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Abstract

In a fractional cointegration setting we derive the fixed bandwidth limiting

theory of a class of estimators of the cointegrating parameter which are con-

structed as ratios of weighted periodogram averages. These estimators offer

improved limiting properties over those of more standard approaches like OLS

or NBLS estimation. These advantages have been justified by means of tra-

ditional asymptotic theory and here we explore whether these improvements

still hold when considering the alternative fixed bandwidth theory and, more

importantly, whether this latter approach provides a more accurate approxi-

mation to the sampling distribution of the corresponding test statistics. This

appears to be relevant, especially in view of the typical oversizing displayed

by Wald statistics when confronted to the standard limiting theory. A Monte

Carlo study of finite-sample behaviour is included.
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1 Introduction

Since the works of Kiefer and Vogelsang (2002, 2005), there has been a growing in-

terest on an alternative approach to deriving asymptotic theory denoted as fixed-b

asymptotics. The original idea was due to Neave (1970), who studied the limiting

behaviour of standard nonparametric estimators of the spectral density. These esti-

mators depend on several items, including the sample size n and a user-chosen number

known as bandwidth (M), and they are consistent under standard conditions which

include
1

M
+

M

n
→ 0,

as n →∞. Alternatively, Neave (1970) studied the limiting properties of these esti-

mators when M/n→ b ∈ (0, 1] as n→∞. This has been termed fixed-b asymptotics

(in contrast to letting b = 0, known as small-b asymptotics), which is motivated by

the fact that in any practical situation a non-zero fraction M/n is used, so fixing

the proportion M/n in the asymptotics could yield a better approximation to the

sampling distribution of the estimator. These advantages have been illustrated by

Kiefer and Vogelsang (2002, 2005), Bunzel and Vogelsang (2005) and Iacone, Ley-

bourne and Taylor (2013). The theoretical reason behind this phenomenon has been

studied by Jansson (2004) and Sun, Phillips and Jin (2008) who justified by means

of higher order Edgeworth expansions that the fixed-b asymptotics lead to a more

refined approximation than the traditional small-b approach for a Gaussian location

model. Focusing also on this model, Sun (2014) provided a similar justification, which

he also extended to a generalized method of moments setting.

In the somewhat different context of standard cointegration, where observables

are unit roots and cointegrating errors are weakly dependent covariance stationary

processes, Bunzel (2006) derived the fixed-b limit of a Wald test statistic based on the

dynamic ordinary least squares (DOLS) estimator of the cointegration parameter and

on a weighted covariance estimator of the long-run variance. Similarly, Jin, Phillips

and Sun (2006) derived a fixed-b theory for tests based on the fully modified ordinary

least squares (FM-OLS) estimator. Both results have been referred by Vogelsang and

Wagner (2014) as “partial” fixed-b theory. The reason is that Bunzel’s (2006) analysis

ignores the impact of lead and lag choices on the implementation of the DOLS (that

is, the fixed-b theory is just considered for the nonparametric estimator of the long

run variance), whereas Jin, Phillips and Sun’s (2006) approach requires standard

consistency results, therefore ignoring the choice of tuning parameters inherent to

the FM-OLS estimator. On the contrary, Vogelsang and Wagner (2014) derive the
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“complete” fixed-b limit of the FM-OLS which, given its dependence on nuisance

parameters, is not suitable for statistical inference. Thus, they propose an alternative

estimator of the cointegrated parameter (integrated modified OLS), which does not

depend on choices of tuning parameters and which is used to construct aWald statistic

whose fixed-b limiting distribution is pivotal.

In this paper we will explore a similar idea to fixed-b asymptotics in the more

general fractional cointegration setting. In particular we will focus on the simple

semiparametric model

yt = νxt +∆−γ {u1t1(t > 0)} , (1)

xt = ∆−δ {u2t1(t > 0)} , (2)

for t = 0,±1, ..., where ut = (u1t, u2t)
′ is a bivariate covariance stationary unobserv-

able process with zero mean and nonparametric spectral density matrix f(λ) that is

at least nonsingular at frequency zero and continuous at all frequencies, ∆ = 1− L,

where L is the lag operator, the fractional difference operator is given formally, for

any real α, α 	= −1,−2, .., by

∆−α =
∞�
j=0

aj(α)L
j , aj(α) =

Γ(j + α)

Γ(α)Γ(j + 1)
,

with Γ denoting the gamma function, 1(·) is the indicator function and δ > γ >

−1/2. When γ = 0, δ = 1, this corresponds to the usual bivariate cointegrated

I (1) /I (0) system, but (1), (2) allows for many other situations covering stationary

or nonstationary cointegration, where δ < 1/2 or δ > 1/2, respectively. Note that

in this latter case the truncations in (1), (2) ensure that the processes yt, xt are well

defined in mean square sense. Processes xt and yt are said to have integration order

δ and are called I (δ), while the cointegrating error ∆−γ {u1t1(t > 0)} is I (γ), so

whenever γ < δ, yt and xt are cointegrated. More detailed conditions will be imposed

below.

For a slightly more general model than (1), (2), Hualde and Iacone (2015) exam-

ined the fixed-b approximation to the distribution of the weighted covariance (WC)

estimator

�ν =

�
n−1�

l=−n+1

k (l/M) cxx (l)

�−1 n−1�

l=−n+1

k (l/M) cxy (l) , (3)

where k (x) is a kernel function and, for two generic sequences ξt, ζt, cξζ (l) =

n−1
�n−l

t=1 ξtζ
′
t+l for l ≥ 0; = n−1

�n
t=1−l ξtζ

′
t+l for l < 0, prime denoting transpo-
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sition. In addition, they provided Monte Carlo evidence showing that the fixed-b

approximation is more accurate than the traditional one which imposes (at least)

M = o (n), and which was derived by Phillips (1991a) for the standard I (1) /I (0)

case and by Marinucci (2000) for the fractional general setting.

Hualde and Iacone (2015) also pinpointed the connection between the fixed-b as-

ymptotic theory for WC and the fixed bandwidth approach for narrow band least

squares (NBLS) estimation. In particular, �ν in (3) has a frequency domain represen-

tation given by

�ν =

�
π�
−π

KM (λ) Ixx (λ) dλ

�−1 π�
−π

KM (λ) Ixy (λ) dλ,

where KM (λ) = (2π)−1
�

|l|<n k (l/M) e−ilλ is the spectral window associated to k (·)
and for generic sequences ξt, ζt, define the discrete Fourier transform and (cross-)

periodogram

wξ (λ) =
1

(2πn)
1

2

n�

t=1

ξte
itλ, Iξζ(λ) = wξ (λ)wζ (−λ)′ , Iξ(λ) = Iξξ(λ).

Then, approximating integrals by sums over the Fourier frequencies λj = 2πj/n for

j = 0,±1, ...,± [n/2], where [·] means integer part, and using the Daniell kernel, we

get an approximation to �ν given by

	νm =

�
m�

j=0

cjIxx (λj)

�−1 m�

j=0

cj Re Ixy (λj) , (4)

where cj = 1, j = 0, n/2, cj = 2, otherwise and m = [n/ (2M)]. In fact (4) is the

NBLS estimator, whose limiting properties have been studied under the assumption

1

m
+

m

n
→ 0 as n→∞. (5)

Condition (5) implies that the estimator uses a degenerating band of frequencies

around the origin, therefore focusing on the long run components of the observables,

and, also, that it gathers increasing information by letting m grow with the sample

size. Under (5) and additional regularity conditions, Robinson and Marinucci (2003)

derived the rate of convergence of the NBLS for the (asymptotically) stationary case

(with δ < 1/2). For this stationary setting, imposing also γ ≥ 0, γ + δ < 1/2, Chris-

tensen and Nielsen (2006) derived a Gaussian limiting distribution for the NBLS
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for the particular case of noncoherence between regressor and error at the zero fre-

quency. Imposing also (5), the limiting properties of the NBLS for the nonstationary

case (with δ ≥ 1/2) were derived by Robinson and Marinucci (2001).

Comparing (3) and (4), noting that m = [n/ (2M)], (5) implies that M/n → 0.

Then letting M = bn, b > 0 and using the Daniell kernel corresponds to discussing

the properties of the NBLS when m is fixed (m = [1/ (2b)]). In fact, related to

this possibility, Robinson and Marinucci (2001) conjectured that for the case γ ≥ 0,

γ + δ ≤ 1, (γ, δ) 	= (0, 1), the faster nδ−γ convergence rate could be achievable by the

NBLS with m fixed as n→∞. Chen and Hurvich (2003) verified this conjecture for

a tapered NBLS applied to differenced data.

Hualde and Iacone (2017) exploited this idea, which they named as fixed band-

width asymptotics, and applied it to the studentized mean of a covariance stationary

fractionally integrated process where the long run variance was estimated by an av-

eraged periodogram estimator (where the degree of averaging was kept fixed). This

approach falls within the fixed-smoothing asymptotics setting, term coined by Zhang

and Shao (2013), which characterizes situations where a smoothing parameter is held

fixed in the asymptotics. This includes the number of basis functions in nonparamet-

ric estimation, see, e.g., Sun (2013), the number of non-overlapping blocks on which

a subsampling based t-statistic is constructed, see, e.g., Ibragimov and Müller (2010)

and Zhang and Shao (2013), or the number of cluster groups, see, e.g., Bester, Conley

and Hansen (2011).

In this vein, we derive in the present paper the fixed bandwidth (hereinafter

denoted as fixed-m) limiting theory of various estimators of ν. First, we will obtain

the fixed-m limit of the NBLS estimator (4). As with the large-m limiting theory (with

m → ∞ as n → ∞), the fixed-m limit of 	νm depends on nuisance parameters, so,

except in some specific cases (see, e.g., Christensen and Nielsen, 2006), it is unsuitable

for statistical inference.

Some improvements over NBLS estimation have been proposed. First, for the

stationary case, Nielsen (2005) considered a general class of estimators which include

the NBLS and a narrow band generalized least squares (NBGLS) as special cases.

Under the condition of noncoherence at frequency zero between regressors and errors,

Nielsen (2005) showed that, as expected, the NBGLS is more efficient than NBLS.

Nielsen’s (2005) approach could be denoted more precisely as subsystem NBGLS:

for the particular setting in (1), (2), this estimator is inspired by the GLS applied

to the first equation (1). There is, therefore, room for improvement by considering

a full system NBGLS taking also into account the structure of (2). Actually, this
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discussion is the semiparametric equivalent to the distinction between full system

maximum likelihood (ML) and subsystem limited information ML estimation (see,

Phillips, 1991b). As will be seen below, our proposal can be viewed as a full system

NBGLS.

