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ABSTRACT HIV-1 non-B subtypes/circulating recombinant forms (CRFs) are increas-
ing worldwide. Since subtype identification can be clinically relevant, we assessed
the added value in HIV-1 subtyping using updated molecular phylogeny (Mphy) and
the performance of routinely used automated tools. Updated Mphy (2015 updated
reference sequences), used as a gold standard, was performed to subtype 13,116
HIV-1 protease/reverse transcriptase sequences and then compared with previous Mphy
(reference sequences until 2014) and with COMET, REGA, SCUEAL, and Stanford subtyp-
ing tools. Updated Mphy classified subtype B as the most prevalent (73.4%), followed by
CRF02_AG (7.9%), C (4.6%), F1 (3.4%), A1 (2.2%), G (1.6%), CRF12_BF (1.2%), and other
subtypes (5.7%). A 2.3% proportion of sequences were reassigned as different subtypes
or CRFs because of misclassification by previous Mphy. Overall, the tool most concor-
dant with updated Mphy was Stanford-v8.1 (95.4%), followed by COMET (93.8%),
REGA-v3 (92.5%), Stanford-old (91.1%), and SCUEAL (85.9%). All the tools had a high
sensitivity (�98.0%) and specificity (�95.7%) for subtype B. Regarding non-B subtypes,
Stanford-v8.1 was the best tool for C, D, and F subtypes and for CRFs 01, 02, 06, 11, and
36 (sensitivity, �92.6%; specificity, �99.1%). A1 and G subtypes were better classified by
COMET (92.3%) and REGA-v3 (98.6%), respectively. Our findings confirm Mphy as the
gold standard for accurate HIV-1 subtyping, although Stanford-v8.1, occasionally com-
bined with COMET or REGA-v3, represents an effective subtyping approach in clinical
settings. Periodic updating of HIV-1 reference sequences is fundamental to improving
subtype characterization in the context of an effective epidemiological surveillance of
non-B strains.
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Human immunodeficiency virus type 1 (HIV-1) is characterized by extensive genetic
diversity due to various mechanisms driven by its evolution within an infected

individual, thus leading to a broad viral heterogeneity (1–3).
HIV-1 has been divided into four groups: M, O, N, and P (1, 3, 4). The HIV-1 pandemic

has been mainly caused by group M (1–3, 5), which is subdivided into 9 subtypes (A to
D, F to H, J, and K) and at least 79 circulating recombinant forms (CRFs) (http://www
.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html, accessed 25 February 2017) and
multiple unique recombinant forms (URFs) widely spread across the globe.
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The dominant HIV-1 strain in North America, Western Europe, and Australia is
subtype B. As a result, the great majority of HIV-1 clinical research has been conducted
in populations where subtype B predominates. However, this subtype represents only
11% of global HIV-1 infections (6). Of note, among non-B strains, subtypes A, C, and F
and CRFs 01_AE and 02_AG are responsible for over 70% of all infections, and there are
increasing trends of non-B subtypes and newly emerging CRFs reported in the Western
world (7–11), including Italy (12, 13).

Geographical patterns in subtype distribution are changing over time, due to
migration and the mixing of populations (9).

In addition to the epidemiological impact, the spread of HIV-1 subtypes is clinically
relevant: HIV-1 clades show differences in pathogenesis and resistance pathways, with
implications for clinical outcomes, diagnosis, viral quantification, and vaccine develop-
ment (14–19). With continuous discovery of new HIV-1 strains (https://www.hiv.lanl
.gov/content/sequence/HIV/CRFs/CRFs.html) coupled with the increasing phylogeog-
raphy and phylodynamics of non-B subtypes spreading into Western countries (6–8; see
also WHO data at http://www.who.int/gho/hiv/en/), it would be of paramount impor-
tance to accurately identify newly emerging strains, both for efficient molecular epi-
demiological surveillance and for optimal clinical management of patients infected
with diverse HIV-1 strains, particularly in Italy, where the migration rate is high (12, 13).

Proper detection and description of clinical HIV-1 samples remain challenging,
particularly in the frame of increasing recombinant forms (CRFs and URFs), since
algorithms are designed mainly for the B strains (20–22).

Practically, HIV-1 subtyping can be performed through several approaches, among
which automated tools are commonly used for clinical purposes (23–25), while molec-
ular phylogeny (Mphy) is commonly used for epidemiological surveillance. To date,
Mphy is the gold standard for both epidemiological surveillance and clinical practice
(23). However, this gold standard is not widely used in routine practice due to its
complexity (it is manually performed, cumbersome, and time-consuming and requires
skills in data interpretation). In addition, Mphy might not be updated regularly with
reference sequences.

Routine subtyping is often based on automated tools because they are user friendly,
speedy, and free of charge (24, 26). However, they have considerable limitations
compared to Mphy especially in assigning non-B variants: outputs of different tools are
usually in disagreement (26–28), their algorithms are not regularly updated, and they
have only a limited number of CRFs in the reference data set. In routine clinical practice,
the most commonly used automated tools are statistically based use of partial match-
ing compression algorithms (context-based modeling for expeditious typing [COMET]
(29), a similarity-based tool (Stanford HIV drug resistance database [Stanford]), and
phylogenetics-based tools (REGA and subtype classification using evolutionary algo-
rithms [SCUEAL]).

We thus aimed at assessing the added value of updated Mphy (using recently
available HIV-1 reference sequences) and determining the performance of four com-
monly used automated subtyping tools (COMET, Stanford, REGA, and SCUEAL) against
updated Mphy, in order to propose a highly reliable approach for subtyping in routine
clinical practice.

(This work was presented in part as a poster at the VIIIth Italian Conference on AIDS
and Antiviral Research Workshop, 6 to 8 June 2016, Milan, Italy [30].)

RESULTS
Mphy subtype assignment. Of the total 13,116 HIV-1 pol sequences analyzed and

based on new Mphy, B was the most prevalent subtype (73.4%), followed by CRF02_AG
(7.9%), C (4.6%), F1 (3.4%), A1 (2.2%), G (1.6%), CRF12_BF (1.2%), and other subtypes
(5.7%).

By comparing old Mphy with new Mphy, the overall concordance was 97.7%
between the two approaches, with a subtyping agreement of 99.8% and 88.2% for B
and non-B subtypes, respectively. The 297 (2.3%) discrepant sequences reassigned as
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different subtypes were due to newly available CRF reference sequences in the HIV
sequence databases. Of note, new Mphy allowed the identification of more CRFs than
old Mphy. The most prevalent reclassified subtypes, earlier assigned by old Mphy, were
F1 (n � 52 [17.5%], 50 of them reclassified as BF recombinants), CRF02_AG (n � 43
[14.5%], 41 of them reclassified as more complex recombinants), and B (n � 41 [13.8%],
29 of them reclassified as BF recombinants) (Table 1).

Concordance between automated subtyping tools and new Mphy. HIV-1 sub-
types defined by new Mphy were compared with those provided by the four rapid
subtyping tools (COMET, SCUEAL, REGA-v3, and Stanford [Stanford-old and Stanford-
v8.1]). Overall, the tool most concordant with new Mphy was Stanford-v8.1 (95.4%),
followed by COMET (93.8%), REGA-v3 (92.5%), Stanford-old (91.1%), and SCUEAL
(85.9%), as shown in Fig. 1A.

In particular, concordance with new Mphy was excellent for subtype B with all tools
(both Stanford versions, 99.8%; COMET, 99.3%; REGA-v3, 98.8%; and SCUEAL, 98.1%)
but was lower for non-B subtypes (Stanford-v8.1, 84.0%; COMET, 78.5%; REGA-v3,
74.9%; Stanford-old, 67.0%; and SCUEAL, 52.6%) (Fig. 1B and C). Thus, for both B and
non-B subtypes, the highest concordance rates were reported with Stanford-v8.1.

