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A note on symmetries of diffusions within a martingale

problem approach

Francesco C. De Vecchi∗, Paola Morando†and Stefania Ugolini‡

Abstract

A geometric reformulation of the martingale problem associated with a set of diffusion

processes is proposed. This formulation, based on second order geometry and Itô integration

on manifolds, allows us to give a natural and effective definition of Lie symmetries for diffusion

processes.

1 Introduction

The theory of infinitesimal symmetries of ordinary and partial differential equations (ODEs and
PDEs respectively) is a classical research topic in applied mathematics, providing powerful tools
both for investigating the qualitative behaviour of differential equations and for obtaining some
explicit expression for their solutions (see, e.g., [17, 21]). The theory of symmetries of stochastic
differential equations (SDEs) is, in comparison, less developed. There are two main approaches
to this problem in the case of Brownian-motion-driven SDEs. The first approach, based on the
Markovian property of solutions to a SDE, looks for the classical Lie symmetries of the Markov
generator, which is an analytical object (see [1, 9, 15]). The second method, directly inspired
by Lie ideas, consists in seeking for some semimartingale transformations leaving invariant the
set of solutions to the considered SDE (see, e.g. [6, 8, 12, 14, 20, 23]). Both approaches have
their own strong and weak points: for example, the first method permits to treat a larger class of
transformations and processes, while the second one results more convenient in order to generalize
the deterministic notions of reduction and reconstruction by quadratures (see [2, 13]).
In [3] we propose a partial reconciliation of these two programs: in fact, despite working in the
second method perspective, we introduce a larger class of SDEs transformations which permits
both to include all the transformations of the first approach and to obtain all the applications of
the second one.
In this article we make a synthesis of the above two approaches from a new prospective. In
particular, starting from the martingale problem characterization of the solutions to a SDE, typical
of the Markovian setting, we introduce, in the stochastic framework, a geometric formulation of
the symmetry problem.
The main idea is to generalize the well known identification of an ODE on a manifold M with a
one-dimensional module K on the tangent bundle of the zero-jet space N = J0(R,M) = R ×M
(or, equivalently, a module K ′ of codimension one on the cotangent bundle T ∗N). Thanks to
this correspondence, the symmetries of an ODE can be identified as the family of diffeomorphisms
Φ : N → N transforming the module K (or, equivalently, the module K ′) into itself.
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In order to generalize the previous (deterministic) geometric approach to the stochastic framework
we need two main ingredients (both introduced by P.A. Meyer and L. Schwartz [16, 19] and
thereafter studied by Emery [5]): second order geometry and Itô integration on manifolds. In
particular, second order geometry allows us to introduce diffusors (a generalization of vector fields)
and codiffusors (a generalization of differential forms), while Itô integration on manifolds permits
to integrate any codiffusor λ along a semimartingale X defined on M .
In this framework the usual martingale problem associated with a second order operator L can be
reformulated in the following way: a semimartingale X is a solution to the martingale problem
associated with L if and only if, for any λ ∈ ΛL, the integral of λ with respect to X is a local
martingale, where ΛL is the module of codiffusors annihilating L (see Section 4). In this way we
reinterpret the martingale problem in terms of a natural geometric object: the module of codiffusors
ΛL.
Therefore, we prove that a diffeomorphism Φ is a symmetry for the martingale problem associated
with L, which means that Φ transforms solutions to the martingale problem into other solutions
to the same martingale problem, if and only if the natural action of the pull-back Φ

∗

transforms
ΛL into itself. The last condition is purely geometrical and permits to explicitly compute the set
of symmetries of the martingale problem associated with L (see Section 5).

The paper is organized as follows: in Section 2 we briefly introduce second order geometry
and Itô integration on manifolds and in Section 3 we study the behaviour of the geometric and
probabilistic objects introduced in the previous section with respect to spatial diffeomorphisms
and deterministic time changes. With this background, in Section 4, we propose a geometric
reformulation of the martingale problem for diffusion processes and in Section 5 we exploit it
in order to provide a suitable notion of symmetry and to explicitly compute the corresponding
determining equations. Finally we compare the class of Lie symmetries arising from our approach
with other ones appearing in the literature.

2 Preliminaries: second order geometry and Itô integration

on manifold

In this section, also in order to fix notations, we briefly recall some basic facts about second order
geometry and Itô integration on manifolds. The interested reader is referred to [5, 16, 19] for proofs
and further details.

2.1 Second order geometry

Given a smooth manifold M , we denote by C∞(M) the set of real-valued smooth functions defined
on M . If F is a bundle with base manifold B, we denote by S(F ) the set of smooth sections of F .
Finally, if M ′ is a manifold and n ∈ N, we denote by Jn(M,M ′) the bundle of n jets of n times
differentiable functions defined on M and taking values in M ′.

Let M be a smooth manifold and u be a global coordinate defined on R. The subset u−1(0) ⊂
J2(M,R) is a submanifold of J2(M,R) and actually a vector subbundle of J2(M,R).

Definition 2.1 The submanifold u−1(0) ⊂ J2(M,R) is called the bundle of codiffusors of the
manifold M and is denoted by τ∗M .

