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Abstract: We analytically construct asymptotically AdS5 black string solutions starting

from the four-dimensional domain wall black hole of [1]. It is shown that its uplift gives

a black string in d = 5 minimal gauged supergravity, with momentum along the string.

Applying instead the residual symmetries of N = 2, d = 4 Fayet-Iliopoulos-gauged super-

gravity discovered in [2] to the domain wall seed leads, after uplifting, to a dyonic black

string that interpolates between AdS5 and AdS3 × H2 at the horizon. A Kaluza-Klein

reduction of the latter along an angular Killing direction φ followed by a duality trans-

formation yields, after going back to five dimensions, a black string with both momentum

along the string and rotation along φ. This is the first instance of using solution-generating

techniques in gauged supergravity to add rotation to a given seed. These solutions all have

constant scalar fields. As was shown in [3], the construction of supersymmetric static

magnetic black strings in the FI-gauged stu model amounts to solving the SO(2, 1) spin-

ning top equations, which descend from an inhomogeneous version of the Nahm equations.

We are able to solve these in a particular case, which leads to a generalization of the

Maldacena-Nuñez solution.
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1 Introduction

Exact solutions to Einstein’s field equations and their supergravity generalizations have

been playing, and continue to play, a crucial role in many important developments in general

relativity, black hole physics, integrable systems, string theory and quantum gravity. Being

highly nonlinear, coupled partial differential equations, these are notoriously difficult to

solve, sometimes even in presence of a high degree of symmetry, for instance in supergravity

where one has typically many other fields in addition to the metric. For this reason, solution

generating techniques have become a very powerful tool to generate new solutions from a

given seed. The basic idea is to reduce the action (if one has sufficiently many commuting

Killing vector fields) to three dimensions, where all vector fields can be dualized to scalars,

so that one ends up with a nonlinear sigma model coupled to gravity. The target space

symmetries can then be used to obtain new solutions to the field equations by starting from

a known one.1 In the case of four-dimensional Einstein-Maxwell gravity, for instance, one

gets a sigma model whose scalars parametrize the Bergmann space SU(2, 1)/S(U(1, 1) ×
U(1)) [6, 7].

In gauged supergravity, supersymmetry requires a potential for the moduli (except for

flat gaugings), that generically breaks the target space symmetries. For the simple example

quoted above, the addition of a cosmological constant breaks three of the eight SU(2, 1)

symmetries, corresponding to the generalized Ehlers and the two Harrison transformations.

This leaves a semidirect product of a one-dimensional Heisenberg group and a translation

group R
2 as residual symmetry [8], that cannot be used to generate new solutions.

Recently however, elaborating on earlier work [9], the authors of [2] developed a solu-

tion generating technique for N = 2, d = 4 Fayet-Iliopoulos (FI)-gauged supergravity as

1Two of the many notable examples are the most general rotating black hole solution of five-dimensional

N = 4 superstring vacua constructed by Cvetič and Youm [4], or the black Saturn found in [5].
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well, which essentially involves the stabilization of the symplectic vector of gauge couplings

(FI parameters) under the action of the U-duality symmetry of the ungauged theory. One

of the main goals of the present paper is to provide an explicit application of the method

introduced in [2]. Namely, we start from the supersymmetric domain wall black hole in the

stu model of N = 2, d = 4 FI-gauged supergravity, with prepotential F = −X1X2X3/X0,

constructed in [1]. We then act on it with one of the symmetry transformations of [2] and

lift the resulting configuration to five dimensions. This leads to a dyonic black string in

minimal N = 2, d = 5 gauged supergravity, with momentum along the string.2 In the next

step, one performs a Kaluza-Klein reduction along an angular Killing direction φ followed

by another duality transformation. After going back to d = 5 one gets a black string

with both momentum and rotation. This is the first instance of using solution-generating

techniques in gauged supergravity to add rotation to a given seed.

Black strings that interpolate between AdS5 at infinity and AdS3×Σ near the horizon

(where Σ denotes a two-dimensional space of constant curvature), are interesting in their

own right, since they provide a holographic realization of so-called RG flows across dimen-

sions, from a four-dimensional CFT to a CFT2 in the IR. A first example for the gravity

dual of such a scenario was given in [11], and subsequently Maldacena and Nuñez [12] found

a string theory realization in terms of D3-branes wrapping holomorphic Riemann surfaces.

Since then, many papers on this subject appeared, cf. [13–21] for an (incomplete) list of

references.

