,2

p2k + q2k
2

with H̃1 having the same meaning as in 2.1.
We remark that here the manifold N ε

∣∣
ε=0

is just the phase space of the first

two oscillators, and the restriction of H0
1 to N0 is simply given by

In1
n

+
In2
n
.
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Lemma 3.10 The nonresonance condition 2.3 takes here the form

ω1

ω2 − ω1
6∈ Z (3.11)

Proof. The matrices A and B are given by

A :=

(
ω1 ω2

1 1

)
, B :=

(
0 0 0 ...
1 1 1 ...

)
from which one has

A(1,j) =

(
0 ω2

1 1

)
, A(2,j) =

(
ω1 0
1 1

)
, ∀j ≥ 1

and thus the nonresonance condition 2.3 takes the form ‘there exist (n1, n2) ∈ Z2

such that
−n1ω2 + n2ω1 6= N(ω1 − ω2) ,

for all N ∈ Z’. This can be rewritten as

(−n1 + n2)ω2 + n2(ω1 − ω2) 6= N(ω1 − ω2) ,

from which it is evident that the second term at left hand side (l.h.s.) does not
affect the condition and can be dropped. So the condition is equivalent to ‘there
exist n ∈ Z such that

n
ω2

ω1 − ω2
6= N , (3.12)

for all N ∈ Z’, and in turn this is equivalent to 3.11, since, in case the fraction
at l.h.s. of 3.12 is an integer, the l.h.s. of 3.12 is an integer for any choice of n,
while in case the fraction is not an integer, just choose n = 1. So equation 3.11
is the wanted nonresonance condition under which the theorem 3.6 applies. 4

So we have that proposition 3.6 holds for DNLS.
In this case the quasiperiodic breather is a solution in which the electron

probability is essentially concentrated at two lattice cites.

3.2 Adiabatic Holstein model

The equations of motion of the adiabatic Holstein model [1] are given by

−iψ̇i = −qiψi − ε[(ψi − ψi−1) + (ψi − ψi+1)]

q̈i = −ω2
0qi + |ψi|2 . i ∈ Z

which are Hamiltonian with Hamiltonian function

Hε
1 ≡ H :=

∑
i

Hos(pi, qi, xi, yi) +
1

2
ε
∑
i

[
(xi − xi−1)2 + (yi − yi−1)2

]
,
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where

Hos(pi, qi, xi, yi) :=
p2i + ω2

0q
2
i

2
+ qi

x2i + y2i
2

,

(pk, qk), (xi, yi) are canonically conjugated variables, and one has ψj = xj + iyj .
The additional integral of motion is

H2 :=
∑
i

x2i + y2i
2

.

To construct the manifold Λ we proceed as follows: Following [4] we intro-
duce action angle variables for Hos at the sites 1,2 by first defining the variables
(Ii, ϕi) by

xi =
√
Ii cosϕi , yi =

√
Ii sinϕi ; i = 1, 2

and then performing the canonical transformation

ξi = qi +
Ii
ω2
0

, ηi = pi , I ′i = Ii, ϕ′i = ϕi +
ηi
ω2
0

, i = 1, 2

which gives Hos the form

η2i + ω2
0ξ

2
i

2
− 1

2ω2
0

I2i

where we omitted the prime from I.
Fix now two positive frequencies ω1 and ω2, and define

Λ :=
{
I1 = ω1ω

2
0 , I2 = ω2ω

2
0 , ξi = ηi = pk = qk = 0 , ∀i = 1, 2, k 6= 1, 2

}
Defining J1 := I1−ω1ω

2
0 and J2 := I2−ω2ω

2
0 one has that the Hamiltonians

of the system take the form we need, namely

H0
1 = −ω1J1 − ω2J2 +

∑
i=1,2

η2i + ω2
0ξ

2
i

2
+
∑
i6=1,2

p2i + ω2
0q

2
i

2
+ H̃1

H2 = J1 + J2 +
∑
i 6=1,2

x2i + y2i
2

.

