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1 Introduction

Exact solutions to Einstein’s field equations and their supergravity generalizations have

been playing, and continue to play, a crucial role in many important developments in gen-

eral relativity, black hole physics, integrable systems, string theory and quantum gravity.

Being highly nonlinear, coupled partial differential equations, these are notoriously difficult

to solve, sometimes even in presence of a high degree of symmetry, for instance in super-

gravity where one has typically many other fields in addition to the metric. If one imposes

that some fraction of supersymmetry be preserved, the construction of solutions simplifies

considerably, since one has to solve only the first order Killing spinor equations instead of

the full higher order equations of motion.

In the last years however it was shown (see [1–17] for an (incomplete) list of references)

that sometimes also non-BPS- and even nonextremal black holes satisfy certain first order

equations, which typically arise by writing the potential of a one-dimensional mechanical

system (to which the supergravity action boils down if one has enough symmetry) in terms

of a ‘superpotential’.1 The deeper reason behind this has remained rather obscure, since

these obviously have nothing to do with supersymmetry.

Here we will elaborate on results obtained in [21], shewing for the example of Einstein-

Maxwell-(A)dS gravity in arbitrary dimension that the first order flow equations satisfied

by electrically charged static nonextremal black holes (found in part for instance in [1, 2])

1An analysis of nonextremal solutions was used in [18] to study Einstein-dilaton black holes. In the most

general case with a vector and scalar this was done in [19], where the motivation was the computation of

the finite temperature/finite density effective potential in holography. Recently the zero temperature case

was analyzed in full generality in Einstein-dilaton gravity [20] in order to find the most general RG flows.
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are just the expressions for the conjugate momenta in terms of derivatives of the principal

function W in a Hamilton-Jacobi formalism [22]. Moreover, we will see that the expression

for the potential in terms of a ‘superpotential’ is nothing else than the Hamilton-Jacobi

equation for zero energy. The fact that a nonextremal black hole solution arises from a

first order system via a superpotential construction is thus not surprising at all.

We will also find that (for the theory under consideration) there exist actually two

different branches of solutions to the HJ equation. This leads to two distinct sets of flow

equations, that share the same black hole solutions.

Guided by the structure of W in the Einstein-Maxwell-Λ case, one can try to general-

ize our analysis for instance to N = 2 gauged supergravity in four dimensions, where the

superpotential in the BPS case is known both for U(1) Fayet-Iliopoulos gauging [23] and for

coupling to hypermultiplets, when abelian isometries of the quaternionic hyperscalar tar-

get manifold are gauged [17]. Unfortunately it turns out that the principal function W for

nonextremal black holes is not straightforwardly generalizable to the matter-coupled case.

Nevertheless, we show (for the example of a particular prepotential) that there exist several

conserved charges that allow a partial separation of variables in the HJ equation. Among

these conserved charges there is the one originally introduced for ungauged supergravity

in [24] and subsequently adapted to the gauged theory in [17]. Moreover, it was recently

found [25] that N = 2, d = 4 U(1) Fayet-Iliopoulos gauged supergravity enjoys residual

symmetries that essentially involve the stabilization of the symplectic vector of gauge cou-

plings (FI parameters) under the action of the U-duality symmetry of the ungauged theory.

This provides additional conserved charges.

The remainder of this paper is organized as follows: in the next section, we consider

Einstein-Maxwell-(A)dS gravity in arbitrary dimension, adopt an ansatz for electrically

charged static black holes whose event horizon is a generic (d − 2)-dimensional Einstein

space, and determine the one-dimensional effective action from which one can derive the

equations of motion. In section 3 we integrate the Hamilton-Jacobi equation associated to

this mechanical system in full generality and show that there are two branches of solutions.

This leads to two different sets of first order flow equations, one of which coincides with

that found in [1]. In section 4 we analyze how much of these integrability properties2 can

be generalized to matter-coupled N = 2, d = 4 gauged supergravity. We conclude in 5

with some final remarks.

