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Abstract 21 

 22 

Measuring population changes and trends is essential to identify threatened species, and is 23 

requested by several environmental regulations (e.g. European Habitat Directive). However, 24 

obtaining this information for small and cryptic animals is challenging, and requires complex, 25 

broad scale monitoring schemes. How should we allocate the limited resources available for 26 

monitoring, to maximize the probability of detecting declines? The analysis of simulated data 27 

can help to identify the performance of monitoring scenarios across species with different 28 

features. We simulated data of populations with a wide range of abundance, detection 29 

probability and rate of decline, and tested under which circumstances open-population N-30 

mixture models can successfully detect the decline of populations. We tested multiple 31 

monitoring strategies, to identify the ones having the highest probability of detecting declines. 32 

If 30 sites are surveyed, strong declines (≥30%) can be successfully spotted for nearly all the 33 

simulated species, except the species with lowest abundance and detection probability. 34 

Weaker declines are successfully identified only in species that are easy to detect and have 35 

high abundance. Increasing the number of sites quickly increases model power, but hundreds 36 

of sites would require monitoring to measure trends of the least detectable species. For most 37 

of species, performance of monitoring was improved by: surveying many sites with a few 38 

replicates per site; surveying many small sites instead of a few large sites; combining data 39 

from sites monitored for multiple species. Our findings show that one single monitoring 40 

approach cannot be appropriate for all the species, and that surveying efforts should be 41 

modulated across them, according to their detection probabilities and abundances. We provide 42 

quantitative values on how the number of surveys and the number of sites to be surveyed can 43 

be assigned to different species, and emphasize the need of planning to maximize the 44 

performance of monitoring. 45 
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Introduction 50 

 51 

The detection and quantification of trends in species abundance (e.g. declines or increases) is 52 

essential to ascertain conservation status, to identify threatened species, and to assess the 53 

effectiveness of conservation strategies (Yoccoz, Nichols & Boulinier, 2001; Reynolds, 54 

Thompson & Russell, 2011). For instance, in IUCN redlists, quantitative measures of decline 55 

are essential to qualify a species as threatened under criterion A, and under several other sub-56 

criteria (IUCN, 2001). Measuring trends of protected species is also a major commitment 57 

requested by environmental regulations. The EU Habitats Directive (Directive 92/43/EEC) is 58 

perhaps the most important tool for biodiversity conservation in Europe, as it protects >1200 59 

species and their habitats. The Directive requires that, every six years, Member States shall 60 

draw up a report on the conservation status of listed species, including measures of trends of 61 

populations, to evaluate the efficiency of protection measures undertaken. Trends of species’ 62 

ranges, as well as habitat extent changes, can be estimated by remote-sensing data (Tracewski 63 

et al., 2016), but remote-sensing cannot capture the effect of local pressures determining the 64 

decline of populations (e.g. diseases, disturbance, exploitation, modification of 65 

microhabitats…), nor provide data on population changes (changes in the number of 66 

populations or in the number of individuals per population). 67 

Obtaining quantitative measures of species trends over broad areas is challenging, as it 68 

generally requires repeated surveys of many sites covering significant portions of species’ 69 

ranges. Volunteers can provide data at low cost, thus helping the measurement of the trends of 70 

widespread species living in easily accessible regions (Kéry et al., 2009; Bonardi et al., 2011; 71 

Sewell et al., 2012; Griffiths et al., 2015; Petrovan & Schmidt, 2016). However, there are 72 

cases in which volunteer data are not available, particularly for species requiring specific 73 

monitoring protocols or living in difficult to access areas. For instance, the Italian reptiles and 74 
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amphibians have some of the highest levels of richness and endemism in Europe (Sillero et 75 

al., 2014). The most abundant and widespread species range through the whole territory, thus 76 

enabling monitoring through volunteers (Bonardi et al., 2011), while many endemic and 77 

threatened species are restricted to small insular or mountainous areas with limited 78 

accessibility (Sindaco et al., 2006), where consistent volunteer sampling is unlikely. Under 79 

these conditions, there is the need to develop a pragmatic and efficient strategy for 80 

monitoring, optimizing the limited available resources. 81 

When the detection probability is <1 (as usually occurs in animal populations), 82 

estimating parameters such as presence/absence, abundance or trends may be problematic and 83 

requires taking into account the imperfect detection (Pollock et al., 2002; Schmidt, 2004; 84 

