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SUMMARY

The SOX2 transcription factor is critical for neural
stem cell (NSC)maintenance and brain development.
Through chromatin immunoprecipitation (ChIP)
and chromatin interaction analysis (ChIA-PET), we
determined genome-wide SOX2-bound regions and
Pol II-mediated long-range chromatin interactions
in brain-derived NSCs. SOX2-bound DNA was highly
enriched in distal chromatin regions interacting with
promoters and carrying epigenetic enhancer marks.
Sox2 deletion caused widespread reduction of Pol
II-mediated long-range interactions and decreased
gene expression. Genes showing reduced expres-
sion in Sox2-deleted cells were significantly enriched
in interactions between promoters and SOX2-bound
distal enhancers. Expression of one such gene, Sup-
pressor of Cytokine Signaling 3 (Socs3), rescued the
self-renewal defect of Sox2-ablated NSCs. Our work
identifies SOX2 as a major regulator of gene expres-
sion through connections to the enhancer network in
NSCs. Through the definition of such a connectivity
network, our study shows the way to the identifica-
tion of genes and enhancers involved in NSCmainte-
nance and neurodevelopmental disorders.

INTRODUCTION

Neural stem cells (NSCs) are critical for brain development and

for postnatal maintenance of neurogenesis in specific brain

areas. SOX2, a transcription factor (TF) essential for pluripotency

(Avilion et al., 2003; Takahashi and Yamanaka, 2006), is

also required for correct brain development. In humans, SOX2
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mutations cause genetically dominant nervous system disease

involving hippocampus and eye defects, epilepsy, and learning

disabilities (OMIM 206900). In mice, Sox2 ablation causes similar

defects, such as hippocampal hypoplasia, microcephaly, ventral

forebrain depletion, and anophthalmia, some of whichmay result

from a defect in NSC self-renewal (Favaro et al., 2009; Ferri et al.,

2013). These in vivo defects are reflected in the inability of Sox2-

deleted NSCs to self-renew in long-term cultures (Favaro et al.,

2009). SOX2 functions and targets are the subject of intense

investigation (Engelen et al., 2011; Gonçalves et al., 2016; Hagey

et al., 2016; Lodato et al., 2013; Zhu et al., 2013).

Transcriptional regulation is mediated via DNA looping

between gene promoters and their corresponding distal en-

hancers, often located at large distances and skipping inter-

vening genes (de Laat and Duboule, 2013; Rivera and Ren,

2013; Sanyal et al., 2012; Zhang et al., 2013). Genome-wide an-

alyses of long range interactions in chromatin (Sanyal et al.,

2012; Zhang et al., 2013) define complex three-dimensional net-

works (the connectome), whereby a promoter may interact not

only with enhancers but also with additional promoters, which

are in turn connected to further promoter(s) and/or enhancer(s).

The genome-wide connectome is cell-type specific (Gorkin

et al., 2014; Zhang et al., 2013), presumably reflecting cell-

type-specific transcription factor representation. So far, it is

unknown to what extent a single transcription factor influences

the function of genome-wide interaction networks in controlling

cell-specific transcriptional activity.

We previously used chromatin interaction analysis with

paired-end tag sequencing (ChIA-PET) to identify RNA polymer-

ase II (Pol II)-mediated long-range interactions in embryonic

stem cells (ESCs) and in brain-derived NSC or progenitor cell

cultures (Zhang et al., 2013). In the present work, we sought to

identify molecular mechanisms underlying Sox2-dependent

gene regulation in NSCs, as well as genes involved in Sox2-

dependent maintenance of long-term NSC self-renewal. We

thus deleted Sox2 in NSCs in mouse embryonic brain and
Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Table 1. Summary of the ChIA-PET Sequencing and Interaction Analysis

wTR1 wTR2 wTR3 mTR1 mTR2 mTR3

1 Total PETs with linker 143.3 M 35,295,370 33,767,613 151.9 M 24,976,862 21,514,824

2 Mapped PETs 143.1 M 23,672,163 20,624,486 151.7 M 16,512,951 11,050,816

3 Unique PETs 6.8 M 22,208,305 16,873,008 22.6 M 15,756,748 10,160,601

4 Self-ligated PETs 684 K 4,296,406 2,869,465 2.7 M 2,185,670 1,729,424

5 Number of Pol II binding sites (p < 1e�5) 11,819a 41,187a 36,641a 12,068a 21,020a 36,139a

6 Intra-molecular chromatin ligated PETs 691 K 13,105,813 10,207,155 1.3 M 9,360,576 6,119,151

7 Significant interactions (loops) (FDR <0.05, p < 0.05) 7,046a 96,295 63,458 2,984a 29,713 15,561

8 Significant loops with Pol II peaks on both anchors 18,022a 7,346a 2,878a 3,202a

9 Number of significant loops per million intra-chr PETs 10,197 7,348 6,217 2,295 3,174 2,543

10 Number of significant Pol II-bound loops per million

intra-chr PETs

1,375 720 307 523

ChIA-PET data in triplicates were processed to define the binding peaks and significant interactions (see STAR Methods). For full list of significant

interactions, see Table S1. PET, paired end tag; unique PETs, PETs for which the sequence of either side of the linker (e.g., the biotinylated linker

in Figure S1B) can be uniquely mapped to one specific point in the reference genome.
aNumbers of the significant interactions used in further analyses are indicated.
studied the effects of embryonic loss of Sox2 on RNA expression

in neonatal NSCs grown in vitro (see Favaro et al. 2009) and its

relationship to the Pol II-mediated chromatin long-range interac-

tion network. We identified thousands of genes connected via

long-range interactions to distal SOX2-bound, epigenetically

defined enhancers; many of these genes, including important

neurodevelopmental genes, were downregulated upon Sox2

ablation. We validated one of these as a critical downstream

SOX2 target whose re-expression in Sox2 mutant NSCs is suffi-

cient to rescue their self-renewal defect.

RESULTS

Comparison of Genome-wide Pol II-Mediated
Long-Range Chromatin Interactions in Wild-Type and
Sox2-Deleted NSC
We established NSC cultures from the neonatal forebrain of

conditionally (at E11.5) Sox2-ablated mice and their control

non-deleted littermates (Favaro et al., 2009). Freshly isolated

Sox2-deleted (mutant; MUT) and control (wild-type; WT) NSCs

efficiently expand in culture at early passages (Favaro et al.,

2009), however, MUT NSCs later fail to self-renew long-term,

pointing to a requirement for Sox2 in NSC maintenance that

matches a defect observed also in vivo after P0 in the hippocam-

pus (Favaro et al., 2009). Sox2-deleted NSCs retain the ability to

differentiate into glia and neurons upon differentiation induction,

however, under self-renewal culture conditions, they do not

spontaneously differentiate, as indicated by morphological and

immunochemical criteria and by comparison of RNA sequencing

(RNA-seq) data (by Pearson correlation, hierarchical clustering,

and principal component analysis) of un-induced WT and

MUT cells (day 0) with WT cells induced to initial differentiation

(day 4) (data not shown).

To determine the effect of Sox2 loss on the genome-wide

pattern of Pol II-mediated long-range chromatin interactions,

we first performed ChIA-PET analysis with anti-polII antibodies,

specific for the preinitiation complex (Zhang et al., 2013),

comparing ex vivo NSC cultures derived at P0. These cultures

express forebrain-specific transcripts, indicating that the NSCs
maintain a forebrain identity (Zappone et al., 2000; Zhang

et al., 2013). ChIA-PET identifies protein-mediated genome-

wide long-range chromatin contacts through proximity ligation

and chromatin immunoprecipitation (ChIP). We generated

ChIA-PET data from both normal (WT) and Sox2-ablated (MUT)

brain cells to determine Pol II-mediated long-range connectivity

(distant enhancer-promoter and promoter-promoter connec-

tivity) (Figure S1). We began to analyze the chromatin connectiv-

ity by following the original version of the protocol (Zhang et al.,

2013) that performed nuclei lysis followed by proximity ligation

and Pol II ChIP from hundreds of million pooled NSCs from WT

and Sox2-deleted (MUT) neonatal (P0) forebrains (4 WT and

6 MUT, deleted at E11.5) (Favaro et al., 2009) neonates. These

datasets (Table S1) are referred to as wTR1 and mTR1, respec-

tively. We observed a substantial reduction of normalized inter-

actions (numbers of significant interactions per million intra-mo-

lecular ligation PETs) in Sox2-deleted (2,295 in mTR1) versusWT

NSCs (10,197 in wTR1) (Table 1 and Figure 1, discussed below).

We further verified that such reduction of overall Pol II connec-

tivity observed in MUT NSCs did not result from different Pol II

immunoprecipitation efficiencies between WT and MUT cells;

indeed, we observed highly similar normalized density profiles

between WT andMUT genomic regions (Figure S2). Specifically,

the vast majority (92%) of the ChIA-PET-defined Pol II binding

regions in WT NSCs were retained in MUT NSCs, irrespective

of whether or not they were connected (Figures 1 and S2). To

confirm that the reduction of Pol II-mediated interactions in

MUT NSCs was not influenced by the pooling of heterogeneous

samples or correlated with the experimental procedure, we

subsequently generated additional replicate datasets using an

improved ChIA-PET method (named in situ ChIA-PET) (Fig-

ure S1). In the in situ Pol II ChIA-PET protocol, instead of per-

forming proximity ligation in chromatin mixtures from hundreds

of million cells that is intrinsically noisy (as evident by the high

level of inter-chromosomal PETs), proximity ligation was per-

formed in permeabilized intact nuclei, followed by ChIP and a

transposase-mediated ‘‘tagmentation’’ to generate PETs for

sequencing analysis (Figure S1; STAR Methods). As such, the

in situ ChIA-PET method results in higher efficiency in capturing
Cell Stem Cell 24, 462–476, March 7, 2019 463
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intra-molecular ligation PETs, thus requires significantly lower

numbers of cells to yield highly sensitive detection of protein-

mediated chromatin interactions (Mumbach et al., 2016; Table 1).