As an attempt to relax the strong noncoherence condition, Nielsen and Frederiksen

(2011) proposed for the weak cointegration case (with δ − γ < 1/2) a modification

of the NBLS, termed Fully-modified NBLS, which eliminates the bias due to nonzero

coherence at the origin and which retains, as in the case of zero coherence, the same

convergence rate and also the asymptotic normality.

Alternatively, we will analyze a class of estimators of the cointegrating parameter

in model (1), (2) which are constructed as ratios of periodogram averages weighted by

multiplicative factors based on the inverse of smoothed estimators of f (0). Through

this weighting, these estimators also eliminate the endogeneity bias, therefore offering

important advantages over the alternative NBLS estimation: their convergence rate is

never slower than that of NBLS and, under standard conditions (which traditionally

have included a bandwidth growing with the sample size), lead to Wald test statis-

tics with the same standard null N (0, 1) limit distribution irrespective of whether

there is “strong” or “weak” cointegration, where δ − γ > 1/2 or δ − γ < 1/2, respec-

tively. These results were formally justified in the large-m framework by Hualde and

Robinson (2010). Related results for different contexts include Robinson and Hualde

(2003), Johansen and Nielsen (2012) and Andersen and Varneskov (2018). Within

this setting, our main aim in the present paper is to explore whether these nice lim-

iting properties still hold when considering the alternative fixed-m theory and, more

importantly, whether this approach provides a more accurate approximation to the

sampling distribution of the corresponding test statistics. This appears to be rele-

vant, especially in view of the typical oversizing displayed by Wald statistics when

confronted to the standard limiting theory.

The following section presents the fixed-m limit of the NBLS estimator. Next, in

Sections 3 and 4, we will introduce two levels of analysis. First, we discuss a “partial”

fixed-m theory, where the bandwidth characterizing the estimator of the cointegrating

parameters is kept fixed, but we employ consistency arguments for the estimators of

the nuisance parameters (and therefore assume here increasing bandwidth). Next, in

Section 4 we will present a more “complete” fixed-m theory, which captures the effect

of the bandwidth choice in the estimators of some nuisance parameters. Section 5

contains a Monte Carlo study of finite-sample behaviour. Unless otherwise stated,

proofs are relegated to the Appendix.
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2 Fixed-m asymptotic theory for NBLS estimation

We initially derive the fixed-m limit of the NBLS estimator (4). As anticipated,

alternative estimators of ν enjoy improved properties over NBLS, but, nevertheless,

we include 	νm in our fixed-m analysis mainly for completeness. Incidentally, our

results verify Robinson and Marinucci’s (2001) conjecture, whose large-m limiting

theory can be found in their Propositions 6.1-6.3 and 6.5. Note, however, that these

results were just given for the case of nonstationary xt, i.e., δ ≥ 1/2, and γ ≥ 0. On

the contrary, our fixed-m results will cover all situations as long as δ > γ > −1/2.
We impose the following regularity condition. Let Ia be the a-rowed identity

matrix and β = δ − γ, so β denotes the strength of the cointegration relation.

Assumption 1. The process ut, t = 0,±1, ..., has representation

ut = A (L) εt, A (z) = I2 +
∞�

j=1

Ajz
j ,

where det {A (1)} 	= 0 , A(eiλ) is differentiable in λ ∈ [−π, π] with derivative in Lip (η),

η > 1/2; with · denoting the Euclidean norm, εt is a (2p)th-order stationary

process with bounded (2p)th-order spectral density such that p ≥ 2 and if β > 1/2,

p > 1/(2β − 1); defining E (εtε
′
t) = Σ, where Σ is positive definite,

E (εt| Ft−1) = 0, E (εtε
′
t| Ft−1) = Σ

almost surely, where Ft is the σ-field of events generated by εs, s ≤ t. Also, condi-

tional (on Ft−1) third and fourth moments of εt equal the corresponding unconditional

moments (almost surely).

Assumption 1 is satisfied if ut is a stationary autoregressive-moving average (ARMA)

process. It avoids requiring independence or identity of distribution of εt (like it is

imposed in Hualde and Robinson, 2010), but rules out conditional heteroskedasticity.

With the exception of the strong moment condition, which is required to justify the

use of the fractional invariance principle of Hosoya (2005), this condition is standard

in the time series literature since Hannan (1973) and it is very similar to that in

Nielsen and Frederiksen (2011). Note that the strong moment condition (when β is

above but close to 1/2) is satisfied for Gaussian εt. This assumption also imposes a

global smoothness condition on f (λ) which implies that

∞�

j=1

j Aj <∞,
∞�

r=−∞

|r| Γ (r) <∞,
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where Γ (r) = E


utu

′
t−r

�
.

We introduce further notation. Let ζ = (1, 0)′, ξ = (0, 1)′, B (r) be a Brownian

motion with covariance matrix Σ, and for d > 1/2,

B (r; d) =

r�

0

(r − s)d−1

Γ (β)
dB (s) , Sα (r; d) = α′A (1)B (r; d) , α = ζ, ξ,

soB (r; d) is a Type II fractional Brownian motion. Finally, denote by→d convergence

in distribution, and, for any functional G (r), let 	G (r) = G (r) − rG (1) and let the

long run variance of ut be Ω = 2πf (0) .

Theorem 1. Let Assumption 1 hold and m be any nonnegative fixed number. Then,

as n→∞,

nβ(	νm − ν)→d



Aξ,ξ
m (Ω, δ, δ)

�−1
Aζ,ξ
m (Ω, γ, δ) , (6)

where

Aα1,α2
m (Ω, d1, d2) =


Sα1 (1; d1 + 1)Sα2 (1; d2 + 1) + 2

m�

j=1

(2πj)2

×
�
1�
0

sin (2πjr) 	Sα1 (r; d1 + 1) dr
1�
0

sin (2πjs) 	Sα2 (s; d2 + 1) ds

+
1�
0

cos (2πjr) 	Sα1 (r; d1 + 1) dr
1�
0

cos (2πjs) 	Sα2 (s; d2 + 1) ds

��
,

taking the summation in Aα1,α2
m (Ω, d1, d2) as 0 whenever m = 0.

As mentioned before, Theorem 1 verifies Robinson and Marinucci’s (2001) conjec-

ture that the rate nβ is achievable with m fixed in the nonstationary case. For the

stationary case, keeping m fixed implies in general a gain in convergence rate (from

(n/m)β to nβ), although in the particular case studied by Christensen and Nielsen

(2006) the faster rate nβm1/2−β is achievable. Note that in (6), unlike the analysis of

Christensen and Nielsen (2006), both numerator and denominator of the normalized

and centered NBLS converge to random limits: these are the sum of crossproducts

of Gaussian random variables corresponding to each of the Fourier transforms which

conform the estimator (evaluated at the different Fourier frequencies). In general,

the limiting distribution in (6) is nonstandard, but under the noncoherence condition

of Christensen and Nielsen (2006) (which in our setting corresponds to a diagonal

Ω) it is a mixture of Gaussians. In any case, comparing (6) with the asymptotic

distribution derived under the large-m condition is not a very productive exercise:

for a given m the NBLS is unique, but two different limiting approximations to its
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sampling distribution can be obtained (large-m and fixed-m). Our claim is that the

fixed-m limit is closer to the true sampling distribution and, as will be seen below,

this is the main motivation of our analysis in the following sections.

3 “Partial” fixed-m asymptotic theory

In this section, we focus on alternative generalized least squares-type estimators which

offer important advantages over NBLS estimation. Define

zt(γ, δ) = (yt (γ) , xt (δ))
′ ,

where for any sequence {ξt}, and real c, ξt(c) = ∆c {ξt1(t > 0)}. Thus (1), (2) can

be written as

zt(γ, δ) = ζxt(γ)ν + ut1(t > 0).

Define also

p (λ) = ζ ′f (λ)−1 , q (λ) = ζ ′f (λ)−1 ζ,

and letting Ω have ijth element ωij, set ρ = ω12/ω22 and ω1.2 = ω11−(ω212/ω22). Then

the infeasible bivariate version of Hualde and Robinson’s (2010) “zero-frequency”

estimator is given by

νm (γ, δ, ρ) =
am (γ, δ, ρ, ω1.2)

bm (γ, ω1.2)
, (7)

where

am (γ, δ, ρ, ω1.2) = p (0)Re


m�

j=0

cjIz(γ,δ)x(γ)(λj)

�
,

bm (γ, ω1.2) = q (0)
m�

j=0

cjIx(γ)(λj),

and m ≤ n/2. Note that

q (0) =
2π

ω1.2
, p (0) =

2π

ω1.2
(1,−ρ) ,

so the dependence of the estimator of ν on Ω only occurs through ρ. The infeasibility

of νm (γ, δ, ρ) is due to its dependence on ρ, but also on the integration orders γ,

δ. These are considered as known in most standard cointegration analyses (where

γ = 0, δ = 1), but in the more general fractional setting they are typically treated as

unknown nuisance parameters.
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With the aim of focusing solely on the impact of the assumptions over m on the

limiting behaviour of νm (γ, δ, ρ) we will initially act as if γ, δ, ρ, were known.

Remark 1. For simplicity we have omitted any deterministic component in our

model (1), (2). However, the possibility of nonzero deterministic components can

be accommodated as in Robinson and Iacone’s (2005) Model III. Allowing for deter-

ministic terms would lead to a different estimator: this would be the semiparametric

version of the parametric estimator given in (94), (95) of Robinson and Iacone (2005).

The limiting distribution of this estimator can be easily analyzed by their arguments

and the results below.

Remark 2. For a general multivariate case, the limiting properties of (7) under

the traditional large-m condition have been studied by Hualde and Robinson (2010).