The remainder of this paper is organized as follows: in the next section, we briefly

introduce the stu model of N = 2, d = 5 FI-gauged supergravity and the r-map which

relates it to the corresponding four-dimensional model. We also determine the residual

duality symmetries of the latter along the recipe of [2], and review the domain wall black

hole seed solution constructed in [1]. In section 3, this configuration is lifted to d =

5, and it is shown that the result is a black string with momentum along the string.

Subsequently, in 4, we apply a duality transformation to the seed of [1] to get, after uplifting,

a dyonic black string. This is then Kaluza-Klein reduced along an angular Killing direction

φ in section 5, duality-transformed and lifted back to generate a black string with both

momentum and rotation. Finally, 6 contains the construction of supersymmetric static

magnetic black strings generalizing the Maldacena-Nuñez solution, by solving the SO(2, 1)

spinning top equations. Moreover, we make some comments on a possible inclusion of

hypermultiplets. We conclude in section 7 with a discussion of our results. A summary of

the supersymmetry variations of the five-dimensional theory is relegated to an appendix.

2 The stu model of FI-gauged N = 2 supergravity

The bosonic Lagrangian of N = 2, d = 5 FI-gauged supergravity coupled to nv vector

multiplets is given by [22]3

e−1
L

(5) =
R

2
− 1

2
Gij∂µφi∂µφj−

1

4
GIJF

I
µνF

Jµν +
e−1

48
CIJKǫµνρσλF I

µνF
J
ρσA

K
λ − g2V5 , (2.1)

2Notice that the idea of relating black strings in five-dimensional gauged supergravity to black holes in

4d gauged supergravity goes back to [10].
3The indices I, J, . . . range from 1 to nv + 1, while i, j, . . . = 1, . . . , nv.
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where the scalar potential reads

V5 = VIVJ

(

9

2
Gij∂ihI∂jhJ − 6hIhJ

)

. (2.2)

Here, VI are FI constants, ∂i denotes a partial derivative with respect to the real scalar

field φi, and hI = hI(φi) satisfy the condition

V ≡ 1

6
CIJKhIhJhK = 1 . (2.3)

The stu model is defined by the symmetric tensor with only nontrivial component C123 = 1,

up to permutations. In this case, the functions hI = hI(φ1, φ2) are given by

h1 = e
− φ1√

6
− φ2√

2 , h2 = e
2φ1√

6 , h3 = e
− φ1√

6
+ φ2√

2 , (2.4)

and therefore the constraint (2.3) is satisfied.

Below we will need the relationship between (2.1) and four-dimensional N = 2 FI-

gauged supergravity, with bosonic Lagrangian

e−1
L

(4) =
R

2
− gIJ̄∂µz

I∂µz̄J̄ +
1

4
IΛΣF

ΛµνFΣ
µν +

1

4
RΛΣF

Λµν⋆FΣ
µν − V4(z, z̄) , (2.5)

where RΛΣ = ReNΛΣ, IΛΣ = ImNΛΣ, and N is the period matrix that determines the

couplings of the scalars to the vector fields. N is determined by a homogeneous func-

tion F of degree two, called the prepotential. The scalar potential can be written in the

symplectically covariant form [23]

V4 = gIJ̄DILDJ̄ L̄ − 3LL̄ , (2.6)

with L = 〈G,V〉 ≡ GtΩV , where V denotes the covariantly holomorphic symplectic sec-

tion, G = (gΛ, gΛ)
t is the symplectic vector of FI parameters and D the Kähler-covariant

derivative. More details can be found e.g. in [2, 23–25].

If one reduces the action (2.1) to four dimensions using the r-map [26]4

ds25 = e
φ√
3ds24 + e

− 2√
3
φ
(dz +Kµdx

µ)2 , AI = BI(dz +Kµdx
µ) + CI

µdx
µ , (2.7)

zI = BI + ie
− φ√

3hI , eK =
1

8
e
√
3φ , gVI =

gI

3
√
2
,

gIJ̄ =
1

2
e

2φ√
3GIJ , FΛ

µν =
1√
2
(Kµν , C

I
µν) ,

(2.8)

one ends up with the model with cubic prepotential

F = −X1X2X3

X0
, (2.9)

and FI parameters

G = (0, 0, 0, 0, 0, g1, g2, g3)
t . (2.10)

4We apologize for using the same greek indices µ, ν, . . . both in five and four dimensions, but the meaning

should be clear from the context.
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The theory (2.5) enjoys a residual symmetry that is determined by evaluating the stabilizer

of the U-duality group acting in the symplectic representation on the vector G of the

couplings of the theory [2]. In the present case the embedding of SL(2,R)3 in Sp(8,R) can

be found in [2] and the vector G is given by (2.10). With a slight loss of generality we

impose g1 = g2 = g3 ≡ g. Then the stabilizer algebra reads

T (a1, a2) =





























0 0 0 0 0 0 0 0

a1 0 0 0 0 0 0 0

a2 0 0 0 0 0 0 0

−a1 − a2 0 0 0 0 0 0 0

0 0 0 0 0 −a1 −a2 a1 + a2
0 0 a1 + a2 −a2 0 0 0 0

0 a1 + a2 0 −a1 0 0 0 0

0 −a2 −a1 0 0 0 0 0





























, (2.11)

a two-dimensional abelian nilpotent subalgebra of order three of sp(8,R).