Therefore, this approach allowed us to analyze cultures from

individual neonatal forebrains (two WT, wTR2 and wTR3, and

two MUTs, mTR2 and mTR3). The improvement can be shown

by the ratio of the intra-molecular interaction PETs; in the TR1

(original version), only 5%–10% of the uniquely aligned paired

reads (unique PETs, Table 1, line 3) were intra-molecular chro-

matin ligated PETs (defined by cis-interaction PETs, Table 1,

line 6), whereas in TR2 and TR3, 50%–60% of the uniquely

aligned paired reads were intra-molecular chromatin ligated

PETs (Table 1). Despite two versions of the protocols being

applied, the three ChIA-PET experiments (TR1, TR2, and TR3)

showed overall highly similar interaction patterns when the

same genotypes (WT or MUT) were considered, at different res-

olution (Figure S2); 74% and 80% of the interactions detected in

wTR1were also detected in the combined (i.e., the sum of) wTR2

and wTR3 interactions (within a window ± 5 kb and ± 10 kb,

respectively). Further, the average reproducibility score between

wTR2 and wTR3 based on SCC (stratum-adjusted correlation

coefficient) (Yang et al., 2017) over all 20 chromosomes was

0.935 and 0.839 for wTR2-wTR3 and mTR2-mTR3, respectively

(Table S2).

The in situ proximity ligation adopted in the improved ChIA-

PET method effectively captures specific Pol II-mediated long-

range interactions between regulatory elements through the

Pol II ChIP enrichment (Figure S1). From a total of 6–13 million

intra-molecular PETs in WT and MUT TR2 and TR3, we defined

between 15,000 to 96,000 ‘‘significant interactions (loops)’’ (false

discovery rate [FDR] <0.05, p < 0.05), enriched in Pol II-mediated

interactions) (Table 1, line 7; Figure S1; STAR Methods). Among

these significant interactions from TR2 and TR3, 2,878–18,022

interactions were mediated by Pol II (defined by the interactions

with Pol II binding at bothDNA regions connected by the interac-

tions) (Table 1, line 8, and STAR Methods). We defined DNA re-

gions connected by an interaction as ‘‘anchors’’ and overlapping

anchors as ‘‘nodes’’ (Figure 1B).We further annotated nodes and

anchors as promoter nodes or anchors if they resided within

2.5 kb from annotated transcription start sites (TSS) and the

remaining ones as non-promoter nodes/anchors. Based on

PhastCons Score Threshold analysis, these non-promoter

nodes were significantly more conserved among vertebrate

genomes relative to random intergenic regions, suggesting their

potential function in chromatin organization (not shown).

Similarly to mTR1 NSCs, mTR2 and mTR3 exhibited a global

reduction in the numbers of chromatin interactions from both
Figure 1. Sox2 Ablation Causes Major Loss of Long-Range Interaction

(A) Functional genomics analyses.

(B) Top: ‘‘anchors’’ and ‘‘nodes’’ connected by long-range interactions; bottom: n

right: TR2 and TR3 combined.

(C–G) Connectivity diagrams in WT NSCs (WT interactions; red) and MUT NSCs

wTR2, and mTR1, mTR2 analysis; regions coordinates are: chr8:87120161-875

chr12:56459922-56634834 (F) and chr8:48254658-48486144 (G). Their genomic

shown below the panels. Pol II- and SOX2-binding peaks are shown. PET counts

decrease of ‘‘looping’’ is seen, but some interactions are lost, others are maint

coincidence (in C) of SOX2 peaks with interaction anchors.

See also Figures S1, S2, S3 and Table 1.
the general chromatin contacts and the specific Pol II-mediated

interactions if compared to WT NSCs (wTR2 and wTR3, respec-

tively) (Figure 1B). The number of normalized significant interac-

tions (‘‘number of loops detected per million of intra-molecular

ligated reads’’) ranged between 6–10 K in WT but were reduced

to only 2–3 K in MUT cell samples (Table 1, line 9), while the

normalized significant Pol II-mediated interactions were 719

and 1,374 in WT, but only 307 and 525 in MUT cells samples,

respectively (Table 1, line 10). Consistent with the reduction of

the Pol II-mediated interactions in MUT cells, the number of no-

des was lower in MUT cells (Figure 1B). Indeed, from 8,295 pro-

moter nodes and 6,549 non-promoter nodes in combined wTR2

and wTR3, the corresponding numbers in MUT cells were

reduced to 3,356 and 1,726, respectively. On the other hand,

the majority of the nodes observed in mTR2 and mTR3 samples

were detected in WT cells as well. These changes of interactions

can be found in many specific loci. The changes were not uni-

form across the genome, but rather highly variable, exhibiting

loci showing drastic reduction interspersed with loci showing lit-

tle or no reduction (Figure 1; see also Figures S3 and S5, Table

S3, and screenshots throughout the paper). In some cases, while

the data from mTR1 showed apparent loss of interactions (as

compared to wTR1), the data obtained by the more sensitive in

situ ChIA-PET, providing a higher depth in the intra-molecular

ligated PETs, showed a reduction in frequency instead of a

complete loss of the interactions (Figures 1D and 1G, compare

TR2 with TR1; see also Figure S3); the above discussed

dependence of the detection of some interactions on obtaining

high numbers of interacting PETs makes it difficult to prove the

complete loss of any specific interaction. In some regions, we

actually observed new sets of loops emerging in MUT cells

(Figure 1).

In conclusion, the data indicate that in the absence of Sox2,

chromatin connectivity was substantially altered genome-wide,

with an overall decreased interaction frequency, in particular at

selected loci.

SOX2-Bound Distal Regions Carrying Enhancer Marks
Are Highly Enriched Within Interactions
The changes in connectivity observed following Sox2 ablation

point to a role for SOX2 DNA binding within chromatin in the gen-

eration and/or maintenance of long-range interactions. We thus

identified SOX2-bound sites through genome-wide ChIP-seq of

WT brain-derived NSCs in culture (Figure S4; STAR Methods).

We also performed ChIP-seq, in both WT and MUT NSCs, for

histone modifications H3K27ac and H3K4me1 (Figure S4, two

replicates), allowing for the identification of active (H3K27ac+
s in Brain-Derived NSCs

umbers of promoter/non-promoter nodes in WT and MUT NSCs, left: TR1 and

(MUT interactions; blue), across 5 different chromosome regions, in the wTR1,

87163 (C), chr13:25372775-31004673 (D), chr11:117736788-117873172 (E),

coordinates are indicated above each panel, and genes within each region

(Y axes); note different (log10) scales in some panels. In MUT NSCs, an overall

ained. Note the persistence of Pol II binding in MUT NSCs and the frequent
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and H3K4me1+), as well as ‘‘poised’’ (H3K4me1+ only) en-

hancers, with the potential to be activated (Cantone and Fisher,

2011; Creyghton et al., 2010; Rivera and Ren, 2013). For the

latter analysis, we used both a ‘‘peak-calling’’ and a ‘‘segmenta-

tion’’ approach (chromHMM), which both led to qualitatively

consistent results (see STAR Methods).

Finally, we linked SOX2-binding sites to both epigenetic marks

and interacting anchors, as defined in WT NSCs by Zhang et al.

(2013) (corresponding to wTR1) and in in situ ChIA-PET experi-

ments (wTR2, wTR3) (Figure 2). For a summary of data, see

Tables S4 and S5.

SOX2-bound sites were rarely located at promoters (±1 kb

TSS of RefSeq genes) and more frequently in intronic and inter-

genic distal regions (Figure 2A and data not shown). Over 90%of

SOX2-bound sites were associated with nucleosomes charac-

terized by the presence of either or both the histone modifica-

tions investigated in WT NSCs (Figure 2A, histograms: peak

calling and chromHMM); in particular, both SOX2-bound pro-

moters and distal regions were mostly (90%) H3K27ac+. On

the other hand, within H3K27ac+ regions, a much smaller pro-

portion of promoters than of distal regions were SOX2-bound

(Figures 2B, right, and S4); indeed, within distal H3K27ac+ re-

gions, SOX2-bound regions were highly enriched in comparison

to 1,000 sets of random genomic loci (p < 0.001, random sam-

pling, see STAR Methods).

To identify the binding of SOX2, if any, within long-range inter-

actions, we first classified interactions in WT cells according to

the type of interacting element (i.e., promoter [P] or non-pro-

moter [non-P]) (Figure 2C). Approximately 85%–90%of the inter-

actions were mediated through promoters (promoter-promoter

[P-P] or promoter-non-promoter [P-non-P] interactions) in

both WT and MUT cells, equally subdivided between P-P and

P-non-P classes (Figure 2C); within P-non-P interactions, a

promoter is connected to either an intergenic or an intragenic

region. Only a small number (10%–15%) of interactions connect

two non-promoter regions (Figure 2C). An almost identical distri-

bution was observed using interactions defined from TR2 and

TR3 (Figure 2C).

Within interactions, SOX2 peaks were highly abundant; ca.