2 Static black holes in Einstein-Maxwell-(A)dS gravity

We consider d-dimensional Einstein-Maxwell-(A)dS gravity, whose action is given by

S =
1

16πGd

∫
ddx
√
−g (R− FµνFµν − 2Λ) , (2.1)

with d > 3. This is the simplest model that can be embedded (at least for some d) in

N = 2 gauged supergravity. The equations of motion following from (2.1) are

Rµν −
1

2
Rgµν + Λgµν = 2

(
FµσFν

σ − 1

4
gµνFσρF

σρ

)
, ∇µFµν = 0 , (2.2)

2Integrability in presence of a cosmological constant was studied before in [26–29].
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where F = dA. For future convenience we report the trace and the traceless part of the

Einstein equations that respectively read

R− 2d

d− 2
Λ− d− 4

d− 2
FµνFµν = 0 ,

Rµν − 2Fµ
σFνσ −

2

d− 2
Λgµν +

1

d− 2
gµνF

σρFσρ = 0 .

(2.3)

2.1 Electrically charged black holes

In what follows we shall consider electrically charged static black holes whose horizon is a

(d− 2)-dimensional Einstein space.3 The metric and the gauge field have the form

ds2
d = −e−2(d−3)Udt2 + e2U−2(d−4)ψdr2 + e2(U+ψ)dΩ2

κ,d−2 , A = Atdt , (2.4)

where the functions U , ψ and At depend only on the coordinate r. The metric in (2.4) has

the warped product structure

ds2
d = g̃abdx

adxb + f2(x)ĝijdy
idyj , (2.5)

where the (d − 2)-dimensional fiber with metric ĝijdy
idyj = dΩ2

κ,d−2 is a generic Einstein

space, i.e., R̂ij = (d − 3)κĝij . The nonvanishing components of the Ricci tensor in d

dimensions are thus given by [30]

Rab = R̃ab −
dF
f
∇̃a∇̃bf ,

Rij = R̂ij − ĝij
(
f∇̃a∇̃af + (dF − 1)g̃ab∂af∂bf

)
,

(2.6)

where dF > 1 is the dimension of the fiber and ∇̃a denotes the covariant derivative con-

structed with the Levi-Civita connection for g̃ab.

2.2 Effective action

The Maxwell equations for the ansatz (2.4) are solved by

F = −Qe−2(d−3)(U+ψ)dt ∧ dr , (2.7)

where Q is an integration constant corresponding to the electric charge. Using (2.6) it

is straightforward to shew that the Einstein equations (2.3) boil down to three ordinary

differential equations that can be derived form the one-dimensional effective action

Seff =

∫
drL =

∫
dr
(
e2(d−3)ψ(U ′2 − ψ′2)− Veff

)
, (2.8)

with the potential

Veff = κ− 2Q2

(d− 3)(d− 2)
e−2(d−3)(U+ψ) − 2Λ

(d− 3)(d− 2)
e2(U+ψ) , (2.9)

3For d > 5 this does not necessarily imply that the horizon has constant curvature.
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if we impose in addition the zero energy condition

e2(d−3)ψ(U ′2 − ψ′2) + Veff = 0 . (2.10)

To be concrete, the equation of motion for U is proportional to the tt-component of (2.3),

while the one for ψ is a linear combination of the tt- and rr-components. Moreover, from

the first of (2.3) and the tt-component one gets (2.10). The Einstein equations along the

fiber are automatically satisfied.

The conjugate momenta and Hamiltonian of the dynamical system (2.8) are respec-

tively given by

pU =
∂L

∂U ′
= 2e2(d−3)ψU ′, pψ =

∂L

∂ψ′
= −2e2(d−3)ψψ′,

Heff(pU , pψ, U, ψ) =
1

4
e−2(d−3)ψ(p2

U − p2
ψ) + Veff .