The solution generating technique of [2] consists in the transformation of the seed

configuration (V ,G,Q) 7→ (SV,G, SQ), where S is an element of the stabilizer group SG .
Here, Q = (pΛ, qΛ)

t is the symplectic vector of magnetic and electric charges that enters

the field strengths as follows: for a static solution of the type that we shall consider below,

ds2 = −e2Udt2 + e−2U
(

dY 2 + e2ψ(dθ2 + sinh2θdφ2)
)

, (2.12)

the Maxwell equations are solved by

FΛ
tY =

1

2
e2(U−ψ)IΛΣ(RΣΓp

Γ − qΣ) , FΛ
θφ =

pΛ

2
sinh θ , (2.13)

and the corresponding dual field strengths

FΛµν = RΛΣF
Σ
µν −

1

2
IΛΣeǫµνρσF

Σρσ (2.14)

are

FΛtY =
1

2
e2(U−ψ) (IΛΣp

Σ +RΛΓI
ΓΩRΩΣp

Σ −RΛΓI
ΓΩqΩ

)

, FΛθφ =
qΛ
2

sinh θ .

The charge vector Q is therefore completely determined by the (θφ)-components of FΛ

and FΛ.

In [1], various BPS solutions to the theory (2.5) were constructed, by using the recipe

of [27], where all timelike supersymmetric backgrounds of N = 2, d = 4 FI-gauged super-

gravity are classified.5 In particular, for the prepotential F = −X1X2X3/X0, the solution

reads6

ds2 = −4b2dt2 +
1

b2
ydy2

cy + 2gp
+

y3

b2
(dθ2 + sinh2θdφ2) , (2.15)

5For a classification of the null case cf. [28].
6To translate between (2.5) and the conventions of [1] take gCK → g/2 and GCK → 1

8π
.
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where

b4 =
8g1g2g3y

9

2

H0(cy + 2gp)
3

2

, H0 =
2q0

3g2p2y
3

2

(cy + 2gp)
1

2 (cy − gp) + h0 , (2.16)

with field strengths and scalars

F 0 = 4dt ∧ d(H0)−1 , F I =
pI

2
sinh θdθ ∧ dφ ,

zI = iτ I = i

√
g1g2g3√
2gI

√
H0y

3

4

(cy + 2gp)
1

4

, (2.17)

and the magnetic charges are constrained by gIp
I ≡ gp = 2/3 (no summation over I)7 for

I = 1, 2, 3. This field configuration preserves two real supercharges, while the near-horizon

limit is a half-BPS attractor point AdS2 × H2. The range of the parameters is q0 < 0,

pI > 0, c > 0, h0 > 3|q0|c3/2/2 and gI > 0. (2.15) has a horizon in y = 0 and asymptotes to

a curved domain wall (whose worldvolume is an open Einstein static universe) for y → ∞.

The (θ, φ)-components of the dual field strengths are given by

F0θφ =
q0
2
, FIθφ = 0 . (2.18)

From this, together with (2.17), one can easily read off the charge vector Q.

3 Black string with momentum along ∂z

The r-map (2.7), (2.8) can be used to uplift the field configuration (2.15), (2.17) to five

dimensions. If we define y =: r2, the resulting metric in d = 5 reads

ds2 = 2

(

1

H0b

) 2

3
(

1

b2
4r4dr2

cr2 + 2gp
+

r6

b2
(dθ2 + sinh2θdφ2)

)

+
1

4
(H0b)

4

3

(

dz2 − 8
√
2

H0
dtdz

)

,

(3.1)

with

b4 =
8g1g2g3r

9

H0(cr2 + 2gp)
3

2

, H0 =
2q0

3g2p2r3
(cr2 + 2gp)

1

2 (cr2 − gp) + h0 . (3.2)

The fluxes and the scalars are given by

F I =
pI√
2
sinh θdθ ∧ dφ , hI =

(g1g2g3)
1/3

gI
. (3.3)

The configuration (3.1), (3.3) satisfies the BPS equations (A.1) with Killing spinor

ǫ = Y (r)(1 + iΓ32)(1− Γ1)ǫ0 , (3.4)

where ǫ0 is a generic constant Dirac spinor. Since ǫ0 is subject to a double projection, the

solution is one quarter BPS. It has a horizon in r = 0, where the spacetime becomes AdS3×
H2, while asymptotically it approaches what is commonly termed magnetic [29] AdS5.