Sensitivity and specificity of automated subtyping tools for HIV-1 pure sub-
types. Comparing new Mphy HIV-1 subtypes with those provided by the four rapid
subtyping tools, all the tools had a high sensitivity (�98.0%) for subtype B (n � 9,627)
(Table 2). In particular, the highest sensitivity was observed for Stanford-v8.1 (99.6%),
followed by COMET (99.5%), Stanford-old (99.0%), and SCUEAL and REGA-v3 (both
98.0%). The specificity of each tool was �97.9%, except for SCUEAL (95.7%) (Table 2).

TABLE 1 Reassigned HIV-1 subtypes using new Mphya

Old Mphy subtype/CRF (n) New Mphy subtype(s)/CRF(s) (n)

F1 (52) CRF71_BF (27), CRF72_BF (12), CRF40_BF (4), CRF70_BF (3), CRF05_DF (2), CRF12_BF (1), CRF39_BF (1),
CRF42_BF (1), CRF47_BF (1)

CRF02_AG (43) CRF36_cpx (18), CRF37_cpx (10), CRF06_cpx (8), CRF09_cpx (2), CRF01_AE (1), CRF20_BG (1), CRF25_cpx (1),
CRF43_02G (1), CRF63_02A1 (1)

B (41) CRF39_BF (9), CRF03_AB (4), CRF12_BF (4), CRF42_BF (4), CRF51_01B (4), CRF44_BF (3), CRF17_BF (2),
CRF28_BF (2), CRF38_BF (2), CRF08_BC (1), CRF15_01B (1), CRF23_BG (1), CRF40_BF (1), CRF46_BF (1),
CRF47_BF (1), D (1)

CRF12_BF (27) CRF05_DF (6), CRF40_BF (6), CRF72_BF (6), CRF29_BF (2), CRF42_BF (2), CRF03_AB (1), CRF28_BF (1),
CRF38_BF (1), CRF39_BF (1), CRF47_BF (1)

A1 (18) CRF22_01A1 (11), A2 (3), CRF35_AD (3), CRF02_AG (1)
CRF17_BF (14) CRF12_BF (5), CRF40_BF (3), CRF38_BF (2), CRF47_BF (2), CRF39_BF (1), CRF72_BF (1)
G (13) CRF43_02G (7), CRF02_AG (3), CRF06_cpx (1), CRF36_cpx (1), CRF32_06A1 (1)
CRF01_AE (12) F22_01A1 (11), CRF02_AG (1)
CRF28_BF (11) CRF29_BF (5), CRF40_BF (3), CRF12_BF (1), CRF42_BF (1), CRF60_BC (1)
aThe table reports subtypes obtained by using old Mphy and reclassified by new Mphy. Only reassigned subtypes with a prevalence of �3% are reported.

FIG 1 Concordance between HIV-1 automated subtyping tools and new Mphy in the overall population (A), for B subtype (B), and for non-B
subtypes (C).

HIV-1 Subtyping Tools and Phylogeny Journal of Clinical Microbiology

September 2017 Volume 55 Issue 9 jcm.asm.org 2829

 on A
pril 12, 2019 by guest

http://jcm
.asm

.org/
D

ow
nloaded from

 

http://jcm.asm.org
http://jcm.asm.org/


TA
B

LE
2

Pe
rf

or
m

an
ce

of
H

IV
-1

su
b

ty
p

in
g

to
ol

sa

Su
b

ty
p

e
or

C
RF

To
ta

l
n

o.

%
se

n
si

ti
vi

ty
(9

5%
C

Ib
)

%
sp

ec
ifi

ci
ty

(9
5%

C
I)

C
O

M
ET

SC
U

EA
L

RE
G

A
-v

3
St

an
fo

rd
-v

8.
1

St
an

fo
rd

-o
ld

C
O

M
ET

SC
U

EA
L

RE
G

A
-v

3
St

an
fo

rd
-v

8.
1

St
an

fo
rd

-o
ld

B
9,

62
7

99
.5

(9
9.

3–
99

.6
)

98
.0

(9
7.

9–
98

.2
)

98
.0

(9
7.

9–
98

.2
)

99
.6

(9
9.

4–
99

.6
)

99
.0

(9
8.

8–
99

.1
)

98
.4

(9
8.

0–
98

.6
)

95
.7

(9
5.

2–
96

.2
)

98
.2

(9
7.

7–
98

.5
)

98
.4

(9
8.

1–
98

.7
)

97
.9

(9
7.

5–
98

.2
)

C
RF

02
_A

G
1,

03
7

90
.3

(8
9.

1–
91

.1
)

18
.1

(1
7.

1–
18

.8
)

62
.6

(6
1.

5–
63

.3
)

98
.5

(9
7.

6–
99

.0
)

95
.4

(9
4.

5–
96

.1
)

99
.7

(9
9.

6–
99

.8
)

99
.8

(9
9.

8–
99

.9
)

99
.8

(9
9.

7–
99

.9
)

99
.6

(9
9.

6–
99

.7
)

99
.8

(9
9.

7–
99

.9
)

C
60

6
91

.9
(9

0.
8–

92
.5

)
92

.2
(9

1.
0–

93
.0

)
92

.7
(9

1.
5–

93
.5

)
92

.6
(9

1.
5–

93
.2

)
98

.7
(9

7.
6–

99
.4

)
10

0.
0

(9
9.

9–
10

0.
0)

99
.9

(9
9.

9–
10

0.
0)

99
.9

(9
9.

9–
10

0.
0)

10
0.

0
(9

9.
9–

10
0.

0)
99

.8
(9

9.
7–

99
.8

)
F1

44
6

84
.7

(8
2.

1–
87

.1
)

87
.9

(8
5.

3–
90

.1
)

91
.2

(8
8.

7–
93

.4
)

99
.1

(9
7.

6–
99

.7
)

70
.4

(6
7.

2–
73

.2
)

99
.5

(9
9.

4–
99

.6
)

99
.5

(9
9.

4–
99

.5
)

99
.2

(9
9.

1–
99

.3
)

99
.1

(9
9.

1–
99

.2
)

99
.4

(9
9.

2–
99

.5
)

A
1

28
3

92
.3

(8
9.

4–
94

.6
)

76
.9

(7
2.

2–
81

.1
)

90
.6

(8
7.

2–
93

.2
)

81
.8

(7
8.

9–
84

.0
)

29
.4

(2
7.

4–
29

.9
)

99
.7

(9
9.

7–
99

.8
)

98
.7

(9
8.

6–
98

.8
)

99
.6

(9
9.

5–
99

.7
)

99
.9

(9
9.

8–
99

.9
)

10
0.

0
(9

9.
9–

10
0.

0)
G

21
4

96
.2

(9
3.

2–
98

.2
)

88
.3

(8
3.

8–
91

.9
)

98
.6

(9
5.

9–
99

.6
)

59
.8

(5
5.

6–
63

.0
)

93
.0

(8
9.

2–
95

.7
)

99
.8

(9
9.

7–
99

.8
)

99
.4

(9
9.

39
9.

5)
99

.7
(9

9.
6–

99
.7

)
99

.8
(9

9.
8–

99
.9

)
99

.6
(9

9.
5–

99
.6

)
C

RF
12

_B
F

16
2

61
.1

(5
8.

1–
61

.7
)

22
.2

(1
9.

2–
22

.8
)

48
.1

(4
5.

4–
48

.1
)

78
.4

(7
3.

8–
81

.7
)

N
A

10
0.

0
(1

00
.0

–1
00

.0
)

10
0.

0
(1

00
.0

–1
00

)
10

0.
0

(1
00

.0
–1

00
.0

)
99

.9
(9

9.
8–

99
.9

)
N

A
C

RF
01

_A
E

98
92

.9
(8

7.
1–

96
.5

)
75

.5
(6

6.
7–

82
.8

)
83

.7
(7

7.
2–

83
.3

)
98

.0
(9

2.
5–

99
.6

)
99

.0
(9

3.
9–

99
.9

)
99

.9
(9

9.
9–

99
.9

)
99

.4
(9

9.
4–

99
.5

)
99

.9
(9

9.
9–

99
.9

)
99

.6
(9

9.
6–

99
.6

)
99

.5
(9

9.
5–

99
.5

)
C

RF
06

_c
p

x
65

81
.5

(7
5.