(2.11)

3 Integration of the Hamilton-Jacobi equation

The Hamilton-Jacobi equation associated to (2.11) reads

Heff(∂US, ∂ψS,U, ψ) +
∂S

∂r
= 0 . (3.1)

Since Heff does not depend explicitely on r we set

S = 2W (U,ψ)− Er , (3.2)

such that (3.1) reduces to

e−2(d−3)ψ(W 2
U −W 2

ψ) + Veff = E , (3.3)

where WU and Wψ are respectively the partial derivatives of W w.r.t. U and ψ. Inspired

by [28, 29], we define a new set of coordinates

X = e(d−3)(U+ψ) , Y = e−2(d−3)U , (3.4)

for which (3.3) becomes

4(d− 3)2

X2
(YW 2

Y −XWXWY )− 2Q2

(d− 2)(d− 3)X2
− 2ΛX

2
d−3

(d− 2)(d− 3)
= Ê , (3.5)

where Ê = E−κ. To avoid loss of information E will be set to zero, as required by (2.10),

only at the end of the integration procedure. The reason for this is that, in order to solve

the dynamics algebraically, one needs (3.9) and (3.19), therefore we set E = 0 only after

these equations have been obtained.
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3.1 First solution

Applying the method of characteristics yields

dWY

WY
=

dX

X
, (3.6)

and thus WY = aX, where a is an integration constant. The solution of this equation boils

down to W (X,Y ) = aY X + ω(X) that inserted into (3.5) leads to an ODE

− 4a(d− 3)2ωX −
2Q2

(d− 2)(d− 3)X2
− 2ΛX

2
(d−3)

(d− 2)(d− 3)
= Ê , (3.7)

that can be easily integrated to give

S1 = 2aY X +
1

2a(d− 3)2

(
2Q2

(d− 2)(d− 3)X
− 2ΛX

d−1
d−3

(d− 1)(d− 2)
− ÊX

)
− Er + C . (3.8)

This contains three integration constants C,E and a, where the latter must be different

from zero. Using
∂S1

∂E

∣∣∣
E=0

= c1 ,
∂S1

∂a

∣∣∣
E=0

= c2 , (3.9)

where c1 and c2 denote arbitrary constants, the dynamics can be solved algebraically, with

the result

X = −2a(d− 3)2(r + c1) ,

Y =
c2

2X
+

Q2

2a2(d− 2)(d− 3)3X2
+

κ

4a2(d− 3)2
− ΛX

2
d−3

2a2(d− 1)(d− 2)(d− 3)2
.

(3.10)

In terms of Y and the new radial coordinate R = X
1

d−3 , the solution (2.4) becomes

ds2
d = −Y dt2 +

dR2

Y
+R2dΩ2

κ,d−2 , F =
Q

Rd−2
dt ∧ dr ,

Y = κ− 2M

R
+

2Q2

(d− 2)(d− 3)R2(d−3)
− 2ΛR2

(d− 1)(d− 2)
.

(3.11)

Here we fixed a2 = 1
4(d−3)2

(which can always be achieved by rescaling the coordinates

appropriately) and defined c2 = −4M . (3.11) is the most general solution to the equa-

tions of motion following from (2.8), and represents a generalization of the d-dimensional

Reissner-Nordström-(A)dS black hole to the case where the horizon is an arbitrary Einstein

space.

In the original coordinates, Hamilton’s characteristic function reads

W1(U,ψ) = ae(d−3)(ψ−U) +
Q2e−(d−3)(U+ψ)

2a(d− 2)(d− 3)3
− Λe(d−1)(U+ψ)

2a(d− 1)(d− 2)(d− 3)
+
κe(d−3)(U+ψ)

4a(d− 3)2
.

The expressions for the conjugate momenta

pU = 2
∂W1

∂U
, pψ = 2

∂W1

∂ψ
, (3.12)
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together with (2.11), lead to the first order flow equations

U ′ = e−2(d−3)ψ∂UW1(U,ψ) , ψ′ = −e−2(d−3)ψ∂ψW1(U,ψ) , (3.13)

that are satisfied by the nonextremal black holes (3.11). Notice also that, using (3.13),

the action (2.8) can be written as a sum of squares. This clarifies also the reason for the

very existence of first order equations for nonextremal black holes, namely they are just

the expressions for the conjugate momenta in terms of derivatives of the principal function

in a Hamilton-Jacobi formalism.