7This follows from eq. (2.23) of [1] with κ = −1, by taking into account that pIhere = 8πpICK.
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The solution (3.1), (3.3) was first constructed in [30], by using the results of [31], where

all supersymmetric backgrounds of minimal gauged supergravity in five dimensions were

classified. It describes a gravitational wave propagating along a magnetic black string,

which can be seen by introducing the new coordinates

ρ =
ℓ2(H0)1/3b4/3√

2r3
, u =

81/4z

ℓ1/2c3/4
, v = − 32t

ℓ1/2c3/481/4
, (3.5)

where ℓ is defined by
2

ℓ2
= (g1g2g3)

2/3 , (3.6)

such that the cosmological constant is Λ = −6ℓ−2. The metric (3.1) becomes

ds2 =
ℓ2dρ2

ρ2h2
+

ℓ4

ρ2
(dθ2 + sinh2θdφ2) +

ℓ2

ρ2
h3/2

(

H0du2 + dudv
)

, (3.7)

with

h = 1− ρ2

3ℓ2
. (3.8)

In the new radial coordinate ρ, the wave profile reads8

H0 =
3q0c

3/2

2h3/2

(

1− ρ2

2ℓ2

)

+ h0 . (3.9)

In the near-horizon limit ρ →
√
3ℓ, (3.7) approaches

ds2 = (du+ lρ̂dv)2 + l2
(

dρ̂2

4ρ̂2
− ρ̂2dv2

)

+
ℓ2

3
(dθ2 + sinh2θdφ2) , (3.10)

where we eliminated the constant h0 by shifting v → v − h0u, and subsequently rescaled

u → 2u

|q0|1/2c3/4
, v → (|q0|/2)1/2(3c)3/4ℓv . (3.11)

Moreover we defined

ρ̂ =
(√

3− ρ

ℓ

)3/2
, l =

2ℓ

3
. (3.12)

Note that the AdS3 factor in (3.10) is written as a Hopf-like fibration over AdS2, in which

∂v is a null direction.

The momentum Lz along the string can be computed as a Komar integral associated

to the Killing vector ξ = ∂u,

Lz =
1

16πG5

∮

∂V
dSµν∇µξν , (3.13)

where ∂V is the boundary of a spacelike hypersurface V of constant v. ∂V is defined by

ρ = const. → 0. The oriented measure on ∂V reads

dSµν = (ζµnν − nµζν)
√
σdθdφdu , (3.14)

8To get (3.7) from (4.21) of [30], set k = −1 there (which implies P = 0) and H2 = 1. Then the Heun

equation (4.25) of [30] boils down to a simple differential equation that is solved by (3.9).
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where

n =
ρ

ℓh3/4H01/2
(∂u − 2H0∂v) (3.15)

denotes the unit normal to V , while ζ = −ρhℓ−1∂ρ and σ is the determinant of the induced

metric on ∂V ,
√
σ =

ℓ5

ρ3
h3/4H01/2 sinh θ . (3.16)

This leads to

Lz =
Lℓq0c

3/2(g− 1)

16G5
. (3.17)

Here g = 2, 3, . . . denotes the genus of the Riemann surface to which H2 is compactified,

and L is the period of u in (3.10).

The Bekenstein-Hawking entropy of the solution (3.7) is given by9

SBH =
Ahor

4G5
=

ℓ2Lπ(g− 1)

3G5
. (3.18)

It would be very interesting to generalize (3.7), for instance by allowing for a nontrivial

dependence of the wave profile on the ‘angular’ coordinates θ, φ. According to the governing

equations for the wave profile (cf. (4.22) and (4.26) of [30]) this is possible, and a Kaluza-

Klein reduction of such a solution to four dimensions would lead to a static black hole with

dipole- or higher multipole charges. Work in this direction is in progress.