Given a coordinate system xi on M , let (xi, u, uxi, uxixj ) be the associated coordinate system
on J2(M,R). Denoting by π2 : J2(M,R) → M the projection of J2(M,R) into M , we define the
smooth function Π : J2(M,R) → τ∗M as

Π(xi, u, uxi, uxixj ) = (xi, 0, uxi, uxixj ). (1)
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The projection π2|τ∗M makes the submanifold τ∗M a vector subbundle of J2(M,R) with base M .
The function Π is well defined and is a morphism of vector bundles on M .
From now on we call codiffusor on M a smooth section of the vector bundle τ∗M .
Given a smooth function f ∈ C∞(M), let D2f denote the natural lift of f to J2(M,R) given in
coordinates by

D2f(x) = (xi, f(x), ∂xif(x), ∂xixjf(x)). (2)

Definition 2.2 We call second differential of f ∈ C∞(M) the codiffusor

d2f := Π(D2f).

Moreover, for f, g ∈ C∞(M), we denote by df · dg the codiffusor

df · dg :=
1

2
(d2(fg)− gd2f − fd2g).

Since, from the previous definition, we have

d2xi = (xi, 0, uxj = δij , uxixj = 0)

dxi · dxj =

(
xi, 0, uxl = 0, uxkxl =

1

2
(δkiδlj + δkjδli)

)
,

we can give an explicit coordinate expression for d2f :

d2f = ∂xifd2xi + ∂xixjfdxi · dxj . (3)

Remark 2.3 If λ is a codiffusor on M and xi is a coordinate system on M , there exist unique
functions λi, λij = λji ∈ C∞(M) such that locally

λ = λid
2xi + λijdx

i · dxj . (4)

The following theorem provides a useful characterization of codiffusors on M .

Theorem 2.4 For any codiffusor λ on M there exist gi, fi ∈ C∞(M), i = 1, ...,m, such that
λ =

∑m

i=1 gid
2fi.

Using Theorem 2.4 it is possible to extend the product between the differentials of functions
given in Definition 2.2 to a product defined for any couple of differential one forms. In a coordinate
system xi the product has the following representation

ω · γ = ωiγjdx
i · dxj

where ω = ωidx
i and γ = γjdx

j .

Definition 2.5 We denote by τM the dual bundle of τ∗M on M , and we call it the bundle of
diffusors. A section of τM is called a diffusor.

Given a system of coordinates xi on M , Remark 2.3 ensures that {d2xi, dxi · dxj} form a local
basis of the fibers of τ∗M . Hence, it is possible to introduce the local dual basis {∂xi, ∂xixj} so
that

〈d2xi, ∂xj〉 = δij

〈dxi · dxj , ∂xk〉 = 0

〈d2xi, ∂xjxk〉 = 0

〈dxi · dxj , ∂xkxm〉 =
1

2
(δikδ

j
m + δimδ

j
k)
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We remark that the use of symbols ∂xi and ∂xixj for the basis of τM is not misleading, since
the diffusors ∂xi and ∂xixj are closely related to the partial derivatives. Given a diffusor L defined
on M , it is natural to associate with L the differential operator L : C∞(M) → C∞(M) defined by

L(f) := 〈d2f, L〉. (5)

The following result provides a characterization of diffusors through their associated differential
operators.

Theorem 2.6 Given a diffusor L onM , its associated operator L : C∞(M) → C∞(M) is a second
order linear differential operator without multiplicative term. Conversely, if Λ : C∞(M) → C∞(M)
is a second order linear differential operator without multiplicative term, there exists a unique
diffusor L on M such that, ∀f ∈ C∞(M),

Λ(f) = L(f).

Given two vector fields X,Y on M , we consider the second order operator LXY defined by

LXY (f) = X(Y (f)). (6)

By Theorem 2.6 there exists a diffusor LXY ∈ τM such that, if X = X i∂xi and Y = Y i∂xi ,

LXY = X iY j∂xixj +X i(∂xiY j)∂xj (7)

and we have
LXY − LYX = [X,Y ].

2.2 Itô integration on manifolds

Given a filtered probability space (Ω,F , (Ft)t∈[0,T ],P), in the following we consider only stochastic
processes (processes for short) adapted with respect to the filtration Ft. Moreover, all (local)
martingales are always Ft (local) martingales.

Given a process X and a stopping time τ , we denote by Xτ the process stopped at τ . Moreover,
ifX and Z are two real continuous semimartingales, their quadratic covariation is denoted by [X,Z]
(although this notation is the same as the above commutator of vectors fields, the different meaning
will be clear from the contest).

Definition 2.7 An almost surely continuous process X taking values in M is a semimartingale
if, ∀f ∈ C∞(M), f(X) is a real continuous semimartingale.

Semimartingales represent the largest class of processes for which Itô integration can be introduced.

Theorem 2.8 Given a semimartingale X on M , there exists a unique linear functional from
S(τ∗M) into the space of real semimartingales, denoted by

λ 7−→

∫
〈λ, dXs〉 :=

∫
〈λ(Xs), dXs〉,

such that, for f ∈ C∞(M) and λ ∈ S(τ∗M),

•
∫
〈d2f(Xt), dXt〉 = f(X)− f(X0);

•
∫
〈f(Xt)λ(Xt), dXt〉 =

∫
f(Xt)d

(∫
〈λ(Xs), dXs〉

)
t
, where the latter integral is the Itô integral

along the real semimartingale
∫
〈λ(Xs), dXs〉.
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Remark 2.9 In Theorem 2.8 we define a stochastic integral satisfying

(∫
〈λ, dXt〉

)

0

= 0.