35%–46% of all interactions in WT NSCs (TR1, TR2, and TR3)

carried a SOX2-bound site within at least one of the two interact-

ing anchors (Figure 2D; Tables S4 and S5). Specifically, approx-

imately half (44%–53%) of P-nonP interactions (also called P-E,

see below) were SOX2-positive with 34%–43% of distal ele-

ments (putative enhancers) being SOX2-bound (Figure 2D).

Approximately 95% of SOX2-bound distal anchors were in

regions carrying both active enhancer marks (H3K27ac+,

H3K4me1+) and the remainder with either one or the other

mark; among non-SOX2-bound distal anchors, �70% were

associated with both marks and �15% with either (not shown).

From now on, we refer to these interactions as ‘‘promoter-

enhancer’’ (P-E) interactions. Importantly, SOX2-positive epige-

netically marked (EM) distal regions (whether H3K27Ac+ and/or

H3K4Me1+) were significantly more involved in interactions

than SOX2-negative EM regions: this was observed in the orig-

inal ChIA-PET (TR1), as well as in in situ ChIA-PET data (TR2

and TR3) (Figures 2E and S4 and data not shown). Thus, the

high frequency of SOX2-bound distal anchors is the result of

both the enrichment of SOX2 binding within EM distal regions
466 Cell Stem Cell 24, 462–476, March 7, 2019
(Figure 2B) and the preferential engagement in long-range inter-

actions of SOX2-positive EM regions versus non-SOX2-bound

regions (Figure 2E).

In conclusion, the high enrichment of SOX2-positive EM re-

gions within distal anchors in P-E interactions points to a func-

tional role of SOX2 binding at the level of these interactions.

Interestingly, the loss of SOX2 in MUT NSCs does not lead

to important changes (loss or gain) in the patterns of histone

modifications: enrichment in H3K27ac, H3K4me1, both, or

none (Figure S4).

SOX2-Dependent Long-Range Interactions Predict
Novel Forebrain Enhancers
The strong enrichment of anchors in epigenetic EMs suggested

that long-range interaction anchorsmight be used to identify reg-

ulatory elements driving gene expression in the developing brain

(Figures 3 and S5; Table S6). We identified several genes playing

important developmental roles in the forebrain, someofwhichare

homologs of human genes involved, when mutated, in inherited

brain diseases (microcephaly, intellectual disability, etc.) (Table

S6), whichwere connected bymultiple P-E (and P-P) interactions

to SOX2-bound elements (possible enhancers). Some of the

distal anchors connected to these genes by P-E interactions

overlapped with previously identified p300-bound enhancers,

already shown to be active in forebrain as transgenic constructs

(VISTA enhancers, https://enhancer.lbl.gov) (Visel et al., 2009;

Figures 3 and S5). Interestingly, VISTA enhancers were enriched

within TR1, TR2, and TR3 interaction anchors (with 13% to 23%

of VISTA enhancers overlapping with anchors), and particularly

so within distal non-promoter interaction anchors; in Sox2 MUT

cells theproportionof VISTAenhancersoverlappingwith anchors

dropped to ca. 4%, and their representation in distal anchorswas

drastically reduced (Figure S5). These data point to potential

functional roles of distal non-promoter anchors identified by

ChIA-PET in gene regulation in vivo in the developing brain.

Next, we tested distal regions involved in SOX2-bound long-

range interactions using a transgenic enhancer assay in zebra-

fish. Fifteen out of seventeen reporter constructs containing

SOX2-bound distal anchors directed GFP expression to the

developing forebrain (Figure 4; Table S7). GFP expression

matched part of, or the whole, forebrain expression pattern of

the endogenous zebrafish ortholog of the mouse gene con-

nected to the analyzed enhancer (Figure 4). Similar data were

obtainedwith anchors connected to important regulators of fore-

brain development, including Sp8, Cxcr4, Sox3, Nr2f1, Irx1,

Socs3 and c-fos (Figure 4; Table S6). Further, the expression

of 3 out of 7 enhancers tested was affected by anti-Sox2

morpholinos or by injected Sox2 mRNA (Figure S6 and data

not shown). Thus, RNA-polII-mediated, SOX2-bound interac-

tions identify with high confidence novel forebrain enhancers.

SOX2-Bound Promoter-to-Enhancer Long-Range
Interactions Are the Main Determinant of SOX2-
Dependent Transcription
To correlate the expression of genes to the observed pattern of

long-range interactions, we analyzed by RNA-seq the transcrip-

tomes of WT and MUT NSCs (Tables S4 and S5).

To determine how the presence of Pol II-mediated interactions

is reflected into gene expression levels, we subdivided genes

https://enhancer.lbl.gov


Figure 2. SOX2-Bound Regions Carrying Epigenetic Enhancer Marks (EM) Show Significantly Higher Overlap with Anchors Than SOX2-

Negative EM-Positive Regions

(A) Left: number of SOX2-bound sites in regions linked to annotated TSS (±1,000 nt) and in distal, non-P regions. Right (histograms): percentage of different

enhancer marks (EMs)-positive regions within SOX2-bound TSS-linked (SOX2+ TSS) or distal (SOX2+ distal) regions (left histograms, peak calling; right histo-

grams, chromHMM).

(B) Fraction of SOX2-bound sites within EM-positive regions (H3K27Ac+) on TSS-linked or distal regions (peak calling).

(C) Interaction types according to the nature of the connected regions, for wTR1, wTR2, wTR3, mTR1, mTR2, and mTR3. ‘‘Prom,’’ annotated TSS-containing

region (i.e., promoter).

(D) Numbers of P-P and P-nonP (P-E) SOX2-positive interactions in WT cells in wTR1, wTR2, and wTR3. See also Table S4.

(E) Fraction of SOX2+ (left) versus SOX2� (right) EM-positive regions that overlap with anchors in wTR1, wTR2, and wTR3. Top: distal epigenetically marked regions

(H3K27Ac+andH3K4me1+)overlapwithdistal anchors.Bottom:all epigeneticallymarked regions (H3K27Ac+orH3K4me1+)overlapwithall anchor types,chromHMM.

See also Figure S4 and Tables S4 and S5.
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Figure 3. Distal Anchors Connected by Sox2-Dependent Interactions to Genes Important in Neural Development and Disease

(A and B) Sox2-dependent ChIA-PET interactions (TR1) between two different genes (Sox4, A; Zbtb18, B) and distal regions overlapping previously characterized

‘‘VISTA’’ enhancers (Visel et al., 2009); SOX2 ChIP-seq peaks (present paper), lacZ-stained transgenic embryos (from https://enhancer.lbl.gov), and evolutionary

conservation (ECR browser).

(C and D)Sox2-dependent interactions (wTR1, wTR2, wTR3, mTR1,mTR2, andmTR3) involvingGpr56 (C) andArid1a (D), two genes whose human homologs are

involved in neurodevelopmental brain disease.

See also Figure S5 and Tables S5 and S6.
according to the Pol II ChIA-PET connectivity of their promoters

(Zhang et al., 2013) (non-connected promoter, promoter con-

nected with promoters or enhancers, or promoter connected
468 Cell Stem Cell 24, 462–476, March 7, 2019
specifically with enhancers, see Figure 2D). Then, we determined

the distribution of transcript levels in both WT andMUT NSCs for

the different interaction categories (Figure 5A). Considering only

https://enhancer.lbl.gov


Figure 4. Distal Anchors in Sox2-Dependent Interactions Drive GFP

Transgene Activity to Zebrafish Brain

Top: enhancer-dependent GFP-reporter (ZED): distal anchors (DA) from Sox2-

dependent interactions are cloned upstream to a minimal promoter and GFP.

Bottom: first and second left columns, GFP expression in transgenic embryos

and bright-field images (F1 of stable lines, except for c-fos, transient trans-

genics). Third column: expression (in situ hybridization from http://zfin.org) of

the endogenous zebrafish gene corresponding to the gene connected, in
transcribed genes, those involved in interactions (P-P and P-E)

showed a distribution of expression levels shifted toward higher

values than the overall population of expressed genes (data for

TR1, TR2, and TR3, Figure 5A); the highest expression levels

were seen with genes involved specifically in interactions with

enhancers (P-E) (Figure 5A) (p value < 2.23 10�16). Interestingly,

higher expression levels were also associated with an increase in

number of interactions per gene, particularly with P-E interac-

tions, which show a clear trend toward higher expression values

for every added ‘‘enhancer’’ (TR1, TR2, and TR3, Figure 5B).

Moreover, genes whose promoter interacted with SOX2-bound

enhancers were more expressed than those connected to en-

hancers not bound by SOX2 (TR1, TR2, and TR3, Figure 5A).

Very similar results were obtained by both the analysis of data

obtained by the original ChIA-PET (Zhang et al., 2013) (TR1)

and by in situ ChIA-PET (TR2 and TR3).

We next compared gene expression between MUT and WT

NSCs. In MUT NSCs, the distributions of expression levels of

all genes, and of each category of genes, had lower median

and mean values than in WT NSCs, with an overall distribution

significantly shifted toward lower values (Figure 5A). Indeed, a

Wilcoxon paired signed-rank test (see STAR Methods) showed

that the differences between WT and MUT distributions of

gene expression were highly significant (p value < 2.2 3

10�16 for every pair considered), for TR1, TR2, and TR3 (Fig-

ure 5A). To further assess the significance of the observed

expression decrease in MUT NSC, we also plotted the

distribution of the variation of the expression of each gene be-

tween WT and MUT cells, defined as log-fold ratios (log2

[TPM_wild-type/TPM_mutant]) (TPM, transcripts per million)

(Figure 5C). To avoid bias from genes with low transcript levels,

we considered only genes with TPM >1. The plot was clearly

shifted toward positive values, indicating that the majority of

genes were more highly expressed in WT than in MUT NSCs

(Figure 5C).