Lemma 3.13 The nonresonance condition 2.3 takes here the form

ω1

ω2 − ω1
6∈ Z and

ω0

ω2 − ω1
6∈ Z (3.14)

Proof. One has

A =

(
−ω1 −ω2

1 1

)
, B :=

(
ω0 ω0 ω0 0 ω0 0 ω0 0 ...
0 0 0 1 0 1 0 1

)
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where the first two columns of the matrix B refer to the variables ξ, η at the
lattice sites 1,2. The 2i−3 column refers to the variables (pi, qi) (i ≥ 3), and the
2i−2 columns refer to the variables (xi, yi) (i ≥ 3). We thus obtain the matrices
A(k,j), and from them the nonresonance conditions which have the form ‘there
exists (n1, n2) ∈ Z2 such that

m(ω2 − ω1) 6= n1ω0 − n2ω0 , m(ω2 − ω1) 6= n1ω2 − n2ω1 ,

for all m ∈ Z’. In turn this is equivalent to the nonresonance conditions 3.14.
4

The kind of breathers we constructed here are new and consist of solutions
in which the electron probability is essentially concentrated at two lattice sites,
and the oscillators are at rest. Notice that the rest position of the oscillators
at the sites where the breather is localized are translated with respect to the
unperturbed ones.

3.3 Vector discrete nonlinear Schrödinger equation

Consider the vector DNLS equation whose equations of motion are

iu̇k = uk

(
|uk|2 + |vk|2

2

)n−1
+ ε (uk−1 + uk+1 − 2uk)

iv̇k = vk

(
|uk|2 + |vk|2

2

)n−1
+ ε (vk−1 + vk+1 − 2vk)

with k ∈ Z. Introducing the real and imaginary parts of uk, vk as new variables,
namely

uk = xk,1 + iyk,1 , vk = xk,2 + iyk,2

one sees that the system is Hamiltonian with Hamiltonian function

Hε
1 =

∑
k∈Z

1

n

(
x2k,1 + y2k,1

2
+
x2k,2 + y2k,2

2

)n

+ε
1

2

∑
k∈Z

[
(xk,1 − xk−1,1)2 + (yk,1 − yk−1,1)2 + (xk,2 − xk−1,2)2 + (yk,2 − yk−1,2)2

]
.

The additional integrals of motion are due to the phase shift symmetries, and
to the rotation invariance in the plane of u and v. They are given by

F2 =
∑
k∈Z

(
x2k,1 + y2k,1

2

)
, F3 :=

∑
k∈Z

(
x2k,2 + y2k,2

2

)
,

and by the angular momentum

F4 :=
∑
k∈Z

(xk,1yk,2 − xk,2yk,1) ,
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which are independent but not in involution. As functions independent and in
involution on which we will base our construction we choose

H2 := F2 + F3 , H3 := F4 .

Obviously other choices are possible, and they would lead to different kinds of
breathers. For example one could choose

H2 := F2 , H3 := F3 ,

and obtain a kind of breathers that exist also in the anisotropic vector DNLS.
Our choice is motivated by the fact that a construction very similar to ours can
be performed also in other interesting models, like an infinite lattice of three
dimensional oscillators interacting via a spherically symmetric potential.

In order to continue the analysis it is useful to perform the following change
of variables

p1,k :=
1√
2

(xk,1 + yk,2) , qk,1 =
1√
2

(xk,2 − yk,1) (3.15)

p2,k :=
1√
2

(xk,2 + yk,1) , qk,2 =
1√
2

(xk,1 − yk,2) (3.16)

the functions Hε
i , for ε = 0 take the form

H0
1 =

∑
k∈Z

1

n

(
p2k,1 + q2k,1

2
+
p2k,2 + q2k,2

2

)n

H2 =
∑
k∈Z

p2k,1 + q2k,1
2

+
p2k,2 + q2k,2

2

H3 =
∑
k∈Z

p2k,1 + q2k,1
2

−
p2k,2 + q2k,2

2

To define Λ we fix arbitrary positive quantities ω1, ω2, ω3 and put

Λ :=

{
p21,1 + q21,1

2
= ω

1/(n−1)
1 ,

p22,1 + q22,1
2

= ω
1/(n−1)
2 ,

p23,2 + q23,2
2

= ω
1/(n−1)
3 ,

pk,j = qk,j = 0 otherwise }

Finally we introduce action angle variables by putting

I1 :=
p21,1 + q21,1

2
, I2 :=

p22,1 + q22,1
2

, I3 :=
p23,2 + q23,2

2
,

and define
Ji := Ii − ω1/(n−1)

i , i = 1, 2, 3 ,
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so that the three independent integrals of motion take the form