0–
83

.0
)

37
.0

(2
9.

4–
40

.3
)

89
.2

(8
1.

8–
93

.6
)

95
.4

(8
8.

3–
98

.7
)

N
A

10
0.

0
(1

00
.0

–1
00

.0
)

10
0.

0
(1

00
.0

–1
00

.0
)

10
0.

0
(9

9.
9–

10
0.

0)
99

.9
(9

9.
9–

10
0.

0)
N

A
D

39
89

.7
(7

9.
7–

93
.9

)
74

.4
(6

2.
1–

81
.9

)
56

.4
(4

5.
3–

60
.6

)
94

.9
(8

7.
5–

99
.9

)
92

.3
(8

1.
5–

97
.7

)
10

0.
0

(1
00

.0
–1

00
.0

)
10

0.
0

(9
9.

9–
10

0)
10

0.
0

(1
00

.0
–1

00
.0

)
10

0.
0

(9
9.

9–
10

0)
10

0.
0

(9
9.

9–
10

0.
0)

C
RF

22
_0

1A
1

35
11

.4
(4

.6
–1

1.
4)

68
.6

(5
6.

0–
74

.8
)

0.
0

(0
.0

–0
.0

)
82

.9
(6

8.
8–

92
.1

)
N

A
10

0.
0

(1
00

.0
–1

00
.0

)
10

0.
0

(9
9.

9–
10

0.
0)

10
0.

0
(1

00
.0

–1
00

.0
)

99
.9

(9
9.

9–
99

.9
)

N
A

C
RF

40
_B

F
31

0.
0

(0
.0

–0
.0

)
3.

3
(0

.2
–1

1.
2)

0.
0

(0
.0

–0
.0

)
3.

23
(0

.2
–6

.3
)

N
A

10
0.

0
(1

00
.0

–1
00

.0
)

10
0.

0
(1

00
.0

–1
00

.0
)

10
0.

0
(1

00
.0

–1
00

.0
)

10
0.

0
(1

00
.0

–1
00

.0
)

N
A

C
RF

11
_c

p
x

28
78

.6
(6

6.
4–

78
.6

)
75

.0
(5

9.
7–

84
.0

)
89

.3
(7

4.
4–

96
.8

)
92

.9
(8

0.
7–

96
.2

)
N

A
10

0.
0

(1
00

.0
–1

00
.0

)
10

0.
0

(9
9.

9–
10

0)
10

0.
0

(9
9.

9–
10

0)
10

0.
0

(1
00

.0
–1

00
.0

)
N

A
F2

25
72

.0
(5

6.
4–

78
.5

)
88

.8
(7

3.
3–

94
.4

)
60

.0
(4

5.
2–

63
.8

)
10

0.
0

(8
7.

1–
10

0)
N

A
10

0.
0

(1
00

.0
–1

00
.0

)
10

0.
0

(1
00

.0
–1

00
.0

)
10

0.
0

(1
00

.0
–1

00
.0

)
10

0.
0

(1
00

.0
–1

00
.0

)
N

A
C

RF
49

_c
p

x
23

0.
0

(0
.0

–0
.0

)
N

A
N

A
34

.8
(2

0.
6–

38
.9

)
N

A
10

0.
0

(1
00

.0
–1

00
.0

)
N

A
10

0.
0

(1
00

.0
–1

00
.0

)
N

A
N

A
C

RF
29

_B
F

21
57

.1
(3

6.
8–

74
.5

)
14

.3
(4

.0
–2

9.
0)

0.
0

(0
.0

–7
.6

)
57

.1
(3

7.
3–

73
.3

)
N

A
99

.9
(9

9.
9–

99
.9

)
10

0.
0

(9
9.

9–
10

0.
0)

10
0.

0
(1

00
.0

–1
00

.0
)

99
.9

(9
9.

9–
10

0)
N

A
C

RF
36

_c
p

x
20

0.
0

(0
.0

–0
.0

)
5.

0
(0

.3
–5

.0
)

N
A

10
0.

0
(1

00
.0

–1
00

.0
)

N
A

10
0.

0
(1

00
.0

–1
00

.0
)

10
0.

0
(1

00
.0

–1
00

.0
)

10
0.

0
(1

00
.0

–1
00

.0
)

N
A

N
A

a
Th

e
ta

b
le

re
p

or
ts

se
ns

iti
vi

ty
an

d
sp

ec
ifi

ci
ty

of
su

b
ty

p
es

p
re

se
nt

in
at

le
as

t
20

se
qu

en
ce

s
an

al
yz

ed
.T

he
va

lu
es

w
ith

au
to

m
at

ed
to

ol
p

er
fo

rm
an

ce
s

of
�

90
%

ar
e

sh
ow

n
in

b
ol

d.
Th

e
no

t-
ap

p
lic

ab
le

(N
A

)
va

lu
es

in
di

ca
te

th
e

ab
se

nc
e

of
th

e
re

fe
re

nc
e

se
qu

en
ce

s
in

th
e

au
to

m
at

ed
to

ol
al

go
rit

hm
.

b
C

I,
co

nfi
de

nc
e

in
te

rv
al

.

Fabeni et al. Journal of Clinical Microbiology

September 2017 Volume 55 Issue 9 jcm.asm.org 2830

 on A
pril 12, 2019 by guest

http://jcm
.asm

.org/
D

ow
nloaded from

 

http://jcm.asm.org
http://jcm.asm.org/


Considering subtype C (n � 606), all the tools had a high sensitivity (�91.9%) and
a high specificity (�99.8%). For the other non-B pure subtypes (F1, F2, D, A1, and G),
Stanford-v8.1 showed the highest sensitivity for F1, F2, and D subtypes (99.1%, 100.0%,
and 97.4%, respectively) but not for A1 and G subtypes (81.8% and 59.8%, respectively),
which were better assigned by COMET (92.3%) and REGA-v3 (98.6%), respectively. Of
note, the specificity for these pure non-B subtypes was �99.1% for each tool (Table 2).

Sensitivity and specificity of automated subtyping tools for HIV-1 CRFs. The
Stanford-v8.1 tool had the best sensitivity in recognizing CRFs (Table 2). In particular,
the sensitivity was �92.9% on five different recombinants: CRF01_AE (98.0%),
CRF02_AG (98.5%), CRF06_cpx (95.4%), CRF11_cpx (92.9%), and CRF36_cpx (100.0%).
COMET also showed a desirable sensitivity on CRF02_AG (90.3%) and CRF01_AE
(92.9%). The specificity of each tool was �99.6% for all the CRFs (Table 2).

Performance of Stanford-v8.1 versus Stanford-old versions. To evaluate the
added value in subtyping performance of the new version of the Stanford tool
(Stanford-v8.1), potential subtype differences between the tool versions were evalu-
ated. Overall, concordance between Stanford-old versions and Stanford-v8.1 was
90.2%; in particular, the concordance was 99.0% and 66.2% on B and non-B subtypes,
respectively. In comparing the sensitivities of the different versions, Stanford-v8.1
significantly improved the capacity in assigning subtypes B (from 99.0% to 99.6%, P �

0.0001), F1 (from 70.4% to 99.1%, P � 0.0001), A1 (from 29.4% to 81.8%, P � 0.0001),
and CRF02_AG (from 95.4% to 98.5%, P � 0.0001). However, this capacity significantly
decreased in assigning subtypes C (from 98.7% to 92.6%, P � 0.0001) and G (from
93.0% to 59.8%, P � 0.0001), which were wrongly classified as recombinant forms.
There were no significant differences in sensitivity between the two tools for assigning
CRF01_AE (from 99.0% to 98.0%, P � 1) (Table 2). Of note, as described in Materials and
Methods, the majority of CRFs are now more accurately identified by Stanford-v8.1 than
Stanford-old versions, due to the addition of CRF reference sequences in the Stanford
HIVdb.