4 Dyonic black string with momentum

As we said, the results of [2] can be used to generate a new configuration from the seed

solution (2.15) and the respective fluxes and scalars (2.17). It would be interesting to

fix the parameters of the symmetry transformation T (a1, a2) in (2.11) to get a vanishing

graviphoton and therefore a static metric in five dimensions. However, as the following

calculation shows, this results to be impossible. Starting form the fluxes10

Q = (0, p, p, p,−|q0|, 0, 0, 0)t , (4.1)

the action of U = eT (a1,a2), with T (a1, a2) given by (2.11), generates

Q′ =





























0

p

p

p

−|q0|+ (a1a2 + a21 + a22)p

−a1p

−a2p

(a1 + a2)p





























. (4.2)

9To compute the horizon area, we took a section of constant ρ̂ and v in (3.10).
10Note that q0 = −|q0|. Moreover, if we choose g1 = g2 = g3 ≡ g, the constraint gIp

I = gp satisfied by

the seed implies p1 = p2 = p3 = p.
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The scalars acquire a constant axion,

z1′ = z1 + a1 , z2′ = z2 + a2 , z3′ = z3 − a1 − a2 . (4.3)

Looking at (4.2) one may think that the graviphoton can be set to zero by choosing properly

the parameters a1, a2. This is however not the case, as can be seen from the field strengths

in presence of axions, that read

FΛ =
SΛb2

y5/2(cy + 2gp)1/2
dt ∧ dy +

pΛ

2
sinh θdθ ∧ dφ , (4.4)

with

SΛ =
|q0|

τ1τ2τ3
(1, a1, a2,−a1 − a2)

t , pΛ = (0, p, p, p)t . (4.5)

The uplifted metric is still (3.1). The field strengths and scalars in five dimensions become

respectively

F I =
2
√
2b2SI

r4(cr2 + 2gp)1/2
dt ∧ dr +

pI√
2
sinh θdθ ∧ dφ , hI = 1 , (4.6)

where now

SI =
|q0|

τ1τ2τ3
(a1, a2,−a1 − a2)

t , pI = (p, p, p)t , (4.7)

so we have generated two additional electric charge parameters. Note that the metric

remains untouched by the duality rotation. This solution describes again a flow between

magnetic AdS5 and AdS3×H2, and preserves the same amount of supersymmetry as before,

as can be easily seen by using the Killing spinor equations following from (A.1).

5 Dyonic black string with both momentum and rotation

We now want to generate a rotating black string by applying the same technique as above.

The starting point is the seed metric (3.1), with fluxes and scalars (4.6). After a Kaluza-

Klein reduction to four dimensions along the angular Killing direction ∂φ, one gets

ds2 = sinh θ

(√
2(cr2 + 2gp)1/2

g3r2
dr2 +

(cr2 + 2gp)3/2

2
√
2g3

dθ2 + 2r3
(

H0

4
√
2
dz − dt

)

dz

)

,

AΛ =

(

0,
4qI
H0

dt

)

, zI =
pI√
2
cosh θ + i

(cr2 + 2gp)1/2 sinh θ√
2gI

, (5.1)

where q3 = −q1 − q2. Applying the duality transformation (2.11) leads to a configuration

with a nonvanishing graviphoton,

Q = (0, 0, 0, 0, 0, q1, q2,−q1 − q2) 7→ Q′ = (0, 0, 0, 0, ω, q1, q2,−q1 − q2)
t , (5.2)
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where ω = −a1(2q1 + q2)− a2(q1 + 2q2), and the scalar fields acquire a real constant part

as in (4.3). Lifting the solution back to d = 5 gives

ds2 =
2dr2

g2r2
+

cr2 + 2gp

2g2
dΩ2

H2 +
2
√
2gr3

(cr2 + 2gp)1/2

(

H0

4
√
2
dz − dt

)

dz

+ 4
√
2ω

cr2 + 2gp

g2H0
sinh2θ

(

dφ+
2
√
2ω

H0
dt

)

dt ,

(5.3)

AI =
pI√
2
cosh θdφ+

4

H0

(

qI + ωsI +
ωpI√
2
cosh θ

)

dt , hI = 1 , (5.4)

with sI = (a1, a2,−a1 − a2) and H0 was defined in (3.2).

The near-horizon limit r → 0 of (5.3) leads to the metric

ds2 =
|q0|
3p

(dz − ρ̂dt)2 +
l2dρ̂2

4ρ̂2
− |q0|

3p
ρ̂2dt2 +

p

g

[

dθ2 + sinh2θ(dφ+ 2ρ̂ωdt)2
]

, (5.5)

where

ρ̂ ≡ 3
√
gp

|q0|
r3 . (5.6)

(5.5) represents a deformation of (3.10), i.e., of AdS3 ×H2.

For r → ∞ (5.3) approaches again magnetic AdS5, as can be easily shown by using

some simple coordinate transformations.

It would be interesting to check whether the solution (5.3), (5.4) is still BPS, or, more

generally, if the solution-generating technique based on [2] preserves supersymmetry.

