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Abstract

This paper investigates the adequacy of the matrix exponential spatial specifications

(MESS) as an alternative to the widely used spatial autoregressive models (SAR). To

provide as complete a picture as possible, we extend the analysis to all the main spatial

models governed by matrix exponentials comparing them with their spatial autoregres-

sive counterparts.

We propose a new implementation of Bayesian parameter estimation for the MESS

model with vague prior distributions, which is shown to be precise and computationally

efficient. Our implementations also account for spatially lagged regressors. We further

allow for location-specific heterogeneity, which we model by including spatial splines.

We conclude by comparing the performances of the different model specifications in

applications to a real data set and by running simulations. Both the applications and the

simulations suggest that the spatial splines are a flexible and efficient way to account

for spatial heterogeneities governed by unknown mechanisms.
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1. Introduction

Data collected from geographic areas such as countries, regions, states, or individ-

ual points in space often exhibit spatial dependence, and require specific estimation
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methods to account for the lack of independence among the data. In recent years the

economics literature has seen an increasing number of theoretical and applied econo-5

metric studies involving spatial dependence. While the interest in spatial models in

economics is relatively recent, spatial models have a long history in the regional sci-

ence, epidemiology and geography literature (see Anselin & Florax [1] for detailed

references).

The widely used spatial autoregressive (SAR) approach was first introduced by10

Whittle [34] and refers to the autoregressions that occur simultaneously at each data

location. One drawback of the SAR model is that it requires specialized techniques for

large samples. Ciu et al. [4] first proposed exponential operators to specify a covariance

matrix and also pointed out some advantages of the matrix exponential, but focused on

general (non-spatial) covariance matrices. Later, LeSage & Pace [20] proposed to apply15

the matrix exponential specification in a spatial context, as an alternative to the widely

used SAR model. The resulting matrix exponential spatial specification model (MESS)

replaces the conventional geometric decay of influence over space with an exponential

pattern of decay. The MESS model has advantages, relative to the SAR, deriving from

the characteristics of the matrix exponential reviewed in Section 2. However, it also20

has some disadvantages, the first of which is the difficult interpretation of the corre-

lation parameter, which was also noted by LeSage & Pace [20]. One further concern

related to the use of the MESS model, was raised by Rodrigues et al. [24], who recently

showed that it often induces opposite signs for the marginal and conditional correla-

tions between two areas. We briefly discuss these two aspects in the Appendix, which25

we devote to a comparison between MESS and SAR marginal effects and covariance

structures.

Matrix exponentials can be introduced to define either the interaction between de-

pendent variables or the spatial covariance of the errors. To these different approaches

correspond two subclasses of the MESS models, usually referred to as MESS models30

and MESS error models, respectively. These models are alternatives to the SAR and

spatial error models (SEM). The final goal of this paper is to contribute to the literature

on the matrix exponential model, by assessing its validity, both on its own and relative

to its main competitor, the SAR model. To take up this challenge and to allow a wider
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comparison with the SAR models, in Section 3 the different specifications of the spatial35

models with matrix exponential covariance are illustrated. As a possible way to allow

MESS error models to account for location-specific heterogeneity, in Section 3.2, we

moreover explore the effects of introducing spatial splines to cope with uncertainty of

the spatial structure, which is acknowledged to be one common weak point of spatial

linear regression models. We focus in particular on Bayesian estimation of the models:40

in Section 4 we propose a new implementation of Bayesian parameter estimation with

vague prior distributions for both MESS and MESS error models.

To our knowledge, Bayesian approaches have never been used for the estimation of

the latter. In fact, ever since the work of LeSage & Pace [20], the literature has mainly

focused on the first class, and MESS error models have been neglected, except for a45

brief description in LeSage & Pace [21].

In contrast to previous model implementations, our method does not use Taylor

series expansion with a fixed number of terms to approximate the matrix exponential;

using an appropriate R package, the method used in our approach ensures that our

approximation to the matrix exponential is always within a given fixed small interval50

around the true value. For the MESS model, we use an algorithm based on Krylov

subspaces techniques developed by Sidje & Stewart [27]. Like the Taylor expansion

method discussed in [21], Sidje & Stewart [27]’s algorithm directly computes the action

of a matrix exponential on a vector without computing the matrix exponential itself. It

was shown to be very efficient in Sidje & Stewart [27], and it avoids lacking control55

on roundoff errors that may occur in Taylor series approximations due to alternating

signs of the terms in the series. Because of these differences, a reasonable comparison

between our implementation with those based on Taylor approximation of the expo-

nential series, as the one proposed by [21], is in terms of computation time. This is

presented in Section 5.6.60

Moreover in Section 5, by applying the different MESS models in an econometric

application and in simulated data, we could assess its predictive ability with different

weight matrices, and we find comparable performances relative to the SAR model with

the same weight matrix choices.

The application shows that the model with splines outperforms most of its com-65
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petitors in terms of predictive accuracy. Moreover, a simulation shows that it is more

robust to model misspecification than the MESS model . This suggests that the model

with splines could be a promising development of both the MESS and SAR models. In

particular, we argue that the extension of spatial regression models through the intro-

duction of splines is able to mitigate the possible misspecification of the spatial weight70

structure. Finally, Section 6 offers some concluding remarks.

2. Matrix exponential

Matrix exponentials have been used as the basis of covariance structures by several

authors [17, 4, 6, 12, 23, 18], because of some particular properties of the exponential

operator. Some of these models (such as [17], [4]) use the matrix exponential to model75

general non-spatial covariance structures.

The matrix exponential of an n×n matrix A, defined as

C = exp(A) =
∞

∑
j=0

As

s!
(1)

has a number of properties which make it suitable to model covariance matrices. We

restrict the following list to those properties that are relevant to the spatial model dis-

cussed in this paper. For a complete list of properties relevant to other, non-spatial

models, see Ciu et al. [4].80

(a) For any square matrix A, (exp(A))−1 = exp(−A). This can be seen from the

Taylor series expansion (1).

(b) The logarithm of the determinant is log |C|= tr(A).

It should be noted that property (a) implies, in particular, that exp(A) is not singular

for any matrix A, since the matrix exponential of real valued matrices always leads85

to positive definite covariance matrices, thus eliminating the need to restrict the pa-

rameter space, or to test for positive definiteness during optimization. Property (b)

is particularly relevant to LeSage & Pace’s model ([20]), as they choose matrices A

with trace(A) = 0. Therefore, the MESS model does not require the computation of

determinants appearing in the log-likelihood. Moreover, from (a), the inversion of the90
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matrix exponential takes a simple mathematical form that is easy to implement in ap-

plied practice, and together with (b), the use of the matrix exponential covariance leads

to a log-likelihood where a troublesome term involving the log determinant vanishes.

3. MESS models for spatially correlated data

After this general introduction to the matrix exponential, we now present the MESS95

model, first introduced by [20], as an alternative to spatial autoregressive models in the

dependent variable. Further, we present different specifications of spatial models with

matrix exponential covariance.

3.1. MESS model

In the MESS model originally proposed by LeSage & Pace [20], a matrix expo-

nential is used to model the spatial interaction between dependent variables. The basic

model is specified as follows:

S(ρ)y = Xβ + ε S(ρ) = exp(ρD) =
∞

∑
j=0

ρ jD j

j!
(2)

where X is a n×K matrix of covariates, β a vector of coefficients, D is a spatial weight

matrix, ε ∼ N (0,σ2In), and ρ is a scalar parameter reflecting the level of spatial

interaction. The model may be rewritten in the following way:

y = S−1(ρ)Xβ +ν . (3)

As S−1(ρ) = exp(−ρD), and because of the normality of ε , the covariance matrix of

ν is

Σν = σ
2 exp(−ρD)exp(−ρD′). (4)

As we mentioned in Section 2, exp(ρD) is not singular, even if D is. This is an ad-100

vantage of LeSage & Pace [20]’s model as compared to the SAR spatial autoregressive

model (which corresponds to S(ρ) = I−ρD), because there is no need to impose re-

strictions on either the parameter or on D to have a well defined reduced form. This

means that ρ may assume any value on the real line without causing the covariance

matrix to be singular. It has been pointed out that, contrary to the SAR model, that105
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might become unstable in case of strong spatial correlation, the MESS model remains

stable independently on the value of ρ . Debarsy et al. [5], in particular, suggest that

this feature makes the MESS model particularly suited to observed data that do not

show unstable behaviors. On the other hand, for row standardized weight matrices the

parameter λ of the SAR model is usually confined in (−1,1) and this implies a natu-110

ral interpretation of λ as a spatial correlation parameter, that is completely lost for the

MESS model.

