Ant-inflammatory and wound healing effects of an essential oils-based bioadhesive gel after oral mucosa biopsies: preliminary results

Scotti F, Decani S, Sardella A, Iriti M, Varoni EM, Lodi G.

Abstract:

Post-operative management of patients receiving oral biopsy includes the control of edema, pain, infection, and re-epithelization at the surgical site. This clinical study investigates the topical use of a bioadhesive gel, containing essential oils, to promote wound healing and prevent post-operative pain and infection, avoiding the need for surgical suture and chlorhexidine applications. Ten patients, who needed to receive oral biopsies (≤6 mm in diameter) for the diagnosis of mucosal oral lesions, were enrolled. The bioadhesive gel successfully controlled the post-surgical pain; at 1-week follow-up visit, no signs of infection nor side effects were reported and the surgical sites were completely healed. The bioadhesive gel resulted in a very promising agent for the post-operative management of oral biopsy site, without the need for surgical suture and chlorhexidine applications.

Keywords: bioadhesive gel, essential oils, pain, oral biopsy, wound healing
A mucosal biopsy is a medical procedure where a fragment (incisional biopsy) or the entire (excisional biopsy) mucosal lesion is surgically collected to establish the histopathological diagnosis. This examination is the “gold standard” in terms of diagnostic sensibility and specificity and represents a routine procedure in oral medicine (1). Under local anesthesia, a scalpel blade or a punch are usually employed to collect the tissue, and the surgical suture is often placed. The post-operative management includes the application of topical antibacterial gel, and the control of post-operative pain using non steroidal anti-inflammatory drug (NSAID), as needed by the patient.

Despite a plethora of studies recognizes chlorhexidine as the gold-standard among antiseptic agents (2), this molecule is not exempted from adverse effects, most frequently represented by dental and mucosal stainings, long-lasting dysgeusia, burning sensation (3,4) and increased calculus deposition on tooth surfaces (5). Some in vitro studies also showed chlorhexidine possesses cytotoxic effects against human fibroblasts and lymphocytes, via oxidative stress pathways (6,7). Besides chlorhexidine, even the suture can be associated with complications, such as the bacterial colonization of the filaments which can occur with all type of suture, but increases while considering polyfilament, because of the micro-retaining pattern of the surface (8,9). Nonetheless, the suture often represents a source of stress and anxiety for patients.

To overcome chlorhexidine and suture limitations, the alternative use of natural products, in particular originating from plants, has been widely investigated, taking advantage from their bioactivities. Among the others, essential oils (EOs) showed many biological properties, such as the antioxidant, anti-inflammatory and analgesic ones. Among plants belonging to the Myrtaceae family, the extract from Manuka (Leptospermum scoparium) has shown the capacity to reduce free radicals and antibacterial effects, as well (10). Similarly, Eucalyptus spp. displayed antioxidant, cytoprotective and antibacterial properties, too (11,12). Tea tree (Melaleuca alternifolia), another plant belonging to this family, is characterized by anti-fungal (13), anti-inflammatory (14) and anti-bacterial effects (15,16). Furthermore, the extracts from the family of Lamiaceae, including Thymus vulgaris and Mentha piperita, exhibited in vitro antioxidant (17), antifungal and anti-cancer (18, 19) activities, as well as analgesic effects against inflammatory pain (20). Similar effects have been reported for Commiphora myrrha (21) and Licorice (Glycyrrhiza glabra) extracts (22). Among isolated compounds, (-)-α-bisabolol, the main component of the EO from Matricaria chamomilla, showed anti-bacterial, anti-mutagenic, anti-inflammatory, analgesic and cicatrizating properties (23,24), while anethole, from Anethum graveolens and Illicium verum, exhibited anesthetic and antioxidant effects (20,25), and decreased the synthesis and the release of several inflammatory mediators, thus explicating antinociceptive activity (26). Allantoin, physiologically present in a human body and in plants, especially in Symphytum officinale leaves, can promote wound healing and stimulate cell mitosis (27,28), displayed analgesic (29), anti-inflammatory and moisturizing effects (27), besides a certain keratolytic activity (30).