Proposal for practical subtyping. Based on our results, we propose the following
algorithm for subtyping in routine clinical practice (Fig. 2). This strategy is based on the
desirable performance (�90%) of automated subtyping tools with respect to new
Mphy. Briefly, use Stanford-v8.1 as a screening tool for subtyping. If the output leads to
pure subtypes (B, C, D, or F) or CRFs (01_AE, 02_AG, 06_cpx, 11_cpx, or 36_cpx),
consider assigning the respective strain. If the output leads to subtype A1 or G, confirm
with COMET or REGA-v3, respectively. If the output is different from the above, consider
performing Mphy for a subtype inference. If the output leads to all other non-B strains,
consider performing Mphy for a subtype inference (Fig. 2).

DISCUSSION

In this study, we aimed at assessing the necessity of updating MPhy, as well as the
current performance of commonly used automated subtyping tools, in an era of
changing molecular epidemiology in Western countries, including Italy (7, 12, 13, 15, 16,
28). Of note, the Italian clinical context is experiencing a rapid change in circulating
HIV-1 strains, mainly due to a diversified migration system, ongoing infection in the
high-risk populations (mostly men having sex with men [MSM]), and specific transmis-
sion clusters (12, 13). The large number of PR/reverse transcriptase (RT) sequence data
generated routinely from HIV-1-infected patients (n � 13,116) and used for the present
assessment offers a greater representativeness of the present findings for settings with
closely related HIV epidemiological features. Of note, though subtype B remains highly
prevalent in our data set, there is a growing rate of non-B subtypes and recombinants,
thus confirming the need for regular surveillance (7, 8, 12). Based on updated phylog-
eny (up to 79 CRFs at the moment), the 2.3% overall discordance reported from old
Mphy highlights the importance of continuously updating Mphy algorithms for an
accurate surveillance of newly emerging strains in countries sharing similar challenges
as Italy as well as in countries where non-B strains are predominant (6, 13, 15, 24, 25,
31). The high discrepancy observed with non-B subtypes (11.8% versus only 0.2% with
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B) underscores the need for greater considerations of non-B surveillance (7, 8, 12, 13).
This discrepancy observed between old Mphy and new Mphy highlights the need for
periodic updating of reference sequences for phylogenetic analyses (23, 24). In partic-
ular, new Mphy included 530 new reference sequences with respect to old Mphy, of
which 25.3% belonged to CRFs, and this could explain the 2.3% overall discordance
between old Mphy and new Mphy.

HIV-1 subtypes defined by new Mphy were compared with those provided by the
four rapid subtyping tools (COMET, SCUEAL, REGA, and Stanford). These tools have
different characteristics in inferring subtypes (26). In particular, because REGA-v3 and
SCUEAL are phylogenetics-based tools, their computation times are longer than those
of other tools that are based on a statistical (COMET) or similarity (Stanford HIVdb)
approach (24, 26, 28, 29).

The overall concordance between automated subtyping tools and new Mphy
reveals an acceptable performance of all tools (�90%), except for SCUEAL (85.9%). This
finding highlights the limited performance of the current SCUEAL for subtype assign-
ment in the context of a growing HIV-1 molecular epidemic in Western countries
(24, 27).

Regarding B versus non-B subtype assignment, an excellent concordance with all
automated subtyping tools (�98.1%, including SCUEAL) was reported for the B sub-
type. This observation confirms the suitability in B subtyping, largely due to an initial
design of algorithms based on subtype B reference sequences (15, 32). In contrast to
the B subtype, none of the automated tools achieved the desirable concordance for
non-B subtypes (ranging from 84.0% with Stanford-v8.1 down to 52.6% with SCUEAL).
However, although phylogenetic analysis remains the gold standard for subtyping, our
findings highlight that HIVdb in its updated version (Stanford-v8.1) offers the highest
accuracy compared to the other routinely used subtyping tools, for both B and non-B

FIG 2 Flow chart of a practical HIV-1 subtyping approach. This flow chart represents the HIV-1 subtyping practical approach through online
subtyping tools, proposed in the case that Mphy cannot be used in routine practice due to its complexity.
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subtypes, thus serving as a convenient approach for subtype screening. The higher
number of CRF reference sequences used by Stanford-v8.1 for subtyping and thus the
better representation of the CRF circulation worldwide may explain the higher accuracy
in subtyping of this tool with respect to the others. Interestingly, all the CRF reference
sequences used by Stanford-v8.1 are included in our Mphy analysis, thus explaining the
high concordance between these two methodologies and confirming Stanford-v8.1 as
the best tool for subtype assignment.

Moreover, these findings confirm that regular updating improves sensitivity in
assigning HIV-1 strains, in an era of ongoing recombination events. This is in contrast
with our preliminary analyses conducted on about one-third of sequences and before
the release of the new version of Stanford HIVdb (30) and with other previous reports
on the performance of several subtyping tools (24, 26, 28), which is normal because our
analysis was performed on recently updated tools and with more reference sequences.

A high sensitivity for subtype B assignment (�98.0%) was reported with all tools.
This is in accordance with previous findings and underlines the consistent reliability for
subtype B surveillance using current automated tools (24, 26, 28). Though the sensi-
tivities on subtype B were highly similar for all automated tools, SCUEAL showed the
lowest specificity (95.7%) by wrongly assigning some CRFs to subtype B. The current
overestimation of subtype B suggests caution when assigning this viral strain with
SCUEAL, thus giving preference for B subtyping to the other algorithms (Stanford HIVdb,
COMET, and REGA-v3).

Regarding subtype C, the excellent and similar sensitivities and specificities reported
for all the automatic subtyping tools indicate the suitability of all tools in discriminating
subtype C viruses (24, 33) and their possible routine use in settings with subtype C
predominance like southern Africa, eastern Africa, India, Nepal, and part of China (2, 5,
34). On one hand, Stanford-v8.1 showed excellent performance in sensitivity (97.4% to
100%) on other pure subtypes (D, F1, and F2) in contrast to other rapid tools (reporting
�90% sensitivity); this indicates that Stanford-v8.1 might be acceptable in assigning D
or F strains. On the other hand, only COMET or REGA-v3 might be acceptable in
assigning viruses as subtype A1 or G, respectively (27, 29). Regarding the sensitivity to
recombinant forms, Stanford-v8.1 appeared highly reliable in assigning CRF01_AE,
CRF02_AG, CRF06_cpx, CRF11_cpx, and CRF36_cpx. COMET showed an acceptable
(though lower than Stanford-v8.1) performance only on CRF01_AE and CRF02_AG.
Thus, Stanford-v8.1 possesses the most reliable algorithm on major CRFs compared
with the other evaluated rapid tools. As this trend is consistent even with other CRFs
below target performance, the revolutionary update in Stanford-v8.1 now makes this
tool the reference automated subtyping tool, coupled with its wide use in clinical
practice. As described in Materials and Methods, the majority of CRFs are now more
accurately identified by Stanford-v8.1 than by older Stanford versions, due to the
addition of CRF reference sequences in HIVdb. Thus, the significant improvements in
Stanford-v8.1 underscore the relevance of regular updating of both automated tools
and advanced phylogenetic approaches (23, 27, 28). In spite of its great performance,
Stanford-v8.1 has some limitations: misclassification of CRFs 01_AE, 14_BG, 15_01B, and
46_BF (due to the absence of recombination breakpoints in the pol region), which are
subtypes A, G, AE, and F in the pol region, respectively (26). Moreover, Stanford-v8.1
wrongly classifies 40.0% of G subtype strains as CRF43_02G (90.7%), CRF02_AG (7.0%),
or CRF06_cpx (2.3%) and 16.7% of A subtype strains as CRF01_AE (61.8%), CRF22_01A1
(19.1%), CRF09_cpx (8.5%), or CRF02_AG (10.6%), important considerations for those
areas where non-B strains are prevalent.