Taken together, the above results indicate that loss of Sox2 is

associated with an overall gene expression decrease that is

more relevant for genes involved in Pol II-mediated P-E interac-

tions in WT NSCs; moreover, genes with SOX2-positive P-E

interactions were more expressed than genes with P-E interac-

tions in general. To further validate these results, we considered

genes with TPM >5 in either WT or MUT cells and divided

them into three groups (Figure 5D): group 1, genes showing a

significant decrease of expression in MUT versus WT NSCs

(677 genes); group 2, genes showing a visible but not statistically

significant decrease of expression inMUT (2194 genes); group 3,

all the other genes with TPM >5 (see STAR Methods). We then

considered the different types of interactions associated with

genes to determine whether genes in each expression variation

group could be significantly associated with any type of interac-

tion (i.e., if their number, within a given interaction class, was

higher or lower than the number expected by chance). We sum-

marized the results by defining a ‘‘co-association score’’ (see
mouse, to the tested anchor. Fourth column: forebrain lacZ staining driven by

transgenes carrying the human enhancers corresponding to the anchor (from

https://enhancer.lbl.gov) (Visel et al., 2009).

See also Figure S6 and Table S6.
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Figure 5. Reduced Gene Expression in Sox2 MUT NSCs Correlates with Loss of Long-Range Interactions

(A) Distribution of expression values (TPM) of genes with TPM >0. Blue, WT NSCs; orange, MUT NSCs. From left to right: all genes; genes whose promoter is a

node (P-P, P-E interactions); genes whose promoter is connected to an enhancer (P-E interactions); genes with SOX2-positive P-E interactions.

(B) Distribution of expression values (y axis) of genes according to the number and type of element (enhancer or promoter anchors) interacting with the gene

promoter (x axis) in wTR1, wTR2, and wTR3. Top: interactions with enhancers. Bottom: interactions only with promoters. The number of genes involved is shown

in each diagram inside the box along the x axis.

(C) Distribution of the fold ratio values for all genes with TPM >0 defined as log2 (TPM_WT/TPM_MUT). It confirms results shown in (B): the fold ratio is shifted

toward positive values (i.e., a majority of genes have expression in WT higher than in MUT NSCs).

(legend continued on next page)
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STAR Methods) as the -log10 p of the probability of observing, in

each of the three expression groups, a given number of genes

associated with a given type of interaction. We denoted a num-

ber lower than the expected value bymultiplying the result by�1

(Figure 5D; Table S8). In all three experiments (wTR1, wTR2, and

wTR3), the results confirmed a highly significant overlap be-

tween genes showing significantly decreased expression in

MUT NSCs (group 1 genes) and those characterized, in WT

NSCs, by a promoter to enhancer interaction (Figure 5D, lanes

1, 5, and 9). Moreover, the influence of SOX2 bindingwas evident

by comparing group 1 genes connected to enhancers bound by

SOX2, which yielded highly significant coassociation scores

(lanes 2, 6, and 10), with those connected to enhancers not

bound by SOX2 (lanes 3, 7, and 11), which yielded only margin-

ally significant scores inwTR1 and nonsignificant scores in wTR2

and wTR3. On the other hand, SOX2 binding to promoters was

only marginally associated to genes showing significantly

decreased expression levels (p value >0.01, not shown), pointing

to the fact that binding of SOX2 to a connected distal enhancer is

much more functionally effective than its binding to a promoter.

Finally, the P-P interactions category had no significant overlap

with genes showing significant expression changes (group 1).

However, group 2 genes showing only mildly decreased expres-

sion in MUT cells (not reaching the threshold requested for sta-

tistical significance), were significantly associated with the P-P

interaction category (lanes 4, 8, and 12); we speculate that P-P

interactions might be responsible for moderate positive effects

on transcription, and their loss in MUT cells might predominantly

result into a minor decrease of expression (as observed for

group 2 genes), rather than into the stronger decrease observed

with group 1 genes.

In conclusion, the identification of thousands of long-range

interaction enhancers in NSCs, many of which are bound by

SOX2, demonstrates an important role of SOX2 in controlling

gene expression at the connected promoter.

Overexpression of Socs3, a Multi-Connected SOX2
Target, Rescues Long-Term Self-Renewal of MUT NSC
Sox2 MUT NSCs have a severe self-renewal defect, and their

growth in culture becomes exhausted after 7–10 passages

(�30 days) (Favaro et al., 2009). To evaluate if any specific

gene (from among those whose expression is affected by Sox2

loss) was able to rescue long-term self-renewal in MUT NSC,

we expressed in MUT NSCs the Socs3 gene, an inhibitor of

Jak/Stat signaling, which antagonizes precocious differentiation

of NSCs into astroglia (Cao et al., 2006). Socs3 is strongly down-

regulated (down to 10%–15% of WT values) in MUT NSCs

(Tables S4 and S5) and shows both a SOX2 peak on the pro-

moter and multiple interactions (Figure 6A; see also Figure 1E),

including one with a SOX2-bound anchor that already tested

active in transgenic Zebrafish assays (Figure 4). We transduced

both WT and Sox2MUT NSCs with a lentiviral Socs3-vector co-

expressing GFP, performing three experiments at virus-to-cell
(D) Coassociation scores (histograms, -log10 p) calculated for genes (TPM >5) sho

(green), and the indicated categories of interactions detected in wTR1, wTR2, a

nificant expression reduction; DOWN_MUT NO_SIGN, genes showing moderate

shown on the right; data for ‘‘SOX2 promoter target’’ are not significant.

See also Tables S5 and S8.
ratios transducing 20%, 30%, or 50%of the NSCs. Socs3-trans-

duced WT NSCs grew at a similar rate as untransduced WT

NSCs and continued to grow long-term, whereas untransduced

MUT NSCs stopped growing between passages 8–12 (Figures

6B and 6C). In contrast, Socs-3 transduced MUT NSCs

continued to grow long term, even after the untransduced MUT

NSCs had stopped growing and could eventually be grown in

bulk to generate large cell populations. At the time of initial diver-

gence of the growth curves of transduced and untransduced

MUT NSCs (experiment 3), most or all neurospheres (from trans-

duced MUT NSCs) contained GFP+ cells, and over 70% of the

cells were positive by fluorescence-activated cell sorting

(FACS), indicating a strong enrichment of the transduced cells;

eventually, all cells became GFP+ (Figure 6D). Note that Socs3-

transduced WT NSCs were not positively selected relative

to untransduced WT NSCs, indicating that in WT NSCs, the

endogenous SOCS3 level was not limiting for optimal growth

(not shown). This result identifies a SOX2-regulated gene,

involved in SOX2-dependent interactions, whose abnormal

regulation in MUT NSCs may be responsible for their defective

long-term maintenance.

DISCUSSION

We show that SOX2 is critically involved in long-range chromatin

interactions in NSCs; its ablation during early mouse develop-

ment leads to a predominant decrease in long-range chromatin

connectivity, particularly at some loci, when tested in neonatal

forebrain-derived NSC cultures. SOX2 binding is greatly en-

riched on DNA regions connected by interactions (anchors) at

either promoters or enhancers. The loss of Sox2 decreases the

expression of �1,000 genes. The identification of thousands

of epigenetically defined enhancers involved in long-range

interactions allowed us to demonstrate that SOX2-bound long-

range interactions represent the most relevant functional

category associated with the observed gene downregulation in

MUT NSCs (Figure 5D). mRNAs encoding important transcrip-

tion factors, and signal transduction molecules, are significantly

reduced in MUT cells; among these factors, SOCS3 is able

to rescue long-term self-renewal in MUT NSC, when overex-

pressed in these cells.

SOX2 Enrichment in Pol II-Mediated Long-Range
Interactions between Promoters and Epigenetic
Enhancers in NSC
A relevant role for SOX2 in long-range interactions can be hy-

pothesized on the basis of the following observations: distal

interaction anchors are highly enriched in epigenetic enhancer

marks (Figure 2) and are highly represented in enhancers

active in transgenic zebrafish (Figure 4) and in forebrain VISTA

enhancers (Visel et al., 2009) (see Figures 3, 4, and S5). In addi-

tion, SOX2-bound sites are highly enriched in regions marked

by epigenetic enhancer signatures (Figure 2B); in particular,
wing either reduced gene expression in MUT NSCs (red), or no relevant change

nd wTR3 (see STAR Methods). DOWN_MUT, genes showing statistically sig-

expression reduction; OTHERS, all other genes. The types of interactions are
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Figure 6. SOCS3 Re-expression in MUT NSCs Prevents NSC Exhaustion and Restores Self-Renewal

(A) Top: Socs3 gene. ChIA-PET interactions, SOX2 peaks, and ChIA-PET reads in WT NSCs. Bottom: loss of interactions in Sox2-MUT NSCs.

(B) Growth curves of MUT NSCs, not transduced (MUT) or transduced (MUT Socs3) with a Socs3-GFP-expressing lentivirus, and of WT controls (WT or

WT Socs3).

(C) Images (phase-contrast) of MUT or Socs3-transduced MUT NSCs 3 days after passage 12; neurospheres develop only from Socs3-transduced NSCs. For

comparison, WT NSCs.