Letting fij (λ), f
ij (λ) be the (i, j)th components of f (λ), f−1 (λ) respectively, the

result is the following: under Assumption 1

(i) When β > 1/2, if

m−1 +m/nβ → 0, (8)

as n→∞, then

nβ(νm (γ, δ, ρ)−ν)→d



q (0)

1�

0

Sξ (r; β)
2 dr





−1

2πζ ′A (1)−1′Σ−1
1�

0

Sξ (r; β) dB (r) ;

(9)

(ii) When β < 1/2, if

mβ−1/2 log1/2 n+m3+2η/n2+2η → 0, (10)

as n→∞, then

m
1

2λ−βm (νm (γ, δ, ρ)− ν)→d N

�
0,

1− 2β

2f11 (0) f22 (0)

�
. (11)

To be precise, Hualde and Robinson’s (2010) Theorem 1 covers (9) and (11) for

the case where εt is an independent and identically distributed sequence. Justifying

these results under our less restrictive Assumption 1 is simple and requires the use

of Hosoya’s (2005) fractional invariance principle, noting also that the convergence

to the stochastic integral in (9) follows by Theorem 2.2 of Kurtz and Protter (1991)

(which is essentially the same result as in Jakubowski. Mémin and Pages, 1989).
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Remark 3. Interestingly, the limit in (9) is a mixed normal random variable which,

along with (11), can be exploited to construct the Wald test statistic

tm (γ, δ, ρ, ω1.2) = b1/2m (γ, ω1.2) (νm (γ, δ, ρ)− ν)

with pivotal null asymptotic distribution. Hence, we also have that under the condi-

tions of Theorem 1, for both β > 1/2 and β < 1/2, as n→∞,

tm (γ, δ, ρ, ω1.2)→d N (0, 1) ,

which is a bivariate particularization of Hualde and Robinson’s (2010) Corollary 1.

Like the optimal procedures proposed for the standard I (1) /I (0) cointegration set-

ting (see, e.g., Johansen, 1988, 1991, Phillips, 1991a,b) or in the more general frac-

tional framework (see Robinson and Hualde, 2003, Johansen and Nielsen, 2012),

tm (γ, δ, ρ, ω1.2) enjoys standard limit theory, and this is irrespective of whether there

is weak or strong cointegration.

Given these large-m results, the question of interest is whether these results also

apply whenever m is kept fixed. These are given in Theorem 2 and Corollary 1 below.

Theorem 2. Let Assumption 1 hold and m be any nonnegative fixed number. Then,

as n→∞,

nβ(νm (γ, δ, ρ)− ν)→d D−1
m (Ω, β)Nm (Ω, β) , (12)

where Dm (Ω, β) = ζ ′Ω−1ζAξ,ξ
m (Ω, β, β) and

Nm (Ω, β) = ζ ′Ω−1


Sξ (1;β + 1)A (1)B (1) + 2

m�

j=1

(2πj)2

×
�
1�
0

sin (2πjr) 	Sξ (r; β + 1) dr
1�
0

sin (2πjs)A (1) 	B (s) ds

+
1�
0

cos (2πjr) 	Sξ (r;β + 1) dr
1�
0

cos (2πjs)A (1) 	B (s) ds

��
,

taking the summations in Dm (Ω, β), Nm (Ω, β) as 0 whenever m = 0.

The proof is almost identical to that of Theorem 1, so it is omitted. The limiting

distribution in (12) has a similar structure to that in (6), incorporating contributions

from Fourier transforms at different Fourier frequencies, but with a key difference:

for any r, s ∈ [0, 1], Cov (Sξ (r; β + 1) , ζ ′Ω−1A (1)B (s)) = 0, so the limit in (12) is a

mixed normal random variable.

The result in (12) leads to the following result.
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Corollary 1. Under the conditions of Theorem 2, as n→∞,

tm (γ, δ, ρ, ω1.2)→d N (0, 1) .

Remark 4. The main implication of Corollary 1 is that, along with the result in

Remark 3, the first order limiting distribution of tm (γ, δ, ρ, ω1.2) isN (0, 1) irrespective

of the value of m. Thus, the (likely) dependence of the sampling distribution of

tm (γ, δ, ρ, ω1.2) on m vanishes when considering its first order approximation. This

opens the door to considering a more refined approximation to clarify the way in

which the dependence onm arises in subsequent smaller order terms of the asymptotic

expansion. Undoubtedly, this would lead to a better understanding of the accuracy

of the N (0, 1) limit approximation for different values of m. In the simple setting of

a Gaussian location model, Zhang and Shao (2013) derived a higher order Edgeworth

expansion for the finite sample distribution of a subsampling-based t-statistic under

a fixed-smoothing paradigm. In particular, the sample size was divided into K equal

sized groups and the smoothing parameter K is held fixed, unlike with the standard

procedure of considering a smoothing parameter which grows with respect to the

sample size. Interestingly, Zhang and Shao (2013) showed that as K increases the

first-order asymptotic approximation deteriorates. A formal analysis along these lines

is beyond the scope of the present paper, but this issue will be explored by means of

a Monte Carlo experiment in Section 5.

Remark 5. Incidentally, unlike the results presented in Remarks 2 and 3, Theorem 2

and Corollary 1 cover the somewhat elusive case β = 1/2, which is at the boundary

between strong and weak cointegration (see, e.g., Robinson and Hualde, 2003 and

Hualde and Robinson, 2007).

Next we discuss the behaviour of the feasible νm(	γ,	δ,	ρ) for suitable estimators 	γ,
	δ, 	ρ of γ, δ, ρ, respectively, for which the following conditions hold.

Assumption 2. There exist K <∞ and κ > 0 such that

|	γ|+
���	δ
��� ≤ K, (13)

and

	γ = γ +Op



n−κ
�
, 	δ = δ +Op



n−κ
�
. (14)

Condition (13) is innocuous if our estimators of the memory parameters optimize
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over compact sets, as it occurs when using implicitly defined estimates like the local

Whittle. This condition has been routinely applied in related settings, see, e.g.,

Robinson and Hualde (2003), Hualde and Robinson (2010).

Assumption 3. There exists κ > 0 such that

	ρ = ρ+Op



n−κ
�
. (15)

Again, Assumption 3 is unprimitive, but it is very mild, even though the typical

semiparametric estimators of the long run variance (and also of the integration orders)

have a convergence rate no better than n2/5. A similar condition has been employed

by, e.g., Hualde and Robinson (2010) where it is discussed in detail.

Theorem 3 collects the results for νm(	γ,	δ,	ρ), noting that part (i) can be derived

straightforwardly from the results in Hualde and Robinson (2010).

Theorem 3. Let Assumptions 1-3 hold.

(i) Under the (8), (10) and



n−κ + n−κ

�
m1−max{min{β,1},1/2} logm→ 0, (16)

as n→∞, results (9), (11) apply for νm(	γ,	δ,	ρ);

(ii) If m is a nonnegative fixed number, as n→∞, result (12) applies for νm(	γ,	δ,	ρ).

Remark 6. Condition (16) involves the convergence rates given in (14), (15), and

letting m → ∞ (as implied by (8), (10)), might not be straightforwardly satisfied

given the previously mentioned bound for the rate of convergence of standard semi-

parametric estimators. For example, if m grows at the same rate as n, (16) does not

hold when β ≤ 3/5. Thus for moderate values of β either the rate of growth of m

has to be restricted or the use of “improved” estimators of the nuisance parameters

based on bias-reducing techniques might be required. For a fully detailed explanation

about the complex interaction between the rates in (14), (15) and condition (16) see

Hualde and Robinson (2010), pp. 496, 497. Alternatively, when keeping m fixed, just

the mild conditions (14), (15) with κ > 0, κ > 0 are needed.

Note that, even in the fixed-m case, Theorem 3 relies on consistency arguments

for all estimators of the nuisance parameters. Imposing consistency of 	γ, 	δ, seems

unavoidable, but considering a fixed-m analysis for the estimators of functionals of Ω

seems possible. In this sense the results in Theorem 3 (ii) are denoted as “partial”
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fixed-m theory, in contrast with the more “complete” theory which will be addressed

in Section 4.

Finally, we present the corresponding results to the feasibleWald statistic tm(	γ,	δ,	ρ, 	ω1.2),
which requires an extra condition related to an estimator of ω1.2, say 	ω1.2 (the same

comment as that below Assumption 3 applies).

Assumption 4. There exists κ > 0 such that

	ω1.2 = ω1.2 +Op



n−κ
�
.

Corollary 2. Under the conditions of Theorem 3 and Assumption 4, as n→∞,

tm(	γ,	δ,	ρ, 	ω1.2)→d N (0, 1) .

This result can be justified as part (ii) of Theorem 3, so its proof is omitted.

4 “Complete” fixed-m asymptotic theory

As anticipated, in this section we derive the fixed-m limit of a feasible estimator

of ν (and corresponding test statistic) without relying on consistency arguments for

estimators of functionals of Ω (although we will still require consistency of 	γ, 	δ).
First, we will analyze the behaviour of νm(γ, δ,�ρ), for a particular estimator �ρ which

will be specified below. The estimator νm(γ, δ,�ρ) is motivated as follows. Rewrite

(1) as

yt (γ) = νxt (γ) + ρxt (δ) + u1.2t, (17)

where u1.2t = u1t − ρu2t. Enlarging a regression model by introducing an additional

regressor (xt (δ)) corresponds to a type of orthogonalization which combined with

OLS estimation leads to an estimator of the cointegrating parameter with a standard

limiting distribution in the white noise case (see, e.g., Phillips 1991b, Robinson and

Hualde, 2003, Hualde and Robinson, 2007). In more general cases, a more sophis-

ticated orthogonalization is required, like that implied by, e.g., the DOLS method.

In contrast, as shown below, within the context of fixed-m asymptotics, the simple

orthogonalization given by (17) leads to an estimator from which an asymptotically

pivotal Wald statistic can be constructed even for the general ut permitted by As-

sumption 1.
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Setting

rt (γ, δ) = (xt (γ) , xt (δ))
′ ,

we define estimators

�
	νm (γ, δ)

	ρm (γ, δ)

�
=

�
Re


m�

j=0

cjIr(γ,δ)(λj)

��−1
Re


m�

j=0

cjIr(γ,δ)y(γ)(λj)

�
, (18)

which, strictly speaking, are infeasible due to their dependence on γ, δ. Note that

	νm (γ, δ) is not only the NBLS in the extended regression model (17), but it is also

equal to νm(γ, δ,�ρ), where �ρ = �ω12/�ω22, with

�ω12 =
2π

2m+ 1
Re


m�

j=0

cjI�u1(γ,δ)x(δ)(λj)

�
, �ω22 =

2π

2m+ 1

m�

j=0

cjIx(δ)(λj), (19)

and �ω12 is constructed using residuals

	u1t (γ, δ) = yt (γ)− 	νm (γ, δ) xt (γ) .

The estimator 	νm (γ, δ) is particularly adequate to develop the “complete” fixed-m

asymptotic theory which does not rely on assuming consistency for the estimator of ρ.