Through an evidence-based approach, we propose an algorithm that could be used
to facilitate the subtyping process during routine clinical practice. Such a subtyping
strategy becomes more relevant for settings where a large number of sequences are
routinely generated, with less expertise in advanced phylogeny, and limited resources
(Fig. 2).

There are some limitations observed with this study. First, we used pol sequences for
subtyping (35), instead of the full genome, which could provide a better assignment.
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This could be a problem especially for those CRFs with recombination breakpoints
outside the pol region, as reported above.

However, it should be considered that pol is the most extensively investigated
region for clinical and diagnostic purposes, and the more suitable way to assign a
correct subtype/CRF is to trim the pol sequences from full-length genomes of pure
subtypes and CRFs from the HIV sequence database, as previously reported by Pineda-
Peña et al. (26).

Moreover, the underrepresentativeness of some non-B strains (though with a higher
number than previous reports) warrants further investigations in those settings. Finally,
only the most commonly used rapid tools were included in the present analysis, thus
missing possible revisions of other existing tools.

In conclusion, Mphy remains the gold standard method for an accurate HIV-1
subtyping. In the case that Mphy cannot be used in routine practice due to its
complexity, online subtyping tools can be a valid option for the subtype characteriza-
tion. Though rapid subtyping tools have various performances with respect to Mphy,
Stanford-v8.1 appears most reliable for rapid subtyping of both pure and recombinant
strains. Thus, for practical use in routine clinical practice, the usage of Stanford-v8.1,
occasionally combined with COMET or REGA-v3, represents an effective subtyping
approach in clinical settings.

Periodic updating of algorithms together with the latest HIV-1 reference sequences
is fundamental to improve HIV-1 subtype characterization in the context of effective
epidemiological surveillance of non-B HIV-1 strains.

MATERIALS AND METHODS
Study population. The present study was conducted on a data set of 13,116 HIV-1 pol sequences

(containing the full-length protease [PR] and the first 300/335 reverse transcriptase [RT] codons), performed
for routine clinical purposes from 1997 to 2015 in three reference laboratories in Italy (National Institute for
Infectious Diseases L. Spallanzani, IRCCS, Rome; University of Rome Tor Vergata, Rome; and Modena University
Hospital, Modena) and in one in Cameroon (Chantal Biya International Reference for Research on HIV/AIDS
Prevention and Management, Yaoundé) and then collected in an anonymous database. HIV-1 pol genotype
analyses were performed on plasma samples, as previously described (36–38).

Mphy analysis. For each sequence, HIV-1 subtype was determined by molecular phylogeny (Mphy).
In particular, pol sequences were aligned by using Clustal X, with full-length reference sequences of HIV-1
subtypes and CRFs retrieved from the HIV sequence databases, available at https://www.hiv.lanl.gov/
content/sequence/NEWALIGN/align.html, using at least 10 reference sequences for each subtype/CRF, for
a total of 3,923 sequences. The alignment type chosen was the “all complete sequences” in the fasta
format, and only one sequence per patient was included. Then, the complete alignment was manually
trimmed from full-length genomes to the PR/RT region, and gaps were removed from the final
alignment, by using BioEdit software version 7.2.5.

Two different Mphy analyses were conducted. (i) The first Mphy (referred to as old Mphy) was
conducted with a data set of reference sequences available until 2014; (ii) the second one (referred to as
new Mphy) was performed with a data set of reference sequences updated in 2015, to evaluate possible
discrepancies with previous subtype assignments. In particular, in the 2015 analysis we had 530 more
reference sequences than those available in the 2014 analysis. Subtype or CRF assignments were
achieved by constructing phylogenetic trees using the neighbor-joining (NJ) method (39). Regarding old
Mphy, until 2009, the F84 substitution model with both NJ and maximum likelihood (ML) tree building
methods was used (40), performed by PAUP software (http://paup.sc.fsu.edu/). From 2010 until now,
phylogenetic analyses were conducted using MEGA (version 5, from 2010 to 2013; version 6, from 2014
until now), based on the Kimura 2-parameter (K2P) model (41). The reliability of the branching orders was
assessed by bootstrap analysis of 1,000 replicates. To confirm subtype classification, an ML tree with
1,000 bootstrap replicates, a general time-reversible (GTR) nucleotide substitution model with gamma
distribution among site heterogeneity, and a proportion of invariable sites (G�I��) were inferred. A
sequence that clustered monophyletically inside a clade with a bootstrap support value of �70% was
assigned to that clade; otherwise, the sequence was analyzed for recombination using RDP4 software.
Recombination events detected are displayed graphically, with statistical evidence provided, and recom-
bination events are also drawn on phylogenetic trees constructed from proposed recombinant regions.
For the sequences without any signal for recombination, the sequence was assigned the clade with the
highest similarity in RDP4 with a bootstrap support value of �70%; differently, in the presence of a
recombination signal, the sequence was identified as a unique recombinant form (URF) (Fig. 3) (26, 42).
The trees were rooted using midpoint rooting by FigTree software version 1.4.2 (http://tree.bio.ed.ac
.uk/software/figtree/).

HIV-1 automated subtyping assignment. The entire pol sequence data set was analyzed using
four automatic tools: COMET (https://comet.lih.lu/), REGA-v3 (http://dbpartners.stanford.edu:8080/
RegaSubtyping/stanford-hiv/typingtool/), SCUEAL (http://www.datamonkey.org/dataupload_scueal.php),
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and Stanford HIVdb (versions 1.0 to 7.0, referred to as Stanford-old, or Stanford HIVdb 8.1 version,
referred to as Stanford-v8.1). Regarding Stanford HIVdb, until 14 September 2016, the only reference
sequences present in Stanford-old were the pure subtypes A, B, C, D, F, and G and the two CRFs
01_AE and 02_AG. The Stanford algorithm has now been updated, with the addition of HIV-1 group
M reference sequences for CRFs up to 65. In addition to the current update in Stanford HIVdb, the
pol gene is now concatenated to encompass the entire PR/RT/IN sequence. Features of the updated
reference sequences in Stanford-v8.1, used in the present subtyping assessment, are now available
in the open-source project for subtyping (https://github.com/hivdb/hiv-genotyper/blob/master/src/
main/resources/HIVGenotypeReferences.json).

Concordance, sensitivity, and specificity. Since new Mphy was considered the gold standard, the
performance of automated tools versus new Mphy was evaluated in terms of subtyping agreement
(concordance), sensitivity, and specificity. When the automated tool reported the same HIV-1 subtype/
CRF as the new Mphy did, the result was considered concordant. Regarding Stanford HIVdb, because old
versions separated PR and RT subtype results, different results between PR and RT were considered
discordant. Sensitivity and specificity were calculated using the formula available at http://statpages
.info/ctab2x2.html. Desirable target performance was set at �90%.

Statistical analysis. Statistical significance of the differences between subtyping tools was evaluated
with McNemar’s test, using R version 3.3.1; P values of �0.05 were considered statistically significant.

ACKNOWLEDGMENTS
This work was financially supported by the Italian Ministry of Health (Progetto

Ricerca Corrente 2016, line n.2, project n.2, subproject n.2d); the Italian Ministry of
Education, University and Research (MIUR) (Bandiera InterOmics Protocollo PB05 1°);
and an unrestricted grant from the AVIRALIA foundation.

We have no conflicts of interest directly related to this work.
The Resistance Study Group includes members at the following institutions: University

Hospital Tor Vergata, Rome, Italy—Claudia Alteri, Massimo Andreoni, Daniele Armenia,

FIG 3 Flow chart of Mphy. Shown are the main steps of HIV molecular phylogeny (Mphy) used for subtype assignment.