A possible generalization of the MESS model can be obtained by the introduction

of spatially lagged regressors, thus defining a MESS Durbin model:

exp(ρD)y = Xβ +DXθ + ε (5)

where θ is a vector of coefficients. Note that if X includes the intercept and D is row

standardized, then DXθ should be replaced by DX2θ , where X = [ı,X2], to ensure full

rank; then θ has size K−1.115

Model (5) was considered by Piribauer & Fischer [23], who proposed a Bayesian

model averaging approach, to deal with the uncertainty of the spatial structure.

3.2. MESS error model

The matrix exponential can be used to specify the autocorrelation structure of the

dependent variables or of the errors. The latter case gives the MESS error model,

briefly introduced by [21]:

y = Xβ +ν (6)

where ν has covariance matrix (4)1.

Clearly, also in this case, we can allow for spatially lagged covariates to be included

in the equations

y = Xβ +DXθ +ν . (7)

1Our formulation slightly differs from the MESS spatial error defined in [21], where Σν = σ2 exp(λD),

and D must be symmetric.
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One of the limitations of error models is that they do not allow for heterogeneous120

effects. While the Durbin version of MESS error model allows for spillover effects

of neighboring locations, variations of a regressor occurring at a given location have

a homogeneous effect on the dependent variable of the same location (see Table 1 be-

low). The possibility to account for location-specific effects in a flexible way motivates

the generalization of the MESS error model by the introduction of spatial splines. The125

model we propose is more flexible and, compared to the original MESS error model,

shows better predictive ability in our application to house prices presented in Section

5 as well as in the simulations. While the residuals are assumed to be correlated ac-

cording to the MESS model, the outcomes are additionally assumed to follow a spatial

trend modeled by means of splines of the coordinates of the centroids of the regions.130

We specify the MESS error model with spatial splines as follows:

y = Xβ +X∗β ∗+ exp(−ρD)ε (8)

where X∗ is the basis matrix of natural splines of the coordinates of the centroids of the

regions of the lattice.

The MESS model with spatial splines accounts for heterogeneity in the location, but

does not allow for spillover effect; thus, it can be either alternative or complementary

to the inclusion of spatially lagged regressors.135

In principle, the spatial splines component could also be included easily in the

MESS model (3). However, since model (3) intrinsically accounts for spatial hetero-

geneity of the effects, in this paper we decided to limit the implementation of the spline

specification to the error models only.

It should be noted that, as we are using the basis matrix of the splines, estimating140

the parameters of model (8) is formally equivalent to estimating the MESS error model

(6).

3.3. Impact measures

In general, in spatial models, the β parameters alone are not able to explain the ef-

fect of the covariates on the dependent variables. It has been observed that a valid145
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Model Direct effect= ∂yi/∂xik Indirect effect= ∂yi/∂x jk

MESS a(i, i)βk a(i, j)βk

MESS Durbin a(i, i)β j +∑
n
m=1 a(i,m)d(m, i)θk a(i, j)βk +∑

n
m=1 a(i,m)d(m, j)θk

MESS error βk 0

MESS error Durbin βk d(i, j)θk

Table 1: Direct and indirect effects of the MESS models, e−ρD = {a(i, j)}i j

basis for the identification of spatial spillovers results from a partial derivative in-

terpretation of the impact from changes to the covariates. Thus, the impact of the

k−th regressor on the dependent variable at the i−th location, yi, is defined as ∂yi
∂xk

=(
∂yi

∂x1k
, . . . , ∂yi

∂xik
, . . . , ∂yi

∂xnk

)
. In particular, the effect on yi of variations of the k−th regres-

sor in the i−th location, ∂yi
∂xik

, is called a direct effect, while each of the terms ∂yi
∂x jk

, j 6= i150

is an indirect effect. Then, when comparing different models, it is imperative to add

impact measures based on partial derivatives.

In this subsection we present the different impact measures related to all the model

specifications previously defined. We denote, for convenience, by a(i, j) the (i, j)−th

element of e−ρD and by d(i, j) the (i, j)−th component of D.
155

Note that the direct and indirect effects of the error models do not differ from the

corresponding effects of SAR error models (SEM). The direct effect in the Durbin

model is constant and equal to βk, provided we assume that the matrix D has zero

elements in the main diagonal. The MESS error model, with or without splines, does

not account for spillover effects; the splines only are able to capture location-specific160

heterogeneities.

Following LeSage & Pace [21], a summary indicator for the direct effect is given

by the average of the diagonal elements of the matrix as outlined in Table 1, and a

summary indicator for the indirect effect is the average of either the row sums or the

column sums of the off-diagonal elements of that matrix, thus

M̄dir(k) = n−1
n

∑
i=1

∂yi

∂xik
; M̄tot(k) = n−1

n

∑
i=1

n

∑
j=1

∂yi

∂x jk
; M̄in(k) = M̄tot(k)− M̄dir(k).

(9)
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The average row effect represents the impact on a particular element of the depen-

dent variable as a result of a unit change in all elements of an independent variable,

while the average column effect represents the impact of changing a particular element

of an independent variable on the dependent variable of all other units. However, since165

the numerical magnitudes of these two calculations of the indirect effect are the same,

it does not matter which one is used. Generally, the indirect effect is interpreted as

the impact of changing a particular element of an exogenous variable on the dependent

variable of all other units, which corresponds to the average column effect.

4. Bayesian estimation170

In this section we present a Bayesian approach to estimating the parameters of

the model introduced in Section 3. LeSage & Pace [20] includes Bayesian estimation

for (2), but there are substantial differences between our implementation and that of

[20], which will be clarified below. In Subsection 4.2, we also introduce a Bayesian

implementation for the MESS error model (3). As already pointed out, our specification175

is slightly different from the one in [21], which requires D to be symmetric. Moreover,

LeSage & Pace [21] focus their attention on ML estimation performing both a Monte

Carlo simulation and an empirical illustration.

4.1. MESS model

In contrast to [20] (see also [19]), we do not use a Taylor series expansion with a180

fixed number of terms to approximate the matrix exponential, but we use instead the

function ’expAtv’ from the R package ’expm’ (see [11]), which is an implementation

of Sidje & Stewart [27] algorithm for the computation of the action of a matrix ex-

ponential on a vector2. The approach of the original MESS model implementation to

approximating the matrix exponential was to use a Taylor polynomial of a fixed order185

p, which is the same for all computations of matrix exponentials involved in the estima-

tion of the MESS model parameters. As a consequence, the truncation error in LeSage

2The R implementation is based on Fortran code by Sidje [26]
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& Pace [20] varies by construction and might be either below or above a desired thresh-

old level; conversely, the approach used here controls for the truncation error, which is

guaranteed by construction to be below a chosen threshold. In Subsection 5.6 we study190

the efficiency of the method, comparing it to a number of other approximations to the

matrix exponential.

In addition to using a different approach to the matrix exponential, we use different

priors, choosing vague independence priors, rather than g-priors with a smaller and

fixed variance, suggested in LeSage & Pace [20].195

Prior and Posterior Distributions

As shown in [20], the log-likelihood of the model is equal to

l(ρ,β ,σ2; y,X)=−n
2

log(2π)− n
2

log(σ2)+ρtr(D)− 1
2σ2 (e

ρDy−Xβ )′(eρDy−Xβ ).

(10)

We choose the following prior distribution for σ2:

σ
2 ∼ InvGamma(κ0,θ0) (11)

where κ0 and θ0 are small positive numbers. For the posterior distribution we obtain

σ
2 | y,X,β ,ρ ∼ InvGamma(κ̃, θ̃) (12)

κ̃ = κ0 +
n
2

θ̃ = θ0 +
1
2
(eρDy−Xβ )′(eρDy−Xβ ).

We choose a diffuse prior for ρ: p(ρ) ∝ 1.

Therefore the following holds for the conditional posterior

p(ρ|y,X,β ,σ2) ∝ exp
[

ρtr(D)− 1
2σ2 (e

ρDy−Xβ )′(eρDy−Xβ )

]
. (13)

For the prior distribution of β we choose

β ∼N (β0,τ
2H0), β0 = 0k, H0 = 104 · Ik. (14)
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By equation (10):

β |y,X,ρ,σ2 ∼ N (β̃ ,H̃) (15)

H̃ =

(
X′X
σ2 +

H0
−1

τ2

)−1

β̃ = H̃
[

X′eρDy
σ2 +

H0
−1

β0

τ2

]
.