Mazerolle et al., 2007). However, formal approaches exist for estimating abundance from 85 

repeated counts in fixed sites, without marking individuals to identify the individuals (Royle 86 

& Nichols, 2003; Royle, 2004). These approaches, named hierarchical or N-mixture models, 87 

allow the estimation of population size and abundance trends for species that are imperfectly 88 

detected (Kéry et al., 2009; Dail & Madsen, 2011; Zipkin et al., 2014), and are thus 89 

appropriate to detect population declines. Such models are able to take into account the high 90 

heterogeneity of data collected over broad scales by a large number of observers, which is 91 

typical of many monitoring schemes, and are thus highly promising for population and even 92 

species assessments (Kéry et al., 2009; Griffiths et al., 2015). Nevertheless, as for any 93 

statistical approach, the power of N-mixture models is influenced by factors such as effect 94 

size and sample size. The analysis of synthetic data simulating ecological processes is a 95 

powerful framework, which allows evaluating the effect of sampling and analytical methods 96 

(Guillera-Arroita, Ridout & Morgan, 2010; Zurell et al., 2010; Ficetola et al., 2014). A few 97 

studies tried to identify under which conditions (number of sites, number of surveys) it is 98 

possible to successfully detect population declines (e.g. Guillera-Arroita, 2012; Sewell et al., 99 
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2012; Kroll et al., 2015), but these analysis mostly focused on occupancy models. Occupancy 100 

models do not provide explicit estimates of abundance (but see Royle & Nichols, 2003; Ellis, 101 

Ivan & Schwartz, 2014), and thus mostly deal with changes in number of populations, instead 102 

of estimating trends in abundance.  103 

Given the monitoring required by the Habitat Directive, the Italian Herpetological 104 

Society was tasked by government agencies with identifying monitoring methodologies for 105 

the >70 Italian species of amphibians and reptiles of European concern (Stoch & Genovesi, 106 

2016), but discussion among experts lead to different proposals with regard to the best 107 

strategy for monitoring. The aim of this study was to identify the most effective monitoring to 108 

detect abundance trends (e.g. declines) through N-mixture models in each of multiple species 109 

with very heterogeneous features. When planning a monitoring scheme, the allocation of 110 

resources must be optimized to maximize the probability to address the specific management 111 

questions (Nichols & Williams, 2006; Wintle, Runge & Bekessy, 2010; Reynolds et al., 2011) 112 

and, if the monitoring scheme includes multiple species, it is important to identify the optimal 113 

strategy for each of them (Guillera-Arroita et al., 2010; Guillera-Arroita, 2012). The Italian 114 

amphibians and reptiles have very different features, some species being locally abundant and 115 

conspicuous, and others rare and difficult to detect (Supplementary Methods). We therefore 116 

assessed how species features (abundance and detection probability) and monitoring structure 117 

(e.g. number of surveys, number of sites) influence the detection of declines. Specifically, we 118 

asked: i) How do species abundance and detection probability determine our ability to detect 119 

declines? ii) How many sites should be surveyed for each target species? iii) For species with 120 

given abundance and detectability, is it better monitoring a few sites with repeated surveys, or 121 

many sites with a few surveys per site? iv) Is it better concentrating efforts on a few, large 122 

sites (e.g. long transects or large plots), or increasing sample size and analysing many small 123 

sub-transects (or sub-plots)? v) Under which conditions is it possible combining surveys on 124 
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multiple species to improve efficiency? Although analyses were initially motivated by the 125 

need of a national plan for the monitoring of Italian amphibians and reptiles (Stoch & 126 