Before presenting our main results we introduce further notation. Define F (r; β) =

(Sξ (r;β) , ξ
′A (1)B (r))

′
, E (r) = (1,−ρ)A (1)B (r),

	Φsin (j) =
1�
0

sin (2πjr) 	F (r; β + 1) dr, 	Φcos (j) =
1�
0

cos (2πjr) 	F (r; β + 1) dr,

and for m ≥ 0,

Φm (Ω, β) = F (1;β + 1)F ′ (1;β + 1) + 2
m�

j=1

(2πj)2
�
	Φsin (j) 	Φ′sin (j) + 	Φcos (j) 	Φ′cos (j)

�
,

φm (r; Ω, β) = F (1;β + 1) + 2
m�

j=1

2πj
�
	Φsin (j) cos (2πjr)− 	Φcos (j) sin (2πjr)

�
,

where the summations in Φm (Ω, β), φm (r; Ω, β) are 0 whenever m = 0. The fixed-m

limit of the estimator in (18) is given in the next theorem.

Theorem 4. Let Assumption 1 hold and m be any nonnegative fixed number. Then,
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as n→∞,

�
nβ (	νm (γ, δ)− ν)

	ρm (γ, δ)− ρ

�
→d Φ

−1
m (Ω, β)

1�

0

φm (r; Ω, β) dE (r) . (20)

Remark 7. The limiting distribution of 	νm (γ, δ) implied by (20) has a similar

structure to that in (12), but it incorporates the effect of estimating (inconsistently)

the unknown parameter ρ. Nicely, this does not lead to a convergence rate loss for

	νm (γ, δ). Also, the limit in (20) is a mixed normal random variable because for any

r, s ∈ [0, 1], Cov (F (r; β + 1) , E (s)) = 0, so it is expected that a Wald test statistic

based on 	νm (γ, δ) enjoys standard asymptotics. Thus we define

	tm (γ, δ, ω1.2) =
	νm (γ, δ)− ν


ω1.2

2π
ζ ′

�
Re


m�
j=0

cjIr(γ,δ)(λj)

��−1
ζ




1

2

,

noting that ω1.2 is also the variance of the Brownian motion E (r) and that, apart from

its dependence on γ, δ, 	tm (γ, δ, ω1.2) is infeasible because ω1.2 is unknown. However,

it is “more feasible” than tm (γ, δ, ρ, ω1.2) in the sense that it incorporates an estimator

of ρ. The next corollary presents the fixed-m limit of 	tm (γ, δ, ω1.2).

Corollary 3. Under the conditions of Theorem 4, as n→∞,

	tm (γ, δ, ω1.2)→d N (0, 1) .

Corollary 3 is similar to Corollary 1 although, interestingly, the N (0, 1) limit is

preserved even if ρ is not consistently estimated (see (20)). This phenomenon does not

occur with respect to ω1.2: as will seen below, the lack of consistency of the estimator

of ω1.2 plays a very relevant role in the derivation of the asymptotic behaviour of the

corresponding feasible statistic.

The key ingredient of the feasible version of 	tm (γ, δ, ω1.2) is the estimator of ω1.2.

A very natural approach to estimating ω1.2 is to define residuals

�u1.2t = yt (γ)− 	νm (γ, δ)xt (γ)− 	ρm (γ, δ)xt (δ) ,

16



and, mimicking (19), use the simple estimator

	ω1.2 =
2π

2m∗ + 1

m∗�

j=0

cjI�u1.2 (λj) , (21)

where the bandwidth m∗ could be different from that employed in the estimation of

ν and ρ. For reasons which will be apparent below the only requirement that this

new bandwidth needs to fulfill is that m∗ ≤ m. Then, we define

	tm(γ, δ, 	ω1.2) =
	νm (γ, δ)− ν


 �ω1.2

2π
ζ ′

�
Re


m�
j=0

cjIr(γ,δ)(λj)

��−1
ζ




1

2

=
	tm(γ, δ, ω1.2)
(	ω1.2/ω1.2)1/2

. (22)

Remark 8. Imposing conditions on m∗ such that 	ω1.2 →p ω1.2, then 	tm(γ, δ, 	ω1.2)→d

N (0, 1). Alternatively, we will keep m∗ fixed with the aim of obtaining a better ap-

proximation to the sampling distribution of 	tm(γ, δ, 	ω1.2). As in Hualde and Iacone

(2017), the main implication is that, when consider a fixed-m limit, 	ω1.2 loses consis-
tency. In fact, the limit is random, but it is proportional to ω1.2, so, in the limit,

the dependence of 	tm(γ, δ, 	ω1.2) on ω1.2 cancels out. However, the main complica-

tion is the potential dependence between the limits of 	tm(γ, δ, ω1.2) (that is a N (0, 1)

random variable) and 	ω1.2, because, if the limits were dependent, 	tm(γ, δ, 	ω1.2) would
not be asymptotically pivotal. Actually, avoiding this dependence is the reason why

Vogelsang and Wagner (2014) need to construct new residuals (adjusted residuals

in their terminology, see p. 746) by a relatively convoluted method, achieving the

desired independence (see their last paragraph in their Lemma 2). Fortunately, this

type of adjustment is not necessary in our setting and our very simple estimator (21)

satisfies the crucial independence condition, as Theorem 5 shows.

Define W (r) = (W1 (r) ,W2 (r))
′ as a Brownian motion with covariance matrix

I2, H (r;β) = (W2 (r;β) ,W2 (r))
′, where

W2 (r; β) =

r�

0

(r − s)β−1

Γ (β)
dW2 (s) ,

	Ψsin (j) =

1�

0

sin (2πjr) 	H (r; β + 1) dr, 	Ψcos (j) =

1�

0

cos (2πjr) 	H (r; β + 1) dr,
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and

Ψm (β) = H (1;β + 1)H ′ (1; β + 1) + 2
m�

j=1

(2πj)2
�
	Ψsin (j) 	Ψ′

sin (j) + 	Ψcos (j) 	Ψ′
cos (j)

�
,

ψm (r;β) = H (1;β + 1) + 2
m�

j=1

2πj
�
	Ψsin (j) cos (2πjr)− 	Ψcos (j) sin (2πjr)

�
.

Also, let

Ξ0 (β) =




1�

0

dW1 (r)−H ′ (1; β + 1)Ψ−1
m (β)

1�

0

ψm (r; β) dW1 (r)



2

and for j = 1, ...,m∗,

Ξj (β) =




1�

0

cos (2πjr) dW1 (r)− 2πj	Ψ′
sin (j)Ψ

−1
m (β)

1�

0

ψm (r; β) dW1 (r)



2

+




1�

0

sin (2πjr) dW1 (r) + 2πj	Ψ′
cos (j)Ψ

−1
m (β)

1�

0

ψm (r;β) dW1 (r)



2

Theorem 5. Let Assumption 1 hold and m, m∗ be any nonnegative fixed numbers

such that m∗ ≤ m. Then, as n→∞,

	tm(γ, δ, 	ω1.2)→d
Z

�
1

2m∗+1

m∗�

j=0

cjΞj (β)

�1/2 (23)

where Z ∼ N (0, 1), and numerator and denominator are independent random vari-

ables.

Remark 9. As shown in the proof, the independence between the numerator and de-

nominator of the limit in (23) relies on the conditional uncorrelation between the limit

of nβ (	νm (γ, δ)− ν) and those of n−1/2
�n

t=1 �u1.2t cos (λjt) and n−1/2
�n

t=1 �u1.2t sin (λjt)
for j = 0, ...,m∗. Due to the orthogonality properties of the trigonometric functions,

this only occurs whenever j ≤ m, which justifies the restriction m∗ ≤ m. As it is

evident from (23), the quantiles from the corresponding distribution need to be sim-

ulated. In addition, β is typically unknown, so, in practice, a feasible strategy is to

compute the critical values for an estimated β. This is precisely the plug-in approach
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for obtaining critical values employed by McElroy and Politis (2012, 2013) in a related

setting.

Finally, we present below corresponding results for the fully feasible 	νm(	γ,	δ),
	ρm(	γ,	δ) and 	tm(	γ,	δ, 	ω1.2).
Theorem 6. Let Assumptions 1, 2 hold and m, m∗ be any nonnegative fixed num-

bers. Then, as n → ∞, results (20) and (23) apply for (	νm(	γ,	δ),	ρm(	γ,	δ))′ and

	tm(	γ,	δ, 	ω1.2), respectively.

Again, this result can be justified as part (ii) of Theorem 4, so its proof is omitted.

5 Monte Carlo evidence

We investigated the properties of the sampling distribution of test statistics 	tm(γ, δ, 	ω1.2)
and 	tm(	γ,	δ, 	ω1.2) and their approximation by the limit given in Theorems 5 and 6 by

means of a Monte Carlo exercise.

Setting m = m∗ throughout, we first illustrate some characteristics of this limit.

In particular, we reported in Table 1 the 95%, 97.5%, 99.5% quantiles (denoted as

α = 0.10, 0.05, 0.01, respectively) of the limit distribution for various values of m,

and β = 0.1+0.1k, k = 0, 1, ..., 19, so that β spanned 0.1 to 2. The limit distribution

was simulated using Gauss: we simulated the random variable distributed as in the

limit (23) by approximating integrals by summations of 10,000 steps, and using stan-

dard normally distributed random variates in the stochastic integrals, and we then

simulated the limit distribution by looking at the empirical distribution of 10,000

limit variates (for m = 1 we used 100,000 variates, because we observed a certain

instability in the upper 1% quantile as β was changed). There are two interesting

features to be noted. First, the fixed-m limit has thicker tails than the N (0, 1), this

being extremely notorious for the m = 1 case. Indeed, we found that tails are thicker

even when compared to the t2m distribution. However, as expected, the quantiles

tend to those of a N (0, 1) as m increases. Second, quantiles are relatively invariant

to β, which, given that in most practical situations β will be considered unknown,

favours heavily the application of the previously mentioned plug-in approach for ob-

taining critical values. We illustrate these facts in Figures 1 and 2, respectively: in

Figure 1 we compare the cumulative distributions of the limit in (23) for β = 0.4, 1, 2

to the N (0, 1) (Z) when m = 1, and in Figure 2 we set β = 1 and compare the

distributions for m = 1, 2, 5 to the standard normal. In particular, it is evident that

the limit distributions always shrink towards the N (0, 1) as m increases, that the

limit for m = 1 has a much bigger dispersion than for m > 1, and that the effect of
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β is very minor, to the point that three plots in Figure 1 seem to completely overlap.