However, it is easy to extend above definition so that
(∫

〈λ, dXt〉
)
s
= 0 for some s ∈ R.

Later on we adopt the notation

∫ t

s

〈λ(Xr), dXr〉 =

(∫
〈λ(Xr), dXr〉

)

t

−

(∫
〈λ(Xr), dXr〉

)

s

.

Some useful properties of the Itô integral are collected in the following proposition.

Proposition 2.10 Let X be a semimartingale on M , f, g ∈ C∞(M), λ, σ ∈ S(τ∗M) and let τ be
a stopping time. Then

•
(∫

〈λ(Xt), dXt〉
)τ

=
∫
〈λ(Xτ

t ), dX
τ
t 〉;

•
∫
〈(df · dg)(Xt), dXt〉 =

1
2 [f(X), g(X)].

3 Transformations of codiffusors and Itô integrals

In this section, in order to introduce a suitable notion of symmetry, we study the behaviour
of codiffusors, diffusors and Itô integration under spatial transformations and deterministic time
changes of the process X .
Let us fix some preliminary notations: given a smooth manifoldM , we denote by N = J0(R,M) =
R×M and we consider the time t as the first coordinate of N .

3.1 Transformations of diffusors and codiffusors

The definition of codiffusors as sections of a suitable subbundle of J2(M,R) suggests the possibility
of generalizing in a natural way the pull-back of smooth functions and differential forms to diffusors
and codiffusors. The construction is purely geometric and is based on the following theorem.

Theorem 3.1 Given two smooth manifolds M and M ′ and a smooth map Φ : M → M ′, there
exists a unique map Φ∗ : S(τ∗M ′) → S(τ∗M) such that , ∀f, g ∈ C∞(M ′) and ∀λ, σ ∈ S(τ∗M ′),

i) Φ∗(d2f) = d2(Φ∗(f)),

ii) Φ∗(fλ+ gσ) = Φ∗(f)Φ∗(λ) + Φ∗(g)Φ∗(σ).

Proof. The uniqueness follows from Theorem 2.4.
To prove the existence, we set an atlas {Uj}j∈N on M ′, with local coordinates {yij} in Uj on M ′,
and a partition of the unity {φj} subordinated to {Uj}. If the support K of λ ∈ S(τ∗M ′) is
contained in the support of φj and if

λ = λid
2yij + λikdy

i
j · dy

k
j ,

we define
Φ∗(λ) = Φ∗(λi)d

2Φi
j(x) + Φ∗(λik)dΦ

i
j(x) · dΦ

k
j (x),
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where Φi
j(x) = (yij ◦Φ)(x). Note that, if P ∈M is not in Φ−1(K), then Φ∗(λ)(P ) = 0. If λ is any

codiffusor, then we define

Φ∗(λ) :=
∑

j

Φ∗(φjλ).

The above relation is well defined as
∑

j Φ
∗(φjλ) is pointwise a finite sum. Moreover, it is easy to

verify that Φ∗ satisfies properties i) and ii).

Definition 3.2 Given a diffeomorphism Φ : M →M ′, the map Φ∗ : S(τ∗M ′) → S(τ∗M) is called
the pull-back of codiffusors. The map Φ∗ : (τ∗M) → S(τ∗M ′) defined as Φ∗ := (Φ−1)∗ is called
the push-forward of codiffusors.

Theorem 3.3 Given a diffeomorphism Φ : M → M ′, there exists a unique map Φ∗ : S(τM ′) →
S(τM) such that, ∀L ∈ S(τM ′) and ∀λ ∈ S(τ∗M),

〈λ,Φ∗(L)〉 = Φ∗(〈Φ∗(λ), L〉).

Proof. Given L ∈ S(τM ′), we consider the second order differential operator L′ on C∞(M) such
that ∀f ∈ C∞(M)

L′(f) = Φ∗L(Φ∗(f))).

By Theorem 2.6 there exists a unique diffusor L′ ∈ S(τM) such that

L′(f) = 〈d2f, L′〉.

Then, by Theorem 2.4, we have L′ = Φ∗(L).

Definition 3.4 Given a diffeomorphism Φ : M → M ′, we call Φ∗ : S(τM ′) → S(τM) the pull-
back of diffusors and Φ∗ : S(τM) → S(τM ′) the push-forward of diffusors.

Remark 3.5 If Φ :M →M ′ is a smooth function, ∀µ, σ ∈ S(T ∗M ′) we have

Φ∗(µ · σ) = Φ∗(µ) · Φ∗(σ).

Moreover, if Φ is invertible, ∀X,Y ∈ S(TM ′)

Φ∗(LXY ) = LΦ∗(X)Φ∗(Y ).

All the previous expressions hold when we replace Φ∗ with Φ∗.

If we consider a one-parameter group of diffeomorphisms Φa describing the flow of a vector
field X , we can give the following definition.

Definition 3.6 Given a vector field X on M , with corresponding one-parameter flow Φa, the Lie
derivative of a codiffusor (diffusor) λ along X is

LXλ =

[
d

da
(Φ∗

aλ)

]

a=0

. (8)

The following theorem permits to compute the Lie derivatives of many important objects.