Genovesi, 2016), our simulations represent realistic sampling covering a wide range of 127 

scenarios of abundance, detection probability, declines and monitoring schemes. Therefore 128 

our recommendations are applicable to the planning of monitoring of a large number of taxa 129 

and regions. 130 

 131 

Methods 132 

 133 

Rationale for models 134 

 135 

In simulations, we generated artificial species, with abundance and detection probability 136 

reflecting values observed in natural populations. The features of simulated species were 137 

initially intended to cover the actual abundance and detection probability of European 138 

amphibians and reptiles, but analogous values are also observed during monitoring of several 139 

other taxa (see Supplementary Methods). Each artificial species had a specific combination of 140 

mean abundance per site and detection probability (total: 30 combinations). Average 141 

abundance values were 7.5, 15, 30, 50, 100 and 300 individuals per site, detection probability 142 

values were set at 0.05, 0.1, 0.15, 0.33 and 0.5. For each species, we first assumed a "basic" 143 

monitoring, which was performed at 30-500 relatively large sites where the target species was 144 

known to be present; each site was surveyed at two time points (e.g. in two different years). 145 

This corresponds to proposals of monitoring each site once every six years to fulfill the 146 

Habitat Directive requirements (Stoch & Genovesi, 2016). Example of sites may include 1-147 

km visual transects, but also ponds surveyed for aquatic and semiaquatic species or forest 148 

plots. We also simulated the performance of two alternative strategies, proposed to improve 149 
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trend estimates: a) each of the sites is subdivided in 4 smaller sub-sites; b) combining the sites 150 

monitored for multiple species, to increase the sample size. 151 

 152 

Simulations and N-mixture models 153 

 154 

We first simulated population size N at 30 sites at the beginning of the study (time=t1) from a 155 

Poisson distribution, with λ1=mean abundance (range: 7.5 to 300; average number of 156 

individuals). The expected count at site i was the product of abundance Ni and the detection 157 

probability of the species p (range: 0.05 to 0.5). To simulate the observation process, at each 158 

survey the number of individuals observed at site i was drawn from a binomial distribution 159 

with n=Ni and probability =p (Kéry 2010); each site was surveyed 3, 5 or 7 times within each 160 

season. Due to convergence failure in some runs, we did not test combinations with mean 161 

abundance=300, p≥0.33. 162 

The sites were re-surveyed at time t2, when the species suffered a decline D. At time t2 163 

population size was estimated from a Poisson distribution with λ2 = λ1–D×λ1. We considered 164 

four possible rates of decline, from limited to dramatic (D =10%, 20%, 30% and 50%), while 165 

p remained constant. We repeated 150 simulations per combination of parameter sets (mean 166 

abundance, p, number of surveys and D; 276 combinations). Abundance of site i at time t2 was 167 

not specifically related to the abundance at the same site at t1, as they were independently 168 

drawn from two distinct distributions differing for mean abundance. Therefore, this approach 169 

assumed an overall decline of the species, but some populations may be more abundant at t2 170 

than at t1. 171 

First, we estimated the relative bias of N-mixture models in estimating the actual 172 

abundance of the species. For each simulation, we run single-season N-mixture models with 173 

Poisson error distribution on the data at t1 (Royle, 2004; fitted using pcount in unmarked: 174 
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Fiske & Chandler, 2011), and the population size estimated from the posterior distributions of 175 

the random variables using empirical Bayes methods (Royle & Dorazio, 2008). Relative bias 176 

was calculated as the median of abs[(estimated population size – true population size)/true 177 

population size], across all simulations. We also calculated the median Pearson’s correlation 178 

between estimated and true population size. 179 

Second, we tested whether N-mixture models for open populations (Dail & Madsen, 180 