Next, in Figures 3 to 6 we compare the sampling distribution of 	tm(γ, δ, 	ω1.2)
for n = 64, 256, 1024 with the corresponding fixed-m limit in four scenarios: Figure

3, m = 1, β = 0.4; Figure 4, m = 1, β = 1; Figure 5, m = 2, β = 1; Figure 6,

m = 3, β = 1. The sampling cumulative distributions have been computed from

10,000 repetitions of the test statistics 	tm(γ, δ, 	ω1.2) for the simulated DGP (1), (2)

with

u1t = φ1u1t−1 + η1t, u2t = φ2u2t−1 + η2t,

where

η1t = e1t, η2t =
θ#

θ2 + (1− θ)2
e1t +

1− θ#
θ2 + (1− θ)2

e2t

and et = (e1t, e2t)
′ is normally independently distributed with E (et) = 0, E (ete

′
t) =

I2. In particular we used γ = 0, δ = β, φ1 = 0.3, φ2 = 0.7, θ = 0.5, and ν = 1. Notice

that E (η21t) = 1, E (η22t) =
θ2

θ2+(1−θ)2
+ (1−θ)2

θ2+(1−θ)2
= 1 and E (η1tη2t) =

θ√
θ2+(1−θ)2

, so

this model can be casted in a way consistent with Assumption 1. With this DGP we

imposed a relevant degree of autocorrelation, especially in the explanatory variable,

as well as correlation between the error and the regressor in (1), that makes the

estimation of ρ very important. Notice also that at this stage we treat γ and δ (and

therefore β) as known, thus making the test statistic infeasible (except, perhaps, for

the γ = 0, δ = 1 case): we do so to distinguish the asymptotic properties of the

test statistic from the interference due to the estimation of γ and δ, but we will later

consider the feasible case of unknown γ and δ.

As expected, the empirical distribution of the test statistic is closer to the limit as

n increases, but, nicely, the limit provides an accurate approximation to the sampling

distribution of the test statistic even for n = 64. Comparing Figure 3 and Figure 4

more in detail, however, we can see that, especially for the n = 64 case, the sampling

distribution for β = 1 approximates the limit better than for the β = 0.4 case,

perhaps reflecting the faster rate of convergence of the estimate of ν in the former

case. Another noticeable feature arises from the comparison between Figures 4, 5

and 6: for given sample size, the sampling distribution is closest to the corresponding

limit distribution when m = 1, and most distant when m = 3, hinting at the fact

that inference based on estimates with larger bandwidth m may be more exposed to

size distortion. At least for the values of m considered in these three figures, however,

this seems to be a very minor effect.

In Figures 7 to 11 we provide corresponding results for the feasible statistic

	tm(	γ,	δ, 	ω1.2): in particular, for Figures 7 to 10 we consider the same values of β
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and m as in Figures 3 to 6, to study the effect of replacing the unknown β with

estimates; in Figure 11 we consider the larger bandwidth m = 10. Consistently with

the semiparametric nature of the test statistic, we computed 	γ,	δ as the local Whittle

estimates (initializing the numerical optimization taking the log-periodogram regres-

sion estimate as the starting value), with bandwidth set to ⌊n0.65⌋, as recommended

for example in Abadir, Distaso and Giraitis (2007). Typically, this bandwidth is much

larger than our choices for m, as for the estimates 	γ, 	δ we exploit a consistency argu-

ment in Theorem 6. Local Whittle and log-periodogram regression estimation require

prior knowledge of whether the series should be used in levels or in first differences

(or, for δ = 2, even in second differences): we took as known this piece of information,

but this is a mild assumption. Notice that while δ can be computed directly from

xt, series ∆−γ {u1t1(t > 0)} is not observable: we estimated u1t from residuals after

estimating ν by NBLS, with bandwidth set as m. Overall results are worse than in

the infeasible case, in the sense that, for the same β and m and sample size, the

distribution of the feasible statistic is more distant from the limit that the distribu-

tion of the infeasible one. However, again, results improve as n increases. Also, in

comparison to the infeasible situation, the improvement as β increases is much more

evident. This reflects the fact that the first stage estimate of ν (NBLS), which is

employed in the estimation of γ, has a better rate of convergence the larger is β.

Finally in Figure 12, we summarize a small investigation of local power: here

we focussed again on the infeasible β = 1 case, but we modified the DGP using

ν = (1 + c/n) for c taking values between 0 and 100, n = 512, and we tested the

incorrect null hypothesis H0 : {ν = 1}. For this exercise only, we set φ1 = 0, φ2 = 0

and θ = 0 in the DGP. We considered bandwidths m = 1, m = 2, m = 3 and

m = n/2, the latter mimicking the properties of OLS estimation. Notice that OLS is

in general inconsistent, but with this particular assumption on φ1 and θ it is actually

efficient, so the local power provides a benchmark, against which we can measure the

performance of bandwidths such as m = 1, m = 2 and m = 3. Consistently with

findings in the literature, the power in our exercise is increasing in m, but the power

loss when m = 2 or m = 3 is very small, which is certainly an encouraging result.

Having thus established that the limit distribution from Theorems 5 and 6 are

broadly a suitable approximation and a marked improvement on the standard normal,

and that this is also true for small bandwidths, including m=1, in the second part of

the Monte Carlo exercise we investigate more in detail the empirical size.

In Tables 2 to 5 we report the empirical sizes corresponding to nominal α = 0.05,
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α = 0.10, for m = 1, 2, 3, 5, 10, [
√
n], noting that for this last choice of m our theory

does not apply, and n = 64, 128, 256, 512, for the (correct) null hypothesis H0 : {ν =

1} vs. alternativeHA : {ν 	= 1}. Notice that for some cases withm = [
√
n] the critical

values are not reported in Table 1 (e.g., [
√
512] requires m = 22): we excluded these

from Table 1 for the benefit of the presentation but the appropriate critical values

were used even in those cases. We considered the same correlated DGP as in the

previous study, thus setting φ1 = 0.3, φ2 = 0.7, θ = 0.5; however, we expanded

the range of values of γ and δ, and considered (γ, δ) = (0.2, 0.4), (0, 0.4), (0.4, 1.2),

(0, 1), (0.4, 2). We therefore cover both cases with weak cointegration (β < 1/2)

and strong cointegration (with β > 1/2), including the familiar γ = 0, δ = 1 case:

the wide range of values for β is interesting, as we conjecture that the empirical size

will approximate the theoretical 5% level better for larger values of β, because the

faster rate of convergence of the first stage NBLS estimate of ν will result in less

contamination of the residuals from the correlation with the explanatory variable;

the two specifications when β < 1/2 are also interesting as the γ = 0, δ = 0.4 case

meets the condition γ + δ < 1/2 and will therefore allow a comparison with the test

statistic in Christensen and Nielsen (2006). Other combinations of (γ, δ) with the

same β as in the cases we include in the experiment led to almost identical results.

In each table we present the empirical sizes when critical values are obtained from

the fixed-m limit (denoted as F in the tables) or N (0, 1), for both the infeasible

statistic 	tm(γ, δ, 	ω1.2) and for the feasible statistic 	tm(	γ,	δ, 	ω1.2). We present results

for the 5% size in Tables 2 and 3, and for the 10% size in Tables 4 and 5, the infeasible

statistics being covered in Tables 2 and 4, and the feasible ones in Tables 3 and 5.

The size performance for the bandwidth m = 1 is impressive: for the infeasible

statistic 	tm(γ, δ, 	ω1.2) the empirical sizes are extremely close to the nominal ones

even in the smallest sample. Remarkably, although results slightly worsen, an almost

identical pattern is obtained for the feasible 	tm(	γ,	δ, 	ω1.2).
As it was anticipated, results deteriorate as m gets larger, especially when the

sample is smaller, when the cointegration gap β is small and when the feasible statistic

is considered. Thus, for example, the size properties are still very good when m = 2

and the infeasible statistic is considered, with only a very minor distortion for β=0.2

or β=0.4 and n=64, whereas for m = 10 results are more subject to size distortion,

especially in smaller samples or for small β. However, even for m = 10 we find that

for large enough n the size properties are good or acceptable, at least in the case of

the infeasible statistic, thus confirming that the limit in Theorem 5 provides a very

valuable guidance. On the other hand, inference based on the critical values from the
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N (0, 1) is heavily distorted. For obvious reasons, this effect is worse when m=1, and

it is somehow mitigated as m increases, but the fixed-m inference is superior even for

the largest bandwidth.

The last case we consider is the study of the size when the bandwidth rule

m = [
√
n] is adopted. This case is particularly of interest as it seems closer to

the spirit of the bandwidth choice in Hualde and Robinson (2006): here too we find

that the critical values assuming the fixed-m limit provide better size than assuming

standard asymptotics, although in this case we still find size distortion even in the

largest samples. This finding supports the widespread conclusion that fixed smoothing

asymptotics systematically help improving size when compared to standard asymp-

totics.

Overall, the outcome of this Monte Carlo exercise is consistent with the two main

results that are commonly found in similar studies, namely, that the critical values

from the simulation of Theorem 5 help correcting size for any bandwidth choice, and

that there is a trade-off between size and power, as the best size is obtained choosing

small bandwidths, but the best power would require larger bandwidths (as it is evident

from Figure 12). Also, as m increases, the large-m limiting theory is favoured and

this is clearly reflected in our results. However, using fixed-m critical values always

lead to a better size performance. Both approaches (large-m and fixed-m) seem to be

equally affected by the distortion due to estimating γ, δ, although, in view of (16),

this effect was clearly expected just for the large-m theory, especially for small β.

We complement our Monte Carlo exercise with a comparison with another semi-

parametric method, that allows for inference on ν using the NBLS estimate 	νm. Under
the additional assumption that Ω is block diagonal, Christensen and Nielsen (2006)

established that, when γ + δ < 1/2,

√
mλm

γ−δ(	νm − ν)→d N

�
0,

ω11(1− 2δ)2

2ω22(1− 2δ − 2γ)

�
,

which naturally leads to the test statistic

�tm(γ, δ, 	ω11, 	ω22) =
√
mλm

γ−δ

� 	ω11(1− 2δ)2

2	ω22(1− 2δ − 2γ)

�−1/2
(	νm − ν),

for appropriate estimates 	ω11, 	ω2, of ω11, ω22, respectively. In comparison to the

inferential approach based on 	tm(γ, δ, 	ω1.2), using �tm(γ, δ, 	ω11, 	ω22) may be appealing

as it is based on the simpler estimator 	νm, but it has the cost of exposing the inference
to the risk of having in fact non-zero ρ.
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We then compare the performances of the two statistics by looking again at size

and including now more evidence about power behaviour, for the case γ = 0, δ = 0.4.

