Title: Noninvasive electrophysiology in risk assessment and screening

Article Type: * Editorial Commentary (EDC)

Corresponding Author: Professor Marek Malik, MD, PhD

Corresponding Author's Institution: St Paul's

First Author: Marek Malik, MD, PhD

Order of Authors: Marek Malik, MD, PhD; Alfred E Buxton, MD; Heikki Huikuri, MD; Federico Lombardi, MD; Georg Schmidt, MD; Markus Zabel, MD

Manuscript Region of Origin: UNITED KINGDOM
CONFLICT OF INTEREST STATEMENT - HeartRhythm
(First and Corresponding Author(s) Must Sign)

Thank you for your submission to the HeartRhythm journal. CONFLICTS OF INTEREST FOR ALL AUTHORS MUST BE STATED ON THE TITLE PAGE. Please have the first and corresponding author(s) sign and upload with your manuscript submission. Its purpose is to inform all interested parties of any significant affiliations or relationships you may have with any commercial enterprise or any other potential conflicts of interest. This is a standard form required by most leading journals.

1. Were you loaned any equipment, materials or medication for this study?
   Yes ☑  No  ☐  Explain ________________________________

2. Were you given any equipment, materials or medication for this study?
   Yes ☑  No  ☐  Explain ________________________________

3. Have you received any funding to support your research for this article?
   Yes ☑  No  ☐  Explain ________________________________  Properly acknowledged in the manuscript

4. Have you provided any honoraria, payment or other compensation for your work on this study?
   Yes ☑  No  ☐  Explain ________________________________

5. Did you receive any stock options, stock ownership or other valuable materials in conjunction with this study from any source whatsoever?
   Yes ☑  No  ☐  Explain ________________________________

6. Did you receive any outside financial support for travel or lectures to present the information covered in this study?
   Yes ☑  No  ☐  Explain ________________________________

7. Do you have any financial relationship with any entity that may closely compete with the medications, materials or instruments covered by your study?
   Yes ☑  No  ☐  Explain ________________________________

8. Do you own or have you applied for any patents in conjunction with the instruments, medications or materials discussed in this study?
   Yes ☑  No  ☐  Explain ________________________________

9. Do you receive any compensation for any therapy discussed in your article?
   Yes ☑  No  ☐  Explain ________________________________

10. Does anyone in your immediate family have a conflict of interest that would be covered by any of the above questions? (This would include closely held family trusts, limited liability corporations, etc.)
    Yes ☑  No  ☐  Explain ________________________________

If you have any doubts about the nature of your conflict, please contact Peng-Sheng Chen, MD, Editor-in-Chief.

Manuscript Number or Title: Noninvasive electrophysiology in risk assessment and screening

Signed:/Date  31st January 2018  

Print Name: Marek Malik
Dear Dr Chen,

Thank you for your invitation to write an editorial comment to accompany the manuscript JHRM-D-17-01370R2 "Prognostic Significance of Ventricular Late Potentials in Patients with Pulmonary Sarcoidosis" by Yodogawa et al.

My co-authors and I very much hope that the text which we are submitting will satisfy your expectations and that it will be of interest to the readers of the Journal.

In anticipation, many thanks for considering our submission.

With all best wishes,
Yours sincerely,

Marek Malik
Noninvasive electrophysiology
in risk assessment and screening

by

Marek Malik, PhD, MD\textsuperscript{1}, Alfred E Buxton, MD\textsuperscript{3}, Heikki Huikuri, MD\textsuperscript{3},
Federico Lombardi, MD\textsuperscript{4}, Georg Schmidt, MD\textsuperscript{5}, Markus Zabel, MD\textsuperscript{6}

on behalf of e-Rhythm Study Group of EHRA

\textsuperscript{1}Imperial College, London, England, \textsuperscript{2}Harvard Medical School, Boston, USA,
\textsuperscript{3}University of Oulu, Oulu, Finland, \textsuperscript{4}Policlinico, University of Milan, Milan, Italy,
\textsuperscript{5}Technische Universität München, München, Germany,
\textsuperscript{6}University of Göttingen, Göttingen, Germany