2011) can successfully estimate the decline between t1 and t2. In models, we assumed that 181 

N[i,t2]=N[i,t1]×gamma, where gamma is the rate of population change (Fiske & Chandler, 2011). 182 

We considered that a model successfully estimated the decline if gamma was significantly <1 183 

(at α=0.05); models were built using the pcountOpen function in unmarked, assuming Poisson 184 

error. In N-mixture models, the default values of the upper bound used to approximate an 185 

infinite summation in the likelihood can provide inaccurate estimates- In each simulation we 186 

used as upper bound (70+the maximum observed species abundance), since preliminary 187 

analyses suggest that this value provides robust estimates (Table S1). For each combination of 188 

parameters, we measured the success of the approach (power) as the proportion of times the 189 

confidence intervals around gamma did not include 1. 190 

The first round of analyses considered 30 sites per species, but 30 sites are rarely 191 

sufficient to detect weak declines (Sewell et al., 2012; Kery & Royle, 2016). To test how 192 

increasing the number of surveyed sites improves the detection of declines, we repeated 193 

analyses considering 60, 120, 240 and 500 sites. 194 

 195 

Simulations using dynamic models 196 

 197 

The first simulations were generated using a static approach, in which abundance at a site i at 198 

time t1 and t2 were unrelated. To assess whether our results are affected by the way we 199 
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generated data, we repeated analyses using a dynamic model. For each site, we first generated 200 

the initial abundance (N[i,1]) from a Poisson distribution with λ=λ1. The decline Di was then 201 

generated from a Poisson distribution with λ=D×N[i,1]. The final abundance was then 202 

calculated as: N[i,2]=N[i,1]–Di. See appendix S2 for the R script. 203 

 204 

Trade-offs between number of sites and number of surveys 205 

 206 

We tested under which circumstances (e.g. for which species) it is better analyzing a few sites 207 

multiple times, or many sites with less surveys per site. Instead of 30 sites monitored 3-7 208 

times, we considered 70 sites monitored 3 times. The total number of surveys (210) is 209 

constant in these two schemes. We thus compared the efficiency of N-mixture models in 210 

detecting declines under a range of abundances and detectabilities. This analysis was limited 211 

to the moderate declines (10-20%), as 7 surveys on 30 sites almost always detected strong 212 

declines (see results). 213 

 214 

Alternative monitoring schemes 215 

 216 

First, we tested the impact of monitoring many small sub-sites. Instead of 30 sites with high 217 

mean abundance (λ1), we considered 120 sub-sites, each with mean abundance =¼λ1. This 218 

scenario mimics, for instance, surveying the same territory, but through 120 transects with 219 

length 250-m, instead of 30 transects with length 1-km. 220 

Second, we tested whether combining sites from multiple syntopic species may 221 

improve performance. In previous approaches, we considered 30 surveys in relatively optimal 222 

sites, where the species is known be abundant. However, multiple target species may co-223 

occur, and individuals of a given species can be detected at some of the sites surveyed for 224 
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other species. Instead of 30 sites with high mean abundance (λ1), we considered a total of 90 225 

sites: 30 sites are monitored specifically for the target species and, at time t1, have high 226 

abundance (λ1), while 60 additional sites are monitored for other species within the range of 227 

target species. Among the 60 sites, in 20 the species has high abundance (λ1), in 20 the species 228 

is rare (abundance=¼λ1), in 20 the species is absent. At time t2, the species suffers an overall 229 

decline, as described for the standard approach. In this latter analysis, models were built using 230 

zero-inflated Poisson distribution (ZIP) as in preliminary analyses ZIP models consistently 231 

showed lower Akaike’s Information Criterion than Poisson or negative binomial models. 232 