Parameters ω11 and ω22 are estimated averaging at low frequencies the periodograms

of the NBLS residuals and of ∆δxt, respectively, with bandwidth set at [n0.65]. The

inference is still infeasible in the sense that we do not estimate γ and δ and consider

�tm(γ, δ, 	ω11, 	ω22) and 	tm(γ, δ, 	ω1.2) instead, but this avoids the problem of dealing

with estimates of δ + γ exceeding 1/2, which would be problematic for the statistic

�tm(γ, δ, 	ω11, 	ω22). Christensen and Nielsen (2006) do not give a bandwidth rule, but

in their empirical example they use bandwidths spanning m = 3 to m = 15 for

n = 417 and in general recommend to choose low values for m, see page 360: with a

bandwidth rulem = [na], the choicem = 15 corresponds to a = ln(15)/ln(417) ≈ 0.45

so, considering also the advise to lean towards low values for m, we take m = [n0.4].

For the test based on the 	tm(γ, δ, 	ω1.2) we take m=3 and m=10: the former choice

should have better size properties when Ω is not block diagonal, whereas the latter

could have better power.

For the size study, we take samples of n=64, 128, 256 and 512, and we consider

three DGPs, denoted as DGP I, DGP II and DGP III: for DGP I we assume no

dependence and no correlation between xt and u1t, thus setting φ1 = 0, φ2 = 0,

and θ = 0; for DGP II we imposed dependence but no correlation, thus setting

φ1 = 0.3, φ2 = 0.7, θ = 0, and for DGP III we also restored correlation by in-

troducing θ = 0.5. For each combination of DGP’s and sample size we repeat the

experiment 10,000 times. Results for the size study are reported in Table 6, where the

empirical size for �tm(γ, δ, 	ω11, 	ω22) is summarized in columns with heading CN, and

that for 	tm(γ, δ, 	ω1.2) (with fixed-m asymptotics) appears in columns with heading

F. The most noticeable finding from Table 6 is that, as expected, the size for the

�tm(γ, δ, 	ω11, 	ω22) statistic is heavily distorted in presence of endogeneity, the empiri-

cal size spuriously increasing towards 1 as the sample gets bigger: Christensen and

Nielsen (2006) required that Ω is block diagonal, and Nielsen and Frederiksen (2011)

showed that, otherwise, the NBLS estimate 	νm is subject to a lower order bias, which

is therefore responsible for this spurious significance. More worrying still, perhaps, is

the fact that, even when endogeneity is not a problem (as it is the case for DGP I

and DGP II), the test based on the �tm(γ, δ, 	ω11, 	ω22) statistic is still subject to size

distortion: admittedly, this is reducing as the sample size is increased, but it remains

relevant even in the largest sample (n=512). On the other hand, the presence of weak

autocorrelation in the explanatory variables or in the unobserved component does not

have a strong adverse effect on size. In comparison, fixed-m critical values coupled
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with the 	tm(γ, δ, 	ω1.2) statistic always yield better (or even much better) empirical

size, the only evidence of some size distortion being when the largest bandwidth

(m=10) and some endogeneity affects the data, as in DGP III. Even then, however,

the size is broadly correct in the largest sample.

For the power study, we consider DGP I, testing as before H0 : {ν = 1} when in

fact in the DGP we used ν = 1 + c/n for various values of c and n=512. In view

of the size distortion of �tm(γ, δ, 	ω11, 	ω22), we used the size-adjusted power for the

test using this statistic. Also, to facilitate comparison between �tm(γ, δ, 	ω11, 	ω22) and
	tm(γ, δ, 	ω1.2), in this part of the experiment we used the same bandwidth, and we

set m=10. Results are given in Table 7, where we also display the power for a third

statistic,

�τn =




n/2�

j=0

cjIxx (λj)



1/2

(	ω11)−1(	νn − 1)

which is the standardized OLS estimate. Unlike with �tm(γ, δ, 	ω11, 	ω22), the power

results for 	tm(γ, δ, 	ω1.2) or �τn were not size-adjusted: in both cases the 5% empir-

ical size was approximately correct (for �τn it was 0.0501), so there was no need of

size-adjusting. Not surprisingly, given that ρ = 0 is imposed, the statistic based on

OLS displays the highest power. Also, �tm(γ, δ, 	ω11, 	ω22) displays more power than

	tm(γ, δ, 	ω1.2), so, given that both test statistics use the same bandwidth and consid-

ering that �tm(γ, δ, 	ω11, 	ω22) is size corrected, the superior power performance of the

this test is not spurious and it is not due to a different bandwidth choice.

6 Conclusions

The main contribution of the paper is to present three limiting results involving frac-

tionally cointegrated processes where the bandwidth, unlike in the traditional limiting

theory, is kept fixed. First we derived the fixed-m limit of the NBLS estimator. As

with the more traditional large-m theory, this limit is, in general, not useful to carry

out standard inference. Thus we next derive the “partial” fixed-m limiting theory

for a full system GLS-type version of the NBLS estimator which removes the endo-

geneity bias. This theory is called “partial” in the sense that it relies on consistency

arguments for the estimators of nuisance parameters.

Finally, we discussed the more “complete” fixed-m limiting theory for that estima-

tor, in the sense that fixed-m arguments were used for the estimators of the short run

component of the model (ρ, ω1.2), therefore without relying on consistency arguments
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and taking into account the inherent randomness of the estimators of (ρ, ω1.2) in the

asymptotic distribution. Note however that our “complete” theory relies on consis-

tency of the estimators of the integration orders, which seems unavoidable. Nicely,

our Monte Carlo evidence suggests that the fixed-m limiting theory leads to a much

more accurate approximation to the sampling distribution of the discussed estimators

and test statistics.

APPENDIX

Proof of Theorem 1

The proof follows from almost identical arguments to those in the proof of Lemma

1 of Hualde and Iacone (2017) with the main difference that now the fractional in-

variance principle of Hosoya (2005) needs to be employed. This just implies that the

Type 2 (instead of the Type 1) fractional Brownian motion characterizes the limit in

(6).

Proof of Corollary 1

Given the mixed normality of the limit in (12), the result follows by showing that

the conditional variance of Nm (Ω, β) (given S (r; β + 1)) is Dm (Ω, β). For m = 0 the

proof is immediate. Next, for m > 0, first note that for any j = 1, ...,m,

1�
0

r cos (2πjr) dr = 0,
1�
0

r sin (2πjr) dr = − (2πj)−1 ,

so

1�
0

sin (2πjs)A (1) 	B (s) ds =
1�
0

sin (2πjs)A (1)B (s) ds+
1

2πj
A (1)B (1) , (24)

1�
0

cos (2πjs)A (1) 	B (s) ds =
1�
0

cos (2πjs)A (1)B (s) ds. (25)

Next, by integration by parts

1�
0

sin (2πjs)A (1)B (s) ds = −A (1)
1�
0

1

2πj
(1− cos (2πjs)) dB (s)

= − 1

2πj
A (1)B (1) +A (1)

1�
0

1

2πj
cos (2πjs) dB (s) ,

(26)
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so noting (24)

1�
0

sin (2πjs)A (1) 	B (s) ds = A (1)
1�
0

1

2πj
cos (2πjs) dB (s) .

Similarly, noting (25) and using integration by parts

1�
0

cos (2πjs)A (1) 	B (s) ds = −A (1)
1�
0

1

2πj
sin (2πjs) dB (s) . (27)

Thus

Nm (Ω, β) = ζ ′Ω−1


S (1; β + 1)A (1)

1�
0

dB (r) + 2
m�
j=1

2πj

×
�
1�
0

sin (2πjr) 	S (r; β + 1) drA (1)
1�
0

cos (2πjs) dB (s)

−
1�
0

cos (2πjr) 	S (r; β + 1) drA (1)
1�
0

sin (2πjs) dB (s)

��
.

Then noting that for any integer j, k ≥ 1,

1�
0

cos (2πjr) dr =
1�
0

sin (2πjr) dr =
1�
0

cos (2πjr) sin (2πkr) dr = 0, (28)

whereas for any j 	= k,

1�
0

cos (2πjr) cos (2πkr) dr =
1�
0

sin (2πjr) sin (2πkr) dr = 0, (29)

the conditional variance of Nm (Ω, β) (given S (r;β + 1)) is

ζ ′Ω−1ζ


S2 (1;β + 1) + 4

m�
j=1

(2πj)2
�
1�
0

sin (2πjr) 	S (r; β + 1) dr

�2 1�
0

cos2 (2πjr) dr

+ 4
m�
j=1

(2πj)2
�
1�
0

cos (2πjr) 	S (r;β + 1) dr

�2 1�
0

sin2 (2πjr) dr

�
,

which equals Dm (Ω, β) because for any j = 1, ...,m,

1�
0

cos2 (2πjr) dr =
1�
0

sin2 (2πjr) dr =
1

2
. (30)
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Proof of Theorem 3

Part (i) can be justified as in Hualde and Robinson (2010), noting that their

arguments also hold under our slightly milder Assumption 1. Next, noting that for

i = 1, 2,
�t

s=1
uis (c) = uit (c− 1), part (ii) follows by our Theorem 2 and Lemma

C.5 of Robinson and Hualde (2003).

Proof of Theorem 4

Noting that

�
	νm (γ, δ)− ν

	ρm (γ, δ)− ρ

�
=

�
Re


m�

j=0

cjIr(γ,δ)(λj)

��−1
Re


m�

j=0

cjIr(γ,δ)u1.2(λj)

�
,

(20) follows from identical arguments as those in the proof of Theorem 2 applying

summation by parts twice as in (26), (27).

Proof of Corollary 3

The result follows immediately by showing that

1�

0

φm (r; Ω, β)φ′m (r; Ω, β) dr = Φm (Ω, β) , (31)

but this can be easily justified using results (28)-(30).

Proof of Theorem 5

Considering the second equality in (22), the convergence of the numerator of

	tm(γ, δ, ω1.2) to Z follows by Corollary 3. Next,

	ω1.2 =
1

2m∗ + 1

m∗�

j=0

cj



�

1

n1/2

n�

t=1

�u1.2t cos (λjt)
�2

+

�
1

n1/2

n�

t=1

�u1.2t sin (λjt)
�2
 ,

where

�u1.2t = u1.2t − (	νm (γ, δ)− ν,	ρm (γ, δ)− ρ) rt (γ, δ) .