HIV-1 Subtyping Tools and Phylogeny Journal of Clinical Microbiology

September 2017 Volume 55 Issue 9 jcm.asm.org 2835

 on A
pril 12, 2019 by guest

http://jcm
.asm

.org/
D

ow
nloaded from

 

https://github.com/hivdb/hiv-genotyper/blob/master/src/main/resources/HIVGenotypeReferences.json
https://github.com/hivdb/hiv-genotyper/blob/master/src/main/resources/HIVGenotypeReferences.json
http://statpages.info/ctab2x2.html
http://statpages.info/ctab2x2.html
http://jcm.asm.org
http://jcm.asm.org/


Maria Concetta Bellocchi, Ada Bertoli, Andrea Biddittu, Massimiliano Bruni, Anna Rita
Buonomini, Luca Carioti, Francesca Ceccherini-Silberstein, Carlotta Cerva, Novella Cesta,
Domenico Di Carlo, Luca Dori, Luca Foroghi, Elisa Gentilotti, Sara Giannella, Tania Guenci,
Gaetano Maffongelli, Vincenzo Malagnino, Alessandra Ricciardi, Marzia Romani, Romina
Salpini, Maria Mercedes Santoro, Loredana Sarmati, Rossana Scutari, Valentina Serafini,
Pasquale Sordillo, Francesca Stazi, Cristof Stingone, Valentina Svicher, Elisabetta Teti, and
Magdalena Viscione; INMI Lazzaro Spallanzani, IRCCS, Rome, Italy—Isabella Abbate, Rosa
Acinapura, Lucia Alba, Andrea Antinori, Adriana Ammassari, Franco Baldini, Rita Bell-
agamba, Evangelo Boumis, Giulia Berno, Maria Rosaria Capobianchi, Stefania Carta, Stefania
Cicalini, Fabio Continenza, Gabriella De Carli, Roberta D’Arrigo, Gianpiero D’Offizi, Lavinia
Fabeni, Valentina Fedele, Vincenzo Galati, Alberto Giannetti, Enrico Girardi, Caterina Gori,
Susanna Grisetti, Raffaella Libertone, Giuseppina Liuzzi, Patrizia Lorenzini, Rita Maddaluno,
Andrea Mariano, Assunta Navarra, Emanuele Nicastri, Giuseppina Nurra, Nicoletta Orchi,
Antonio Palummieri, Carlo Federico Perno, Carmela Pinnetti, Silvia Pittalis, Daniele Pizzi,
Vincenzo Puro, Alessandro Sampaolesi, Maria Rosaria Sciarrone, Paola Scognamiglio, Catia
Sias, Ubaldo Visco-Comandini, and Mauro Zaccarelli; San Gallicano Institute, IRCCS, Rome,
Italy—Manuela Colafigli, Antonio Cristaudo, Massimo Giuliani, Alessandra Latini, and Anna
Pacifici; S. Andrea Hospital, Rome, Italy—Alfredo Pennica; S. Giovanni Addolorata Hospital,
Rome, Italy—Fiorella Di Sora, Filippo Iebba, and Francesco Montella; Polo Pontino-Sapienza
University, Latina, Italy—Miriam Lichtner, Raffaella Marocco, and Claudio Maria Mastroianni;
Children’s Hospital Bambino Gesù, Rome, Italy—Stefania Bernardi; CRAIDS Hospital, Frosi-
none, Italy—Enza Anzalone; CRAIDS Hospital, Rieti, Italy—Maria Elena Bonaventura, Mauro
Marchili, and Antonella Pitorri; Teramo Hospital, Teramo, Italy—Luigi Falconi Di Francesco
and Dante Di Giammartino; CRAIDS Hospital, Viterbo, Italy—Antonio Caterini and Orlando
Armignacco; Avezzano Hospital, Avezzano, Italy—Rinalda Mariani and Maurizio Paoloni;
Pescara Hospital, Pescara, Italy—Giustino Parruti, Alessandro Pieri, and Federica Sozio; S.
Salvatore Hospital ASL Abruzzo, L’Aquila, Italy—Antonio Cellini, Alessandro Grimaldi, Mau-
rizio Mariani, and Giovanna Picchi; Modena University Hospital, Modena, Italy—Vanni
Borghi, Cristina Mussini, and William Gennari; and Chantal Biya International Reference for
Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon—Joseph Fokam,
Aubin J. Nanfack, Alexis Ndjolo, Desiré Takou, and Judith N. Torimiro.

REFERENCES
1. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF,

Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn BH. 1999.
Origin of HIV-1 in Pan troglodytes troglodytes. Nature 397:436 – 441.
https://doi.org/10.1038/17130.

2. Sharp PM, Bailes E, Chaudhuri RR, Rodenburg CM, Santiago MO, Hahn
BH. 2001. The origins of acquired immune deficiency syndrome viruses:
where and when? Philos Trans R Soc Lond B Biol Sci 356:867. https://
doi.org/10.1098/rstb.2001.0863.

3. Plantier JC, Leoz M, Dickerson JE, De Oliveira F, Cordonnier F, Lemée V,
Damond F, Robertson DL, Simon F. 2009. A new human immunodefi-
ciency virus derived from gorillas. Nat Med 15:871– 872. https://doi.org/
10.1038/nm.2016.

4. Sharp PM, Hahn BH. 2011. Origins of HIV and the AIDS pandemic.
Cold Spring Harb Perspect Med 1:a006841. https://doi.org/10.1101/
cshperspect.a006841.

5. Van Heuverswyn F, Li Y, Neel C, Bailes E, Keele BF, Liu W, Loul S, Butel C,
Liegeois F, Bienvenue Y, Ngolle EM, Sharp PM, Shaw GM, Delaporte E,
Hahn BH, Peeters M. 2006. Human immunodeficiency viruses: SIV infec-
tion in wild gorillas. Nature 444:164. https://doi.org/10.1038/444164a.

6. Hemelaar J, Gouws E, Ghys PD, Osmanov S, WHO-UNAIDS Network for
HIV Isolation and Characterisation. 2011. Global trends in molecular
epidemiology of HIV-1 during 2000 –2007. AIDS 25:679 – 689. https://doi
.org/10.1097/QAD.0b013e328342ff93.

7. Vachot L, Ataman-Onal Y, Terrat C, Durand PY, Ponceau B, Biron F, Verrier
B. 2004. Short communication: retrospective study to time the introduc-
tion of HIV type 1 non-B subtypes in Lyon, France, using env genes
obtained from primary infection samples. AIDS Res Hum Retroviruses
20:687– 691. https://doi.org/10.1089/0889222041524607.

8. Holguín A, de Mulder M, Yebra G, López M, Soriano V. 2008. Increase of

non-B subtypes and recombinants among newly diagnosed HIV-1 native
Spaniards and immigrants in Spain. Curr HIV Res 6:327–334. https://doi
.org/10.2174/157016208785132455.

9. Fox J, Castro H, Kaye S, McClure M, Weber JN, Fidler S, UK Collaborative
Group on HIV Drug Resistance. 2010. Epidemiology of non-B clade forms
of HIV-1 in men who have sex with men in the UK. AIDS 24:2397–2401.
https://doi.org/10.1097/QAD.0b013e32833c703e.

10. Lai A, Bozzi G, Franzetti M, Binda F, Simonetti FR, Micheli V, Meraviglia P,
Corsi P, Bagnarelli P, De Luca A, Ciccozzi M, Zehender G, Zazzi M, Balotta
C. 2014. Phylogenetic analysis provides evidence of interactions be-
tween Italian heterosexual and South American homosexual males as
the main source of national HIV-1 subtype C epidemics. J Med Virol
86:729 –736. https://doi.org/10.1002/jmv.23891.

11. Dauwe K, Mortier V, Schauvliege M, Van Den Heuvel A, Fransen K, Servais
JY, Bercoff DP, Seguin-Devaux C, Verhofstede C. 2015. Characteristics
and spread to the native population of HIV-1 non-B subtypes in two
European countries with high migration rate. BMC Infect Dis 15:524.
https://doi.org/10.1186/s12879-015-1217-0.