The marginal distribution of ρ is obtained by integrating the following density:

p(ρ,β ,σ2|y,X)∝ p(y|X,ρ,β ,σ2)· p(ρ,β ,σ2 |X)= p(y|X,ρ,β ,σ2)p(β |σ2)p(σ2)p(ρ),

(16)

with p(β |σ2) as in (14), p(σ2) as in (11). Following LeSage & Pace [20], we set

τ2 = σ2 in (14).

This gives

p(ρ|y,X) ∝ p(ρ) · exp(ρtr(D)) · (2θ0 +H(ρ)+Q1(ρ)+Q2(ρ))
−( n

2+κ0), (17)

where

H(ρ) = (Hexp(ρD)y)′(Hexp(ρD)y) H = I−X(X′X)−1X′

Q1(ρ) = (β0− β̃ )′H−1
0 (β0− β̃ ) Q2(ρ) = (β̂ − β̃ )′X′X(β̂ − β̃ )

β̂ = (X′X)−1X′ exp(ρD)y β̃ = σ
−2H̃[X′eρDy+H0

−1
β0]

H̃ = σ2(X′X+H0
−1)−1.

The R and C++ code developed for this paper apply an adaptive Metropolis Hastings

algorithm, which is based on [29] 3, to draw samples from the marginal posterior den-200

sity of ρ . Using this set of samples, we then obtain a posterior estimate of σ2 and β by

means of Gibbs sampling.

Durbin model

Passing to the spatially lagged regressor model (5), turns out to be equivalent to a

reparametrization of model (2) as:

exp(ρD)y = Zγ + ε (18)

3Available in an R package ([3])
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where Z = [X,DX] and γ ′ = (β ′,θ ′).

Equations (10)–(17) then remain valid, once X is replaced by Z and β by the

2K−dimensional vector γ (or 2K−1 if the model includes the intercept and D is row-

standardized contiguity matrix). Thus, for example, the posterior distribution of γ ,

writes:

γ|y,X,ρ,σ2 ∼ N (γ̃,H̃) (19)

H̃ =

(
Z′Z
σ2 +

H0
−1

τ2

)−1

γ̃ = H̃
[

Z′eρDy
σ2 +

H0
−1

γ0

τ2

]
where γ0 and H0 are the hyperparameters of the prior distribution:

γ ∼N (γ0,τ
2H0), γ0 = 02k, H0 = 104 · I2k

4.2. MESS error model205

In this subsection we derive Bayesian estimation methods for the parameters of the

MESS error model. As noted in Sections 3.2 and 4.2, by using a suitable reparametriza-

tion of the models, both the MESS error model with spatial splines (8) and the MESS

Durbin error model (7) can be written as (6). For this reason, we limit ourselves to pre-

senting the prior and posterior distributions for model (6), without loss of generality.210

We provide a software implementation using the marginal posterior of ρ and an

adaptive Metropolis Hastings algorithm (Spiegelhalter et al. [29], and Chivers [3]).

Conditionally on the parameters of model (6), y has the following distribution:

y|X,β ,ρ,σ2 ∼N (Xβ ,σ2e−ρDe−ρD′). (20)

Therefore, the likelihood function is equal to

p(y | X, β ,ρ,σ2) =

(
1√

2πσ2

)n

exp
{

ρtr(D)− 1
2σ2 (y−Xβ )′(eρD′eρD)(y−Xβ )

}
.

(21)
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Prior and Posterior Distributions

We use vague priors for the computations, and independence priors for β . We

choose the following prior distribution for σ2:

σ
2 ∼ InvGamma(κ0,θ0) (22)

where κ0 and θ0 are small positive numbers. For the posterior distribution we obtain

p(σ2|y,X,β ,ρ) ∝ p(σ2)p(y|X,β ,ρ,σ2)

∝

(
1

σ2

)n/2+κ0+1

exp
{
− 1

2σ2 (y−Xβ )′(eρD′eρD)(y−Xβ )]

}
exp
(
− θ0

σ2

)
∝

(
1

σ2

)κ0+
n
2+1

exp
{
−θ̃/σ

2} (23)

with θ̃ = θ0 +
1
2 (y−Xβ )′(eρD′eρD)(y−Xβ ). That is,

σ
2 | y,X,β ,ρ ∼ InvGamma(κ̃, θ̃), κ̃ = κ0 +

n
2
. (24)

We choose the diffuse prior for ρ: p(ρ) ∝ 1. Therefore, the following holds for the

posterior

p(ρ|y,β ,σ2) ∝ exp
[

ρtr(D)− 1
2σ2 (y−Xβ )′(eρD′eρD)(y−Xβ )

]
. (25)

For the prior distribution of β |σ2 we choose

β ∼N (β0,τ
2H0), β0 = 0, H0 = 104 · In. (26)

By equation (21), β |σ2,ρ,y,X∼N (β̄ ,H̄), with

H̄ =

(
X′eρD′eρDX

σ2 +
H0
−1

τ2

)−1

β̄ = H̄

[
X′eρD′eρDy

σ2 +
H0
−1

β0

τ2

]
.

We obtain the marginal posterior distribution of ρ by integrating the density

p(ρ,β ,σ2|y,X)∝ p(y|X,ρ,β ,σ2)· p(ρ,β ,σ2 |X)= p(y|X,ρ,β ,σ2)p(β |σ2)p(σ2)p(ρ)

(27)
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with p(β |σ2) as in (26), p(σ2) as in (22). As in Subsection , we set τ2 = σ2 in

(26).215

First, we rewrite the likelihood function:

p(y|X,ρ,β ,σ2) =

(
1√

2πσ2

)n

exp
{

ρtr(D)− 1
2σ2 (e

ρDy− eρDXβ )′(eρDy− eρDXβ )

}
=

(
1√

2πσ2

)n

exp
{

ρtr(D)− 1
2σ2

(
H(ρ)+(β − β̂ )′X′eρD′eρDX(β − β̂ )

)}
,

(28)

with

H(ρ) = (Hexp(ρD)y)′ (Hexp(ρD)y) H = I−M(M′M)−1M′

M = exp(ρD)X β̂ = (M′M)−1M′ exp(ρD)y. (29)

Therefore, because of p(ρ) ∝ 1,

p(ρ,β ,σ2|y,X)

∝
1

σn+k+2κ0+2 · exp

{
ρtr(D)− 2θ0 +H(ρ)+Q1(ρ)+Q2(ρ)+(β − β̃ )′H̄−1(β − β̄ )

2σ2

}
,

(30)

where

β̄ = σ
−2H̄[H−1

0 β0 +X′eρD′eρDXβ̂ ] (31)

H̄ = σ
2(X′eρD′eρDX+H0

−1)−1

Q1(ρ) = (β0− β̄ )′H−1
0 (β0− β̄ ) (32)

Q2(ρ) = (β̂ − β̄ )′X′ exp(ρD′)exp(ρD)X(β̂ − β̄ ).

Consequently, for the marginal posterior distribution of ρ , we have:

p(ρ | y)=
∫

∞

0

∫
Rk
(σ−2)κ̃+1 exp

{
ρtr(D)− 2θ0 +H(ρ)+C(ρ)+(β − β̄ )′H̄−1(β − β̄ )

2σ2

}
dβdσ

2

where κ̃ = (n+ k)/2+κ0,

C(ρ) = Q1(ρ)+Q2(ρ) = β̂
′X′eρD′eρDXβ̂ +β

′
0H−1

0 β0− β̄
′H̄−1

β̄ .
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Then, by integrating with respect to β

p(ρ | y) = eρtr(D)
∫

∞

0
(σ−2)

n+k+2κ0+2
2 exp

{
−2θ0 +H(ρ)+C(ρ)

2σ2

}(√
2πσ2

)k
|H̄|1/2dσ

2

∝ eρtr(D)|H̄|1/2
∫

∞

0
(σ−2)

n+2κ0+2
2 exp

{
− θ̃(ρ)

σ2

}
∝ eρtr(D)|H̄|1/2(θ̃(ρ))−(n/2+κ0) (33)

where θ̃(ρ) = (2θ0 +H(ρ)+Q1(ρ)+Q2(ρ))/2.

In most spatial applications, the weight matrices are assumed to have zero diag-

onal elements, therefore the factor exp(trace(D)) normally disappears. However, the

formulas in this section allow for different choices of the weight matrix and thus our220

implementations extends to more general contexts.

We have implemented the model using the programming language R, together with

code written in C++ and included with the help of the R-packages ’Rcpp’ and ’Rcpp -

Armadillo’ ([8, 9]). As in the MESS model (2), we use an adaptive Metropolis Hastings

algorithm ([29]) available in the R-package ’MHadaptive’ ([3]), to sample from the225

marginal posterior density (33).

5. Application

This section describes the application of the different MESS models to house price

data from Scotland4.