A mixture of the above reported EOs and isolated phytochemicals could act in synergy to promote wound healing and show anti-inflammatory effects. Therefore, the aim of this study was to evaluate the efficacy of a topically applied bioadhesive gel, containing a mix of EOs as active ingredients, in terms of pain control and wound healing after oral biopsies.
Materials and methods

Study design - This was a pilot study, as the first stage of Phase II clinical trial, non-controlled and non-randomized, to preliminary investigate pain control and wound healing effects of an EOs-based bioadhesive gel (Hobagel Plus®, HOBAMA S.r.l. Milano) after oral mucosa biopsies. This study was conducted at the dental clinic of the UO Odontostomatologia II, ASST Santi Paolo e Carlo - San Paolo Hospital (University of Milan), where the interventions were performed and data collected and examined. The study included two phases: the former involved the surgical procedure and patient instructions for gel application; the latter involved the clinical follow-up visits and the recording of questionnaires.

Patients recruitment - From January 2018 to February 2018, ten patients referring to the dental clinic were recruited, in full accordance with ethical principles of the World Medical Declaration of Helsinki and under the approval of local Ethics Committee (ASST Santi Paolo e Carlo). Patients were consecutively enrolled during the first visit at the oral medicine unit. Inclusion criteria were being at least 18-years old and needing excisional or incisional oral biopsies (≤6 mm in diameter) for the histopathological diagnosis of oral mucosal lesions. Exclusion criteria included uncontrolled hypertension, uncontrolled diabetes, coagulation disorders, and absolute contraindications to surgery, pregnancy, and breastfeeding. Written informed consent of each patient was signed.

Personal and clinical data recording - For each patient, demographic and medical data were recorded during the first visit. An expert clinician, after having evaluated patient’s eligibility to the study, performed the intraoral examination.

Intervention - Oral mucosal biopsies were carried out by trained practitioners. All surgical procedures were performed under local anesthesia, after obtaining written surgical consent. At the end of the surgical intervention, hemostasis was obtained with gauze soaked with the physiological saline solution, then, the surgical site was covered with a layer of gel (Hobagel Plus®, HOBAMA S.r.l. Milano). The gel contained Melaleuca Alternifolia Leaf Oil, Leptospermum Scoparium Branch/Leaf Oil, Ammonium Glycyrrhizate, Thymus Vulgaris Oil, Menthol, Mentha Piperita Oil, Eucalyptol, Anethole, Commiphora Myrrha Oil, Bisabolol, Tocopheryl Acetate, Allantoin, Cetylpyridinium Chloride, Hydrogen Peroxide, Sodium Hyaluronate Hydrolyzed, Sodium Hyaluronate and Triclosan as active ingredients, while Calcium/Sodium PVM/MA Copolymer, Paraffinum Liquidum, Petrolatum, Cellulose Gum, Polyvinylpyrrolidone as excipients.

Each patient was instructed to apply a thin layer of gel to the surgical wound, three times a day for one week. Clinical digital photographs of the surgical site were taken, using a reflex digital camera (Nikon D5300, 85 mm Micro Nikkor Af-s Lens, Metz 15 MS-1 digital Speedlight), after the biopsy and soon after topical gel application. Ordinary postoperative instructions were provided to the patient, as follows: do not disturb the area of surgery; do not spit or rinse the mouth for at least 24 hours; brush the teeth gently, taking care to not traumatize the surgical site; avoid physical activity for the first 48 hours; avoid hot/crunchy liquids or foods; if active bleeding would start, keep firm pressure by a gauze soaked with physiological saline solution for 15 minutes, and, in case of persisting bleeding, apply constant pressure at the surgical site for 15 minutes using
a tranexamic acid-soaked gauze. Acetaminophen 1000 mg tablets (max. three times a day) was prescribed with the recommendation to be used just as needed. After the biopsy, the patient also received the questionnaire to be filled during the following week, which included recordings about: daily pain (using Visual Analog Scale - VAS), eventual painkillers intake, presence of edema, secondary bleeding, and possible adverse reactions to the gel.