 233 

Heterogeneity of detection probability 234 

 235 

Monitoring is often performed under highly heterogeneous conditions, thus detection 236 

probability is rarely constant (Guillera-Arroita, 2017). We assessed whether our results are 237 

robust to heterogeneity of p across sites and surveys. We assumed that p was related to an 238 

environmental variable (in our example, "humidity") and assumed that p increases with 239 

humidity, as often occurs with amphibians (Mazerolle et al., 2007). For each combination of 240 

D and λ, we considered five values of mean detection probability (pM), and three scenarios of 241 

heterogeneity of detection: homogeneous detection (p ranging between 0.918×pM and 242 

1.04×pM); heterogeneous detection (p between 0.639×pM and 1.22×pM); highly heterogeneous 243 

detection (p between 0.290×pM and 1.516×pM). In all scenarios, p followed a logistic curve 244 

with increasing values at increasing humidity, and mean p =pM. Simulated data were then 245 

analysed including humidity as detection covariate (see Appendix S2 for the R script, and Fig. 246 

S1 for the actual detection probabilities).  247 

 248 

Results 249 
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 250 

Estimates of population size 251 

 252 

The relative bias in the estimation of population size was high (>50%) for species with low 253 

abundance, low detection probability (p), and sampled in few repeat visits (Fig. S2a-c). Bias 254 

decreased if p was high and if many surveys were performed (Fig. S2a-c). The correlation 255 

between true and estimated population size was weak (approx. 0.35) if p was 0.05 and just 256 

three replicated surveys were performed, but correlation quickly increased when more surveys 257 

were performed, or if p increased, while it was essentially unrelated to population size (Fig. 258 

S2d-f). 259 

 260 

Detection of decline 261 

 262 

The success of open-population N-mixture models in detecting declines was variable across 263 

species abundances, p, number of surveys per site, and rate of decline (Figure 2). Strong 264 

declines (≥30%) were successfully detected for nearly all the species, except in least abundant 265 

ones with very low p (Fig. 1). Weak declines (10-20%) were successfully detected only in 266 

species with high abundance and easy to detect (Fig. 1). Results did not depend on the way we 267 

simulated data, as conclusions remained nearly identical when we generated population 268 

abundance data using dynamic models (Table S2). 269 

Increasing the number of sites quickly increased the power of analyses (i.e., the 270 

proportion of simulations where lambda was significantly smaller than 1; Fig. 2). For 271 

instance, if 120 sites were surveyed 5-7 times, N-mixture models were able to detect declines 272 

in most of cases, except with weak decline, low p and abundance (Table S3). Nevertheless, a 273 
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very large number of sites (240-500) would require surveys if the aim is detecting a 10% 274 

decline in species with limited abundance and p≤0.1 (Fig. 2). 275 

 276 

Trade-offs between number of sites and number of surveys 277 

 278 

Performing 7 surveys on 30 sites was preferable to performing 3 surveys on 70 sites only for 279 

species with low detectability (<0.1). If detectability was ≥0.1, it was preferable surveying 280 

many sites with less repeats (Fig. 3). If detectability was high and the species was abundant 281 

(e.g. λ=100 and p≥0.33) the performance of the two approaches was similar, as both 282 

successfully detected declines in ~100% of simulations (compare Fig. 1 with Table S4). 283 

 284 

Alternative monitoring schemes 285 

 286 

Monitoring 120 smaller sub-transects instead of 30 large sites slightly improved the success of 287 

analyses. The increase was particularly relevant for species with low abundance and high 288 

detectability (Fig. 4a-e). 289 

Combining sites selected for the target species with sites monitored from other 290 

syntopic species generally improved the success of analyses (Fig. 4f-h). However, there were 291 

conditions under which the heterogeneous data approach did not show better performance, 292 

particularly if the target species was very abundant and detectability low (Fig. 4i-j). 293 

 294 

Heterogeneity of detection probability 295 

 296 

Heterogeneity of p did not influence the success of models in detecting population declines 297 