Considering aggregate data for each region, we apply the MESS model to an anal-230

ysis of the dependence of log house prices (in 1000 GBP) on the median number of

rooms, the log crime rate (log of number of recorded crimes per 10,000 living in the

area), sales (ratio of sales of houses to total number of houses), the logarithm of the

average time (in minutes) it takes to reach the nearest shopping centre by car, and the

house type predominant in the area (”detached”, ”semi”, ”flat”, ”terrace”). The use of235

these independent variables is suggested by Lee [15].

4The data were originally taken from the Scottish Neighbourhood Statistics ([25]) database

(http://www.sns.gov.uk/) and converted to spatial data frames for R to be used with the ’CARBayes’ package

([16])
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The region we study is that of the Glasgow and Clyde health board, the data are

from the year 2008. The region is divided into 270 intermediate geographies (IG),

which are ”small areas that have a median area of 124 hectares and a median population

of 4,239” (see Lee [15]).240

5.1. MESS model

First we estimate the parameters of the MESS model with the row-standardized

contiguity matrix of the given lattice as the weight matrix. We draw 50,000 samples

from the marginal posterior distribution of ρ , with a burn-in of 5000. We use a thinning

factor of 10. The Gibbs sampler for β and σ2 assumes a burn-in of 4,500. We assume245

the parameter τ , in (14) equal to σ . Table 2 summarizes the result. We compute the

DIC using pD as in Spiegelhalter et al. [30], (originally introduced in [29]) and pV [30],

where

D(θ) = Eθ |y[−2log(p(y|θ))] pD = D(θ)+2log[p(y|E(θ |y))] (34)

D(θ |y) =−2log(p(y|θ)) pV =
1
2

var(D(θ |y))

pV was also suggested by Gelman et al. [10].

Following [32], for observation i, CPOi is defined as the density of i− th obser-250

vation, yi, given all the other observations, and it is estimated as the harmonic mean

of the density f (yi|ρ,β ,σ ,ρ) computed at each iteration. As intuitively clear, larger

CPOi values are preferred, and as an overall CPO we consider the product of CPOi.

As a benchmark, the second column in Table 2 reports the estimates of the Bayesian

linear regression (that is, with ρ = 0). The linear regression parameters are estimated255

using the same priors for β and σ2 as we used for the estimation of the MESS param-

eters. 5

5Very similar results would be obtained by taking ML MESS estimates as benchmark, for example run-

ning the package ”spdep” by Eric Blankmeyer based on the SE Toolbox spatial/mess.m implementation. The

extension of the comparison to ML implementation and estimation is however beyond the scope of this work.
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Row-standardized contiguity Linear regression 7-nearest neighbors

Mean 95% CI Mean 95% CI Mean 95% CI

ρ -0.290 [ -0.414,-0.164] -0.523 [-0.682,-0.368]

β0 3.697 [2.950,4.469] 5.196 [4.655,5.719] 2.989 [2.283,3.703]

β1 0.188 [0.133, 0.243] 0.197 [ 0.140,0.254] 0.179 [0.126,0.231]

β2 -0.121 [-0.187,-0.056] -0.166 [-0.230,-0.100] -0.122 [-0.182,-0.061]

β3 0.0021 [0.0014 0.0028] 0.0021 [0.0014, 0.0028] 0.0021 [0.0015, 0.0028]

β4 -0.071 [-0.120,-0.023] -0.090 [-0.139, -0.038] -0.041 [-0.088,0.006

β5 -0.120 [-0.227, -0.012] -0.156 [-0.273,-0.049] -0.138 [ -0.239, -0.036]

β6 -0.190 [-0.307,-0.071] -0.227 [ -0.349,-0.106] -0.186 [-0.297,-0.074]

β7 -0.259 [-0.388, -0.128] -0.280 [-0.414, -0.144] -0.268 [ -0.393,-0.145]

σ2 0.0466 [0.0392,0.0553] 0.050 [0.042,0.060] 0.042 [0.035,0.050]

Table 2: Estimation with MESS model and Bayesian linear regression, β0 = intercept, β1 = number of rooms,

β2 = log crime rate, β3 = sales, β4 = log time to shop, β5 = type ”semi”, β6 = type ”flat”, β7 = type ”terrace”.

Mean values and 95% credible intervals.

The corresponding DIC is -29.2 with pD = 8.8, as compared to a DIC of -53.2

with pD = 9.6 for the MESS model. Thus according to the DIC criterion, MESS is

preferable to Bayesian linear regression.260

We compute the DIC of the MESS model with different weight matrices. For k-

nearest neighbors weight matrices, the lowest DIC is obtained with k = 7. We also

compute the DIC of the model with the binary instead of the row-standardized conti-

guity matrix, and obtain a DIC equal to −81.5 with pD = 9.4.

Unlike the DIC, the analysis with CPOs indicates the row-standardized contiguity265

matrix to be preferable to the 7-nearest neighbors weight matrix. We obtain a value, on

the log scale, of 77.97 for the MESS model with row-standardized contiguity, while the

Bayesian linear model on the log scale produces a CPO equal to 25.03, and the MESS

model with 7-nearest neighbors matrix a CPO equal to 9.75.

In Table 3 direct, indirect and total effects are shown. The results reported show270

that the estimates of the direct and indirect effects of the MESS model, as well as
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Row-standardized contiguity

Direct Indirect total

number of rooms 0.189 [0.133, 0.246] 0.062 [0.031, 0.1] 0.251 [0.174, 0.335]

log crime rate -0.122 [-0.188, -0.055] -0.039 [-0.067, -0.017] -0.161 [ -0.245, -0.075]

sales 0.002 [0.001, 0.003] 0.001 [ 0 ,0.001 ] 0.003 [ 0.002, 0.004]

log time to shop -0.072 [-0.121, -0.025] -0.023 [-0.044, -0.007] -0.095 [-0.159, -0.033]

type ”semi” -0.122 [-0.23, -0.014] -0.039 [-0.084 ,-0.004] -0.162 [-0.304, -0.019]

type ”flat” -0.193 [-0.313 ,-0.071] -0.063 [-0.119 ,-0.021] -0.256 [-0.419, -0.095]

type ”terrace” -0.263 [-0.4 ,-0.135] -0.086 [-0.157, -0.035 ] -0.349 [-0.537, -0.179 ]

7-nearest neighbors

Direct Indirect total

number of rooms 0.182 [0.126, 0.233] 0.119 [0.07, 0.182] 0.3 [0.206, 0.404]

log crime rate -0.124[-0.185, -0.061] -0.081 [-0.134, -0.039] -0.205 [-0.31, -0.103]

sales 0.002 [0.002, 0.003] 0.001 [0.001, 0.002] 0.004 [ 0.002, 0.005]

log time to shop -0.042 [-0.09, 0.007 ] -0.027 [-0.059, 0.005] -0.069 [-0.147, 0.012]

type ”semi” -0.14 [-0.241, -0.036] -0.092 [-0.176, -0.022 ] -0.232[ -0.406 ,-0.058]

type ”flat” -0.189 [-0.305 ,-0.075] -0.124 [-0.22 ,-0.048 ] -0.313 [-0.515, -0.124]

type ”terrace” -0.273 [-0.399, -0.146 ] -0.179 [-0.3, -0.083] -0.452 [-0.68, -0.239]

Table 3: Direct, indirect and total effects for the MESS (lag) model with Row-standardized contiguity and

7-nearest neighbors matrices. 95% credible intervals in parentheses.
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the estimates of the parameters, are quite robust to the choice of the weight matrices.

However, it must be kept in mind that differences between specifications could have

been mitigated by a low spatial autocorrelation.

In order to quantify the impact of the issue raised by Rodrigues et al. [24], namely275

the occurrence of opposite sign of marginal and partial correlations in the MESS model,

we computed the proportion of negative partial correlations between regions (the marginal

correlations are in fact all positive). For the model with the row-standardized contiguity

matrix, this proportion, computed in the posterior estimation, is 0.248. That is, about

25% of all the partial correlations are negative. However, as the spatial MESS correla-280

tion in this application is relatively low, the negative partial correlations are also close

to irrelevant. In particular, the proportion of negative correlations smaller than −0.01

among all negative correlations is about 0.02 (for the posterior mean of ρ).

For the model with the 7-nearest neighbors weight matrix, the proportion of neg-

ative partial correlations between regions is quasi identical to that of the model with285

the row-standardized contiguity matrix, being 0.247. However, the negative correla-

tions are higher, in absolute value; in fact the proportion of negative correlations lower

than −0.01 among all negative correlations is 0.095 (for the posterior mean of ρ). A

similar computation, where fictitious regions are defined on a regular lattice and a row-

standardized adjacency matrix is used, is presented in the Appendix, for both the MESS290

and the SAR covariances.