Theorem 3.7 Let X,X1, X2 be three vector fields on M , L a diffusor on M , λ a codiffusor on M ,
f a smooth function on M , µ, σ two differential forms and Φ : M → M ′ a diffeomorphism from
M onto M ′. Then

6



1. LX(fλ) = LX(f)λ+ fLX(λ),

2. LX(fL) = LX(f)L+ fLX(L),

3. LX(〈λ, L〉) = 〈LX(λ), L〉+ 〈λ,LX(L)〉,

4. LX(d2f) = d2(LX(f)) = d2(X(f)),

5. LX(L)(f) = X(L(f))− L(X(f)),

6. LX(µ · σ) = LX(µ) · σ + µ · LX(σ),

7. LX(LX1X2
) = L[X,X1]X2

+ LX1[X,X2],

8. LΦ∗X(Φ∗λ) = Φ∗(LX(λ)),

9. LΦ∗X(Φ∗L) = Φ∗(LX(L)).

Proof. The proof is an easy application of the properties of the pull-back of diffusors and codif-
fusors and of the Leibniz rule for the derivative of a product.

From Theorem 3.7 we obtain the explicit coordinate expression of the Lie derivative of diffusors
and codiffusors along a vector field X . In particular, if X = φi∂xi , L = Aij∂xixj + bi∂xi and
λ = λid

2xi + λijdx
i · dxj , we have

LX(L) = (φk∂xkAij −Aik∂xkφj −Akj∂xkφi)∂xixj

+(φk∂xkbi − bk∂xkφi −Ajk∂xjxkφi)∂xi .

LXλ = (φk∂xkλij + λik∂xjφk + λkj∂xiφk + λk∂xixjφk)dxi · dxj

+(φk∂xkλi + λk∂xiφk)d2xi.

In order to generalize the geometric approach to symmetry problem from ODEs to diffusion pro-
cesses, it is useful to give the following definition.

Definition 3.8 A subset Γ of S(τM) (or S(τ∗M)) is a module of dimension k if

1. ∀L1, L2 ∈ Γ also L1 + L2 ∈ Γ,

2. ∀L ∈ Γ and f ∈ C∞(M) we have fL ∈ Γ,

3. for each point P there exist a neighborhood U of P and k diffusors (codiffusors) L1, ..., Lk ∈ Γ

such that, ∀L ∈ Γ, we have L =
∑k

i=1 fiLi in U , where f1, ..., fk are suitable functions in
C∞(M). Furthermore, for any Q ∈ U , L1(Q), ..., Lk(Q) are k linearly independent elements
of τQM (or τ∗QM).

In particular, given L ∈ S(τM) such that L(P ) 6= 0 for all P ∈ M , we can consider the
one-dimensional module

LL = {fL|f ∈ C∞(M)}

and its annihilator, i.e. the set of codiffusors

ΛL = {λ ∈ S(τ∗M)|〈λ, L〉 = 0}

which is a module of rank (m− 1) , where m = rank(τ∗M).
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Definition 3.9 Let Γ be a k-dimensional module on M . A diffeomorphism Φ : M → M is a
symmetry of Γ if Φ∗(Γ) = Γ. A complete vector field X ∈ S(TM) is an infinitesimal symmetry of
Γ if the flow Φa of X is a symmetry of Γ for all a ∈ R.

Theorem 3.10 A complete vector field X is a symmetry of Γ if and only if, ∀L ∈ Γ, we have
LXL ∈ Γ (or simply LX(Γ) ⊆ Γ).

Proof. We give only a sketch of the proof; further details can be found in [3].
If Φa,∗(Γ) = Γ, evaluating in zero the derivatives with respect to a, we get LX(Γ) ⊆ Γ.
Conversely, suppose that LX(Γ) ⊆ Γ. Let L1, ..., Lr be local generators for τM and choose Li

such that, for i = 1, ..., k, they are also local generators for the module Γ. Given a diffusor L,
there exist some functions α1, ..., αk and β1, ..., βr−k (depending on a and x) such that Φa,∗(L) =∑k

i=1 αiLi +
∑r−k

i=1 βiLi+k. Since LX(Γ) ⊆ Γ, the functions αi, βi satisfy the following system of
first order PDEs

(
∂a(α)
∂a(β)

)
=

(
X(α)
X(β)

)
+

(
A(x) B(x)
0 C(x)

)
·

(
α
β

)
, (9)

where α = (α1, ..., αk), β = (β1, ..., βr−k) and A(x), B(x), C(x) are suitable matrix-valued func-
tions. Using the method of characteristics it is possible to prove that equation (9) admits a unique
solution for any smooth initial value α(0), β(0). Moreover, the form of equation (9) ensures that, if
β(0) = 0, then β(a) = 0 for any a ∈ R. Hence, since L ∈ Γ, we have that β(0) = 0 and Φa,∗(L) ∈ Γ
for any a.

3.2 Itô integral and space and time transformations

In the following we study the behaviour of a semimartingale under space and time transformations.

Proposition 3.11 Given two manifolds M and M ′, a semimartingale X on M and a smooth
function Φ : M → M ′, the process X ′ = Φ(X), defined as X ′

t = Φ(Xt), is a semimartingale on
M ′.

Proof. The proof is an easy consequence of the definition of semimartingale on a manifold.

In order to introduce time transformations, we consider a strictly increasing function f ∈
C∞(R), so that also f−1 is a smooth strictly increasing function. If X is a semimartingale on M ,
we denote by X ′ = Hf (X) the process

X ′

t′ = Hf (X)t′ := Xf−1(t′).