(D) FACS analysis (GFP) of MUT, WT, andMUT Socs3 cells at the indicated passage number. With passaging, the fraction of GFP+ NSCs progressively increases

in MUT Socs3 NSCs, eventually reaching 100%.
SOX2-bound epigenetically defined enhancer regions are much

more represented than non-SOX2-bound regions in anchors

(Figure 2E). Finally, upon ablation of Sox2, there is a reduction
472 Cell Stem Cell 24, 462–476, March 7, 2019
in interactions frequency, which is detected by ChIA-PET

(Figures 1, 3, S3, and S5; Table 1) at large numbers of loci. It is

thus possible to hypothesize that SOX2, perhaps in complex



with additional factors, may contribute to generate, or maintain,

the network of interactions characteristic of NSCs.

A subset of P-P andP-E interactions is decreased in frequency

in MUT cells. This might result from the loss of SOX2 from the in-

teracting anchors (an appealing hypothesis) and the ensuing

global chromatin conformation changes; an additional contribu-

tion to interaction loss might be represented by the transcrip-

tional deregulation of many SOX2-controlled transcription fac-

tors (Tables S4 and S5) potentially contributing to interactions.

Further, SOX2 interacts with several TFs, as well as with proteins

involved in determining chromatin structure, such as NurD

complex, SWI/SNF, CHD7, and SMRT/NCOR (Engelen et al.,

2011), which are thus possible candidates for mediating such

interactions.

Decreased Gene Expression in Sox2 MUT Cells Is
Significantly Correlated with Genes Whose Promoter Is
Connectedwith an Enhancer Bound by SOX2 inWTCells
The decreased transcription of�1,000 genes (Tables S4 and S5)

in Sox2MUT cells could in principle be ascribed to either loss of

an effect of SOX2 on the gene promoter, or to loss of an effect

on a connected enhancer. We demonstrate a predominant role

of SOX2-bound enhancers versus non-SOX2-bound enhancers

on the regulation of their connected genes (Figure 5D); in

contrast, SOX2 binding to promoters is much less functionally

relevant. Some interacting promotersmay influence each other’s

activities (Li et al., 2012); our data, while not ruling out this model,

suggest that, overall, the numerous P-P interactions detected in

NSCs play a comparatively minor role relative to P-E interactions

in SOX2-dependent regulation (Figures 5B and 5D). This is

consistent with our observation (Zhang et al., 2013) that P-E

interactions are more cell-type specific than P-P interactions,

and is in agreement with the known cell-type specificity of

SOX2 functions in neural cells. The predominant transcriptional

effect of SOX2 at distal enhancer regions might be related either

to an activating effect of SOX2 onto the connected promoter or

to a stabilizing effect of SOX2 onto the interaction itself (as sug-

gested by the decreased frequency of the interaction upon Sox2

ablation), or both.

The role of interactions in controlling gene activity has

been addressed by the knockout of genes encoding CTCF

or Cohesin components in regulating chromatin interactions

in cell lines. Only moderate transcriptional deregulation was

observed in connection with widespread and deep changes

in long-range interactions (Merkenschlager and Odom, 2013;

Rao et al., 2017; Schwarzer et al., 2017); these proteins, how-

ever, are thought to act primarily as architectural proteins (Phil-

lips-Cremins et al., 2013), in contrast to the well-established

role of SOX2 as a transcription factor. During completion of

this manuscript, the transcription factor YY1 was identified

as a mediator of promoter-enhancer interactions in embryonic

stem cells (Weintraub et al., 2017). YY1, contrary to SOX2,

is ubiquitously expressed and acquires cell-type specificity of

binding to DNA thanks to RNA and other undefined factors

(Weintraub et al., 2017). Intriguingly, in neural progenitor cells

(NPCs), YY1 is bound to a large subset of NPC-specific pro-

moter-enhancer interactions (Beagan et al., 2017). It will be

interesting to ask whether SOX2 and YY1 may functionally

interact at this level.
Sox2 Loss Does Not Substantially Alter Epigenetic
Enhancer Marks
While SOX2 is bound to a very large proportion of epigenetic en-

hancers in NSC and plays an important role in the regulation of a

subset of genes, epigenetic marks on enhancers are not lost in

Sox2 MUT NSCs (Figure S4). This might be explained by the

fact that no gene is completely silenced in the absence of

SOX2, and interactions might be decreased, but not completely

lost. Additionally, Sox2was ablated at a stage (E11.5) when spe-

cific EM might already have been established within NSCs;

SOX2 might be initially important in determining the transition

from an ectodermic cell to a NSC, and thus the establishment

of proper chromatin EM, but might not be required after-

ward for their maintenance. These observations dissociate the

presence of an epigenetic EM from the actual presence of a

critical transcription factor on interacting promoter-enhancer

complexes.

SOX2 Loss Affects the Activity of Key Genes Relevant to
Cell Proliferation Control
Sox2 is expressed in NSCs throughout life (Zappone et al., 2000)

and is essential for NSCmaintenance in culture and in vivo in the

hippocampus (Favaro et al., 2009). It is unknown which genes

downstream to Sox2 mediate its function in long-term NSC

maintenance. Socs3, a highly connected gene (Figures 1

and 6) is strongly downregulated in Sox2 MUT NSCs. Socs3

transduction of a proportion of Sox2 MUT cells leads to a slow

but progressive increase of the growth rate of the culture, with

eventual recovery of a population of actively growing cells,

providing evidence for a crucial role of Socs3 in Sox2-dependent

NSC maintenance (Figure 6). Interestingly, several additional

genes (c-fos, Jun, JunB, Btg2, Egr1, and Egr2), encoding well-

known regulators of cell proliferation, are expressed at high

levels in WT NSCs and are substantially downregulated in

Sox2 MUT cells (Tables S4 and S5). These genes show multiple

promoter-enhancer interactions in WT NSCs (not shown and

Table S5) and might be part of a network of interacting genes

required, together with Socs3, for optimal Sox2-dependent

maintenance of NSCs. Hippocampal defects observed in Sox2

MUT mice have been related to defects in NSCs (Favaro et al.,

2009). The discovery of mediators of Sox2 function in NSCs

may be relevant to the understanding of in vivo defects.

Many Mouse Homologs of Genes Affected in
Neurodevelopmental Brain Diseases Are Involved in
Long-Range Interactions with Distant Regions Carrying
Enhancer Marks
Thousands of polymorphisms in non-coding elements in man

may be linked to brain disease or neurodevelopmental disorders

(Nord et al., 2015). In NSCs, between ca. 1,750 and 3,500

expressed genes (Figure 5B, wTR1, wTR2, and wTR3) present

long-range promoter-enhancer connections; the comparison

of the regulatory elements that we identified in mouse with

conserved orthologous sequences in man may allow identifi-

cation of genes regulated by such enhancers, which might

be dysfunctional in individuals carrying mutations at these

elements.

Interestingly, the mouse homologs of several genes known

to be involved in human neural disease show SOX2-bound
Cell Stem Cell 24, 462–476, March 7, 2019 473



interactions (Figures 3B–3D and S5). A SOX2-bound neural

enhancer within the Akt3 gene is connected to the Zbtb18

(ZFP238 in man) TF gene (Figure 3B), whose mutation causes

microcephaly in man and mouse (de Munnik et al., 2014); in

man, deletions including AKT3, or translocations separating

AKT3 from ZFP238 (Boland et al., 2007) (Figure 3B) also cause

microcephaly. Both Gpr56, a gene whose promoter is bound

by SOX2, and Arid1a (Figure 3) are connected to distant SOX2-

bound epigenetic enhancers; mutation of the GPR56 promoter

causes structural neocortical abnormalities and ARID1A muta-

tion is responsible for intellectual disability (Bae et al., 2014;

Lee and Young, 2013, and references therein). The mutation of

SOX3 (see its enhancer in Figure 4) causes mental retardation

and hypothalamic-pituitary defects (Laumonnier et al., 2002).

Table S6 (see also Figure S5) lists additional genes involved in

long-range interactions (many of which are SOX2-bound), whose

human homologs are affected in neurodevelopmental disorders.

In particular, Table S6 includes a large proportion of genes

mutated in primary recessive microcephaly, severe intellectual

disability, and eye disease. Significantly, the pathology of

SOX2 mutant patients includes brain (mainly hippocampal) ab-

normalities, some degree of mental retardation, and eye defects

(Ragge et al., 2005; Sisodiya et al., 2006); microcephaly and

some of the pathology observed in humans are also prominent

in mouse Sox2 mutants (Favaro et al., 2009; Ferri et al., 2004,

2013). Our data suggest that some of the genes showing con-

nections in Table S5 might play a role in human and mouse

Sox2-dependent pathology; additionally, it might be interesting

to search for mutations of the connected enhancers in human

diseases such as intellectual disability and microcephaly.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-RNAPII monoclonal antibody (TR1) Covance Cat# 8WG16; RRID: AB_10013665

Goat anti-SOX2 antibody Santa Cruz Cat# sc-17320; RRID: AB_2286684

Anti-H3K27ac antibody Abcam Cat# Ab4729; RRID: AB_2118291

Anti-H3K4me1 antibody Abcam Cat# Ab8895; RRID: AB_306847

Anti-RNAPII monoclonal antibody (TR2, TR3) Biolegend 920102; RRID: AB_2565318

Bacterial and Virus Strains

TWEEN lentiviral vector expressing CMV-SOCS3 and PGK-GFP Francipane et al., 2009 N/A