6 Solutions with running scalars

In the appendix of [3] the problem of finding one quarter magnetic BPS strings with running

scalars is reduced to solve a system of three first-order differential equations. The metric

is given by11

ds2 = e2V (−dt2 + dz2) + e2W (du2 + dΩ2
κ) , (6.1)

with

dΩ2
κ = dθ2 +

sin2
√
κθ

κ
dφ2 , κ = 0,±1 , (6.2)

e2V = (x1x2x3)−
1

3 e−g
∫

(x1+x2+x3)du , e2W = (x1x2x3)
2

3 , (6.3)

and the xI(u) define the scalar fields according to hI = xI/(x1x2x3)1/3. They are deter-

mined by the system12

y1′ = y2y3 +Q1 ,

y2′ = y1y3 +Q2 ,

y3′ = y1y2 +Q3 ,

(6.4)

11In this section we choose VI = 1

3
in (2.2) without loss of generality.

12In the following we set g = 1.
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where a prime denotes a derivative w.r.t. the radial coordinate u and

y1 = x1 + x2 − x3 ,

y2 = x1 − x2 − x3 ,

y3 = x1 − x2 + x3 .

(6.5)

The fluxes are purely magnetic, i.e., F I
θφ =

√
κqI sin

√
κθ, and the parameters QI are

defined by

Q1 = −κ(q1 + q2 − q3) ,

Q2 = −κ(q1 − q2 − q3) ,

Q3 = −κ(q1 − q2 + q3) .

(6.6)

(6.4) can be derived from an inhomogeneous version of the SU(2) Nahm equations [32–34]

dT I

du
= ǫIJK

[

T J , TK
]

+ SI (6.7)

(where the T I and SI take values in the Lie algebra su(2)) by setting T I = yIσI , SI = QIσI

(no summation over I), and the σI denote Pauli matrices. Notice that for QI = 0 this

leads to the Ercolani-Sinha solution [35], which is given in terms of elliptic functions. (6.4)

can be written as

yI′ = CI
JKy

JyK +QI , (6.8)

and thus its symmetries are determined by the transformations that leave the tensor CI
JK

invariant, T−1CTT = C. Unfortunately this implies T = 1. The discrete symmetry group

of (6.8), which is easily shown to be (Z2)
6 × Z3, is not very useful for generating new

solutions from known ones.

The system (6.8) is equivalent to the SO(2, 1) spinning top equations, which are

given by

I1ω
′
1 = (I2 − I3)ω2ω3 +M1 ,

I2ω
′
2 = −(I3 − I1)ω3ω1 +M2 ,

I3ω
′
3 = (I1 − I2)ω1ω2 +M3 ,

(6.9)

where IK are the principal moments of inertia and MK represents an external torque. If

we set

ω1 = λ1y
1 , ω2 = λ2y

2 , ω3 = λ3y
3 , (6.10)

where

λ2
1 =

−I2I3
(I3 − I1)(I1 − I2)

, λ2
2 =

I3I1
(I1 − I2)(I2 − I3)

, λ2
3 =

−I1I2
(I2 − I3)(I3 − I1)

,

(6.9) reduces to (6.8). Here we assumed (without loss of generality) I1 > I2 > I3 > 0.

Then all λ2
K are positive. Note that, as compared to Euler’s equations, there is a minus
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sign on the r.h.s. of the second of (6.9), which is the reason for the terminology SO(2, 1).

In fact, in the untorqued case MK = 0, the eqs. (6.9) can be derived from the Hamiltonian

H =
ℓ21
2I1

− ℓ22
2I2

+
ℓ23
2I3

, (6.11)

by using the Poisson brackets

[ℓI , ℓJ ] = ǫIJ
KℓK , (6.12)

as well as ℓ′I = [ℓI , H]. In (6.12), ǫ123 = 1 and the indices of the Levi-Civita tensor are

raised with the Minkowski metric η = diag(1,−1, 1). W.r.t. the Euler top, (6.11) has one

kinetic term that comes with the ‘wrong’ sign.

In [3] a particular solution to (6.4) is found. We will now show a different way to

integrate these equations. Imposing Q1 = Q2 = 0, i.e., q2 = 0 and q1 = q3, and defining

y± = y1 ± y2 one finds that

y± = k±e
∫

y3du , y3′ =
1

4

(

k2+e
2
∫

y3du − k2−e
−2

∫

y3du
)

+Q3 , (6.13)

where Q3 = −2κq1 and k± are integration constants. The Dirac-type charge quantization

condition 3gVIq
I = 1 of [3] implies 2gq1 = 1, and thus Q3 = −κ. Introducing a new radial

coordinate y = −
∫

y3du, the last equation becomes

y′′ =
1

4

(

k2−e
2y − k2+e

−2y
)