Moreover, working towards a unified description of space and time transformations, we consider a
smooth map Φ : M → M ′, a deterministic time change f and a semimartingale X on M , and we
define

Φf (X) = Hf (Φ(X)).

Theorem 3.12 With the above notations, ∀λ ∈ S(τ∗M ′)

∫
〈λ(Φf (X)t), dΦf (X)t〉 = Hf

(∫
〈Φ∗(λ)(Xt), dXt〉

)
.
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Proof. We define the linear operator I from S(τ∗M ′) into the set of real semimartingales such
that

I(λ) = Hf

(∫
〈Φ∗(λ)(Xt), dXt〉

)
.

Using Theorem 3.1, Theorem 2.8 and the definition of Φf , we have

I(d2g) = Hf

(∫
〈Φ∗(d2g)(Xt), dXt〉

)

= Hf

(∫
〈d2Φ∗(g)(Xt), dXt〉

)

= Hf (g(Φ(X))− g(Φ(X)0)) = g(Φf (X))− g(Φf(X)0),

Furthermore, the change rule of Itô integral with respect to absolutely continuous time changes
(see, e.g., [18, Proposition 30.10]) ensures that

I(gλ) = Hf

(∫
〈Φ∗(gλ)(Xt), dXt〉

)

= Hf

(∫
〈Φ∗(g)(Xt)Φ

∗(λ)(Xt), dXt〉

)

= Hf

(∫
Φ∗(g)(Xt)d

(∫
〈Φ∗(λ), dXs〉

)

t

)

=

∫
g(Φf (X)t)dI(λ)t.

Hence, using the characterization of Itô integral given in Theorem 2.8, we have I(λ) =
∫
〈λ, dΦf (X)〉

and this completes the proof.

Given a semimartingale X on M , the semimartingale

Xt = (t,Xt) ∈ N

is called the lifting of X to N . When λ ∈ S(τ∗N), we use the following notation
∫

〈λ, dXt〉 :=

∫
〈λ(Xt), dXt〉.

Given a transformation Φ : N → N ′, we write Φ = (f,Φ), where f is the component of Φ
over R and Φ is the component of Φ over M . If f depends only on t we say that Φ = (f,Φ) is
projectable. We call semimartingale transformation any diffeomorphism Φ which is projectable.
We denote by X ′ = Φf (X) the transformed semimartingale given by

X ′

t′ = Φf (f
−1(t′), Xf−1(t′)).

Remark 3.13 The lifting X
′

of X ′ to N ′ satisfies

X ′ = Hf (Φ(X)).

Theorem 3.14 Let Φ = (f,Φ) : N → N ′ be a semimartingale transformation, and λ ∈ S(τ∗N ′);
then ∫

〈λ, dΦf (X)t〉 = Hf

(∫
〈Φ

∗

(λ), dXt〉

)
.

Proof. The proof is a simple application of Theorem 3.12 and Remark 3.13.
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4 A novel formulation of the martingale problem via second

order geometry

It is well-known that the martingale problem approach, due to Stroock and Varadhan ([22]),
represents a modern and fruitful way to introduce diffusion processes, alternative to the classical
definition as SDEs solutions. For a complete exposition of the topic see [11, 22] ([4, 10] for the
manifolds setting). In the following we call X a semimartingale starting at time s ∈ R if Xs+t is
a semimartingale (starting at time 0).

Definition 4.1 A semimartingale D on M starting at time s is a solution to the martingale
problem associated with a diffusor L up to a stopping time τ > s if, ∀g ∈ C∞(N), the real
semimartingale Dg given by

Dg
t = g(Dt∧τ )− g(Ds)−

∫ t∧τ

s

L(g)(Dr)dr,

is a local martingale (starting at s). A semimartingale solution to the martingale problem associated
with a diffusor L is called a diffusion process (or simply a diffusion) of diffusor L.

When not strictly necessary, we omit the stopping time τ from the definition of solution to a
martingale problem. Furthermore, unless otherwise stated, we consider the solution to the mar-
tingale problem starting at 0.

The diffusor L is standard if, whenever g ∈ C∞(N) depends only on t,

L(g)(t) =
dg

dt
(t).

Remark 4.2 If X is a continuous local martingale of bounded variation such that X0 = 0, then,
by martingale property, Xt = 0 for every t ∈ R+ (see, e.g. [18]).

The next result shows that our definition of standard diffusor is a natural requirement.

Proposition 4.3 A diffusor L is standard if there exists a diffusion D of diffusor L.

Proof. If g ∈ C∞(N) depends only on t, considering Dt = (t,Dt), we have that

Dg
t = g(Dt)− g(D0)−

∫ t

0

L(g)(Ds)ds = g(t)− g(0)−

∫ t

0

L(g)(Ds)ds,

is a local martingale.
Being g(t)− g(0) and

∫
L(g)(Ds)ds bounded variation processes, Dg is a bounded variation local

martingale and, by Remark 4.2, Dg
t = 0, which implies that g(t) − g(0) =

∫
L(g)(Ds)ds. By

differentiating both sides of the latter equality with respect to t, we get

dg

dt
(t) = L(g)(Dt),

which means that L(g) = dg/dt, i.e. L is standard.