Chemicals, Peptides, and Recombinant Proteins

Protein G Invitrogen 10004D

Illumina Nextera DNA sample prep kit Illumina FC-121-1030

Illumina Nextera indexes Illumina FC-121-1011

EGS Thermo 21565

Triton X-100 Sigma-Aldrich T8787-100ml

dATPl NEB N0440S

Klenow (30-50 EXO-)-1 000 NEB M0212L

T4 DNA ligase NEB M0202L

AluI NEB R0137L

BSA NEB B9000S

10% SDS Ambion AM9822

Formaldehyde Sigma F8775

5 3 ligation buffer NEB B6058S

Glycine Sigma G8898

Critical Commercial Assays

TruSeq ChIP Sample Prep Kit Illumina Cat# IP-2020-1012 or 1024

pCR8/GW/TOPO� TA Cloning� Kit Thermo Fisher Cat# K250020

ClonaseTM-assisted, Gateway� technology Invitrogen Cat# 12535-019, 12535-027

Truseq Stranded mRNA Sample Preparation Kit Illumina Cat# RS-122-2101/2/3

Deposited Data

Raw and analyzed data This paper GEO: GSE90561

Experimental Models: Cell Lines

Ex-vivo cultured NSCs from P0 mouse forebrains Favaro et al., 2009 N/A

Experimental Models: Organisms/Strains

Mouse: Sox2fl/fl;nestin-Cre conditional Sox2 mutants Favaro et al., 2009 EMMA ID (Sox2flox): EM:07995

Oligonucleotides

PCR primers for anchor amplification are in Methods

(Methods S1 primers for anchor amplification)

N/A N/A

Sox2-specific morpholino Okuda et al., 2010 N/A

Recombinant DNA

Zebrafish Enhancer Detection vector Bessa et al., 2009 N/A

Software and Algorithms

Bowtie version 0.12.5 (for SOX2 ChIPseq) Langmead, 2010 http://bowtie-bio.sourceforge.net

MACS version 2.0.9 (for SOX2 ChIPseq) Zhang et al., 2008 N/A

Bowtie version 1.1.0 (for H3K27ac/H3K4me1 ChIPseq) N/A http://bowtie-bio.sourceforge.net

MACS2 (for H3K27ac/H3K4me1 ChIPseq) N/A N/A

(Continued on next page)

Cell Stem Cell 24, 462–476.e1–e6, March 7, 2019 e1

http://bowtie-bio.sourceforge.net
http://bowtie-bio.sourceforge.net


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

RSEM software package version 1.17 Li and Dewey, 2011 N/A

Noiseq package Tarazona et al., 2015 N/A

ChIA-PET Tools https://github.com/

cheehongsg/CPU

N/A

ChiaSigScaled https://github.com/

cheehongsg/ChiaSigScaled

N/A
CONTACT FOR REAGENTS AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Silvia K.

Nicolis (silvia.nicolis@unimib.it).

EXPERIMENTAL MODEL AND SUBJECT DETAIL

Animals
Sox2 conditional mutant mice

Mutant and wild-type mice were sacrificed at P0, to obtain forebrains for NSC cultures (sex was indifferent). Sox2 deletion was ob-

tained by breeding Sox2flox mutant mice to nestinCre transgenic mice (as in Favaro et al., 2009). The experiments were approved by

the Italian Ministery of Health as conforming to the relevant regulatory standards.

Zebrafish

AB and tuplwild-type zebrafish strains were maintained and bred according to standard procedures (Fishman et al, 1997). All exper-

iments conform to the guidelines from the European Community Directive and the Spanish legislation for the experimental use of

animals.

Cell lines, primary cultures, microbe strains
Primary ex-vivo neural stem/progenitor cell cultures

P0 brain-derived NSC cultures were obtained from dissected telencephalon of wild-type and Sox2-deleted mice, and grown, as

described in Favaro et al. (2009) and Zhang et al. (2013), see Method Details section below.

Microbe strains

Standard cloning procedures were carried out in E. coli TOP ten and DH5alpha.

Lentivirus packaging cell lines

Packaging of the Socs3-expressing lentivirus was performed in 293T cells.

METHOD DETAILS

Cultures of neural stem/progenitor cells from wild-type and Sox2-deleted mouse P0 forebrain
After forebrain dissection and cell dissociation, we plated cells in 25mL flasks and cultured them to expand their number in complete

medium (2% (vol/vol) B27 in DMEM F12 with Glutamax), supplemented with 10 ng/ml EGF, 10 ng/ml of basic fibroblast growth factor

(FGF) with 0.2% (vol/vol) heparin. We cultured wild-type and mutant cells in parallel for two initial passages (until sphere formation

was detected, 3-7 days, normally 4 days) (Favaro et al., 2009), followed by sphere dissociation and further expansion in the presence

of EGF, but not bFGF, for 3-5 more passages (4 days), as described in Zhang et al. (2013), for optimal maintenance of mutant NSC

(Favaro et al., 2009). Cell passaging involved 0.25% trypsin treatment for 5 min, followed by block with 1 mg/ml trypsin inhibitor

(Sigma T6522) for 5 min; neurospheres were then mechanically dissociated by pipetting and cells were seeded at 80,000 per ml

in T150 flasks.

After obtaining appropriate numbers of wild-type andmutant cells, we started collecting part of the neurospheres at each passage,

continuing the culture of the remaining cells as long as the growth of mutant cells was comparable to that of wild-type cells. In order

to proceed to ChIA-PET and ChIP-seq experiments, we mechanically dissociated and crosslinked the neurospheres as

described below.

ChIA-PET experiments
ChIA-PET experiments for TR1were performed as described (Zhang et al., 2013), using pooled NSC from four wild-type and six

mutant brains from littermates. Wild-type and mutant cultures were processed in parallel. wTR1 data are from Zhang et al. (2013);

mTR1 data, present paper. Neurospheres were cross-linked by standard formaldehyde treatment and the pellets were then

snap-frozen in nitrogen. The crosslinked cells were lysed to release the chromatin–DNA complexes followed by fragmentation

to an average size of 300 base pairs (bp). The sonicated chromatin–DNA complexes were incubated with the Pol II monoclonal
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antibody-coated magnetic Protein G beads (8WG16, Covance). To determine the ChIP quality, a small portion of ChIP DNA was

eluted for quantitative PCR (qPCR) analysis. For ChIA-PET library construction, ChIP-enriched chromatin complexes were divided

into two aliquots. To distinguish the intramolecular proximity ligation products from the chimeras resulting from non-specific inter-

molecular ligations, two different barcoded biotinylated half-linkers (linker A and linker B) were ligated to the ends of polished

bead-bound-DNA fragments and used to join the juxtaposed chromatin regions. The half-linker-ligated chromatin–DNA fragments

were pooled for phosphorylation and proximity-based circularization. MmeI was subsequently used to release the paired-end

tags (PETs). The full-length linkers AA/BB resulting from intra-molecular circularization were considered to be non-chimeric PETs.

Conversely, the chimeric full linkers AB/BA resulting from intermolecular ligation were considered to be ligation noises. The

biotin-labeled PET constructs were amplified and subjected to sequencing analysis.

For the in situ Pol II ChIA-PET 10 million formaldehyde crosslinked cells for each analysis (wTR2, wTR3 and mTR2, mTR3), (cells

grown from individual brains, as above) were suspended with 100 mL 0.55%SDS and incubated at RT for 10min, 62�C for 10min and

37�C for 10 min to permeabilize nuclei, which was followed by addition of 25 mL 20% Triton X-100, incubation of 30 min at 37�C to

quench SDS, followed by addition of 50 mL of blunt-end four-cutter AluI (cat# R0137L, NEB), 50 mL 103 CutSmart buffer and 275 mL

H2O and incubation at 37�Covernight for in situ digestion. After pelleting and washing once with 1mL 13CutSmart buffer, the nuclei

were suspended in 500 mL A tailing solution composed of 50 mL 103 CutSmart buffer, 10 mL BSA (cat#B9000S, NEB), 10 mL 10 mM

dATP (cat#N0440S, NEB), 10 mL Klenow (30-50 exo-) (cat#M0202L, NEB), and 420 mL H2O and incubated at RT for 1 hr. The in situ

proximity ligation with biotinylated bridge linker was performed by adding 200 mL 53 ligation buffer (cat#B6058S, NEB), 6 mL Bridge

linker (200 ng/ul), 10 mL T4 DNA ligase (cat#M0202L, NEB) and 284 mL H2O and incubating at 16�C overnight. The nuclei with in situ

proximity ligation were then subjected to sonication and chromatin immunoprecipitation with anti-Pol II antibody (8WG16, cat#

920102, Biolegend, San Diego, CA), Tn5 tagmentation, and biotin selection; PETs were amplified by PCR and sequenced.

ChIA-PET data analyses
The TR1 sequence data generated from the original ChIA-PET protocol were analyzed using ChIA-PET tool (Li et al., 2010). In brief,

non-redundant PET sequence reads were first analyzed for linker barcode composition and non-chimeric PETs were used for further

analysis. Next, the linker sequences were trimmed, and the PET sequences were mapped to the mouse reference genome (mm9)

with 1 mismatch allowed. The PETs with genomic locations from both head and tail tags within 2 bp were merged to further filter

the redundancy arising from clonal PCR amplification. Based on the mapping coordinates, the specific-ligation PETs were used

for further classification as inter-chromosomal, intra-chromosomal and self-ligation PETs. Inter-chromosomal PETs were defined

as both the head and tail of the PETs uniquely mapped onto different chromosomes. To define highly reliable interaction clusters,

we adopted the false discovery rate (FDR) of the hyper-geometric model. Such model takes into consideration the tag counts

from both anchor regions and the sequencing depth to determine reliable, i.e., significant, interactions. A FDR cutoff 0.05 was

used. Finally, we performed a random shuffling simulation to evaluate the correlation between noise level and PET cluster counts.