5.1.1. MESS Durbin model

Here we are applying the Mess Durbin model as specified by equation (5). For

the spatial weight matrices we use both the row-standardized contiguity matrix and the

7-nearest neighbors matrix, and results are shown in Table 4.295

The estimates are in most cases comparable to those of the corresponding models

without lagged regressors. The only exception is the estimate of the parameter and of

the direct and indirect effects of the average time to reach a shopping centre: it is pos-

itive and not significant, for all the weight matrices used, whereas the same quantities

estimated from the MESS model without lagged regressors was negative and signif-300

icant. Both the models estimated show some evidence of spatially lagged effects; in
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particular, the estimates in Table 4 suggest the log house price to be affected by the

distance from a shopping center mainly at neighboring locations.

Observing the DIC (using pD) results, −87.87 and −94.57 respectively for the

row-standardized contiguity matrix and the 7-nearest neighbors matrix, it looks like the305

introduction of the spatially lagged regressors improve the model. However, the CPO

results do not indicate this improvement, while, again, row-standardized contiguity

matrix performs better than the 7-nearest neighbors matrix, with a CPO (in log scale)

respectively of 20.19 and 18.42.

5.2. MESS error model310

5.2.1. MESS Durbin error model

Here we are applying the Mess Durbin error model as specified by equation (7). For

the spatial weight matrix we use both the row-standardized contiguity matrix and the

7-nearest neighbors matrix, results are shown in Table 6. The estimated parameters are

in line with the estimates from the MESS Durbin model, with a few discrepancies. For315

example, with the row-standardized matrix, the lagged effect of the number of rooms

is negative and significant in the MESS Durbin model, while it is not significant (but

still negative) in the MESS Durbin error model.

5.3. MESS error model with spatial splines

Here we apply the MESS error model with spatial splines introduced in Section 3.2.320

For the spatial weight matrix we use a row-standardized contiguity matrix, in order to

avoid problems with the interpretation of the parameter k of the k-nearest neighbors

matrices in an irregular lattice (see i.e. [28])

In this particular example the coefficients of the components of the tensor product

of the splines are all fairly symmetrically distributed around a mean close to zero.

Therefore, we repeat the estimation including only the individual splines and not their

tensor product, thereby reducing the DIC and increasing predictive ability (see Table

7). We also implement the model with splines of the individual coordinates with five

degrees of freedom, again without including the tensor product of the splines. The
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Row-standardized contiguity 7-nearest neighbors

Mean 95%CI Mean 95% CI

ρ -0.48 [ -0.643, -0.32] -0.631 [ -0.857 ,-0.427]

β0 4.388 [3.381, 5.448] 3.37 [ 1.82, 4.952]

β1 0.206 [ 0.153 ,0.259] 0.191 [ 0.138, 0.242]

β2 -0.12 [-0.182, -0.056] -0.123 [ -0.185, -0.062]

β3 0.002 [0.001, 0.003] 0.002 [ 0.002, 0.003]

β4 0.012 [-0.045, 0.071] 0.013 [ -0.046, 0.07]

β5 -0.169 [ -0.269, -0.065] -0.145 [ -0.245, -0.044]

β6 -0.26 [ -0.375 ,-0.141] -0.217 [ -0.332, -0.102]

β7 -0.313 [ -0.437, -0.193] -0.295 [ -0.419, -0.169]

θ1 -0.149 [ -0.255, -0.049] -0.083 [ -0.213, 0.045]

θ2 -0.13 [ -0.225, -0.035] -0.057 [ -0.218 ,0.111]

θ3 -0.001 [ -0.003, 0] -0.001 [ -0.003 , 0]

θ4 -0.145 [ -0.236 ,-0.056 ] -0.124 [-0.217 ,-0.03]

θ5 0.04 [ -0.156, 0.229] -0.053 [ -0.324, 0.215]

θ6 0.184 [ -0.016, 0.382] 0.116 [ -0.142, 0.374]

θ7 0.223 [ -0.035, 0.474] 0.14 [ -0.202 ,0.479]

σ2 0.04 [0.034, 0.048] 0.04 [ 0.033, 0.047]

Table 4: Estimation with MESS (Lag) Durbin model, β0 = intercept, β1 = number of rooms, β2 = log crime

rate, β3 = sales, β4 = log time to shop, β5 = type ”semi”, β6 = type ”flat”, β7 = type ”terrace”. Mean values

and 95% credible intervals.
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Row-standardized contiguity

Direct Indirect total

number of rooms 0.211 [0.156, 0.266] 0.123 [0.07, 0.193] 0.335 [0.237, 0.447]

log crime rate -0.123 [-0.187, -0.057] -0.071 [-0.122, -0.031] -0.194 [-0.301, -0.09]

sales 0.002 [0.001, 0.003] 0.001 [0.001, 0.002] 0.003 [0.002, 0.005]

log time to shop 0.012 [-0.046, 0.072] 0.007 [-0.027, 0.046] 0.02 [-0.074, 0.116]

type ”semi” -0.173 [-0.275, -0.067] -0.101 [-0.187, -0.035] -0.273 [-0.451, -0.105]

type ”flat” -0.266 [-0.385, -0.144] -0.156 [-0.268, -0.069] -0.421 [-0.636, -0.22]

type ”terrace” -0.321 [-0.448, -0.197] -0.188 [-0.315, -0.092] -0.509 [-0.74,9 -0.3]

7-nearest neighbors

Direct Indirect total

number of rooms 0.196 [0.142, 0.249] 0.165 [0.088, 0.274] 0.361 [0.23 0.523]

log crime rate -0.127 [-0.19, -0.064] -0.106 [-0.19, -0.046] -0.233 [-0.38 -0.11]

sales 0.002 [0.002, 0.003] 0.002 [0.001, 0.003] 0.004 [0.003 0.006]

log time to shop 0.013 [-0.047, 0.071] 0.011 [-0.04, 0.067] 0.024 [-0.087 0.138]

type ”semi” -0.149 [-0.252, -0.045] -0.125 [-0.248, -0.034] -0.274 [-0.5 -0.079]

type ”flat” -0.223 [-0.342, -0.104] -0.188 [-0.341, -0.074] -0.411 [-0.683 -0.178]

type ”terrace” -0.303[-0.432, -0.173] -0.256 [-0.447, -0.118] -0.559 [-0.879 -0.291]

Table 5: Direct, indirect and total effects for the MESS (Lag) Durbin model with Row-standardized contigu-

ity and 7-nearest neighbors matrices. 95% credible intervals in parentheses.
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Row-standardized contiguity 7-nearest neighbors

Mean 95% CI Mean 95% CI

ρ -0.584 [-0.772, -0.402] -0.611 [-0.726, -0.496]

β0 6.587 [ 5.323, 7.849] 5.313 [3.227, 7.327]

β1 0.196 [0.142, 0.251] 0.196 [0.142, 0.249]

β2 -0.143 [-0.207, -0.079] -0.127 [-0.188, -0.062]

β3 0.002 [ 0.001, 0.003] 0.002 [0.002, 0.003]

β4 -0.008 [-0.063, 0.046] -0.005 [-0.06, 0.05]

β5 -0.169 [-0.276, -0.063] -0.144 [-0.247, -0.042]

β6 -0.248 [-0.365, -0.129] -0.205 [-0.32, -0.09]

β7 -0.307 [ -0.437 ,-0.175] -0.288 [-0.413, -0.16]

θ1 -0.072 [ -0.187, 0.044] 0.079 [-0.096, 0.26]

θ2 -0.206 [-0.319, -0.095] -0.111 [-0.333, 0.106]

θ3 0 [-0.002, 0.001] 0 [-0.002, 0.002]

θ4 -0.167 [ -0.272, -0.057] -0.119 [-0.252, 0.022]

θ5 0.007 [ -0.223 ,0.232] -0.109 [-0.459, 0.231]

θ6 0.118 [-0.109, 0.347] 0.059 [-0.292, 0.403]

θ7 0.062 [-0.224, 0.35] -0.025 [-0.448, 0.403]

σ2 0.04 [0.033, 0.048] 0.047 [ 0.041, 0.054]

Table 6: Estimation with MESS Durbin error model, β0 = intercept, β1 = number of rooms, β2 = log crime

rate, β3 = sales, β4 = log time to shop, β5 = type ”semi”, β6 = type ”flat”, β7 = type ”terrace”. Mean values

and 95% credible intervals.
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3 nodes with tensor product 3 nodes 5 nodes