In the following we associate with each martingale problem a well-defined module of codiffusors
and we prove that this module is actually completely equivalent to the martingale problem. We
start with a preliminary lemma.
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Lemma 4.4 Let L be a standard diffusor and D be a diffusion of diffusor L. For any µ ∈ S(τ∗N)
we consider the codiffusor λ = µ− 〈µ, L〉d2t. Then

∫
〈λ, dDt〉 is a local martingale.

Proof. If µ = d2h with h ∈ C∞(N) the lemma reduces to the definition of a diffusion of
diffusor L.
If µ is a generic codiffusor, by Theorem 2.4 there exist fi, gi ∈ C∞(N) such that

µ =
∑

i

gid
2fi.

If we consider λi = d2fi − L(fi)d
2t, we have that

∫
〈λi, dDt〉 is a local martingale and, being

λ = µ− 〈µ, L〉d2t =
∑

i

giλi,

we find
∫

〈λ, dDt〉 =
∑

i

∫
〈giλi, dDt〉 =

∑

i

∫
gi(Dt)d

(∫
〈λi, dDs〉

)

t

.

The latter integral is a local martingale, being a sum of Itô integrals along the real local martingales∫
〈λi, dDs〉.

We recall that ΛL ⊂ S(τ∗N) denotes the annihilator of the one-dimensional module LL gener-
ated by the diffusor L ∈ S(τN).

Theorem 4.5 The semimartingale D on M is a diffusion of standard diffusor L, if and only if,
for every λ ∈ ΛL, ∫

〈λ, dDt〉

is a local martingale.

Proof. By Lemma 4.4, if D is a diffusion of standard diffusor L and λ ∈ ΛL, then
∫
〈λ, dDt〉 is a

local martingale. Indeed we know that λ− 〈λ, L〉d2t integrated along D is a local martingale and
that 〈λ, L〉 = 0 because λ ∈ ΛL.
Conversely, suppose that the semimartingale D is such that, ∀λ ∈ ΛL,

∫
〈λ, dDt〉 is a local martin-

gale. Given g ∈ C∞(N), we have λ = d2g −L(g)d2t ∈ ΛL, being 〈d2t, L〉 = 1 and 〈d2g, L〉 = L(g).
Hence ∫

〈(d2g − L(g)d2t), dDt〉 = g(D)− g(D0)−

∫
L(g)(Dt)dt

is a local martingale. Since g is a generic function in C∞(N), then D is a diffusion of diffusor L.

In Lemma 4.4 and Theorem 4.5 we have implicitly assumed that the stopping time τ of the
diffusion D is equal to +∞. The general case can be recovered by using Proposition 2.10.
In order to prove a sort of converse of Theorem 4.5, since we do not need the uniqueness of the
solution to the martingale problem, instead of the well-posedness notion we introduce the following
definition.

Definition 4.6 A diffusor L is a good diffusor if, for any t0 ∈ R and x0 ∈M , there exists at least
one diffusion D, starting at t0 and such that Dt0 = x0 almost surely, solution to the martingale
problem associated with L.

11



Proposition 4.7 If L is a good diffusor, then

Λ′ :=

{
λ ∈ S(τ∗N)

∣∣∣∣
∫

〈λ, dDt〉 is a local martingale

}
⊆ ΛL

Proof. Given λ ∈ Λ′, by Lemma 4.4, λ − 〈λ, L〉d2t ∈ Λ′ and, being Λ′ closed with respect to the
sum, we have

〈λ, L〉d2t = λ− (λ− 〈λ, L〉d2t) ∈ Λ′.

Let Dx0,t0 be a diffusion starting at t0 such that Dx0,t0
t0

= x0. The integral

∫
〈(〈λ, L〉d2t), dDx0,t0

t 〉 =

∫
(〈λ, L〉)(D

x0,t0
t )dt

is a bounded variation process and also a local martingale and, by Remark 4.2,

∫ r

t0

(〈λ, L〉)(D
x0,t0
t )dt = 0

for any r > t0. Since (〈λ, L〉)(D
x0,t0
t ) is continuous with respect to t, we have that (〈λ, L〉)(D

x0,t0
t ) =

0 and, considering the limit for t→ t0 in the previous expression, we get (〈λ, L〉)(t0, x0) = 0. Since
x0 ∈M and t0 ∈ R are generic points the proposition is proved.

Corollary 4.8 If L is a good diffusor, then

ΛL =

{
λ ∈ S(τ∗N)

∣∣∣∣
∫

〈λ, dDt〉 is a local martingale

}
.

In the following we always consider good diffusors L. This choice is not restrictive since, using
the stopping time τ and our definition of solution to the martingale problem, we can exploit all
existence results for diffusion processes in R

n (see [22]).

5 Symmetries of diffusions

Generalizing the natural idea of symmetries of ODEs as diffeomorphisms transforming solutions
into solutions, we give the following definition.

Definition 5.1 Let Φ : N → N be an invertible semimartingale transformation. The diffeomor-
phism Φ = (f,Φ) is a symmetry of the diffusions associated with L (in short, a symmetry of L) if,
for any diffusion D of diffusor L, also Φf (D) is a diffusion of diffusor L.

The next result characterizes symmetries of diffusions associated with a diffusor L in terms of a
suitable invariance property of the module of codiffusors ΛL.

Theorem 5.2 An invertible semimartingale transformation Φ : N → N is a symmetry of L if
and only if Φ is a symmetry of ΛL.