A follow-up visit was carried out one week later. Clinical photographs of the surgical site were taken again, as described above. An expert clinician (S.D.) performed the intraoral examination, particularly focused on the surgical site, recorded the presence/absence of infection or bleeding, and evaluated the wound healing in term of re-epithelization or presence of fibrin clot.

Primary outcome: pain - Pain intensity was assessed by visual analog scale (VAS). VAS is structured as a 100 mm horizontal line with two stop lines at the endings, which represent respectively "no pain" (left extreme) and "the worst pain conceivable" (right extreme). The patients were instructed to mark the VAS daily, always at the same hour. The VAS score was measured in millimeters, using a ruler, as the distance between and the starting point of the 100 mm line and the patient's mark (31). In accordance with Jensen et al. (32), VAS scores were further divided into four categories to quantify the postoperative pain: from 0 to 4 mm = no pain, from 5 to 44 mm = mild pain, from 45 to 74 mm = moderate pain, from 75 to 100 mm = severe pain. Furthermore, the patients were instructed to record, daily, on the specific questionnaire section, the possible acetaminophen intake.

Secondary outcomes: infection, bleeding, and wound healing – Since the presence of infection, persistent inflammation and bleeding can contribute to the late repair of the surgical site, all these factors were assessed by the patient day-to-day, and by the clinician at 1-week follow-up. In particular, dichotomic visual analysis (presence/absence) of bleeding and edema was recorded every day by the patients throughout specific questionnaire sections. At 1-week follow up visit, a trained clinician (S.D.) visually verified the presence of local bleeding, edema, and signs of infection, and assessed the wound healing, in term of re-epithelization or presence of fibrin clot, comparing the surgical site with previously clinical photographs.
Results

Ten patients, requiring oral mucosa biopsies, participated in the study: nine females and one male (age range: 44-85 years, mean± SD: 65.7±11.3 years). In four patients, multiple biopsies (n = 2) were required for the accurate histopathological diagnosis, basing on the clinical features of the mucosal lesions, 14 surgical sites were, thus, considered in this trial. Clinical data are summarized in table 1.
Table 1. Demographic and clinical data of patients enrolled in the study. *Excisional biopsy: the lesion is completely removed; incisional biopsy: a tissue fragment of the lesion is collected.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Gender</th>
<th>Age</th>
<th>Site</th>
<th>Biopsy Type</th>
<th>Multiple Biopsies</th>
<th>Adverse Events</th>
<th>Pain During the Week</th>
<th>Pain At 1-2 Week Follow-up</th>
<th>Bleeding During the Week</th>
<th>Bleeding At 1-2 Week Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>male</td>
<td>70</td>
<td>hard palate</td>
<td>incisional</td>
<td>-</td>
<td>none</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>female</td>
<td>73</td>
<td>lateral surface of the tongue</td>
<td>incisional</td>
<td>-</td>
<td>none</td>
<td>mild</td>
<td>no</td>
<td>no</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>female</td>
<td>71</td>
<td>mandibular attached gingiva/alveolar mucosa</td>
<td>incisional</td>
<td>2</td>
<td>none</td>
<td>mild</td>
<td>yes</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>female</td>
<td>68</td>
<td>hard palate</td>
<td>incisional</td>
<td>2</td>
<td>none</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>female</td>
<td>85</td>
<td>hard palate</td>
<td>incisional</td>
<td>-</td>
<td>none</td>
<td>mild</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6</td>
<td>female</td>
<td>71</td>
<td>maxillary attached gingiva/alveolar mucosa</td>
<td>incisional</td>
<td>2</td>
<td>none</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7</td>
<td>female</td>
<td>61</td>
<td>soft palate</td>
<td>excisional</td>
<td>-</td>
<td>none</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>female</td>
<td>44</td>
<td>lingual aspect of the attached gingiva</td>
<td>excisional</td>
<td>-</td>
<td>none</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>female</td>
<td>58</td>
<td>maxillary attached gingiva/alveolar mucosa</td>
<td>incisional</td>
<td>2</td>
<td>none</td>
<td>mild</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>female</td>
<td>56</td>
<td>hard palate</td>
<td>incisional</td>
<td>-</td>
<td>none</td>
<td>mild</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Five biopsies were taken from the palatal mucosa and seven from the keratinized gingiva/alveolar mucosa, while in one case from the lingual margin and in a further one from the soft palate. In two patients were performed excisional biopsies as diagnostic and therapeutic procedure (excisional biopsy), while in the other ones a fragment of the lesion was removed for just diagnostic purposes (incisional biopsy).

