INFLAMMATORY EFFECTS OF FINE AND ULTRAFINE URBAN AIR PARTICULATE MATTER EXPOSURE IN ADULT SUBJECTS WITH DIFFERENT HEALTH CONDITIONS

1 Department of Occupational & Environmental Health, L. Sacco Hospital Unit, University of Milan, Italy; 2 Dept of Chemical and Environmental Sciences, University of Insubria, Como, Italy; 3 International Center for Pesticides and Health Risk Prevention, L. Sacco Hospital, Milan, Italy; 4 Laboratory of Toxicology, Department of Pharmacological Sciences, University of Milan, Milan, Italy; 5 Department of Occupational Health, Fondazione IRCCS Policlinico S. Orsola Magnaia, Mangiagalli e Regina Elena, Milan, Italy

Introduction and aim: Particulate matter (PM) air pollution increases the risk of cardiovascular and respiratory diseases, but the mechanisms behind this effect remain unclear. The PM-CARE Study, Particulate Matter CARdio-Respiratory Effects, was designed to investigate these mechanisms in susceptible subjects (i.e., people suffering from cardiac or chronic lung diseases) and in healthy subjects. The aim of this abstract is to assess the association between PM exposure and markers of inflammation.

Methods: Three groups of non-smoking adults (n = 81) entered the PM-CARE Study: 34 subjects with chronic ischemic heart disease (Heart Group), 20 with chronic asthma or COPD (Lung Group), and 27 without diagnosis of the aforementioned diseases (Healthy Group). They underwent a 24-h exposure/collection protocol during their habitual activities in the warm and in the cold season. Individual exposures to PM were given as 24-hour averaged \(PM_{5.10}, PM_{2.5}, PM_{0.5}, PM_{0.4} \) mass concentrations, and particle number concentrations (NC range (particles/m³), by separately covering the ultratine (NC > 0.02), the fine (NC 0.3-0.5; NC 0.5-1, and NC 1-2.5), and the coarse (NC 2.5-5; NC 5-10, and NC > 10) fractions, in accordance with particles' aerodynamic diameter (μm). Blood samples were collected at the end of a 24-h protocol: white blood cell count, TNF-α, TNF-α sR-I and II, IL-10, IL-10 measured both in plasma and in vitro following stimulation with PHA or LPS. Linear mixed effects models for repeated measurement data were applied.

Results: Heart Group: we found positive associations (p < 0.05) between monocytes and \(PM_{0.5}, PM_{0.4} \) and NC 0.3-1; TNF-α sR-I and II and \(PM_{0.5-2.5} \) and NC 0.3-2.5; in vitro IL-8 and NC 0.5-1.

Lung Group: a negative association (p < 0.05) was found between lymphocytes and \(PM_{2.5} \) and NC 0.3-5.

Healthy Group: we found positive associations (p < 0.05) between lymphocytes and \(PM_{0.5} \), as well as NC > 0.02 and NC 0.3-1; TNF-α sR-I and II and \(PM_{0.5-2.5} \) and NC 0.5-5; in vitro IL-8 and NC > 0.02 μm, NC 0.3-1.

Conclusion: Increased plasma and in vitro levels of cytokine and different inflammatory cells suggest that fine and ultrafine PM exposure exert a pro-inflammatory effect both on individuals with chronic ischemic heart disease and on "healthy" subjects, whereas individuals with lung chronic diseases seemed to be less susceptible. Further refinement to control the numerous confounders is expected to increase the consistency of the results.