Proof. Suppose that Φ is a symmetry of L, and let D be any diffusion of diffusor L. Obviously,
by Theorem 4.5 and by the definition of symmetry, ∀λ ∈ ΛL

∫
〈λ, dΦf (D)t〉
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is a local martingale. On the other hand, by Theorem 3.14 we have
∫

〈λ, dΦf (D)t〉 = Hf

(∫
〈Φ

∗

(λ), dDt〉

)
.

Since the latter equality and Proposition 4.7 ensure that Φ
∗

(λ) ∈ ΛL, then Φ
∗

(ΛL) ⊆ ΛL. The
equality follows from the invertibility of Φ.
Conversely, suppose that Φ

∗

(ΛL) = ΛL and let D be any diffusion of diffusor L. Fixing λ ∈ ΛL,
from Theorem 3.14 we have

∫
〈λ, dΦf (D)t〉 = Hf

(∫
〈Φ

∗

(λ), dDt〉

)
.

Since Φ
∗

(λ) ∈ ΛL, the right-hand side of the last equality is a local martingale. Then, by Theorem
4.5, Φf (D) is a diffusion of diffusor L.

In order to provide a simpler characterization of symmetries of L we give the following lemma.

Lemma 5.3 Let L be a standard diffusor. If there exists a diffusor L′ such that, ∀λ ∈ ΛL,
〈λ, L′〉 = 0, then there exists µ ∈ C∞(N) such that L′ = µL.

Proof. Let us consider L̃ = L′ − L′(t)L: we show that L̃ = 0 proving that, ∀g ∈ C∞(N),

L̃(g) = 0. Since L is standard, L(t) = 〈d2t, L〉 = 1 and

L̃(t) = 〈d2t, L′〉 − L′(t)〈d2t, L〉

= L′(t)− L′(t)L(t) = 0.

Obviously, if λ ∈ ΛL, then 〈λ, L̃〉 = 0. So, if g ∈ C∞(M), then λ = d2g−L(g)d2t ∈ ΛL. Therefore

L̃(g) = 〈(λ+ L(g)d2t), L̃〉

= 〈λ, L̃〉+ L(g)L̃(t) = 0,

and, by Theorem 2.6, the last statement is equivalent to L̃ = 0.
With the notations and the hypothesis of Theorem 5.2 , Φ is a symmetry of L if and only if

Φ
∗

(L) = µL, for some µ ∈ C∞(M) such that µ 6= 0.

Definition 5.4 Let X be a complete vector field on N with corresponding flow Φa.The vector
field X is an infinitesimal symmetry for the diffusions associated with a diffusor L (in short an
infinitesimal symmetry for L) if, ∀a ∈ R, Φa is a symmetry of the diffusor L.

Remark 5.5 A necessary condition for X to be an infinitesimal symmetry of a diffusor L is
that the flow Φa is a one-parameter group of invertible semimartingale transformations. This is
equivalent to require that X is projectable, i.e. the vector field X is of the form X = φi∂xi + τ∂t,
where the function τ depends only on t.

Theorem 5.6 A projectable complete vector field X is an infinitesimal symmetry of a standard
diffusor L if and only if X is a symmetry of ΛL, i.e.

LX(ΛL) ⊆ ΛL. (10)

Proof. The necessity (and the sufficiency) of the existence of the flow and of the projectability of
X are explained in Remark 5.5.
Besides, since ΛL is a k-dimensional module (with k = rank(τ∗N)−1) the necessity and sufficiency
of condition (10) are simple consequences of Theorem 3.10 and Theorem 5.2.

The following proposition provides a very useful condition, ensuring that a complete vector
field is a symmetry of a diffusion L.
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Proposition 5.7 Let X be a projectable complete vector field and L be a standard diffusor. Then
LX(ΛL) ⊆ ΛL if and only if there exists µ ∈ C∞(N) such that

LX(L) = µL. (11)

Proof. Suppose that LX(ΛL) ⊆ ΛL. For any codiffusor λ ∈ ΛL, we have

0 = LX(〈λ, L〉)

= 〈LX(λ), L〉+ 〈λ,LX(L)〉

= 〈λ,LX(L)〉.

Hence, by Lemma 5.3, there exists µ ∈ C∞(N) such that LX(L) = µL.
Conversely, suppose that LX(L) = µL; then for any λ ∈ ΛL,

0 = 〈LX(λ), L〉 + 〈λ, µL〉

= 〈LX(λ), L〉.

Hence LX(λ) ∈ ΛL, completing the proof.
In order to give a coordinate expression for condition (11) we consider a coordinate system xi

on M and a standard diffusor L of the form

L = Aij∂xixj + bi∂xi +Ait∂xit + ∂t.

It is easy to prove that, if L is a good diffusor, then Ait = 0 and the matrix Aij is semidefinite
positive. Hence L has the form

L = Aij∂xixj + bi∂xi + ∂t. (12)

Given a projectable vector field X = φi∂xi + τ∂t, we can calculate LX(L) and, inserting this
expression in (11), we obtain µ = −∂tτ and

φk∂xkAij + τ∂tA
ij −Aik∂xkφj −Akj∂xkφi +Aij∂tτ = 0 (13)

φk∂xkbi + τ∂tb
i − bk∂xkφi −Ajk∂xjxkφi + bi∂tτ − ∂tφ

i = 0, (14)

for i, j = 1, ..., dim(M).