Short title

Noninvasive electrophysiology

No conflict of interest

Correspondence:

Marek Malik, PhD, MD,
NHIL, Imperial College,
London SW3 6LY, England

marek.malik@btinternet.com
Invasive electrophysiology has substantially advanced over previous years. Procedures such as defibrillator implantations or pulmonary vein isolation that have previously been an exclusive domain of major centers are presently available from many small clinics. This somewhat contrasts with general perception of noninvasive electrophysiology. Whilst substantial noninvasive research advances have been reported, their wide utility in clinical practice is not forthcoming. Some teaching centers even believe that noninvasive electrophysiology including electrocardiography is not worth teaching and that standard electrocardiographic diagnoses can rely on computerized diagnoses by modern equipment.

At the same time, existing research suggests that noninvasive electrophysiology can address a wide spectrum of unmet clinical needs. In addition to the distinction between patients benefitting and not benefiting from defibrillator implantation[1] and diagnosis of channelopathies[2], advanced electrocardiography was reported to aid stratification of patients with both cardiovascular and non-cardiovascular diagnoses, including kidney disease[3], diabetes[4], endocrinopathies[5], and others[6].

In this issue of the Journal, Yodogawa et al[7] add another piece to this mosaic showing possible advantages offered by high-resolution electrocardiography to early diagnosis of cardiac sarcoidosis. Using simple assessment of late potentials previously designed to detect large proarrhythmic ischemic scars, they predicted the risk of sarcoidosis-related cardiovascular events, albeit merging rhythm disturbances and hemodynamic dysfunction. The mechanistic link between positive late potentials and the nature of events described by Yodogawa et al is not easy to see. The finding thus likely means nonspecific identification of cardiac sarcoidosis which might cause variety of abnormalities. Regretfully, Yodogawa et al have also not employed any of the more advanced methods for the signal analysis reported to detect not only late depolarization abnormalities but also deformities well within the QRS complex [8,9]. We can only speculate that if these more powerful methods were used, the success reported by Yodogawa et al would have been stronger. Still, even with the simpler signal analyses, the report broadens the applicability of noninvasive methods.

Naturally, not all previous attempts of clinical outcome improvements by noninvasive electrophysiology have been successful[10]. Nevertheless, considering the disparity between research results and day-to-day clinical application, we share the opinion that noninvasive electrophysiology methods do not presently receive due attention in studies that define evidence-based care. The simplicity of obtaining high quality digital electrocardiographic
signals and their low costs make noninvasive electrophysiology suitable to be included not only in large clinical studies but also in new population screening programs. For example, evidence suggests that noninvasive electrophysiology can meaningfully contribute to the identification of patients in whom sudden cardiac death is the first manifestation of ischemic heart disease[11,12,13], as well as to the detection of impending atrial fibrillation[14], which are both major challenges of present preventive cardiology.

To connect the clinical day-to-day practice with reported research results, new large prospective investigations are needed. Their successful conduct will depend not only on the understanding of the potential of noninvasive methods by funding bodies but also on the industrial support and on the acceptance by clinical community. The manufacturers of noninvasive equipment should facilitate the collection of high quality electrocardiographic signals well above the standard 10-second recordings and the storage of digital signals in easily accessible formats. The clinical community involved in future studies should appreciate the potential value of high quality signal collection. Far too frequently are electrocardiographic recordings obtained in ongoing studies stored only as paper prints which precludes their advanced analyses. The designers of future prospective studies can only gain from involving specialists in noninvasive electrophysiology.
Acknowledgment

Supported in part by the British Heart Foundation (NH/16/2/32499), and by the European Community's Seventh Framework Programme (FP7-HEALTH-2013-INNOVATION-1 #602299)
References


2. Fowler SJ, Priori SG. Clinical spectrum of patients with a Brugada ECG. Curr Opin Cardiol 2009;24:74-81.