(Fig. 5, Tables S7-S8). Even with the strongest heterogeneity of detectability (Fig. S1), the 298 
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mean difference in performance between the analysis of data with constant p and 299 

heterogeneous p was just 0.4% (SE=3%). 300 

 301 

Discussion 302 

 303 

An appropriate planning of surveys, optimizing the efforts, is often the key to detect 304 

population changes, if they occur (Reynolds et al., 2011). This is critical for cryptic animals 305 

for which we need quantitative estimates of declines. Our analysis shows that, keeping 306 

constant sampling efforts, the capacity of monitoring schemes to accurately detect declines is 307 

strongly variable, being related to parameters such as local abundance and detectability (Fig. 308 

1). Our results can be used to identify the optimal approach for the monitoring of a given 309 

species, if information on average abundance and detectability is available.  310 

 311 

Performance of N-mixture models 312 

 313 

Models showed a good performance in the estimation of population size and declines. 314 

Estimated population sizes were well correlated with true population size, and the difference 315 

between estimated and true values remained reasonable, except if detection probability was 316 

very low and only a few surveys per site were performed (Fig. S2). Open-population models 317 

thus successfully detected population declines with the majority of combinations of 318 

population size, detectability and severity of decline. The severity of decline was a major 319 

determinant of the capacity of models to detect them: strong declines (≥30%) were almost 320 

always identified, even in the least detectable species. 321 

Detection probability and mean abundance of species also were extremely important. 322 

As expected, detecting declines was particularly challenging in rare species with low 323 
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detectability (Guillera-Arroita, 2012; Kroll et al., 2015). In the most extreme scenario (7.5 324 

individuals/site, p=0.05), models failed to detect weak declines, and their performance 325 

remained limited even with strong declines (Fig. 1). Such combination of low abundance and 326 

difficult detection is frequent in predators, such as snakes and some large lizards 327 

(Supplementary Methods). For these species, the expected count of individuals per survey is 328 

<1 (0.375 if p=0.05 and N=7.5; Kéry, 2010), thus in the majority of surveys no individuals are 329 

detected, making trend estimation difficult. 330 

Our analysis might suffer some limitations. Results were robust to heterogeneity in 331 

detectability (Fig. 5), if the variables determining species detection in the different surveys are 332 

correctly specified into the models. However, in the real world model misspecification is 333 

possible, for instance if the variables influencing species detection are not recorded and 334 

integrated into models, and this might undermine the performance of models. Furthermore, all 335 

populations from the same simulation were drawn from Poisson distributions with constant 336 

lambda, but within a given species population size may vary over orders of magnitudes across 337 

the populations, and strong heterogeneity of lambda among sites can reduce model 338 

performance (Fig. 4i-j; Guillera-Arroita et al., 2014). Finally, the selection of sites (not just 339 

their number) is an additional important issue. Ideally, site selection should be spatially 340 

random to allow inference over broad scales, but this might be impossible for certain species. 341 

Additional studies should assess the effect of spatial selection of sites on trend estimation. 342 

 343 

How can we improve the detection of declines? 344 

 345 

Several strategies can improve the detection of declines, some of which do not require 346 

a strong increase in resources. 347 
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i) Surveying more sites with fewer surveys. The trade-off between number of sites to be 348 

surveyed, and number of surveys per sites, is well known. If species have very low detection 349 

probability, it is better surveying more times a few sites, compared to surveying many sites a 350 

few times (MacKenzie et al., 2006; Guillera-Arroita, 2012; Guillera-Arroita, 2017). 351 

Performing many surveys is particularly useful for species with low or intermediate 352 

abundances and difficult detection. However, the advantage of performing many surveys per 353 

site quickly vanishes in species that have both high abundance and high detection 354 

probabilities (Fig. 3), because in these cases the power of the estimator is high (>70%) even 355 

with a limited number of surveys (Fig. 1). In most of cases, if p >0.1 it is better allocating 356 

resources on the monitoring of many sites, even though this may require increasing travel 357 

costs. 358 

ii) Surveying many small sites instead of a few large sites may improve detection of 359 

trends for several species (Fig. 4a-d). The performance increase was greater for species with 360 

low abundance and p≥0.15. This probably occurs because such an approach increases sample 361 

size, without notably increasing the number of surveys without detections. Nevertheless, our 362 

analysis assumed that the short transects are independent. If a large number of small transects 363 

is obtained just by dividing long transects (e.g. transforming 1-km transects into four 250-m 364 

transects), sub-transects are not independent. This may violate statistical assumptions 365 