Mean 95% CI Mean 95% CI Mean 95% CI

ρ -0.498 [-0.689,-0.315] -0.552 [-0.734,-0.378] -0.437 [-0.63, -0.259]

β0 4.336 [-0.947, 9.775] 4.592 [4.1,5.07] 4.481 [3.847, 5.119]

β1 0.221 [0.171, 0.273] 0.222 [0.17, 0.274] 0.221 [0.171, 0.273]

β2 -0.076 [-0.139, -0.013] -0.082 [-0.145, -0.018] -0.093 [-0.153, -0.034]

β3 0.0024 [0.002, 0.003] 0.0022 [0.0016, 0.0029] 0.0023 [0.0017, 0.0029

β4 0.029 [-0.03, 0.088] -0.027 [-0.086, 0.03] 0.012 [-0.046, 0.069]

β5 -0.167 [-0.267, -0.065] -0.168 [ -0.265, -0.063] -0.165 [-0.265, -0.069]

β6 -0.281 [-0.396, -0.164] -0.279 [-0.396, -0.16] -0.243 [-0.353, -0.132]

β7 -0.309 [ -0.429, -0.187] -0.327 [-0.450, -0.199] -0.29 [-0.41,-0.173]

σ2 0.039 [0.033,0.047] 0.044 [0.037,0.052] 0.037 [0.032, 0.045]

Table 7: MESS error model with spatial splines. Mean values and 95% credible intervals.

results are included in Table 7. Finally, we compare this last model to the following

model:

y = Xβ +X∗β ∗+ ε (35)

where X∗ is the basis matrix of natural splines of the coordinates of the centroids of the

regions of the lattice. Like with the spatial error MESS model with splines above, we325

use natural splines of the individual coordinates with 5 degrees of freedom, but do not

include the tensor product in the regression. The DICs with pD and pV and CPOs are

listed in Table 8, together with those of the models discussed above. Ideally the number

of degrees of freedom and location of the nodes of the splines of the coordinates should

be estimated from the model. Biller [2] and DiMatteo et al. [7] suggested methods in330

this direction, but for the MESS model, such an approach would be considerably more

intensive computationally. In line with the results presented in Subsection 5.1, the

proportion of negative partial correlation corresponding to the MESS error model with

five nodes for the splines is about 25% on average.

Despite the fact that the MESS error model does not allow for spatial spillover335

24



Model DIC using pD pD DIC using pV pV CPO

MESS err. mod., 3 nodes, tensor prod. -82.4 23.97 -75.55 30.84 18.39

MESS err. mod., 3 nodes -77.9 16.90 -77.47 17.26 16.57

MESS err. mod., 5 nodes -99.62 19.9 -93.2 27.25 32.26

No MESS component, 5 nodes -92.6 18.8 -91.0 20.4 31.54

Table 8: Spatial Splines with and without MESS component: DIC and CPO (in log scale)

interactions between the dependent variable nor spatial spillover effects, the MESS

error model with splines outperforms the MESS (lag) specifications in terms of both

the DIC and the CPO. This supports our claim that spatial splines are a flexible and

promising way to capture different forms of heterogeneous effects in the model.

5.4. MESS and SAR340

LeSage & Pace [20] and LeSage & Pace [21] introduce the MESS model in par-

ticular as an alternative to the spatial autoregressive SAR model. We will show that

in practical applications the SAR and MESS models often lead to similar parameter

estimates. However, it should be noted that the MESS and the SAR model have differ-

ent correlation patterns by construction. The larger the spatial parameter, the greater345

are these differences 6. In addition, we would like to point out the following: because

of the complicated structure of the spatial parameter within the matrix exponential, a

precise interpretation of the spatial parameter is impossible. The spatial parameter has

a more straightforward interpretation in the SAR model.

We implement the SAR model with identical priors to compare the parameter esti-350

mates to those obtained with the MESS model. The parameter estimates are listed in

Table 9, while direct, indirect and total effects are shown in Table 10. We compare the

DIC and pD of the two approaches, getting a DIC equal to −55.0 with pD = 9.9 for

the SAR model with the row-standardized contiguity matrix, and a DIC of −83.8 with

6Differences and similarities between correlation structures and effects induced by MESS and SAR mod-

els are further explored in the Appendix
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Row-standardized contiguity 7-nearest neighbors

Mean 95% CI Mean 95% CI

ρ 0.290 [0.179, 0.398] 0.461 [0.345,0,571]

β0 3.483 [2.670, 4.301] 2.695 [1.938, 3.483]

β1 0.187 [0.132, 0.241] 0.179 [0.126, 0.230]

β2 -0.117 [-0.183, -0.052] -0.117 [-0.175, -0.058]

β3 0.0021 [0.0014, 0.0028] 0.0021 [0.0015, 0.0028]

β4 -0.067 [-0.117, -0.0189] -0.037 [-0.085, 0.0087]

β5 -0.116 [-0.223, -0.006] -0.136 [-0.238, -0.034]

β6 -0.183 [-0.302, -0.066] -0.181 [-0.293, -0.0732]

β7 -0.256 [ -0.383, -0.128] -0.262 [-0.384, -0.140]

σ2 0.0454 [0.0382, 0.0541] 0.0403 [0.0339,0.0478]

Table 9: SAR model estimates. Mean values and 95% credible intervals.

pD = 9.9 for the SAR model with the 7-nearest neighbors matrix. Thus, in our applica-355

tion, the SAR model is comparable to the MESS model in predictive power, although

CPOs are considerably lower, with a CPO (in log scale) of 8.58 for the SAR with the

row-standardized contiguity matrix and CPO of -1.94 for the 7-nearest neighbor.

The proportion of negative partial correlations between regions, computed in the

posterior estimation, is 0.259, among which the proportion of correlations smaller than360

−0.01 is about 0.003 (for the posterior mean of ρ). These computations suggest the

claim, supported by Theorem 1 and by the simple example in the Appendix, that, rel-

ative to the MESS model, the SAR model tends to induce a possibly larger number of

negative partial correlations, although they tend to be lower in absolute value.

5.5. Simulation365

Starting from a simple lattice consisting of 100 squares in a square, we simulate

observation from a MESS model and a SAR model, and estimate a MESS model, a

MESS error model with spatial splines, and SAR model. The MESS model and MESS

error model are able to estimate the correct value of ρ when data are generated from a
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Row-standardized contiguity

Direct Indirect total

number of rooms 0.19 [0.135, 0.245] 0.074 [0.037, 0.123] 0.264 [0.183, 0.352]

log crime rate -0.119 [-0.185, -0.053] -0.046 [-0.081, -0.02] -0.165 [-0.254, -0.076]

sales 0.002 [0.001, 0.003] 0.001 [0, 0.001] 0.003 [0.002, 0.004]

log time to shop -0.069 [-0.118, -0.019] -0.027 [-0.053, -0.007] -0.096 [-0.166, -0.027]

type ”semi” -0.118 [-0.228, -0.006] -0.045 [-0.098, -0.003] -0.163 [-0.315, -0.009]

type ”flat” -0.187 [-0.308, -0.067] -0.072 [-0.137, -0.023] -0.259 [-0.43, -0.096]

type ”terrace” -0.261 [-0.39, -0.13] -0.101 [-0.187, -0.041] -0.362 [-0.555, -0.178]

7-nearest neighbors

Direct Indirect total

number of rooms 0.185 [0.13, 0.238] 0.146 [0.103, 0.188] 0.331 [0.233, 0.426]

log crime rate -0.121 [-0.181, -0.06] -0.096 [-0.143, -0.048] -0.217 [-0.324, -0.108]

sales 0.002 [0.002, 0.003] 0.002 [0.001, 0.002] 0.004 [0.003, 0.005 ]

log time to shop -0.038 [-0.088, 0.009] -0.03 [-0.069, 0.007] -0.068 [-0.157, 0.016]

type ”semi” -0.141 [-0.246, -0.035] -0.111 -[0.195, -0.028] -0.252 [-0.441, -0.063]

type ”flat” -0.188 [-0.303, -0.076] -0.148 [-0.24, -0.06] -0.336 [-0.542, -0.136]

type ”terrace” -0.271 [-0.397, -0.144] -0.214 [-0.314, -0.114] -0.485 [-0.711, -0.258]

Table 10: Direct, indirect and total effects for the SAR model with Row-standardized contiguity and 7-

nearest neighbors matrices. 95% credible intervals in parentheses.
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MESS model.370

Moreover, the promising result is that both the MESS model and MESS error model

with spatial splines turn out to be flexible and to estimate the parameter ρ quite coher-

ently with the value of the autocorrelation parameter λ when data are generated from

a SAR model, although, as expected, they perform worse than SAR itself. The higher

the value λ of the SAR model, the worse is the estimation. For example, when 100375

data set are generated from a SAR model with λ = 0.8, fitting a MESS error model

with spatial splines, the average estimate of ρ is−1.019 (95%CI = [−1.269,−0.786]),

with average DIC of 141. According to the formula suggested by [20], this should

roughly correspond to ρ ≈ −1.609. However, this conversion formula is purely in-

dicative and presents some serious limitations, some of which are pointed out in the380

Appendix. Fitting a MESS model, we obtain an average estimate for ρ of −1.06

(95%CI = [−1.347,−0.799]), with an average DIC of 123. Finally, fitting a SAR

model, we obtain an average estimate for λ of 0.662 (95%CI = [0.633,0.795]), with

average DIC of 73. Direct and indirect effects estimated from the different models are

always comparable, suggesting a flexibility of the MESS model to grasp the correct385

spatial mechanism.