The simulation broke down the pairing relationship of different PET clusters and the tags were randomly paired to generate simulated

PETs. We further compared the interaction numbers between simulations versus our experimental data and determined the noise

level (number of simulated clusters / number of real clusters) for the PET-2+ (PET cluster with 2 counts and above) to be 1.2%. There-

fore, we chose the PET cluster > = 2 to keep the noise level low and singletons (PET = 1) were considered as noise. For TR2 and TR3

generated by the in situ ChIA-PET protocol, ChIA-PET data were processed with ChIA-PET Utilities, a scalable re-implementation of

ChIA-PET tool. Briefly, sequencing adaptors incorporated during the tagmentation reaction in the library construction process were

removed from the paired reads. Tags identified (> = 18bp) were mapped to mouse genome (mm9) using BWA alignment (Li and Dur-

bin, 2009) and memarXiv:1303.3997 [q-bio.GN], https://arxiv.org/abs/1303.3997 according to their tag length. The duplicated pair-

end tags arising from clonal PCR amplification were filtered and the uniquely mapped, non-redundant PETs were classified as inter-

chromosomal (L tags and R tags mapped onto different chromosomes), intra-chromosomal (L tags and R tags mapped onto the

same chromosome with genomic distance > 8Kb) and self-ligation PETs (L tags and R tags mapped onto the genome % 8Kb).

Multiple intra-chromosomal PETs whose respective ends were found within 1 Kb were then clustered as iPET-2, 3.We further per-

formed statistical assessment of the PET clusters interaction significance using ChiaSigScaled, a scalable re-implementation of

ChiaSig (Paulsen et al., 2014). Interaction clusters with member size 3 and above (iPET 3+) and FDR < 0.05 were classified as

significant interactions (Table 1, line 7). Among these, the interactions with Pol II binding at both anchors were further defined as

Pol II-mediated interactions (Table 1, line 8). Next, the interactions were classified based on their anchors overlapped with gene

models. Each anchor was annotated with the gene that overlapped at 1bp overlap. To classify each anchor, priority was given to

promoter (P) region (defined as ± 2.5kb of TSS) followed by gene region (G). Anchors that do not overlap with any gene or promoter

region were classified as intergenic (I). The interaction classification is just the combination of its anchors classification. To determine

the reproducibility between TR2 and TR3, we adopted the method used in the Hi-C data (Yang et al., 2017) to determine the SCC,

Stratum-adjusted Correlation Coefficient. To compute the SCC, ChIA-PET loops for each library were aggregated into 10-kb bin

matrix. SCC score is computed with HiCrep method (hicrep library in R).

For each chromosome, the smoothing parameter was used as recommended (h = 3), with maximum distance 1 Mb. Because the

methods used to fragment chromatins and generate tags for sequencing were different in TR1, TR1 was not included in the SCC

analysis. As TR1 used sonication shearing and MmeI digestion while TR2 and TR3 used AluI digestion and Tn5 transposon-based

tagmentation, the exact anchor locations defined by these two methods cannot be directly compared.
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ChIP-seq ANALYSES

SOX2 ChIPseq
NSC from 6 wild-type forebrains, at P0 (Favaro et al., 2009), were independently grown, and analyzed by ChIPseq in duplicate.

Individual cultures were pooled together, at a stage when neurospheres were still relatively small, and then divided into two aliquots:

neurospheres were directly fixed for the first ChIP (‘‘spheres’’ ChIPseq), whereas single cells (resulting from dissociation of the same

neurospheres) were used for the second ChIP (‘‘singles’’ ChIPseq) (see GEO).

Cells were fixed sequentially with di(N-succimidyl) glutarate and 1% formaldehyde in phosphate-buffered saline and then lysed,

sonicated and immunoprecipitated as described previously (Mateo et al., 2015 and references therein). SOX2 was immunoprecip-

itated with 3mg of goat anti-SOX2 (Santa Cruz sc-17320).

DNA libraries were prepared from 10ng of immunoprecipitated DNA and 10ng of input DNA control, according to the standard

Illumina ChIP-seq protocol. Libraries were sequenced with the Genome Analyzer IIx (Illumina). The raw reads were mapped to the

mouse genome (mm9 including random chromosomes) with Bowtie (Langmead, 2010) version 0.12.5. We used MACS (Zhang

et al., 2008) version 2.0.9 to define SOX2-bound regions (peaks). As this tool is very sensitive to the unbalanced number of reads

in the real and the input set, we decided to reduce the larger input dataset to match the number of mapped reads in the smaller

IP dataset by randomly downsampling reads, as described previously (Mateo et al., 2015).

By using default significance thresholds, this resulted in 18,359 SOX2-bound peak regions for the first (‘‘spheres’’) ChIPseq. Since

fixation of whole neurospheres might not, in theory, be equally efficient for internal relative to external cells, we also performed

another ChIP experiment (‘‘singles’’ ChIPseq). Read mapping and peak calling were performed with the same parameters used in

the first experiment, producing 43,070 bound regions at the same significance thresholds. Of the first dataset (‘‘spheres’’ ChIPseq),

the vast majority (15,985 peaks, 87%) were contained in the latter (‘‘singles’’ ChIPseq) peak list. Since also the 13% non-overlapping

peaks for the first experiment showed enrichment in the corresponding loci in the second ChIPseq, even if below the ‘‘peak detection

threshold,’’ we kept for all the subsequent analyses presented in the paper all the peaks returned by the first experiment (‘‘spheres’’).

The difference between ‘‘spheres’’ and ‘‘singles’’ ChIPseq appears to be duemainly to the presence in ‘‘singles’’ of numerous addi-

tional small peaks that have no (significant) corresponding peaks in the ‘‘spheres’’ sample, andmay represent more marginal binding

sites. Indeed, comparison of profiles between ‘‘spheres’’ and ‘‘singles’’ showed little differences between them, indicating that the

main binding sites are very similar (data not shown).

Finally, over 50% of the ca. 18400 peaks observed in our forebrain NSC ‘‘spheres’’ are found also within the ca. 24800 peaks

detected in a ChIPseq analysis of the NS-5 cell line (Mateo et al., 2015), an ES-derived NSC line that shows a general (nonfore-

brain-specific) neural phenotype. For these reasons, we used for subsequent analyses the data from ‘‘spheres.’’

H3K27Ac and H3K4me1 ChIPseq
NSCwere derived from six forebrains of wild-type and 6 forebrains ofSox2-deletedmice, at P0 (Favaro et al., 2009). NSCwere initially

cultured individually, then pooled according to wild-type or mutant genotype to generate two independent pools. Each independent

pool was divided in two parts, and used for ChIP-sequencing on H3K27ac or H3K4me1, as described previously (Vermunt et al.,

2016). Neurospheres were dissociated and 4 million single cells were crosslinked with 1% formaldehyde for 10 minutes at room

temperature. Reaction was quenched with 0.125 M Glycine, cells were washed with cold PBS and lysed according to Vermunt

et al. (2016). Nuclei pellets were resuspended in 160 mL sonication buffer and divided over twomicrotubes for shearing in the Covaris

S series with the following settings for 12 cycles of 60 s: intensity 3, duty cycle 20%, 200 cycles/bursts. Chromatin immunoprecip-

itation steps after sonication were performed as described previously (Vermunt et al., 2016) using 50 mL DynaI protein G beads that

were preincubated with 5 mg Ab4729 (Abcam) for H3K27ac or 5 mg Ab8894 (Abcam) for H3K4me1.Whole cell extract of 4million cells

was split onto both antibodies, resulting in the use of 2 million cells per ChIP. Libraries were made using the Illumina Truseq DNA

library protocol and sequencing was done at the MIT BioMicro Center (https://openwetware.org/wiki/BioMicroCenter). Obtained se-

quences were aligned onto the mm9 mouse genome assembly using Bowtie 1.1.0 (http://bowtie-bio.sourceforge.net) excluding

reads that had more than 1 mismatch or that could map to multiple genomic locations. MACS2 was used for peak calling (p value

threshold = 10�5, extsize = 400, local lambda = 100,000) and narrowpeaks were extended to a minimum of 2000 basepairs (bps)

to match peak resolution. Overlapping enriched regions were merged and were considered promoters when located within

1000 bps from annotated mm9 transcriptional start sites (TSSs) and considered putative distal enhancers when located more

than 1000 bps away from TSSs.

Analysis of histone modifications colocalization by ChromHMM
Co-localization of histone modifications was performed with ChromHMM version 1.4. (Ernst and Kellis, 2012). Briefly, the software

partitions the genome into non overlapping segments of 200 bps. Then, given a set of histone modification ChIP-Seq experiments,

associates to each segment each of the histonemodifications if the number of readsmapping in the segment can be considered to be

enriched according to a random background Poisson distribution. Then, given a number of states as input, it evaluates the co-occur-

rence of histonemodifications in the genome segments, building amodel in which each of the states is characterized by a given com-

bination of modifications.

The program was run setting a different number of states, and by processing either wild-type (WT) samples alone and mutant

(MUT) samples alone, and on both WT and MUT samples combined. In every setting, the model recovered consistently four main
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states, corresponding to the joint presence of H3K27ac and H3K4me1, either modification alone, and neither modification. More

importantly, all the analyses run on the combined WT and MUT samples failed to identify ‘‘differential’’ states in which one of the

twomodifications was present only inWT or MUT samples. That is, the model built, regardless of the number of states given as input,

consistently contained four more states corresponding to 1) the presence of both H3K27ac and H3K4me1 in bothWT andMUT sam-

ples; 2) to H3K27ac in both WT and MUT samples; 3) to H3K4me1 in both WT and MUT samples; 4) to neither modification in WT or

MUT samples.