12. Santoro MM, Alteri C, Ronga L, Flandre P, Fabeni L, Mercurio F, D’Arrigo
R, Gori C, Palamara G, Bertoli A, Forbici F, Salpini R, Boumis E, Tozzi V,
Visco-Comandini U, Zaccarelli M, Van Houtte M, Pattery T, Narciso P,
Antinori A, Ceccherini-Silberstein F, Perno CF. 2012. Comparative anal-
ysis of drug resistance among B and the most prevalent non-B HIV type
1subtypes (C, F, and CRF02_AG) in Italy. AIDS Res Hum Retroviruses
28:1285–1293. https://doi.org/10.1089/aid.2011.0142.

13. Fabeni L, Alteri C, Orchi N, Gori C, Bertoli A, Forbici F, Montella F, Pennica
A, De Carli G, Giuliani M, Continenza F, Pinnetti C, Nicastri E, Ceccherini-
Silberstein F, Mastroianni CM, Girardi E, Andreoni M, Antinori A, Santoro
MM, Perno CF. 2015. Recent transmission clustering of HIV1 C and

Fabeni et al. Journal of Clinical Microbiology

September 2017 Volume 55 Issue 9 jcm.asm.org 2836

 on A
pril 12, 2019 by guest

http://jcm
.asm

.org/
D

ow
nloaded from

 

https://doi.org/10.1038/17130
https://doi.org/10.1098/rstb.2001.0863
https://doi.org/10.1098/rstb.2001.0863
https://doi.org/10.1038/nm.2016
https://doi.org/10.1038/nm.2016
https://doi.org/10.1101/cshperspect.a006841
https://doi.org/10.1101/cshperspect.a006841
https://doi.org/10.1038/444164a
https://doi.org/10.1097/QAD.0b013e328342ff93
https://doi.org/10.1097/QAD.0b013e328342ff93
https://doi.org/10.1089/0889222041524607
https://doi.org/10.2174/157016208785132455
https://doi.org/10.2174/157016208785132455
https://doi.org/10.1097/QAD.0b013e32833c703e
https://doi.org/10.1002/jmv.23891
https://doi.org/10.1186/s12879-015-1217-0
https://doi.org/10.1089/aid.2011.0142
http://jcm.asm.org
http://jcm.asm.org/


CRF17_BF strains characterized by NNRTI-related mutations among
newly diagnosed men in central Italy. PLoS One 10:e0135325. https://
doi.org/10.1371/journal.pone.0135325.

14. Lessells RJ, Katzenstein DK, de Oliveira T. 2012. Are subtype differences
important in HIV drug resistance? Curr Opin Virol 2:636 – 643. https://doi
.org/10.1016/j.coviro.2012.08.006.

15. Santoro MM, Perno CF. 2013. HIV-1 genetic variability and clinical implica-
tions. ISRN Microbiol 2013:481314. https://doi.org/10.1155/2013/481314.

16. Armenia D, Di Carlo D, Gori C, Pérez AB, Borghi V, Bertoli A, Alvarez M,
Latini A, Sterrantino G, Lambert S, Callegaro AP, Milesi M, Ghisetti V,
Fabeni L, Coppola N, Scognamiglio P, Bellagamba R, Ammassari A,
Cicalini S, Cerva C, Maggiolo F, Di Perri G, Cristaudo A, Girardi E, Marcelin
AG, Calvez V, Andreoni M, Mussini C, Garcia F, Antinori A, Ceccherini-
Silberstein F, Perno CF, Santoro MM. 2016. The co-presence of specific
HIV-1 CRF02_AG polymorphisms correlates with a lower response to
PI-based first line HAART, abstr 31, p 34 –35. XXV Int HIV Drug Resist
Workshop, Boston, MA.

17. Kouri V, Khouri R, Alemán Y, Abrahantes Y, Vercauteren J, Pineda-Peña
AC, Theys K, Megens S, Moutschen M, Pfeifer N, Van Weyenbergh J,
Pérez AB, Pérez J, Pérez L, Van Laethem K, Vandamme AM. 2015.
CRF19_cpx is an evolutionary fit HIV-1 variant strongly associated with
rapid progression to AIDS in Cuba. EBioMedicine 28:244 –254. https://
doi.org/10.1016/j.ebiom.2015.01.015.

18. Safrit JT, Fast PE, Gieber L, Kuipers H, Dean HJ, Koff WC. 2016. Status of
vaccine research and development of vaccines for HIV-1. Vaccine 34:
2921–2925. https://doi.org/10.1016/j.vaccine.2016.02.074.

19. Tatarelli P, Taramasso L, Di Biagio A, Sticchi L, Nigro N, Barresi R, Viscoli
C, Bruzzone B. 2016. HIV-1 RNA quantification in CRF02_AG HIV-1
infection: too easy to make mistakes. New Microbiol 39:150 –152.

20. Baldrich-Rubio E, Anagonou S, Stirrups K, Lafia E, Candotti D, Lee H,
Allain JP. 2001. A complex HIV type 1 A/G/J recombinant virus isolated
from a seronegative patient with AIDS from Benin, West Africa. J Gen
Virol 82:1095–1106. https://doi.org/10.1099/0022-1317-82-5-1095.

21. Holguín A, Ramírez de Arellano E, Rivas P, Soriano V. 2006. Efficacy of
antiretroviral therapy in individuals infected with HIV-1 non-B subtypes.
AIDS Rev 8:98 –107.

22. Rouet F, Chaix ML, Nerrienet E, Ngo-Giang-Huong N, Plantier JC, Burgard
M, Peeters M, Damond F, Ekouevi DK, Msellati P, Ferradini L, Rukobo S,
Marechal V, Schvachsa N, Wakrim L, Rafalimanana C, Rakotoambinina B,
Viard JP, Seigneurin JM, Rouzioux C. 2007. Impact of HIV-1 genetic
diversity on plasma HIV-1 RNA quantification: usefulness of the Agence
Nationale de Recherches sur le SIDA second generation long terminal
repeat-based real-time reverse transcriptase polymerase chain reaction
test. J Acquir Immune Defic Syndr 45:380 –388. https://doi.org/10.1097/
QAI.0b013e3180640cf5.

23. Lemey P, Salemi M, Vandamme AM (ed). 2009. The phylogenetic hand-
book. A practical approach to phylogenetic analysis and hypothesis,
testing, 2nd ed. Cambridge University Press, New York, NY.

24. Yebra G, de Mulder M, Martín L, Pérez-Cachafeiro S, Rodríguez C, La-
barga P, García F, Tural C, Jaén A, Navarro G, Holguín A, Cohort of
Spanish AIDS Research Network (CoRIS). 2011. Sensitivity of seven HIV
subtyping tools differs among subtypes/recombinants in the Spanish
cohort of naïve HIV-infected patients (CoRIS). Antiviral Res 89:19 –25.
https://doi.org/10.1016/j.antiviral.2010.10.008.

25. Vrbik I, Stephens DA, Roger M, Brenner BG. 2015. The gap procedure: for
the identification of phylogenetic clusters in HIV-1 sequence data. BMC
Bioinformatics 16:355. https://doi.org/10.1186/s12859-015-0791-x.

26. Pineda-Peña AC, Faria NR, Imbrechts S, Libin P, Abecasis AB, Deforche K,
Gómez-López A, Camacho RJ, de Oliveira T, Vandamme AM. 2013.
Automated subtyping of HIV-1 genetic sequences for clinical and sur-
veillance purposes: performance evaluation of the new REGA version 3
and seven other tools. Infect Genet Evol 19:337–348. https://doi.org/10
.1016/j.meegid.2013.04.032.

27. Gifford R, de Oliveira T, Rambaut A, Myers RE, Gale CV, Dunn D, Shafer
R, Vandamme AM, Kellam P, Pillay D. 2006. Assessment of automated
genotyping protocols as tools for surveillance of HIV-1 genetic diver-
sity. AIDS 20:1521–1529. https://doi.org/10.1097/01.aids.0000237368
.64488.ae.

28. Holguín A, López M, Soriano V. 2008. Reliability of rapid subtyping tools
compared to that of phylogenetic analysis for characterization of human
immunodeficiency virus type 1 non-B subtypes and recombinant forms.
J Clin Microbiol 46:3896 –3899. https://doi.org/10.1128/JCM.00515-08.