In the BPS case for d = 4, one would expect to recover the supergravity BPS flow [23],

in absence of vector multiplets, that is driven by4

WBPS(U,ψ) = e−UQ+ e2ψ+Ug , (3.14)

where g is related to the cosmological constant by Λ = −3g2. However, it is easy to see

that there is no limit in which (3.14) can arise from W1. We shall come back to this issue

in the next subsection.

3.2 Second solution

Similar to what was done in [24] for N = 2, d = 4 ungauged supergravity, and in [17] for

the abelian gauged case, we introduce the quantity

Q ≡ e2(d−3)ψU
′ + ψ′

d− 3
+W . (3.15)

Using (3.13) and the equations of motion following from the action (2.8), one easily shows

that Q′ = 0, and thus Q is a constant of motion that can be used to simplify (3.5). In

phase space we have

Q =
WU −Wψ

d− 3
+W = −2YWY +W (3.16)

that implies W (X,Y ) = Q +
√
Y ω(X). Plugging this into (3.5) one gets the ODE

− 4(d− 3)2 ∂

∂X

(
ω

X

)
− 2Q2

(d− 2)(d− 3)X2
− 2ΛX

2
d−3

(d− 2)(d− 3)
= Ê . (3.17)

A final integration leads to the solution of the original differential equation (3.5)5

S2 = 2Q− Er + 2

√
−4AXY +

2Q2Y

(d− 2)(d− 3)3
− ÊX2Y

(d− 3)2
− 2ΛX

2d−4
d−3 Y

(d− 1)(d− 2)(d− 3)2
,

(3.18)

which has three arbitrary integration constants Q, E,A, but in this case the parameter

domain is the whole R3. Using

∂S2

∂E

∣∣∣
E=0

= c3 ,
∂S2

∂A

∣∣∣
E=0

= c4 , (3.19)

4To derive (3.14) from the results of [23], take the prepotential F = −i(X0)2 and a purely magnetic

gauging with FI-parameter proportional to g.
5This solution was already found in [1] and for κ = 0 but with magnetic fluxes switched on in [16].
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gives back (3.10), where

a = − 2

c4
, c1 = c3 , c2 = −Ac

2
4

2
. (3.20)

To complete the comparison we evaluate

Q|W1 = −aXY +
κX

4a(d− 3)2
+

Q2

2a(d− 2)(d− 3)2X
− ΛX

d−1
d−3

2a(d− 1)(d− 2)(d− 3)2
.

Plugging the solution (3.10) into the r.h.s. yields 2Q = C − ac2. In terms of U and ψ, W2

reads (setting E = 0)

W2(U,ψ) = Q +

√
Ae(d−3)(ψ−U) +

2Q2e−2(d−3)U

(d− 2)(d− 3)3
+
κe2(d−3)ψ

(d− 3)2
− 2Λe2(U+(d−2)ψ)

(d− 1)(d− 2)(d− 3)2
,

(3.21)

which leads to the first order flow equations

U ′ = e−2(d−3)ψ∂UW2(U,ψ) , ψ′ = −e−2(d−3)ψ∂ψW2(U,ψ) . (3.22)

(3.22) and (3.13) have different analytic forms, but share the same general class of physical

solutions. Notice also that, contrary to W1, there is a well-defined limit in which (3.21)

reduces to the BPS superpotential (3.14) for d = 4, by setting A = 0, Λ = −3g2 and

imposing the Dirac-type quantization condition 2gQ = κ.

The authors of [1] found that the potential (2.9) can be expressed in terms of a su-

perpotential. One easily verifies that their superpotential (2.5) coincides with (3.21) and

that eq. (2.4) of [1] is just the Hamilton-Jacobi equation for zero energy. The fact that

a nonextremal black hole solution arises from a first order system via a superpotential

construction is thus not surprising at all.

4 Matter-coupled N = 2, d = 4 gauged supergravity

In this section, we shall discuss possible generalizations of our formalism to N = 2 super-

gravity in four dimensions coupled to vector multiplets and with Fayet-Iliopoulos gauging.