+ κ , (6.14)

which can be integrated once to give13

y′ =
dy

du
= −y3 = −

√

1

4

(

k2−e
2y + k2+e

−2y
)

+ 2κy . (6.15)

This leads to the metric

ds2 = (x1x2x3)−
1

3 e
∫

x1+x2+x3

y3
dy
(−dt2 + dz2) + (x1x2x3)

2

3

(

dy2

(y3)2
+ dΩ2

κ

)

, (6.16)

where

x1 =
1

4

(

k+e
−y + k−e

y +
√

k2+e
−2y + k2−e

2y + 8κy

)

,

x2 =
k−
2
ey ,

x3 =
1

4

(

−k+e
−y + k−e

y +
√

k2+e
−2y + k2−e

2y + 8κy

)

.

(6.17)

In what follows we assume k− > 0. Then asymptotically for y → ∞ the geometry becomes

(magnetic) AdS5,

ds2 =
2e2y

k−
(−dt2 + dz2) + dy2 +

k2−e
2y

4
dΩ2

κ . (6.18)

13The plus sign corresponds to an unphysical solution with negative scalars hI . A possible additive

integration constant can be eliminated by shifting y.
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For generic integration constants k± the metric becomes singular at a certain point and

the solution does not have a horizon. However, in the case κ = −1, if k± are related by14

k− = e−a
√
4a+ 2 , k+ = −ea

√
4a− 2 , (6.19)

where a denotes an arbitrary parameter, there is a horizon for y = a, where the solution

approaches AdS3 × H2, as we will show below. In the cases κ = 0, 1 a similar reasoning

cannot be done, and the metric has no event horizon.

(6.19) are real for a ≥ 1/2. We note that, if (6.19) holds, one has

y3(y) =
√

2a cosh(2(a− y))− sinh(2(a− y))− 2y , (6.20)

and thus

d(y3)2

dy
= 2 cosh(2(a− y))− 4a sinh(2(a− y))− 2 ≥ 2(e2(y−a) − 1) ≥ 0 . (6.21)

y3 is always well-defined for y ≥ a and becomes zero at the horizon, y3(a) = 0. The scalar

fields (6.17) are positive in the whole range a ≤ y < ∞.

The value a = 1/2 is special since it corresponds to the limit in which x1 = x3, i.e.,

φ2 = 0. This truncation leads to the solution of [12] with two nonzero and equal fluxes.

Indeed, one easily verifies that φ1 and the function W appearing in the metric (6.1) satisfy

the equation

e
2W+ φ1√

6 = e
2W− 2φ1√

6 +

√
6W + 2φ1

2
√
6

+
1

4
, (6.22)

which is precisely eq. (17) of [12]. The black strings defined by (6.16), (6.17) represent thus

generalizations of the Maldacena-Nuñez solution. Note that also the latter was not known

analytically up to now.

The near-horizon limit y → a can be obtained from the expansion

x1 + x2 + x3

y3
=

√

1 + 2a

2a

1

y − a
+O((y − a)0) ,

(y3)3

x1x2x3
= 32a

√

2a

1 + 2a
(y − a)3 +O((y − a)4) ,

x1x2x3 =

√

1 + 2a

32
+O((y − a)) .

(6.23)

Introducing the new radial coordinate

û2 = (y − a)
−
√

1+2a
2a , (6.24)

the metric (6.16) becomes for û → 0

ds2 =
1

û2

[

−dt2 + dz2 +
dû2

(2 + 4a)2/3

]

+

(

1 + 2a

32

)1/3

dΩ2
−1 , (6.25)

which is AdS3 ×H2.

14The other possibility k± = e±a
√
4a∓ 2 is related to (6.19) by the Z2 symmetry x1 ↔ x3 and corresponds

to negative hI .
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The central charge of the two-dimensional SCFT dual to the near-horizon configuration

is given by [12, 26]

c =
3RAdS3

2G3
=

6π(g− 1)RAdS3R
2
Σg

G5
, (6.26)

where g = 2, 3, . . . is the genus of the Riemann surface Σg to which H2 is compactified.

The values of the curvature radii are

RAdS3 =
1

(2 + 4a)1/3
, R2

Σg
=

(1 + 2a)1/3

25/3
, (6.27)

with

2a =

√

1 +

(

k+k−
2

)2

. (6.28)

For the truncation φ2 = 0, which means k+ = 0, one has RAdS3 = 2−2/3, i.e. the value

found in [12].