29. Struck D, Lawyer G, Ternes AM, Schmit JC, Perez Bercoff D. 2014. COMET:
adaptive context-based modeling for ultrafast HIV-1 subtype identifica-
tion. Nucleic Acids Res 42:e144. https://doi.org/10.1093/nar/gku739.

30. Fabeni L, Berno G, Fokam J, Alteri C, Carioti L, Bertoli A, Gori C, Forbici F,
Carta S, Fedele V, Cicalini S, Pinnetti C, Bellagamba R, Ammassari A,
Borghi V, Giuliani M, De Carli G, Orchi N, Scognamiglio P, Pennica A,
Mastroianni CM, Montella F, Cristaudo A, Mussini C, Girardi E, Andreoni
M, Antinori A, Ceccherini-Silberstein F, Perno CF, Santoro MM. 2016.
Regular update of HIV-1 subtyping is highly needed, mainly for newly
emerging strains in western countries, abstr P226. VIII Ital Conf AIDS
Antiviral Res, Milan, Italy.

31. Robertson DL, Anderson JP, Bradac JA, Carr JK, Foley B, Funkhouser RK,
Gao F, Hahn BH, Kalish ML, Kuiken C, Learn GH, Leitner T, McCutchan F,
Osmanov S, Peeters M, Pieniazek D, Salminen M, Sharp PM, Wolinsky S,
Korber B. 2000. HIV-1 nomenclature proposal. Science 288:55–56.
https://doi.org/10.1126/science.288.5463.55d.

32. Ciccozzi M, Santoro MM, Giovanetti M, Andrissi L, Bertoli A, Ciotti M.
2012. HIV-1 non-B subtypes in Italy: a growing trend. New Microbiol
35:377–386.

33. Yahi N, Fantini J, Tourres C, Tivoli N, Koch N, Tamalet C. 2001. Use of drug
resistance sequence data for the systematic detection of non-B human
immunodeficiency virus type 1 (HIV-1) subtypes: how to create a senti-
nel site for monitoring the genetic diversity of HIV-1 at a country scale.
J Infect Dis 183:1311–1317. https://doi.org/10.1086/319859.

34. Wang Y, Rawi R, Wilms C, Heider D, Yang R, Hoffmann D. 2013. A small
set of succinct signature patterns distinguishes Chinese and non-
Chinese HIV-1 genomes. PLoS One 8:e58804. https://doi.org/10.1371/
journal.pone.0058804.

35. Pasquier C, Millot N, Njouom R, Sandres K, Cazabat M, Puel J, Izopet J. 2001.
HIV-1 subtyping using phylogenetic analysis of pol gene sequences. J Virol
Methods 94:45–54. https://doi.org/10.1016/S0166-0934(01)00272-5.

36. Fokam J, Salpini R, Santoro MM, Cento V, D’Arrigo R, Gori C, Perno CF,
Colizzi V, Nanfack A, Gwom LC, Cappelli G, Takou D. 2011. Performance
evaluation of an in-house human immunodeficiency virus type-1
protease-reverse transcriptase genotyping assay in Cameroon. Arch Virol
156:1235–1243. https://doi.org/10.1007/s00705-011-0982-3.

37. Santoro MM, Fabeni L, Armenia D, Alteri C, Di Pinto D, Forbici F, Bertoli
A, Di Carlo D, Gori C, Carta S, Fedele V, D’Arrigo R, Berno G, Ammassari
A, Pinnetti C, Nicastri E, Latini A, Tommasi C, Boumis E, Petrosillo N,
D’Offizi G, Andreoni M, Ceccherini-Silberstein F, Antinori A, Perno CF.
2014. Reliability and clinical relevance of the HIV-1 drug-resistance test
in patients with low viremia levels. Clin Infect Dis 58:1156 –1164. https://
doi.org/10.1093/cid/ciu020.

38. Armenia D, Di Carlo D, Maffongelli G, Borghi V, Alteri C, Forbici F, Bertoli
A, Gori C, Giuliani M, Nicastri E, Zaccarelli M, Pinnetti C, Cicalini S, D’Offizi
G, Ceccherini-Silberstein F, Mussini C, Antinori A, Andreoni M, Perno CF,
Santoro MM. 2017. Virological response and resistance profile in HIV-1-
infected patients starting darunavir-containing regimens. HIV Med 18:
21–32. https://doi.org/10.1111/hiv.12388.

39. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol 4:406 – 425.

40. Alteri C, Svicher V, Gori C, D’Arrigo R, Ciccozzi M, Ceccherini-Silberstein
F, Selleri M, Bardacci SA, Giuliani M, Elia P, Scognamiglio P, Balzano R,
Orchi N, Girardi E, Perno CF, SENDIH Study Group. 2009. Characterization
of the patterns of drug-resistance mutations in newly diagnosed HIV-1
infected patients naïve to the antiretroviral drugs. BMC Infect Dis 9:111.
https://doi.org/10.1186/1471-2334-9-111.

41. Kimura M. 1980. A simple method for estimating evolutionary rates of
base substitutions through comparative studies of nucleotide se-
quences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581.

42. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. 2015. RDP4:
detection and analysis of recombination patterns in virus genomes.
Virus Evol 1:vev003. https://doi.org/10.1093/ve/vev003.

HIV-1 Subtyping Tools and Phylogeny Journal of Clinical Microbiology

September 2017 Volume 55 Issue 9 jcm.asm.org 2837

 on A
pril 12, 2019 by guest

http://jcm
.asm

.org/
D

ow
nloaded from

 

https://doi.org/10.1371/journal.pone.0135325
https://doi.org/10.1371/journal.pone.0135325
https://doi.org/10.1016/j.coviro.2012.08.006
https://doi.org/10.1016/j.coviro.2012.08.006
https://doi.org/10.1155/2013/481314
https://doi.org/10.1016/j.ebiom.2015.01.015
https://doi.org/10.1016/j.ebiom.2015.01.015
https://doi.org/10.1016/j.vaccine.2016.02.074
https://doi.org/10.1099/0022-1317-82-5-1095
https://doi.org/10.1097/QAI.0b013e3180640cf5
https://doi.org/10.1097/QAI.0b013e3180640cf5
https://doi.org/10.1016/j.antiviral.2010.10.008
https://doi.org/10.1186/s12859-015-0791-x
https://doi.org/10.1016/j.meegid.2013.04.032
https://doi.org/10.1016/j.meegid.2013.04.032
https://doi.org/10.1097/01.aids.0000237368.64488.ae
https://doi.org/10.1097/01.aids.0000237368.64488.ae
https://doi.org/10.1128/JCM.00515-08
https://doi.org/10.1093/nar/gku739
https://doi.org/10.1126/science.288.5463.55d
https://doi.org/10.1086/319859
https://doi.org/10.1371/journal.pone.0058804
https://doi.org/10.1371/journal.pone.0058804
https://doi.org/10.1016/S0166-0934(01)00272-5
https://doi.org/10.1007/s00705-011-0982-3
https://doi.org/10.1093/cid/ciu020
https://doi.org/10.1093/cid/ciu020
https://doi.org/10.1111/hiv.12388
https://doi.org/10.1186/1471-2334-9-111
https://doi.org/10.1007/BF01731581
https://doi.org/10.1093/ve/vev003
http://jcm.asm.org
http://jcm.asm.org/

	RESULTS
	Mphy subtype assignment. 
	Concordance between automated subtyping tools and new Mphy. 
	Sensitivity and specificity of automated subtyping tools for HIV-1 pure subtypes. 
	Sensitivity and specificity of automated subtyping tools for HIV-1 CRFs. 
	Performance of Stanford-v8.1 versus Stanford-old versions. 
	Proposal for practical subtyping. 

	DISCUSSION
	MATERIALS AND METHODS
	Study population. 
	Mphy analysis. 
	HIV-1 automated subtyping assignment. 
	Concordance, sensitivity, and specificity. 
	Statistical analysis. 

	ACKNOWLEDGMENTS
	REFERENCES