The analogue of the one-dimensional effective action (2.8) is then given by [17]

Seff =

∫
dr
(
e2ψ(U ′2 − ψ′2 + gīz

i′z̄ ̄′)− Veff

)
, (4.1)

with the potential

Veff = κ− e−2(U+ψ)VBH − e2(U+ψ)Vg(z, z̄) , (4.2)

where [17, 23]

VBH = gīDiZD̄̄Z̄ + |Z|2 = −1

2
QTMQ , Vg = gīDiLD̄̄L̄ − 3|L|2 (4.3)

denote respectively the black hole- and scalar potential. In (4.3), Di is the Kähler-covariant

derivative, Z = 〈Q,V〉, L = 〈G,V〉, with the symplectic section V and the symplectic vectors

of charges Q and gauge couplings G. M is the matrix defined in eq. (2.7) of [17]. Moreover

〈A,B〉 ≡ ATΩB = AΛB
Λ −AΛBΛ . (4.4)

– 7 –
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Note that the target space of the one-dimensional sigma model (4.1) is equipped with the

metric

dσ2 = e2ψ(−dψ2 + dU2 + gīdz
idz̄ ̄) , (4.5)

and is thus a Lorentzian cone over a special Kähler manifold times a line, as can be seen

by setting τ = eψ. The conjugate momenta and Hamiltonian read

pU = 2e2ψU ′, pψ = −2e2ψψ′, pi = e2ψgīz̄
̄′, p̄̄ = e2ψgīz

i′,

Heff = e−2ψ

(
1

4
p2
U −

1

4
p2
ψ + gīpip̄

)
+ Veff .

(4.6)

If we set S = 2W − Er, the reduced Hamilton-Jacobi equation becomes

e−2ψ

(
W 2
U −W 2

ψ + 4gī
∂W

∂zi
∂W

∂z̄ ̄

)
+ Veff = E . (4.7)

As was shown for ungauged [24] and gauged supergravity [17], the quantity

Q ≡ e2ψ(U ′ + ψ′) +W , (4.8)

is a first integral also in presence of the scalar fields zi. Q is the Noether charge related to

the symmetry

δU = Uε − U = ε , δψ = ψε − ψ = −ε , (4.9)

that leaves the potential (4.2) and the action (4.1) invariant (the latter up to boundary

terms). In fact, a function W , satisfying (4.7) with E = 0, drives a first order flow

U ′ = e−2ψWU , ψ′ = −e−2ψWψ , zi′ = 2e−2ψgī
∂W

∂z ̄
, (4.10)

and therefore the variation of (4.1) for infinitesimal ε can be written as

δS = S(Uε, ψε)− S(U,ψ) = −2ε

∫
dr
(
e2ψ(U ′2 − ψ′2 + 4gīz

i′z̄ ̄′)
)

= −2ε

∫
dr

(
U ′WU + ψ′Wψ + zi′

∂W

∂zi
+ z̄ ̄′

∂W

∂z̄ ̄

)
= −2ε

∫
dr
dW

dr
,

(4.11)

which vanishes if we choose appropriate boundary conditions. Note that the transfor-

mation (4.9) is generated by the vector field ∂U − ∂ψ = ∂U − τ∂τ , which is a conformal

Killing vector of the Lorentzian cone (4.5). The fact that Q is the Noether charge related

to (4.9) follows also from the inverse Noether theorem:6 if Q is a conserved charge, then

the transformation

δqI = [qI , εQ] = ε
∂Q
∂pI

, δpI = [pI , εQ] = −ε ∂Q
∂qI

, (4.12)

where [ , ] denotes the Poisson bracket, is a symmetry of the action.