Using (6.27), the central charge can be written in the form

c =
6π(g− 1)

4G5
= 3N2(g− 1) , (6.29)

where we used the AdS/CFT dictionary N2 = π/(2G5g
3) (with g = 1). Near the conformal

boundary the scalar fields behave like

2φ1

√
6
∼ 2Q3ye−2y ,

√
2φ2 ∼ −k+

k−
e−2y , (6.30)

and thus are read in the dual SCFT as an insertion and an expectation value of an operator

of scaling dimension ∆ = 2. The relevant deformation of the dual superpotential relative

to φ1 is described in [12], while φ2 is a marginal deformation of two-dimensional N = (4, 4)

SYM theory. Thus, the solution does not describe the gravity dual of 2d N = (2, 2)∗

SYM [36]. The constant a represents the physical scale of the energy in the renormalization

group flow at which the IR fixed point appears, but which being a CFT is independent of

the energy scale.

6.1 Inclusion of hypermultiplets

It is worthwhile to note that with running hyperscalars the BPS equations, (5.17) of [26],

can be simplified to a system for which the number of equations equals the number of the

scalar fields in the model. The idea is basically the same as that of [3]: introducing a new

radial coordinate R by dR = e−ψdr and the rescaled scalars yI = eψ−2ThI , where ψ(r) and

T (r) are metric functions defined in eq. (3.1) of [26] and r denotes the radial coordinate

used there, the system (5.17) of [26] boils down to

ψ =

∫

9κg2LydR , e3ψ−6T =
1

6
CIJKyIyJyK ,

yI′ − 9g2κ(LyyI −QxP x
JG

IJ
y )− pI = 0 ,

qu′ = −9

2
κg2huv∂vLy ,

(6.31)
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where

Ly = QxP x
I y

I , GIJ
y = −CIJKCKLMyLyM + 2yIyJ , CIJK ≡ δILδJMδKNCLMN .

Even if the complete integration of these equations in a particular model remains a hard

task, this partial integration can be considered as a first step towards the solution. A

numerical and asymptotic analysis of this type of models can be found in [37],15 where a

particular truncation of N = 8, d = 5 gauged supergravity is studied.

7 Conclusions

In this paper, we used the residual symmetries of N = 2, d = 4 Fayet-Iliopoulos-gauged

supergravity discovered in [2] to add an electric charge density and rotation to five-

dimensional black strings that asymptote to AdS5. This is the first instance of using

solution-generating techniques in gauged supergravity to add rotation to a given seed, and

opens the possibility to construct in a similar way many solutions hitherto unknown, which

are potentially interesting particularly in an AdS/CFT context.

The rotating string (5.3) interpolates between magnetic AdS5 at infinity and a defor-

mation of AdS3 ×H2 near the horizon. This deformation implies that the CFT2, to which

the dual four-dimensional CFT flows in the IR, has less symmetry. We did not check ex-

plicitely how many supercharges are preserved by the near-horizon metric (5.5), but we

would expect that the rotation breaks at least some of the original supersymmetries.

We also constructed static magnetic BPS black strings with running scalars in the

FI-gauged stu model. It was shown that this amounts to solving the SO(2, 1) spinning

top equations, which descend from an inhomogeneous version of the Nahm equations.

We were able to solve these in a particular case, which leads to a generalization of the

Maldacena-Nuñez solution. Moreover, we computed the central charge of the CFT2 dual

to the near-horizon configuration. From the behaviour of the two bulk scalar fields φ1

and φ2 near the conformal boundary we saw that they correspond in the dual SCFT to

an insertion and an expectation value of an operator of scaling dimension ∆ = 2. The

relevant deformation of the dual superpotential relative to φ1 is described in [12], while φ2

is a marginal deformation of two-dimensional N = (4, 4) SYM theory. Thus, our solution

does not describe the gravity dual of 2d N = (2, 2)∗ SYM [36].

We hope to come back in particular to further applications of the duality transforma-

tions of [2] in the near future.

A Supersymmetry variations

The supersymmetry variations of the gravitino ψµ and the gauginos λi in N = 2, d = 5

FI-gauged supergravity coupled to vector multiplets read [22]

δψµ =

(

Dµ +
i

8
hI(Γµ

νρ − 4δµ
νΓρ)F I

νρ +
1

2
gΓµh

IVI

)

ǫ ,

δλi =

(

3

8
ΓµνF I

µν∂ihI −
i

2
GijΓµ∂µφj +

3i

2
gVI∂ih

I

)

ǫ ,

(A.1)

15Cf. also [38].

– 14 –



J
H
E
P
1
0
(
2
0
1
8
)
0
8
0

where

Dµǫ =

(

∂µ +
1

4
ωabµ Γab −

3i

2
gVIA

I
µ

)

ǫ . (A.2)
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