5.6. Computational Efficiency

In Table 11 the different approaches to the computation of the matrix exponential

are compared in terms of efficiency. The ’expm’ package ([11]) includes a number

of different algorithms to compute the matrix exponential. The default method imple-390

mented in the package is ’Higham08.b’. This is an implementation of Higham’s algo-

rithm (see [13], algorithm 10.20), with an extra balancing step developed by Stadel-

mann [31]. We use the package ’rbenchmark’ ([14]) for a comparison of computing

times of different algorithms on the same laptop computer.

We have included in the comparison not only the functions from the ’expm’ pack-395

age, but also the function ’expmat’ from the Armadillo C++ library, which we access

through ’RccpArmadillo’ ([9]). In the list below, this function is referred to as myEx-

poMat. We use the row-standardized weights matrix D to compare computing times

for different approximations to the matrix exponential exp(0.5D) implemented in the
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method replications relative time elapsed time

expAtv(D, log.house.price, 1) 10 1.000 0.355

expm(D, method = ”Higham08.b”) 10 3.006 1.067

myExpoMat(D) 10 3.513 1.247

expm(D, method = ”PadeRBS”) 10 3.538 1.256

expm(D, method = ”Higham08”) 10 3.569 1.267

expm(D, method = ”Taylor”, order = 2) 10 4.789 1.700

expm(D, method = ”Taylor”, order = 3) 10 5.101 1.811

expm(D, method = ”Taylor”, order = 4) 10 5.403 1.918

expm(D, method = ”Taylor”, order = 6) 10 5.696 2.022

Table 11: Comparison of the efficiency of different approaches to the computation of the matrix exponential

R package ’expm’ ([11]). D is the adjacency matrix of the example above. The matrix400

D in the list below is equal to 0.5D).

The method ’expAtv’ from the ’expm’ package stands out as the fastest algorithm.

This algorithm does not compute explicitly the exponential of a matrix, but directly

the action of this exponential on a vector, in this case a vector of logarithms of house

prices.405

’Higham08.b’ is the fastest of those methods which directly compute the matrix

exponential, and not its action on a vector.

It should be noted that with the not extremely sparse matrices of an intermediate

dimension of 270× 270 in our application, there was no gain in computational speed

by using the sparse matrix format. Calling the package ’Matrix’ our program can run410

using a sparse matrix representation.

6. Conclusion

The matrix exponential model with one parameter was introduced as an alternative

to the widely used SAR model. This paper addresses a number of concerns related

to the MESS model, thereby evaluating its performance through an analysis based on415

29



theory, and on predictive accuracy in an application. We analyze the model both on its

own, and in relation to its natural competitor, the SAR model. Moreover, we develop

a new implementation of Bayesian parameter estimation for the MESS model with

vague prior distributions, which is shown to be precise and computationally efficient.

We try to offer a complete schematized view of the possible specifications based on the420

use of the matrix exponentials, thus covering the classes of the so called lag models

(the standard MESS model belongs to this class) and the error models. Focusing in

particular on error models (although in principle the same idea may be applied to lag

models) we propose a generalization, based on the introduction of spatial splines, that is

able to capture spatial heterogeneities not accounted for in the MESS error framework.425

By computing the estimated marginal and partial correlations from the MESS model

corresponding to different choices of the weight matrix, we find that the fraction of

pairs of locations with opposite signs is generally just below 25%, which is almost

identical of the fraction of opposite signs in the estimated SAR correlation matrices.

This finding is coherent with Theorem 1 in the Appendix, and mitigates the severity430

of this particular problematic aspect of the MESS model, at least in the context of

comparing the MESS to the SAR model.

In terms of parameter estimation, the MESS model is comparable to the SAR ap-

proach, and estimates are quite robust to the choices of the weight matrix. The predic-

tive accuracies of the MESS and SAR models are close, thus showing that, in general,435

there is no clear superiority of one approach with respect to the other. At least in this

particular case, neither the SAR nor the MESS patterns are able to capture the propa-

gation on the endogenous variable, which appears to depend, in a complex way, on a

direct spatial effect of the observable and on exposure to unobserved exogenous shocks.

The model including spatial splines among the regressors outperforms both the MESS440

and the SAR in terms of predictive accuracy. Similar encouraging results are found

by performing several simulations, where the model with splines proves to be more

robust to model misspecification. This suggests the approach based to the introduction

of spatial splines to be a flexible way to cope with model uncertainty.

R code to fit the MESS and MESS error models (with/without splines) using the445
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approach described in this paper is available.
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A. Comparing MESS and SAR models

One of the potentially problematic aspects of the MESS model is the lack of in-

terpretability of the parameter ρ . Another concern recently raised by [24] is related

to a somewhat unexpected behavior of the MESS covariance matrix, which implies in530

rather frequent cases, opposite sign of partial and marginal correlations.

In this section we briefly discuss these problems, emphasizing differences and sim-

ilarities between MESS and SAR models. We focus, in particular, on the role of the

parameter ρ compared to the autoregressive parameter, and on how this affects the

pattern of the covariances as well as the marginal effects.535

In order to avoid confusion concerning notation, we use the letter λ for the spatial

correlation parameter in a SAR model.

The role of ρ and the marginal effects

The difficult interpretation of the parameter ρ of the MESS model has been stated

by LeSage & Pace [20] themselves, who proposed to consider the norms of the matrixes540

S(ρ) = exp(ρD) and S∗(λ ) = I− λD. For a row-standardized contiguity matrix D,

the norms ‖exp(ρD)‖∞ = eρ , and ‖I− λD‖∞ = 1− λ suggest that the parameter ρ

corresponding to a given spatial autoregressive parameter could be read as a monotone

transformation of the autocorrelation coefficient, i.e. eρ ≈ 1−λ .

This approximated relation is very useful to facilitate interpretation of ρ . However,545

it is not helpful in identifying differences in the marginal effects of lag models since

they are unit-specific and change with the pattern of the covariance matrices.

In fact, if we denote by a(i, j) and a∗(i, j) the (i, j)−th elements of S(log(1−

λ ))−1 = exp{− log(1−λ )D} and S∗(λ )−1 respectively, then, i = 1, . . . ,n

n

∑
j=1

a(i, j) =
n

∑
j=1

a∗(i, j).

Since, for the SAR models, the direct and indirect effects follow from Table 1, once

we replace a by a∗, the above identity implies that the total impact of variable k is the

same for the two models: M̄tot(k) = M̄∗tot(k) for all k, where M∗tot(k) = ∑i, j a∗(i, j)βh;550

however, in general, M̄dir(k) 6= M̄∗dir(k) and M̄in(k) 6= M̄∗in(k).
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To get an idea of how the two specifications determine different effects, consider

the matrix D corresponding to a time series: then the (i, j)−th component of Dh –

dh(i, j) – is equal to one if j = i+h and is zero otherwise. Then, the MESS and SAR

effects, ∂yi/∂x jk, are equal to: βka(i, j) = βk
(− log(1−λ ))i− j

(i− j)! and βka∗(i, j) = βkλ i− j re-555

spectively, for i > j. Therefore, the MESS model has unbounded indirect effects in a

neighborhood of 1, while the corresponding absolute effect of the SAR models is al-

ways bounded above by |βk|. While the absolute effects are symmetric in λ for the SAR

model, for the MESS model, if λ < 0 and ρ = log(1−λ ), |β ja(i, l)|< |β j|(log(2))<

|β j|.560

Simpson’s paradox and the MESS and SAR models

The MESS model is centrally based on a very specific spatial correlation structure

induced by the matrix exponential. The necessity of analyzing the correlation pattern

was also emphasized by Rodrigues et al. [24], who noticed a striking peculiarity con-

cerning the MESS correlation pattern, namely, the fact that negative partial correlations565

tend to occur frequently in the framework of the MESS model. Note that, since the er-

rors are assumed to be normally distributed, the partial correlations may be defined

as conditional correlations. The correlation structure of the MESS model depends, of

course, on the specific weight matrix used. Apart from contiguity, other spatial weight

matrices, in particular k-nearest neighbors, have been used with the MESS model.570

Opposite signs of marginal and partial correlation also occur in this case, provided

that the weight matrix can be represented by a simple graph (which excludes nonzero

diagonal elements). Let D = {d(i, j)}i j be the weight matrix used for a particular

MESS model and let us write Dh = {dh(i, j)}i j. This weight matrix may be a contiguity

weight matrix, a k-nearest neighbors matrix, or a different type of weight matrix, which575

is usually chosen to be sparse.