6See [31] for a nice review.
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As before, we introduce the coordinates

X = eU+ψ , Y = e−2U . (4.13)

Then the first integral (4.8) becomes

Q = −2YWY +W , (4.14)

which can be easily integrated to give

W (X,Y, z, z̄) = Q +
√
Y ω(X, z, z̄) , (4.15)

where ω is an integration ‘constant’. Using (4.15), the Hamilton-Jacobi equation (4.7) boils

down to

− ∂X
ω

X
+

1

ωX2
gī

∂ω

∂zi
∂ω

∂z̄ ̄
−X2Vg −

1

X2
VBH + κ = E . (4.16)

A particular solution to (4.16) is the one found in [23] by squaring the action for the BPS

case,

ωBPS = (Z − iX2L)(Z̄ + iX2L̄) = |Z|2 +X4|L|2 − iX2(LZ̄ − L̄Z) . (4.17)

Imposing E = 0, as required by Einstein’s equations, and using

∂ω

∂zi
= (Z̄ + iX2L̄)(DiZ − iX2DiL) , (4.18)

as well as the special Kähler geometry identity

1

2
(M− iΩ) = ΩV̄VΩ + ΩDiVgīD̄V̄Ω , (4.19)

it is only matter of some algebra to shew that (4.17) solves (4.16) if one imposes the Dirac

charge quantization condition

〈G,Q〉 = −κ . (4.20)

In the following subsection we shall consider a particular prepotential, for which the effec-

tive action (4.1) has additional symmetries, that allow a further reduction of the Hamilton-

Jacobi equation (4.16).

4.1 Prepotential F = −iX0X1

This simple model has only one complex scalar field z parametrizing the Poincaré half-

plane, with Kähler metric

ds2 =
dzdz̄

(z + z̄)2
, (4.21)

which has the three Killing vectors

v1 = i(∂z − ∂z̄) , v2 = z∂z + z̄∂z̄ , v3 =
i

2
(z̄2∂z̄ − z2∂z) . (4.22)

– 9 –
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These are all symmetries of the ungauged theory, but in presence of a potential for the

scalars only a linear combination of them survives, as was shown in [25] using the symplectic

representation.

If we consider a configuration with only magnetic charges and purely electric gaugings,

the HJ equation (4.16) becomes for this prepotential

− ∂X
ω

X
+

1

ωX2
gzz̄

∂ω

∂z

∂ω

∂z̄
+X2 g

2
0 + g2

1zz̄ + 2g0g1(z + z̄)

z + z̄
− 1

X2

p12
+ p02

zz̄

z + z̄
+ κ = E .

(4.23)

The linear combination

v =
g2

0

2g2
1

v1 + v3 =
i

2

(
g2

0

g2
1

− z2

)
∂z −

i

2

(
g2

0

g2
1

− z̄2

)
∂z̄ (4.24)

generates a symmetry of (4.1) if one imposes the BPS condition [32] p0g0 = p1g1. It is

straightforward to verify that this implies the existence of a further conserved charge

C =
i

2

(
g2

0

g2
1

− z2

)
∂ω

∂z
− i

2

(
g2

0

g2
1

− z̄2

)
∂ω

∂z̄
. (4.25)

By introducing the new variables

z =
g0

g1
tanh

(
g0

g1
(u+ iv)

)
, z̄ =

g0

g1
tanh

(
g0

g1
(u− iv)

)
, (4.26)

(4.25) can easily be integrated, with the result ω = 2Cv+α(u,X). Plugging this into (4.23),

the HJ equation assumes the form

− ∂X
α

X
+

(
g1

g0

)2 sinh2(2g0u/g1)

4X2

α2
u + 4C2

α+ 2Cv
−X2Vg(u)− 1

X2
VBH(u) + κ = E , (4.27)

where

VBH(u) =
(p0)2g0

g1 tanh(2g0u/g1)
, Vg(u) = − g0g1

tanh(2g0u/g1)
− 2g0g1 . (4.28)

It is easy to see that (4.27) can be satisfied for all v only if C = 0,7 so that we have

− ∂X
α

X
+

(
g1

g0

)2 sinh2(2g0u/g1)

4X2

α2
u

α
−X2Vg(u)− 1

X2
VBH(u) + κ = E . (4.29)