In all case, the EOs-based gel showed high and long-lasting bioadhesion, remaining in place for several minutes after a single application.

Primary outcome: pain - During the week following the procedure, each patient was asked to record daily the level of pain using VAS, the presence/absence of secondary bleeding, the presence/absence of edema, painkillers use and experience of adverse reactions to the gel. In five cases, a mild level of pain was reported: 3 of them recorded mild pain just during the day of the intervention (patients number 3, 9, and 10 – Table 1), another one exclusively during eating and speaking, and the pain lasted for the following four days (patient number 2 – Table 1), a further patient reported mild pain when wearing the denture. In the latter case, a double biopsy was performed at the hard palate, localized exactly on the mucosa under denture bases (patient number 5 - Table 1). The remaining five patients reported no pain during the week after surgery. After the fifth day, all patients did not record any pain.

Mean VAS values, recorded each day after the biopsy for one week, are shown in Figure 2. Overall, a mild pain resulted during the same day of the intervention (day 0), while from postoperative day 1 to day 6 no pain was recorded. None of the patients reported the use of acetaminophen or other painkillers.
Secondary outcomes: infection, bleeding, and wound healing – The gel, placed after gauze compression on the surgical site, successfully controlled post-operative bleeding in all patients (Fig. 1a and b). Only one patient reported a light edema at the surgical site soon after the biopsy, which resolved within the first 2 days (patient number 3 – Table 1).

In terms of secondary bleeding, two patients reported one episode during the first day: one of them occurred two hours after the surgery, while the patient was eating, and was easily controlled by the compression of the site with saline impregnated gauze (patient number 1 – Table 1). The other case of secondary bleeding occurred after the patient had performed physical activity and taken his dinner, thus largely increased the risk of this complication. The same patient controlled the bleeding using tranexamic acid-soaked gauze, instead of a saline one as we recommended (patient number 10 – Table 1).

None of the patients enrolled reported adverse events to the gel.
At 1-week follow-up visit, no signs of infection at the surgical sites could be observed (Figure 1c). In 10 surgical sites, complete or partial re-epithelization occurred, in other 4 the presence of fibrin clot could be detected (Figure 1c, as an example).

Figure 1. Intraoral photographs: a) surgical site, b) wound covered by a thin layer of gel, c) clinical appearance of the surgical site at 1-week follow up.
The need of new agents as alternatives to surgical suture and chlorhexidine is still demanding, and, in recent decades, high attention has been directed towards several plant-derived compounds with antiseptic, anti-inflammatory and wound healing properties. The role of chlorhexidine application over the suture is to reduce bacterial colonization of filaments (9,33), usually associated with both aerobic (Streptococcus spp., Staphylococcus warneri, Neisseria spp., Actinomyces spp., Pasteurella spp.) and anaerobic (Veillonella parvula, Peptostreptococcus spp., Actinobacillus spp., Prevotella spp., Fusobacterium spp.) microorganisms. Chlorhexidine, however, has the major drawbacks to stain oral hard and soft tissue and to modify the perception of taste (34,35). Recently, Vouzara and colleagues (36) demonstrated its cytotoxicity, which resulted significantly higher than sodium hypochlorite and ethylenediaminetetraacetic acid. Hidalgo et al. (6) found that chlorhexidine produced mitochondrial injury and had anti-proliferative effects against human fibroblasts, consistently with Salimi and colleagues (7) who demonstrated its cytotoxicity in human lymphocytes.