(pseudorepliction), and it is even possible that the same individual is counted in different 366 

transects (Chandler & Royle, 2013). It is thus important to ensure the independence of 367 

transects, or to adopt analytical frameworks allowing to take spatial dependence into account, 368 

such as multi-scale models (Chandler & Royle, 2013; Kroll et al., 2015). 369 

iii) Combining data from target and non-target sites. We first assumed that, for each 370 

species, several sites where the species is relatively frequent were monitored. In the real 371 

world, multiple species can be detected in most of sites. For instance, in bird and reptile 372 
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surveys, it is standard to map all species, and not just a single one, so it may be possible 373 

combining observations of co-occurring species. This has the advantage of only requiring that 374 

surveyors record more species, without additional costs. In several cases, the combined 375 

transect approach improved the detection of declines, particularly for the least abundant 376 

species (Fig. 4f-h). However, this approach has drawbacks. First, if sites are selected to be 377 

representative for a given species, it is not a priori clear that they will also be representative 378 

for other species. Therefore the selection of sites and of pairs of co-occurring species should 379 

be performed with care, on the basis of pilot surveys (Tulloch et al., 2016). The combined 380 

method showed poor performance for species with highest abundance (Fig. 4i-j), perhaps 381 

because of the very high heterogeneity of abundance among sites. 382 

iv) Improving detection probability. The activity of most of animals is strongly tied to 383 

seasons and weather conditions, which determine detectability (Mazerolle et al., 2007; 384 

McDiarmid et al., 2012; Griffiths et al., 2015). Focusing surveys in the periods when animals 385 

are more active improves their detection, thereby increasing model performance (Fig. 1). 386 

Nevertheless, in the real world detectability is not easily predictable a priori and it is 387 

influenced by site survey conditions. Pilot studies can allow measuring species detectability 388 

and then perform sampling under the best conditions. Spending more time at each site is an 389 

additional strategy to increase detection. The situation is particularly challenging if habitat 390 

features influence both species abundance and detection probability. For instance, lizard 391 

density may be higher in densely vegetated sites, but this reduces detection (Kéry, 2010). It is 392 

thus pivotal recording and integrating site and survey-covariate (e.g. day, weather conditions) 393 

into models (Schmidt, 2005; Mazerolle et al., 2007; Kéry et al., 2009; Kéry, 2010).  394 

 395 

Improving detection of declines: where should we increase resources? 396 

 397 
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The decision of where increasing resources is a multi-factorial decision, as it depends on 398 

environmental policy, funding availability, and on the need to optimize the available resources 399 

(Wintle et al., 2010; Reynolds et al., 2011). In the case of species listed under the Habitat 400 

Directive, Member States are committed to measure population trends of all the species. To 401 

achieve this target, each species should receive monitoring efforts sufficient to the detection 402 

of eventual declines. A potential target might be the detection of eventual declines ≥20% over 403 

six years with power >80%. In this case, species with limited detectability and abundance 404 

should be monitored intensively (see Fig. 2 for values). A first possibility is increasing the 405 

number of sites surveyed. Surveying 120 sites would allow detecting declines for most of 406 

species (Table S3), but detecting declines of species with very low abundance and 407 

detectability remains challenging even with hundreds sites. Furthermore, increasing the 408 

number of sites is not always feasible. Actually, the most endangered species often have very 409 

restricted distributions, thus limiting the number of potential sites. In this situation, the only 410 

strategy is increasing the number of surveys per site.  411 

In simulations we assumed that populations are monitored during two years (Stoch & 412 