For the prepotential under consideration, the BPS solution (4.17) reads

ωBPS(X, z, z̄) =

(
p1 + p0z −X2(g0 + g1z)

)(
p1 + p0z̄ −X2(g0 + g1z̄)

)
2(z + z̄)

. (4.30)

Imposing g0p
0 = g1p

1 and using the coordinates (4.26), this leads to

αBPS(X,u) =
p1(p0 − g1X

2)2e4p1u/p0

p0(e4p1u/p0 − 1)
. (4.31)

7This sort of ‘axion-free’ condition is probably related to the special choice of purely electric gaugings

and only magnetic charges, so we don’t expect that C vanishes in a more general setting.
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It is interesting to note that the variables X and u separate in (4.31). This suggests to use

a product ansatz α(X,u) = ξ(X)µ(u) in order to get something more general than (4.31).

Unfortunately, plugging this into (4.29) gives back precisely (4.31). Another possibility

is inspired by the comparison with (3.18) (for d = 4), which contains, in addition to

quartic, quadratic and X-independent terms that appear also in (4.31), a linear piece in

X proportional to the constant A that is essentially a nonextremality parameter (or black

hole mass). One may thus try

α(X,u) =

4∑
n=0

αn(u)Xn, (4.32)

where (to be still more general) we added a cubic term as well. However, one can check

that, using this ansatz in (4.29) leads to an overdetermined system that admits a solution

only for α1 = α3 = 0, namely (4.31).

It remains to be seen if there exist additional conserved charges associated to hidden

symmetries of the action (4.1), that would allow to completely separate the Hamilton-

Jacobi equation (4.7). Note in this context that the transformation (4.9) acts only on U

and ψ but not on the scalars zi, whereas (4.24) touches only the zi but not the metric

components U and ψ. There might thus exist (at least for some specific models) more

complicated symmetry transformations involving all the dynamical variables. We hope to

come back to a systematic analysis of this issue in a future publication.

5 Final remarks

In this paper we considered electrically charged static nonextremal black holes in d-dim-

ensional Einstein-Maxwell-(A)dS gravity, whose horizon is a generic Einstein space in d−2

dimensions. We have shown that for this system the Hamilton-Jacobi equation is exactly

integrable and admits two branches of solutions. One of them exhibits a non-simply con-

nected domain of integration constants and does not reduce to the well-known solution

for the d = 4 BPS case. The principal functions generate two first order flows that are

analytically different, but support the same general solution. One of the two sets of flow

equations corresponds to those found in [1] and (for d = 4 and Λ = 0) in [2]. We clar-

ified thus also the reason for the very existence of first order equations for nonextremal

black holes, namely, they are just the expressions for the conjugate momenta in terms of

derivatives of the principal function in a Hamilton-Jacobi formalism.

In the last part of our paper we also analyzed if these integrability properties continue

to hold for matter-coupled N = 2, d = 4 gauged supergravity. Unfortunately it turned

out that the principal function W for nonextremal black holes is not straightforwardly

generalizable to this case. Still, we showed (for the example of a particular model) that

there exist several conserved charges that allow a partial separation of variables in the HJ

equation. These conserved charges comprise the one originally introduced for ungauged

supergravity in [24] and subsequently adapted to the gauged theory in [17], as well as

those associated to the symmetries recently discovered in [25]. We pointed out the possible

existence of additional hidden symmetries of the one-dimensional effective action (4.1) that
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involve simultaneous transformations of the dynamical variables of both the metric and the

scalar sector.

One might ask if there exist covariantly constant spinors related to the first order equa-

tions. The authors of [2] have shown that the nonextremal Reissner-Nordström solution

cannot admit (generalized) Killing spinors in 3+1 dimensions, but it is supersymmetric

in a lower-dimensional effective theory. It might be, however, that the nonextremal black

holes considered in this paper possess so-called conformal Killing spinors (CKS, cf. e.g. [33]

for a review of this topic). Note in this context that both the (nonextremal) Kerr metric

and all other type II-II vacuum spacetimes do admit a CKS [34]. We hope to come back

to this point in a future publication.
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