Differentially enriched 200bp samples were identified with an approach similar to the one of ChromHMM, by comparing for each

modification the number of mapped reads in the segments in the two WT samples to the number of reads of the two MUT samples.

Given a region with n reads in WT and m reads for MUT, then we compute the probability of finding n and m reads by chance,

given N mapped reads for WT and M for MUT, with a Chi-Square test. We considered ‘‘differentially enriched’’ all regions with the

resulting p value lower than 10�4.

Enrichment of SOX2-bound sites within H3K27Ac-enriched regions
Significance of overlap between H3K27ac-enriched regions and SOX2 binding sites was analyzed in comparison to 1,000 sets of

random genomic DNA (random sampling). These sets comprised the same number of elements of similar size selected randomly

from the mm9 genome excluding GAP regions (UCSC genome browser), blacklisted regions (cite PMID: 22955616) and unmappable

regions. To define unmappable regions, bam-files from all H3K27ac and H3K4me1 ChIP-seq datasets (n = 8) weremerged andmap-

ped onto the mm9 genome that was binned in sliding windows of 3000 bp with an overlap of 500 bp. Bins with zero reads were

defined as unmappable and thus excluded.

Zebrafish transgenesis
Sequences from 17 of the identified anchors (15 distal, and 2 proximal) were amplified from themouse genome using specific primers

(Table S1) and cloned into a pBluescript vector by a pCR8/GW/TOPO� TACloning�Kit (Life Technologies). Individual fragmentswere

then transferred, using recombination-mediated, ClonaseTM-assisted, Gateway� technology (Invitrogen), to the ZED (Zebrafish

Enhancer Detection) vector (Bessa et al., 2009). ZED contains a cardiac actin promoter-driven RFP gene, used as an internal trans-

genesis control, and aminimal promoter linked to the putative enhancer being tested, and driving GFP expression. Plasmid DNAwas

purified using the Genopure plasmid Midi kit (Roche) following manufacturer instructions. Zebrafish embryos were microinjected at

one-cell stage with 3–5 nL of a solution containing 25 nM of each of the construct to be tested and 25 ng/ml of Tol2 RNA. Putative

transgenic embryos, as determined by the expression of cardiac-actin:RFP, were screened for tissue-specific enhancer activity by

looking for EGFP expression in the brain at 15, 18, 24 and 48 hpf stages. Fluorescent images were acquired with a black-and white

highly-sensitive camera (Leica DC350FX) and converted into color images with the associated Leica acquisition program. EGFP dis-

tribution was compared with the expression pattern of the putative regulated genes, as determined by in situ hybridization analysis

(from http://zfin.org). EGFP-positive (in forebrain) embryos were collected and propagated to generate three independent F1 trans-

genic lines each by crossing with wild-type animals. In the case of the en1 and en2 c-fos enhancer embryos were analyzed only at F0.

To confirm a link between Sox2 and the identified elements, embryos derived from the F1 lines were microinjected in one blastomere

at 1-2 cell stagewith a sox2 specificmorpholino (GeneTools; 50-500 nM), previously reported to efficiently interfere with sox2 expres-

sion in zebrafish, without however causing major morphological defects (Okuda et al., 2010). To complement this study, the pCS2

plasmid containing the sox2 coding sequence was linearized and in vitro transcribed using the SP6 MessagemMachine kit (Ambion).

The synthesized mRNA (Esteve et al., 2004) was purified using Quiaquick RNeasy columns (Quiagen), precipitated, quantified and

injected at the concentration of 100ng/ul into embryos derived from the F1 lines as above. Embryos were grown and scored for

increased or reduced reporter expression at 15, 18, 24 and 48 hpf stages against the levels presented in untreated embryos or em-

bryos injected with either a Genetools standard control MO or an unrelated (mCherry) mRNA, used as controls.

RNA-Seq analysis
RNA extraction was performed on three independent NSC populations for both wild-type and mutant cells, using Trizol and RNeasy

Kit (QIAGEN). 1/5 volume of chloroform was added to one volume of Trizol. Aqueuos phase was transferred into a new tube. 1.5x

volume of ethanol was added and mixed well. Mixture was was filtered through Rneasy (QIAGEN) column. Column was washed

with Buffer RW1. On-column DNase treatment was performed as described by the RNase-Free DNase Kit (QIAGEN). Post treatment

column was clean up with Buffer RW1 and two washes of RPE buffer. Column was then dried and total RNA was eluted with RNase-

free water. PolyA Stranded Truseq Libraries were generated using the Truseq Stranded mRNA Sample Preparation Kit (Illumina).

First, mRNA was purified from 1mg of total RNA using magnetic beads containing poly-T oligos. mRNA was then fragmented and

reversed transcribed using Superscript II (Invitrogen), followed by second strand synthesis. Double stranded cDNA was treated

with end-pair, A-tailing, adaptor ligation and 8 cycles of PCR amplification.

RNA-Seq was performed on triplicates for the two genotypes studied, yielding 51 bp single-end reads. The number of sequences

obtained in each sample ranged from 7.5 to 12.5 millions.

Read counts and transcript levels for each sample were computed with the RSEM software package version 1.17 (Li and Dewey,

2011), on the RefSeq gene annotation available at theUCSCGenomeBrowser formouse genome assemblymm9 (24,148 genes). For

downstream analyses, expression levels measured as Transcripts per Million (TPM) were employed.
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Expression boxplots and subsequent tests were generated using the R functions ‘‘boxplot’’ and ‘‘Wilcox.test.’’ Differential

expression analysis was performed on the TPM values with the Noiseq package (Tarazona et al., 2015)(and refs. therein) using

the NoiseqBIO method that handles replicate experiments. In this analysis, we considered to be having a significant variation of

expression (Group 1) those genes with both 1) a fold ratio of the average transcript level in the two conditions greater than

1.5 and 2) an associated false discovery rate lower than 0.05 (corresponding to a Noiseq q-value greater than 0.95). As control

for the analysis on co-associations between interacting anchors and differential expression, we also defined as having a ‘‘moderate’’

change of expression (Group 2) genes that did not satisfy either of the two previous conditions but had a FDR < 0.2 (q-value > 0.8),

and ‘‘not changing’’ (Group 3) all the remaining genes with FDR > 0.2.

Co-association scores
Co-association scores are based on the significance of the overlap of two sets of genes, in this case one set showing a significant

change of expression in the RNA-Seq data and a second one of genes whose promoter associated with a given type of interaction.

Given two sets of genes of size n and m out of N annotated genes, and k genes in common to the two sets, the probability of having

k genes in common by chance can be estimated by a Fisher’s exact test with parameters k (number of successes), n (size of the

sample), m (number of successes on the population), N (size of the population). The test was applied by computing the number

k of genes involved in any type of interaction (wTR1, wTR2, wTR3) in each of the three expression variation groups. Co-association

scores were computed starting from the p value p resulting from the test, defined as –log10 p if k was greater than the expected value

(hence showing a co-association between the two gene classes greater than what expected by chance), log10 p otherwise (hence

showing a negative co-association). Thus, the higher positive co-association scores are, the more significant is the overlap between

the two categories considered, with co-association scores greater than 2 showing a statistically significant overlap. Vice versa

for negative scores, showing a significantly low overlap between two sets if lower than �2. The coassociation scores have been

calculated using genes expressed at levels of at least 5 TPM in wt NSC; we also did the same analysis using all expressed genes:

the results are qualitatively similar, and are not shown.

Socs3 transduction in NSC
The TWEEN lentiviral vector expressing SOCS3 from the CMV promoter and GFP driven by the human PGK promoter (Francipane

et al., 2009) was transfected into low-passage 293T cells by calcium phosphate precipitation (overnight) together with the VSV-G

plasmid (encoding ENV), CMV R8.74 (packaging) and pRSV-REV (encoding reverse transcriptase). Following replacement with fresh

medium, the cell supernatants were collected at 24-48 hours from transfection. For NSC transduction, wild-type and Sox2 mutant

neurospheres (obtained as in Favaro et al., 2009) were grown for 2-3 passages in bFGF and EGF, and for one more passage in

EGF only. They were then dissociated to single cells and seeded at a density of 25,000 cells/ 1ml/ well (9 wells for each cell type)

in 24 well plates, in DMEM-F12 with Glutamax (GIBCO) containing EGF only as mitogen. After 4 hours wt and mut NSC were trans-

duced with the Socs3-expressing vector at a multiplicity of infection (MOI) of 3.5-5.5 and incubated overnight at 37�C. Then 1ml per

well of fresh mediumwas added both to transduced and non-transduced (control) cells. After 4 days, cells were dissociated to single

cells, counted, and seeded at a density of 20,000 cell/well in the same EGF medium described above. In addition, 500,000 cells for

each sample (from pooled wells) were fixed using PFA 4% and washed in PBS in order to analyze the GFP fluorescence by flow

cytometry (BD FACSCalibur): 10,000 events were analyzed for each sample. The samples were excited at 488 nm (blue laser) and

the resulting fluorescence measured at wavelengths > 530 nm. The results were analyzed using CellQuest Pro software (BD

Biosciences).

DATA AND SOFTWARE AVAILABILITY

Accession numbers
The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus (GEO). The accession number for

the ChIA-PET, ChIPseq and RNAseq data reported in this paper is GEO: GSE90561

The genomic data can be visualized through the WashU browser:

http://epigenomegateway.wustl.edu/legacy/?genome=mm9&datahub=https://wangftp.wustl.edu/�dli/7131149234337a58201

ae3da174ecc51/hub&coordinate=chr8:87120161-87587163
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