Theorem 1. Let D be weight matrix with symmetric zero entries, that is d(i, j) = 0

if and only if d( j, i) = 0, and consider the covariance matrix Σν = [(I− λD)−1(I−

λD′)−1] of a SAR model. Then for two regions i and j marginal and partial correlations

have different signs, if d2k+1(i, j) = 0 for all k.580
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The above result is analogous to that proved by Rodrigues et al. [24] for the MESS

model. We point out that, differently from Rodrigues et al. [24], the weight matrix D

is not required to be symmetric. Similar aguments apply to the MESS covariance ma-

trix, thus extending the result of Rodrigues et al. [24] to many types of non-symmetric

weight matrices. The condition of symmetry of zero entries is in particular satisfied by585

the row-standardized version of any symmetric distance matrix. The fact that under the

same assumptions of Theorem 1 both the SAR and the MESS marginal and partial cor-

relations have opposite signs, attenuates the findings of Rodrigues et al. [24], although

limited to the particular cases considered here (that is regular lattices with particular

weight matrices).590

Proof. Since dh(i, j) = ∑
n
m=1 dl(i,m)dh−l(m, j) = 0 if and only if, either dl(i,m) = 0 or

dh−l(m, j) = 0, for all m and for any l ≤ h, then we can conclude that, for all l,k such

that l + k is odd, ∑
n
m=1 dl(i,m)dk( j,m) = 0, exploiting the fact that dk( j,m) = 0 if and

only if dk(m, j) = 0.

Then, under the assumptions of Theorem, the (i, j)−th element of the covariance

matrix Σν writes (for i 6= j):

[Σν ]i j = σ
2 [(I−λD)−1(I−λD′)−1]

i j = σ
2

[
∞

∑
h=0

λ
hDh

∞

∑
k=0

λ
kD′k

]
i j

= σ
2

[
∞

∑
k=0

2k

∑
l=0

λ
2k

n

∑
m=1

dl(i,m)d2k−l( j,m)

]
i j

> 0 (36)

and

[Σ−1
ν ]i j =

1
σ2 λ

2
∑
m

d1(i,m)d1( j,m)> 0

As ν is Gaussian7, the sign of the partial correlation between νi and ν j is opposite595

to that of [(Σν)
−1]i j. Therefore, the partial correlation between νi and ν j is negative,

while the marginal one is positive. It then follows that, also in the case of the SAR spec-

ification, the partial correlation is negative, while the marginal correlation is positive.

7Recall that, for a Gaussian random vector Y1, . . . ,Yn with precision matrix Ω, the (i, j)th partial correla-

tion (for i 6= j) is equal to −ω(i, j)/
√

ω(i, i)ω( j, j).
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Of course, Theorem 1 provides a sufficient, but not a necessary condition for the600

partial and marginal correlations of both the SAR and MESS models to have opposite

sign. In fact, negative partial correlation (conditional on all the other outcomes) is

likely to occur whenever two regions are not odd order neighbors up to a finite order

k0. Moreover, while each term of the sums defining Σν and Σ−1
ν takes the form of an

infinite series of powers of D, the precision matrix of the SAR is a finite sum, thus the605

partial (conditional) correlation of (i, j) is zero whenever dl(i, j) = 0 for l ≤ 2, while

the marginal correlation is, in general, nonzero.

The particular values of ρ and λ for which these considerations do not fully apply,

depend, of course, on the structure of the lattice and the weight matrix used.

In general, a low absolute value of ρ or of λ is not necessarily able to prevent610

negative partial correlations or to reduce the number of their occurrences. However,

it also leads to low values of these correlations. Therefore, the relevance of negative

partial correlations in practical applications of the MESS model depends on the strength

of the spatial correlations in rather complicated ways. It should be noted that opposite

signs of partial and marginal correlations do occur in practice, and are referred to as615

Simpson’s paradox (see [33] and [22]). Therefore, their existence itself is nothing to

worry about.

A simple example

As the spatial parameter ρ is inside the matrix exponential, the correlation pattern is

highly complicated and somewhat non-intuitive. Therefore, in this section we illustrate620

the correlation pattern of the MESS model, in comparison with the SAR model, on a

very simple lattice consisting of 16 squares in a square.

We consider the binary contiguity matrix of the lattice and its corresponding adja-

cency row normalized weight matrix as in Figure 1.

We compute the correlation matrix of the MESS and SAR models associated with625

this lattice for λ = 0.8 and λ = 0.5 in Figure 2 and in Figure 3. In both cases, ρ =

log(1−λ ).

From this example we learn about a number of interesting characteristics of the

MESS model. As noted in the previous section, the contribution of powers of the pa-
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Figure 1: Adjacency Row Normalized Weight Matrix

Figure 2: Marginal and Partial correlation, λ = 0.8, ρ = log(1−λ )
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Figure 3: Marginal and Partial correlation with λ = 0.5, ρ = log(1−λ )

rameter ρ in the covariance decays exponentially, as opposed to the geometric decay630

characterizing the autoregressive SAR model. This causes the spatial correlation be-

tween two regions to decrease faster with distance: for example, assuming ρ =− log5

the correlation between regions 1 and 2 is around 0.88, while that between regions 1

and 3 is around 0.44, compared to the corresponding values of 0.81 and 0.52 of the

SAR model with λ equal 0.8. On the other hand, assuming ρ =− log2 the correlation635

between regions 1 and 2 is around 0.53, while that between regions 1 and 3 is around

0.11, compared to the corresponding values of 0.46 and 0.131 of the SAR model with

λ equal 0.5.

Both the MESS and the SAR models assume negative partial correlations, for pairs

of regions (i, j) at odd distances. In particular, assuming ρ = − log5, the fraction640

of negative partial correlation for the MESS correlation model is 39.84%, while for

the SAR model, assuming λ = 0.8, the fraction of negative partial correlation for the

MESS correlation model is 51.56%. These fractions increase to 43.75% and 54.69%,

for the MESS and SAR correlations respectively, when λ = 0.5 (and ρ = − log2).

However, MESS correlations are much higher in absolute values, with a 22.66% being645

below −0.05, while for the SAR only the 6.25% lies below that threshold and only for
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λ = 0.8.

B. Computation of impact measures

Even when D is a sparse matrix, the exponential exp{D} in general is not, and

the computation of the total and direct marginal effects requires the computation of a

dense n×n matrix. However, just as in the SAR effects case, if D is a row-standardized

matrix, the computation of the total effects is dramatically simplified by the fact that

ı>D jı = n for all j ≥ 0 and thus the total effect of the kth covariate for the MESS

models are8:

MESS n−1ı> exp{−ρD}ıβk = n−1
∑ j

ρ j

j! ı>ıβk = e−ρ βk

MESS Durbin n−1
(
ı> exp{−ρD}ıβk + ı>Dexp{−ρD}ıθk

)
= e−ρ(βk +θk)

So, in case of a row-standardized matrix, the trace of exp{−ρD} is the main com-

putational problem one has to face. We recall that, if the matrix D is diagonalizable,650

trace(exp{−ρD}) = ∑ j e−ρλ j , where λ j are the eigenvalues of D. The computation of

the eigenvalues of D is manageable, and once it is done, the λ j need not be recomputed

within the MCMC iterations.

In particular, for the MESS model, the direct effect of the kth covariate is equal to

n−1
∑ j e−ρλ j βk, while, for the MESS Durbin model, it is

n−1
∑

j
e−ρλ j βk +n−1

∞

∑
h=1

ρh

h!
trace(Dh+1)θk = n−1

∑
j

e−ρλ j βk +n−1
∞

∑
h=1

ρh

h!

n

∑
j=0

λ
h+1
j θk

= n−1
∑

j
e−ρλ j βk +n−1

n

∑
j=1

λ je−ρλ j θk

8The effects of MESS error models are straightforward
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