This pilot study demonstrated the promising effects of a high bioadhesive gel containing a mixture of EOs in controlling post-operative inflammation and wound healing after minor surgery, i.e. oral mucosal biopsies. Noteworthy, just two patients out ten reported a mild pain up to three days from intervention, three patients reported mild pain just for one day, while in the remaining 5, no pain was ever perceived. This finding was consistent with the findings reported by Kearns and Lodi (37,38). Interestingly, none of the patients, in this study, declared the use of painkillers after the intervention. This finding indicates a better outcome than data available from the literature, which reports about 18-26% of patients taking painkillers after oral mucosa biopsies, usually during the same day of surgery (38,39). One week later, 10 surgical sites experienced partial or complete re-epithelization, while the remaining ones had a stable fibrin clot; in all cases, no signs of infection were detectable. Interestingly, partial or complete re-epithelization of surgical wounds occurred in five patients out six who were affected by immune-mediated inflammatory oral mucosal diseases (oral lichenoid lesions, mucous membrane pemphigoid, and oral lichen planus).

All these findings might be ascribed to the strong bioadhesion of the gel and to the synergic effects of its active ingredients. The Manuka EO, indeed, possesses high antioxidant and antibacterial properties, even against Methicillin-Resistant Staphylococcus Aureus (MRSA) (39), besides anti-inflammatory activity, reducing migration of inflammatory cells at the wound site and stimulating the proliferation of fibroblasts and epithelial cells (10). Similarly, to Manuka EO, Thymus vulgaris and Melaleuca alternifolia EOs showed high antibacterial and antioxidant properties (16, 18). Terpinen-4-ol, a component of many EOs, is one of the most investigated compounds and evidence suggests that it can suppress inflammatory mediators by monocytes, and reduce histamine-induced skin inflammation (40,41). Nogueira (14) investigated the capacity of terpinen-4-ol and α-terpineol (another EO constituent) to modulate macrophage response towards bacterial stimulation and found that these compounds significantly reduce the production of several interleukins (IL-1β, IL-6, IL-8, and IL-10). Furthermore, EO from Mentha piperita, mainly composed by menthol, exhibited anti-inflammatory properties, too, as shown in animal models, by inhibiting the production of nitric oxide and prostaglandin E2 in lipopolysaccharide-activated macrophages (42). A review by de Cassia (20) reported, in particular, a significant analgesic activity of menthol in controlling acute and inflammatory pain. This could act in combination with both (-)-α-bisabolol (24), Commiphora myrrha (21), allantoin (20), anethole and licorice (27,43), which display analgesic activity by de Cassia (20) reported, in particular, a significant analgesic activity of menthol in controlling acute and wound healing effects.

No adverse events were found. One case of post-operative swelling occurred in a patient affected by a chronic inflammatory oral disease (oral lichen planus), which could have exacerbated the response to surgical trauma. Just two cases of minor the secondary bleeding, during the same day of the intervention, were reported, but they could be explained since patients disobeyed the post-surgical instructions provided by the clinician. Indeed, one patient reported that the bleeding occurred while he was eating crunchy food in

Discussion

The need of new agents as alternatives to surgical suture and chlorhexidine is still demanding, and, in recent decades, high attention has been directed towards several plant-derived compounds with antiseptic, anti-inflammatory and wound healing properties. The role of chlorhexidine application over the suture is to reduce bacterial colonization of filaments (9,33), usually associated with both aerobic (Streptococcus spp., Staphylococcus warneri, Neisseria spp., Actinomyces spp., Pasteurella spp.) and anaerobic (Veillonella parvula, Peptostreptococcus spp., Actinobacillus spp., Prevotella spp., Fusobacterium spp.) microorganisms. Chlorhexidine, however, has the major drawbacks to stain oral hard and soft tissue and to modify the perception of taste (34,35). Recently, Vouzara and colleagues (36) demonstrated its cytotoxicity, which resulted significantly higher than sodium hypochlorite and ethylenediaminetetraacetic acid. Hidalgo et al. (6) found that chlorhexidine produced mitochondrial injury and had anti-proliferative effects against human fibroblasts, consistently with Salimi and colleagues (7) who demonstrated its cytotoxicity in human lymphocytes.