Genovesi, 2016), but monitoring during multiple years may improve the detection of trends. A 413 

rotating panel design, where each site is surveyed in multiple years but not all the years, can 414 

be a good compromise between number of surveys per sites and reliability of trend estimation 415 

(McDonald, 2003). Furthermore, detecting declines is easier if larger populations are 416 

monitored, and if detection probabilities are higher. Resources may be allocated to surveying 417 

larger sites (e.g. 2-km transects instead of 1-km transects), as this would increase the number 418 

of individuals that may be contacted (Kery & Royle, 2016), or to spending longer time per 419 

site, thus enhancing detection. 420 

 421 

Conclusions 422 
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 423 

Even within a given class of vertebrates, species can have very heterogeneous lifestyles, life 424 

histories, abundances and activity periods, so it is impossible conceiving one single 425 

monitoring scheme valid for all the species. Instead, the available resources should be 426 

modulated to optimize the probability of detecting declines. Monitoring a few sites may be 427 

enough for abundant species with high detectability, and the saved resources may be allocated 428 

to increase efforts toward the rarest and least detectable species. Approaches that allow the 429 

detection of multiple species, such as visual transects, trapping or point counts, may be 430 

particularly useful, because can increase sample size for rare species.  431 

Nevertheless, detecting declines provides limited information on the driving factors 432 

and on conservation strategies to prevent them. Instead of just monitoring the species, a 433 

management-targeted monitoring may be particularly effective to deliver conservation 434 

solutions. For instance, a large body of a-priori information is available on the stressors that 435 

determine the trends of amphibians and reptiles. Integrating the surveillance of populations 436 

and their threatening factors can be challenging (Sutherland, Roy & Amano, 2015), but would 437 

be pivotal to develop more immediate and efficient conservation strategies (Nichols & 438 

Williams, 2006; Purse & Golding, 2015). 439 
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Figure legends. 555 

 556 

Figure 1. Success of open-population N-mixture models in detecting the decline of species 557 

with a range of mean abundance at the first monitoring (λ1) and detection probability (p). The 558 

success is measured as the proportion of simulations in which models detected a significant 559 

species decline. For all combinations, we considered 30 sites. 560 

 561 

Figure 2. Number of sites that need to be surveyed, to detect a given decline with success 562 

≥80%: results of simulations. λ1: mean abundance at the first monitoring. 563 

 564 

Figure 3. Outcome of alternative approaches to surveys: differences between surveying 70 565 

sites 3 times, and surveying 30 sites 7 times. The plot represents the difference in power 566 

between models analyzing 70 sites 3 times, and models analyzing 30 sites 7 times. Positive 567 

values are the conditions under which it is preferable surveying more sites with less surveys 568 

and vice-versa. λ1: mean abundance at the first monitoring. See Table S4 for actual power 569 

values. 570 

 571 

Figure 4. Difference in power between the alternative and the standard approaches to surveys. 572 

a-e): The alternative approach is surveying 120 small sites (initial abundance: ¼ λ1). f-j): The 573 

alternative approach is combining 30 targeted sites + 60 sites surveyed for syntopic species. 574 

The standard approach is surveying 30 large sites. If values are positive, the alternative 575 

approach is preferable to the standard approach and vice-versa. Each bar is the average of 576 

models analyzing monitoring schemes with 3, 5 and 7 surveys per site; error bars are standard 577 

deviations of these three models. λ1: mean abundance at the first monitoring. See Tables S5-578 

S6 for the actual power values. 579 
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 580 

Figure 5. Effect of heterogeneity of detection probability on the success of N-mixture models 581 

in detecting species decline. The figure reports the results of simulations performing 5 surveys 582 

/ site. See Tables S7-S8 for results with 3 and 7 surveys / site. 583 

 584 

585 
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