In the following we compare the symmetry approach proposed in this paper, and in particular
the determining equations (13) and (14), with other results on symmetries of stochastic processes
appearing in the literature.
Given a diffusor L, it is natural to consider the corresponding Kolmogorov equation

L(u) = Aij∂xixj (u) + bi∂xi(u) + ∂t(u) = 0 (15)

describing the behaviour of the mean value of regular functions of the solution process Xt. More
precisely, a solution u(x, t) to equation (15) is of the form E[f(XT )|Xt = x] = u(x, t), with
t ∈ [0, T ]. Since (15) is a PDE, its Lie symmetries can be interpreted as vector fields on J0(N,R)
of the form

Z = τ(x, t, u)∂t + φi(x, t, u)∂xi + ψ(x, t, u)∂u.

14



satisfying (in the non-degenerate case, i.e. when Aij has maximal rank) the following conditions
(see e.g. [8, 17])

ψ(x, t, u) = h(x, t)u

∂u(φ
i) = 0

∂u(τ) = 0

∂xi(τ) = 0

∂t(h) +Aij∂xixj (h) + bi∂xi(h) = 0

φk∂xkAij + τ∂tA
ij −Aik∂xkφj −Akj∂xkφi +Aij∂tτ = 0

φk∂xkbi + τ∂tb
i − bk∂xkφi −Ajk∂xjxkφi + bi∂tτ − ∂tφ

i +Aik∂xk(h) +Aki∂xk(h) = 0.

It is interesting to note that these equations coincide with equations (13) and (14) when h is
constant. This is due to the fact that, in our approach, the main object is the process Xt and a
symmetry Y onM transforms the solution Xt to the martingale problem into a (possibly different)
solution Φf (X)t to the same martingale problem. Hence Y = Z (under the hypothesis h = 0)
transforms solutions to (15) into other solutions to (15).
Indeed a solution u to the Kolmogorov equation such that u(x, T ) = g(x) is of the form u(x, t) =
E[g(XT )|Xt = x]. This means that

u(Φ−1
a (x, t), f−1

a (t)) = E[g(XT )|Xf−1

a (t) = Φ−1
a (x)]

= E[g(XT )|Φa(Hfa(X)) = x]

= E[g ◦ Φ−1
a (Φa,fa(X)f−1

a (T ), f
−1
a (T )) |Φa,fa(X)t = x] = v(x, t).

Since Φf (X) is still a solution to the same martingale problem, we have that v is the unique solu-
tion to L(v) = 0 with final condition v(x, f−1

a (T )) = g(Φ−1
a (x, f−1

a (T ))).
The fact that only the transformations with h = 0 turn out to be symmetries of both the diffusion
process and the Kolmogorov equation follows from the fact that the transformations of the function
u do not have a natural meaning when the focus is on the process.

Another natural comparison arising in this framework is the study of the relationship between
the symmetries of a martingale problem as proposed in the present paper and the symmetries
of the corresponding SDE as given in [3]. Since in [3] we consider only autonomous SDEs and
stochastic time changes, in order to make the two approaches correctly comparable, we restrict our
considerations to autonomous diffusions (i.e. Aij , bi not depending on t) and time changes of the
form τ = at for some a ∈ R.
Given µ :M → R

n and σ :M →Mat(n,m), in [3] we consider SDEs of the form

dXt = µi(Xt)dt+ σi
α(Xt)dW

α

where (µ, σ) = (µi(x), σi
α(x)), and m is the dimension of the Brownian motion driving the SDE.

The relationship between (µ, σ) and (bi, Aij) is provided by Itô formula which ensures that

bi = µi, Aij =
1

2

m∑

α=1

σi
ασ

j
α. (16)

The infinitesimal stochastic transformation of a process X and of a Brownian motion W is given
by a triple (Ỹ , C, a) where Ỹ = φi∂xi is a vector field on M , describing the spatial change of X ,
C : M → so(m) is a function representing the random rotation of the Brownian motion W and
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taking values in the group of antisymmetric matrices, and a ∈ R is the parameter of the time
rescaling.
The determining equations for (Ỹ , C, a) are

φk∂xkµi − µk∂xkφi − 1
2

∑
α σ

j
ασ

k
α∂xjxkφi + aµi = 0, (17)

φk∂xk(σi
α)− σk

α∂xk(φi) + Cβ
ασ

i
α + 1

2aσ
i
α = 0. (18)

It is easy to check, by using (16), that equation (17) coincides with equation (14) with Y = Ỹ +at∂t
and that, being C antisymmetric, equation (18) implies equation (12). Furthermore, it is possible
to prove that, if Aij has constant rank, there exists a unique antisymmetric matrix C(x) such that,
if Y = Ỹ + at∂t solves equation (13), then (Ỹ , C, a) solves equation (18). Therefore, providing A
is non-degenerate, the symmetries of a SDE with deterministic time change defined in [3] are in
one-to-one correspondence with the symmetries of the related martingale problem introduced here.
The presence of the matrix C 6= 0 is essential for the validity of this correspondence. Indeed, since
in the martingale problem formulation the Brownian motion is not fixed, freezing the Brownian
motion in the SDE formulation by choosing C = 0 may cause the loss of some Lie symmetries (see
[7] and [3] for further details).
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