By Theorem 3 and using identical arguments as in the proof of Theorem 2 and

Corollary 1, it is straightforward to show that for any j = 1, ...,m∗,

1

n1/2

n�

t=1

�u1.2t →d l(1) (Ω, β) , (32)

1

n1/2

n�

t=1

�u1.2t cos (λjt)→d l
(2)
j (Ω, β) , (33)
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1

n1/2

n�

t=1

�u1.2t sin (λjt)→d l
(3)
j (Ω, β) , (34)

where

l(1) (Ω, β) =

1�

0

dE (r)− F ′ (1; β + 1)Φ−1m (Ω, β)

1�

0

φm (r; Ω, β) dE (r) ,

l
(2)
j (Ω, β) = −

1�

0

cos (2πjr) dE (r) + 2πj	Φ′sin (j) Φ−1m (Ω, β)

1�

0

φm (r; Ω, β) dE (r) ,

l
(3)
j (Ω, β) = −

1�

0

sin (2πjr) dE (r)− 2πj	Φ′cos (j)Φ−1m (Ω, β)

1�

0

φm (r; Ω, β) dE (r) .

Then, noting that E (r) and F (r; β + 1) are independent processes, by the continuous

mapping theorem

	ω1.2 →d
ω1.2

2m∗ + 1

m∗�

j=0

cjΞj (β) . (35)

Finally we justify the independence between the numerator and denominator of (23).

Clearly the limit in (35) is a functional of the limits in (32)-(34). We first show

that the conditional variance (given F (r;β + 1)), say CovF (·, ·), between the limit

of nβ (	νm (γ, δ)− ν) and each of the limits in (32)-(34) is zero for j ≤ m.

First, using (28) and (31),

CovF


l(1) (Ω, β) , ζ ′Φ−1m (Ω, β)

1�

0

φm (r; Ω, β) dE (r)




= ω1.2




1�

0

φ′m (r; Ω, β) dr − F ′ (1; β + 1)


Φ−1m (Ω, β) ζ = 0.
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Next,

CovF


l

(2)
j (Ω, β) , ζ ′Φ−1m (Ω, β)

1�

0

φm (r; Ω, β) dE (r)




= ω1.2


−

1�

0

φ′m (r; Ω, β) cos (2πjr) dr + 2πj	Φ′sin (j)


Φ−1m (Ω, β) ζ

= ω1.2


−2

m�
k=1

2πk

1�

0

�
	Φ′sin (k) cos (2πkr)− 	Φ′cos (k) sin (2πkr)

�
cos (2πjr) dr

+ 2πj	Φ′sin (j)
�
Φ−1m (Ω, β) ζ

= ω1.2
�
−2πj	Φ′sin (j) + 2πj	Φ′sin (j)

�
Φ−1m (Ω, β) ζ = 0, (36)

by (28)-(30), where the two last equalities in (36) are true just if j ≤ m. Similarly

CovF


l

(3)
j (Ω, β) , ζ ′Φ−1m (Ω, β)

1�

0

φm (r; Ω, β) dE (r)




= ω1.2


−

1�

0

φ′m (r; Ω, β) sin (2πjr) dr − 2πj	Φ′cos (j)


Φ−1m (Ω, β) ζ = 0,

as in the proof of (36).

Then, by Gaussianity, the conditional uncorrelation becomes conditional indepen-

dence and given that Z does not depend on F (r; β + 1), the limits of 	tm(γ, δ, ω1.2)
and 	ω1.2 are unconditionally independent, to conclude the proof of the theorem.
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TABLE 1. CRITICAL VALUES FOR m = m∗

β α\m 1 2 3 4 5 6 8 10 15 20 30 40
0.10 11.16 3.03 2.38 2.14 2.02 1.96 1.86 1.82 1.76 1.73 1.69 1.68

0.1 0.05 22.28 4.10 3.06 2.69 2.52 2.39 2.27 2.20 2.12 2.07 2.04 2.02
0.01 109.3 7.48 4.92 4.07 3.71 3.50 3.21 3.04 2.86 2.79 2.71 2.67
0.10 11.17 3.04 2.37 2.14 2.02 1.95 1.87 1.82 1.76 1.73 1.69 1.68

0.2 0.05 22.37 4.09 3.07 2.69 2.52 2.39 2.28 2.21 2.12 2.07 2.04 2.02
0.01 112.0 7.61 4.89 4.10 3.71 3.49 3.23 3.05 2.85 2.79 2.71 2.67
0.10 11.17 3.03 2.37 2.13 2.02 1.95 1.87 1.82 1.76 1.73 1.69 1.68

0.3 0.05 22.25 4.06 3.06 2.69 2.51 2.39 2.28 2.20 2.12 2.07 2.04 2.02
0.01 112.1 7.59 4.86 4.13 3.71 3.49 3.23 3.05 2.86 2.79 2.71 2.68
0.10 11.13 3.04 2.37 2.13 2.02 1.95 1.87 1.82 1.76 1.73 1.69 1.68

0.4 0.05 22.44 4.05 3.07 2.70 2.51 2.39 2.28 2.20 2.12 2.07 2.04 2.02
0.01 113.4 7.73 4.84 4.14 3.70 3.49 3.25 3.05 2.86 2.80 2.71 2.68
0.10 11.05 3.05 2.37 2.14 2.02 1.95 1.86 1.81 1.76 1.73 1.69 1.68

0.5 0.05 22.44 4.05 3.07 2.69 2.51 2.40 2.28 2.20 2.12 2.08 2.04 2.02
0.01 113.3 7.65 4.81 4.13 3.68 3.50 3.25 3.06 2.86 2.80 2.71 2.68
0.10 11.10 3.05 2.36 2.14 2.02 1.95 1.86 1.81 1.76 1.73 1.69 1.68

0.6 0.05 22.51 4.05 3.07 2.70 2.51 2.41 2.28 2.20 2.13 2.07 2.04 2.02
0.01 110.5 7.59 4.80 4.12 3.66 3.51 3.25 3.07 2.86 2.80 2.71 2.68
0.10 11.24 3.04 2.36 2.14 2.02 1.95 1.86 1.81 1.76 1.73 1.69 1.67

0.7 0.05 22.78 4.03 3.06 2.70 2.51 2.40 2.27 2.21 2.12 2.07 2.03 2.02
0.01 114.2 7.51 4.80 4.07 3.64 3.50 3.25 3.06 2.86 2.79 2.72 2.67
0.10 11.16 3.05 2.36 2.13 2.02 1.95 1.87 1.81 1.76 1.73 1.69 1.67

0.8 0.05 22.59 4.04 3.07 2.71 2.52 2.41 2.28 2.21 2.12 2.07 2.03 2.02
0.01 111.9 7.39 4.81 4.10 3.66 3.50 3.24 3.06 2.87 2.80 2.72 2.66
0.10 11.26 3.05 2.36 2.13 2.02 1.95 1.87 1.81 1.75 1.73 1.69 1.67

0.9 0.05 22.65 4.05 3.05 2.71 2.52 2.41 2.27 2.20 2.12 2.07 2.03 2.02
0.01 112.6 7.57 4.82 4.07 3.65 3.48 3.26 3.06 2.87 2.80 2.72 2.67
0.10 11.26 3.04 2.35 2.13 2.02 1.95 1.87 1.82 1.76 1.73 1.69 1.67

1 0.05 22.42 4.04 3.06 2.71 2.52 2.41 2.27 2.20 2.12 2.07 2.03 2.02
0.01 116.2 7.57 4.83 4.06 3.65 3.47 3.25 3.06 2.86 2.80 2.72 2.67
0.10 11.19 3.04 2.35 2.13 2.02 1.95 1.87 1.82 1.76 1.73 1.69 1.67

1.1 0.05 22.02 4.05 3.05 2.70 2.53 2.41 2.27 2.20 2.12 2.06 2.04 2.02
0.01 112.2 7.52 4.85 4.11 3.66 3.47 3.26 3.05 2.86 2.80 2.72 2.67
0.10 11.11 3.04 2.36 2.12 2.02 1.95 1.87 1.82 1.75 1.73 1.69 1.67

1.2 0.05 22.45 4.09 3.04 2.71 2.52 2.41 2.27 2.20 2.12 2.07 2.04 2.02
0.01 111.4 7.69 4.95 4.12 3.67 3.46 3.26 3.07 2.86 2.80 2.72 2.66
0.10 11.12 3.03 2.36 2.13 2.02 1.95 1.87 1.83 1.75 1.73 1.69 1.67

1.3 0.05 22.22 4.10 3.04 2.71 2.53 2.42 2.27 2.20 2.12 2.07 2.04 2.02
0.01 112.9 7.71 4.97 4.13 3.70 3.47 3.26 3.06 2.86 2.80 2.72 2.67
0.10 11.12 3.02 2.36 2.13 2.02 1.95 1.87 1.82 1.75 1.73 1.70 1.67

1.4 0.05 22.12 4.07 3.04 2.71 2.53 2.41 2.28 2.21 2.11 2.07 2.04 2.02
0.01 113.4 7.78 5.01 4.12 3.67 3.47 3.24 3.06 2.86 2.80 2.71 2.67
0.10 11.00 3.02 2.37 2.13 2.02 1.95 1.87 1.82 1.75 1.73 1.69 1.67

1.5 0.05 21.81 4.04 3.05 2.71 2.53 2.42 2.27 2.21 2.12 2.07 2.04 2.02
0.01 110.1 7.74 5.09 4.15 3.68 3.46 3.24 3.05 2.86 2.80 2.71 2.67
0.10 11.00 3.01 2.37 2.14 2.02 1.95 1.87 1.82 1.75 1.73 1.69 1.67

1.6 0.05 22.10 4.03 3.06 2.71 2.53 2.41 2.27 2.21 2.12 2.07 2.04 2.02
0.01 112.4 7.82 5.09 4.13 3.69 3.45 3.23 3.05 2.86 2.81 2.71 2.66
0.10 11.01 3.00 2.37 2.14 2.02 1.95 1.87 1.82 1.75 1.73 1.69 1.67

1.7 0.05 22.26 4.02 3.05 2.71 2.54 2.41 2.27 2.21 2.12 2.08 2.04 2.02
0.01 113.4 7.82 5.15 4.11 3.71 3.44 3.23 3.05 2.86 2.81 2.71 2.66
0.10 11.13 3.00 2.37 2.14 2.03 1.95 1.87 1.82 1.75 1.73 1.69 1.68

1.8 0.05 22.60 4.05 3.05 2.70 2.53 2.40 2.27 2.22 2.12 2.08 2.04 2.02
0.01 117.2 7.94 5.10 4.10 3.67 3.42 3.24 3.05 2.86 2.81 2.71 2.67
0.10 11.10 3.00 2.37 2.14 2.03 1.95 1.87 1.82 1.75 1.73 1.69 1.68