This pilot study demonstrated the promising effects of a high bioadhesive gel containing a mixture of EOs in controlling post-operative inflammation and wound healing after minor surgery, i.e. oral mucosal biopsies. Noteworthy, just two patients out ten reported a mild pain up to three days from intervention, three patients reported mild pain just for one day, while in the remaining 5, no pain was ever perceived. This finding was consistent with the findings reported by Kearns and Lodi (37,38). Interestingly, none of the patients, in this study, declared the use of painkillers after the intervention. This finding indicates a better outcome than data available from the literature, which reports about 18-26% of patients taking painkillers after oral mucosa biopsies, usually during the same day of surgery (38,39). One week later, 10 surgical sites experienced partial or complete re-epithelization, while the remaining ones had a stable fibrin clot; in all cases, no signs of infection were detectable. Interestingly, partial or complete re-epithelization of surgical wounds occurred in five patients out six who were affected by immune-mediated inflammatory oral mucosal diseases (oral lichenoid lesions, mucous membrane pemphigoid, and oral lichen planus).

All these findings might be ascribed to the strong bioadhesion of the gel and to the synergic effects of its active ingredients. The Manuka EO, indeed, possesses high antioxidant and antibacterial properties, even against Methicillin-Resistant Staphylococcus Aureus (MRSA) (39), besides anti-inflammatory activity, reducing migration of inflammatory cells at the wound site and stimulating the proliferation of fibroblasts and epithelial cells (10). Similarly, to Manuka EO, Thymus vulgaris and Melaleuca alternifolia EOs showed high antibacterial and antioxidant properties (16, 18). Terpinen-4-ol, a component of many EOs, is one of the most investigated compounds and evidence suggests that it can suppress inflammatory mediators by monocytes, and reduce histamine-induced skin inflammation (40,41). Nogueira (14) investigated the capacity of terpinen-4-ol and α-terpineol (another EO constituent) to modulate macrophage response towards bacterial stimulation and found that these compounds significantly reduce the production of several interleukins (IL-1β, IL-6, IL-8, and IL-10). Furthermore, EO from Mentha piperita, mainly composed by menthol, exhibited anti-inflammatory properties, too, as shown in animal models, by inhibiting the production of nitric oxide and prostaglandin E2 in lipopolysaccharide-activated macrophages (42). A review by de Cassia (20) reported, in particular, a significant analgesic activity of menthol in controlling acute and inflammatory pain. This could act in combination with both (-)-α-bisabolol (24), Commiphora myrrha (21), allantoin (20), anethole and licorice (27,43), which display analgesic activity together with anti-inflammatory and wound healing effects.

No adverse events were found. One case of post-operative swelling occurred in a patient affected by a chronic inflammatory oral disease (oral lichen planus), which could have exacerbated the response to surgical trauma. Just two cases of minor the secondary bleeding, during the same day of the intervention, were reported, but they could be explained since patients disobeyed the post-surgical instructions provided by the clinician. Indeed, one patient reported that the bleeding occurred while he was eating crunchy food in
the same day of surgery, while the second one carried out intense physical activity, and, again, the bleeding occurred while eating.

Within the limitations of this pilot study (having little sample size and following a not controlled and not randomized design), the here proposed EOs-based bioadhesive gel may represent a promising alternative to the use of suture and chlorhexidine, promoting wound healing, showing anti-inflammatory effects, and reducing operative time, patient distress, and chlorhexidine side effects as well. It may be particularly useful in those cases difficult to suture (for example gingiva and hard palate mucosa), or in presence of highly inflamed and friable tissue. The further second stage of this Phase II clinical trial is needed to better explore these preliminary findings, especially throughout the controlled randomized clinical trial on large patient population.
Acknowledgments

Authors are grateful to Antonio Baroni and HOBAMA S.r.l group for providing the Hobagel Plus® used during the trial.
Conflicts of interest

The authors declare no conflicts of interest.
Author's contributions

GL conceived the study design, FS and SD performed the biopsies and collected the data, SD executed the follow-up visits. FS, SD, and EV analyzed the data and drafted the article, GL, AS and MI critically reviewed the article. All authors approved the final version to be published.
References:

14. Nogueira MN, Aquino SG, Rossa Junior C, Spolidorio DM. Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1β, IL-6 and IL-10 on human macrophages. Inflamm Res. 2014 Sep;63(9):769-78.