H0
1 = ω1J1 + ω2J2 + ω3J3 + ω1

p21,2 + q21,2
2

+ ω2

p22,2 + q22,2
2

+ ω3

p23,1 + q23,1
2

+ H̃1

H2 = J1+J2+J3+
p21,2 + q21,2

2
+
p22,2 + q22,2

2
+
p23,1 + q23,1

2
+
∑

k 6=1,2,3

p2k,1 + q2k,1
2

+
p2k,2 + q2k,2

2

H3 = J1+J2−J3−
p21,2 + q21,2

2
−
p22,2 + q22,2

2
+
p23,1 + q23,1

2
+
∑

k 6=1,2,3

p2k,1 + q2k,1
2

−
p2k,2 + q2k,2

2

Then one can apply our theory and obtain a family of three dimensional in-
variant tori continuing to the coupled case the manifold Λ. In particular one
has

Lemma 3.17 The nonresonance condition 2.3 takes here the form

ω1 − ω3

ω1 − ω2
6∈ Z ,

ω1

ω1 − ω2
6∈ Z ,

ω3

ω1 − ω2
6∈ Z . (3.18)

Proof. A long but straightforward computation (just write down the determi-
nants and compute them) shows that the nonresonance condition has here the
form “there exist (n1, n2, n3) ∈ Z3 such that

n1(ω3 − ω1) + n2(ω1 − ω3) + n3(ω2 − ω1) 6= N(ω2 − ω1)

n1(ω3 − ω2) + n2(ω2 − ω3) + n3(ω2 − ω1) 6= N(ω2 − ω1)

n1(ω2 − ω3) + n2(ω3 − ω1)+ 6= N(ω2 − ω1)

n1ω3 − n2ω1 6= N(ω2 − ω1)

n1ω3 − n2ω3 6= N(ω2 − ω1)

for all N ∈ Z’. Introducing the variable µ1 := ω2 − ω1 in order to eliminate ω2,
remarking that the last terms at l.h.s. of the first two equations are inessential
and denoting m := n1 − n2 one sees that the above equations are equivalent to

m(ω3 − ω1) 6= Nµ1

m(ω3 − ω1 − µ1) 6= Nµ1

−(n2 +m)(ω3 − ω1 − µ1) + n2(ω3 − ω1) 6= Nµ1

(n2 +m)(ω1 + µ1) + n2ω1 6= Nµ1

mω3 6= Nµ1

then it is clear that the terms containing µ1 at l.h.s. do not affect the nonreso-
nance conditions, and therefore this is equivalent to the stated conditions.4
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4 Discussion

We first discuss briefly the relation with the papers [11, 12, 17].
To fix ideas we consider a quasiperiodic breather of the DNLS, and consider

the motion of one observable, for example q1, then one can consider the Fourier
expansion of q1(t), namely write

q1(t) =
∑

(n1,n2)∈Z2

cn1n2e
i(n1ω1+n2ω2)t :

generically all coefficients cn1n2
are different from zero, i.e. the motion con-

tains all the frequencies n1ω1 + n2ω2. In particular some of these frequencies
will fall in the continuous spectrum, and as shown by [11, 12] in general this
phenomenon creates a coupling between the quasiperiodic motion and the con-
tinuous spectrum, and as a consequence the breather begins to radiate energy
and therefore to decay.

So at first sight it is quite surprising that quasiperiodic motions exist in the
considered models. However, as it is clear from the perturbative construction of
quasiperiodic solutions (see e.g. [14]), in order to destroy a quasiperiodic motion
two ingredients are needed: the first one is a resonance, and the second one is
a coupling term in the nonlinearity. Generically all possible coupling terms
are present in the nonlinearity, but a system with symmetry is not generic!
The symmetry actually prevents the existence of such coupling terms. For this
reason the mechanism of [11, 12] is not active in this case.

Concerning the relation with the work by Yuan [17] we point out that his
situation is completely different from ours, indeed, while in our case radiation is
not possible due to the non generiticity of the nonlinearity, in his case radiation
is not possible due to the nongeneriticity of the linear part of the system, indeed
in his case there is no continuous spectrum.

In conclusion we have shown that quasiperiodic breathers exist in Hamilto-
nian lattices having some integrals of motion independent of the Hamiltonian,
and that Nekhoroshev’s theorem is a powerful tool in order to actually construct
such breathers in concrete cases.

We also emphasize that systems with symmetry are exceptional, but at the
same time they are quite common and interesting: we think that the same is
true for quasiperiodic breathers.
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