1.9 0.05 22.71 4.04 3.05 2.71 2.53 2.40 2.27 2.22 2.12 2.08 2.04 2.02
0.01 121.4 7.92 5.01 4.10 3.68 3.43 3.23 3.04 2.86 2.81 2.71 2.67
0.10 11.05 3.01 2.37 2.14 2.03 1.95 1.87 1.82 1.75 1.73 1.69 1.67

2 0.05 22.56 4.06 3.06 2.71 2.53 2.41 2.27 2.22 2.12 2.07 2.04 2.02
0.01 115.7 7.89 4.94 4.09 3.65 3.42 3.21 3.04 2.86 2.81 2.71 2.67
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TABLE 2. 5% EMPIRICAL SIZES OF 	tm(γ, δ, 	ω1.2)
m

1 2 3 5 10
√
n

γ δ n F N F N F N F N F N F N
0.2 0.4 64 .047 .460 .061 .252 .072 .212 .122 .227 .279 .355 .215 .296

128 .049 .462 .053 .235 .057 .180 .079 .161 .189 .256 .219 .283
256 .050 .460 .050 .224 .049 .164 .059 .127 .112 .157 .218 .263
512 .048 .456 .052 .234 .052 .165 .054 .115 .064 .101 .204 .220

0.0 0.4 64 .049 .459 .060 .253 .068 .202 .105 .200 .221 .286 .170 .244
128 .048 .460 .053 .232 .056 .174 .071 .147 .148 .201 .164 .217
256 .046 .461 .052 .222 .049 .163 .059 .122 .097 .135 .166 .197
512 .052 .456 .053 .233 .052 .163 .054 .114 .062 .095 .154 .165

0.4 1.2 64 .050 .461 .055 .238 .057 .179 .073 .154 .123 .173 .102 .159
128 .052 .459 .053 .225 .051 .166 .060 .126 .084 .122 .091 .127
256 .048 .462 .053 .224 .048 .160 .052 .115 .064 .098 .086 .110
512 .047 .457 .054 .230 .050 .164 .050 .112 .055 .087 .080 .088

0.0 1.0 64 .051 .463 .054 .235 .052 .171 .063 .137 .095 .136 .083 .128
128 .050 .455 .052 .225 .051 .160 .055 .119 .066 .098 .068 .097
256 .050 .463 .050 .221 .048 .161 .051 .113 .056 .086 .064 .085
512 .045 .458 .054 .228 .051 .163 .049 .109 .053 .080 .064 .072

0.4 2.0 64 .050 .460 .052 .222 .046 .155 .046 .107 .056 .087 .052 .089
128 .050 .458 .049 .220 .044 .152 .045 .103 .044 .070 .046 .068
256 .049 .457 .050 .219 .049 .151 .045 .104 .044 .068 .042 .056
512 .050 .454 .052 .226 .047 .158 .047 .107 .047 .076 .050 .056

TABLE 3. 5% EMPIRICAL SIZES OF 	tm(	γ,	δ, 	ω1.2)
m

1 2 3 5 10
√
n

γ δ n F N F N F N F N F N F N
0.2 0.4 64 .072 .570 .160 .421 .211 .388 .274 .380 .340 .393 .319 .384

128 .069 .562 .162 .424 .223 .403 .299 .410 .367 .419 .374 .416
256 .068 .555 .142 .411 .207 .401 .306 .429 .399 .457 .426 .460
512 .064 .529 .124 .374 .178 .360 .274 .394 .402 .460 .483 .499

0.0 0.4 64 .067 .554 .138 .392 .176 .348 .226 .331 .281 .331 .266 .327
128 .064 .549 .136 .394 .187 .363 .247 .360 .308 .362 .312 .357
256 .062 .540 .126 .381 .177 .364 .252 .377 .334 .393 .358 .396
512 .063 .520 .112 .356 .151 .331 .223 .343 .333 .393 .406 .421

0.4 1.2 64 .059 .510 .091 .310 .109 .253 .132 .216 .160 .203 .150 .203
128 .057 .502 .087 .309 .112 .260 .134 .225 .159 .205 .162 .204
256 .053 .501 .083 .303 .105 .257 .133 .229 .167 .216 .174 .204
512 .053 .490 .081 .288 .095 .240 .119 .209 .153 .201 .182 .194

0.0 1.0 64 .052 .487 .074 .272 .083 .210 .098 .172 .121 .156 .115 .158
128 .051 .481 .070 .273 .083 .213 .095 .171 .113 .150 .117 .148
256 .056 .487 .073 .274 .084 .216 .098 .179 .115 .155 .119 .145
512 .051 .479 .069 .268 .078 .212 .091 .171 .111 .149 .124 .135

0.4 2.0 64 .043 .432 .054 .210 .062 .155 .071 .124 .089 .116 .084 .117
128 .045 .434 .047 .211 .053 .151 .060 .117 .071 .097 .075 .098
256 .047 .445 .049 .215 .053 .151 .056 .109 .063 .089 .070 .084
512 .047 .450 .056 .228 .052 .158 .051 .113 .059 .087 .074 .081
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TABLE 4. 10% EMPIRICAL SIZES OF 	tm(γ, δ, 	ω1.2)
m

1 2 3 5 10
√
n

γ δ n F N F N F N F N F N F N
0.2 0.4 64 .096 .517 .116 .323 .144 .283 .215 .311 .400 .461 .324 .400

128 .098 .518 .104 .301 .115 .246 .149 .232 .297 .355 .332 .382
256 .099 .517 .097 .290 .104 .227 .118 .195 .189 .235 .328 .366
512 .097 .512 .103 .298 .106 .231 .106 .178 .130 .170 .311 .325

0.0 0.4 64 .097 .515 .114 .316 .135 .272 .187 .281 .328 .385 .269 .339
128 .097 .515 .105 .297 .114 .241 .137 .217 .239 .293 .266 .313
256 .096 .517 .101 .289 .103 .225 .113 .187 .163 .206 .258 .291
512 .099 .515 .103 .299 .106 .229 .105 .176 .119 .161 .244 .254

0.4 1.2 64 .100 .517 .107 .304 .116 .248 .141 .227 .209 .256 .179 .237
128 .103 .514 .100 .293 .109 .230 .117 .190 .154 .194 .159 .200
256 .097 .518 .099 .288 .102 .221 .106 .178 .124 .160 .151 .172
512 .096 .512 .104 .293 .107 .227 .102 .175 .111 .145 .146 .153

0.0 1.0 64 .098 .516 .104 .302 .113 .238 .126 .205 .167 .213 .147 .205
128 .098 .515 .099 .291 .107 .226 .109 .176 .123 .161 .127 .161
256 .099 .515 .098 .291 .102 .219 .103 .174 .110 .145 .120 .140
512 .095 .512 .104 .293 .104 .227 .099 .173 .103 .139 .121 .127

0.4 2.0 64 .099 .516 .099 .286 .097 .217 .098 .169 .109 .144 .101 .146
128 .099 .512 .097 .284 .097 .220 .094 .164 .091 .123 .091 .120
256 .101 .516 .095 .289 .097 .216 .095 .163 .087 .121 .088 .106
512 .101 .512 .099 .292 .099 .222 .099 .174 .096 .130 .104 .109

TABLE 5. 10% EMPIRICAL SIZES OF 	tm(	γ,	δ, 	ω1.2)
m

1 2 3 5 10
√
n

γ δ n F N F N F N F N F N F N
0.2 0.4 64 .139 .622 .247 .487 .309 .458 .367 .457 .430 .470 .405 .458

128 .135 .616 .253 .495 .323 .481 .397 .486 .452 .493 .455 .491
256 .132 .609 .234 .489 .317 .480 .416 .508 .493 .537 .508 .536
512 .126 .585 .205 .448 .277 .440 .380 .475 .498 .542 .560 .568

0.0 0.4 64 .131 .609 .221 .460 .273 .424 .318 .408 .365 .410 .347 .406
128 .125 .602 .224 .465 .286 .442 .345 .442 .395 .439 .399 .437
256 .128 .599 .209 .455 .282 .443 .361 .462 .435 .481 .448 .480
512 .123 .577 .188 .424 .248 .407 .329 .428 .433 .479 .494 .504

0.4 1.2 64 .119 .563 .161 .380 .188 .328 .203 .292 .232 .272 .221 .273
128 .111 .559 .158 .381 .190 .335 .212 .304 .235 .277 .237 .276
256 .113 .556 .151 .375 .186 .334 .218 .309 .246 .293 .254 .280
512 .107 .545 .143 .358 .168 .314 .196 .287 .239 .286 .267 .275

0.0 1.0 64 .108 .539 .134 .340 .151 .279 .163 .236 .181 .221 .173 .220
128 .102 .534 .133 .338 .152 .285 .163 .242 .176 .214 .177 .211
256 .112 .544 .132 .342 .150 .290 .165 .251 .182 .226 .189 .208
512 .101 .531 .130 .335 .146 .279 .161 .241 .175 .219 .196 .203

0.4 2.0 64 .092 .487 .102 .269 .109 .207 .115 .177 .133 .162 .129 .161
128 .091 .488 .094 .268 .104 .206 .108 .167 .117 .145 .121 .144
256 .095 .499 .098 .277 .102 .209 .101 .164 .107 .140 .118 .136
512 .096 .504 .104 .288 .101 .221 .104 .172 .107 .141 .125 .132
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TABLE 6. 5% EMPIRICAL SIZES OF �tm(γ, δ, 	ω11, 	ω22) AND 	tm(γ, δ, 	ω1.2)
n CN (m = ⌊n0.4⌋) F (m = 3) F (m = 10)

I II III I II III I II III
64 .172 .230 .527 .046 .045 .068 .046 .060 .221
128 .165 .187 .604 .046 .049 .056 .049 .050 .148
256 .151 .161 .761 .047 .048 .049 .049 .053 .097
512 .139 .143 .867 .050 .051 .052 .049 .049 .060

TABLE 7. 5% EMPIRICAL POWER OF �τn, �tm(γ, δ, 	ω11, 	ω22) AND 	tm(γ, δ, 	ω1.2)
c 0 20 50 100 150 200 300 500
�τn 0.05 0.22 0.81 1.00 1.00 1.00 1.00 1.00

�tm(γ, δ, 	ω11, 	ω22) (m=10) 0.05 0.09 0.34 0.91 1.00 1.00 1.00 1.00
	tm(γ, δ, 	ω1.2) (m=10) 0.05 0.07 0.20 0.57 0.85 0.96 1.00 1.00
	tm(γ, δ, 	ω1.2) (m=3) 0.05 0.06 0.10 0.28 0.51 0.69 0.90 0.99
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