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Abstract

We prove existence and stability of Cantor families of quasi-periodic, small amplitude solutions of quasi-linear
autonomous Hamiltonian perturbations of KdV. MSC 2010: 37K55, 35Q53. To cite this article: P. Baldi, M.
Berti, R. Montalto, C. R. Acad. Sci. Paris, XXXXXXX.

Résumé

KAM pour KdV quasi-linéaire. Nous prouvons l’existence de solutions quasi-périodiques linéairement stables
pour des perturbations hamiltoniennes autonomes quasi-linéaires de l’équation KdV. MSC 2010 : 37K55, 35Q53.
Pour citer cet article : P. Baldi, M. Berti, R. Montalto, C. R. Acad. Sci. Paris, XXXXXXX.

1. Main result

The aim of this Note is to present the recent results in [3], concerning the existence and stability
of Cantor families of small amplitude quasi-periodic solutions for Hamiltonian quasi-linear (also called
“strongly nonlinear”, e.g. in [8]) perturbations of the KdV equation

ut + uxxx − 6uux +N4(x, u, ux, uxx, uxxx) = 0 , (1)

under periodic boundary conditions x ∈ T := R/2πZ, where

N4(x, u, ux, uxx, uxxx) := −∂x
[
(∂uf)(x, u, ux)− ∂x((∂uxf)(x, u, ux))

]
(2)
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is the most general quasi-linear Hamiltonian (local) nonlinearity. Equation (1) is the Hamiltonian PDE
ut = ∂x∇H(u) where ∇H(u) denotes the L2(Tx) gradient of the Hamiltonian

H(u) =
∫

T

u2
x

2
+ u3 + f(x, u, ux) dx (3)

on the phase space H1
0 (Tx) :=

{
u(x) ∈ H1(T,R) :

∫
T u(x)dx = 0

}
.

We assume that the “Hamiltonian density” f ∈ Cq(T× R× R; R) for some q large enough, and that

f = f5(u, ux) + f≥6(x, u, ux), (4)

where f5(u, ux) denotes the homogeneous component of f of degree 5 in (u, ux) and f≥6 collects all the
higher order terms. By (4) the nonlinearity N4 in (2) vanishes with order 4 at u = 0 and (1) may be seen,
close to the origin, as a “small” perturbation of the KdV equation

ut + uxxx − 6uux = 0 , (5)

which is completely integrable. Actually, the KdV equation (5) may be described by global analytic
action-angle variables, see [6] and the references therein.

A natural question is to know whether the quasi-periodic solutions of (5) persist under small pertur-
bations. This is the main content of KAM theory.

The first KAM results for KdV have been proved by Kuksin [7], and then Kappeler-Pöschel [6], for
semilinear Hamiltonian perturbations ε∂x(∂uf)(x, u), namely when the density f is independent of ux,
so that (2) is a differential operator of order 1 (such perturbations are called “quasi-linear” in [8]). The
key point is that the frequencies of KdV grow as ∼ j3 and the difference |j3 − i3| ≥ (j2 + i2)/2, i 6= j, so
that KdV gains (outside the diagonal i = j) two derivatives. This approach also works for Hamiltonian
pseudo-differential perturbations of order 2 (in space), using the improved Kuksin’s lemma in Liu-Yuan
[9]. However it does not work for a quasi-linear perturbation as in (2), which is a nonlinear differential
operator of the same order (i.e. 3) as the constant coefficient linear operator ∂xxx. Such a strongly
nonlinear perturbation makes the KAM question quite delicate because of the possible phenomenon of
formation of singularities in finite time, see e.g. section 1.5 in [8]. Concerning this issue, Kappeler-Pöschel
[6] (Remark 3, page 19) wrote: “It would be interesting to obtain perturbation results which also include
terms of higher order, at least in the region where the KdV approximation is valid. However, results of
this type are still out of reach, if true at all”.

Theorem 1.1, proved in [3], provides the first positive answer to this problem, at least for small amplitude
solutions. Note that (1) is a completely resonant PDE, namely the linearized equation at the origin is the
linear Airy equation ut + uxxx = 0, which possesses only the 2π-periodic in time solutions

u(t, x) =
∑

j∈Z\{0}
ujeij3teijx .

Thus the existence of quasi-periodic solutions of (1) is a purely nonlinear phenomenon (the diophantine
frequencies in (7) are O(|ξ|)-close to integers and ξ → 0).

The solutions that we find are localized in Fourier space close to finitely many “tangential sites”

S+ := {̄1, . . . , ̄ν} , ̄i ∈ N \ {0} , ∀i = 1, . . . , ν , S := S+ ∪ (−S+) . (6)

The set S is required to be even because the solutions u of (1) have to be real valued. Moreover, we also
assume the following explicit hypotheses on S:

– (S1) j1 + j2 + j3 6= 0 for all j1, j2, j3 ∈ S.
– (S2) @j1, . . . , j4 ∈ S such that j1 + j2 + j3 + j4 6= 0, j31 + j32 + j33 + j34 − (j1 + j2 + j3 + j4)3 = 0.
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Theorem 1.1 Given ν ∈ N, let f ∈ Cq (with q := q(ν) large enough) satisfy (4). Then, for all the
tangential sites S as in (6) satisfying (S1)-(S2), the KdV equation (1) possesses small amplitude quasi-
periodic solutions with diophantine frequency vector ω := ω(ξ) = (ωj)j∈S+ ∈ Rν of the form

u(t, x) =
∑

j∈S+
2
√
ξj cos(ωjt+ jx) + o(

√
|ξ|), ωj := j3 − 6ξjj−1 , (7)

for a “Cantor-like” set of small amplitudes ξ ∈ Rν+ with density 1 at ξ = 0. The term o(
√
|ξ|) is small in

some Hs-Sobolev norm, s < q. These quasi-periodic solutions are linearly stable.

Let us make some comments on this result.

(i) The set of tangential sites S satisfying (S1)-(S2) can be iteratively constructed in an explicit way.
After fixing {̄1, . . . , ̄n}, in the choice of ̄n+1 there are only finitely many forbidden values, while
all the other infinitely many values are good choices for ̄n+1. In this precise sense the set S is
“generic”.

(ii) The linear stability of a quasi-periodic solution u(ωt, x) means that there exists a set of symplectic
coordinates (ψ, η, w), ψ ∈ Tν , in which the linearized equation at u assumes the form

ψ̇ = K20(ωt)η +KT
11(ωt)w, η̇ = 0, ẇ − ∂xK02(ωt)w = ∂xK11(ωt)η.

The last PDE is a quasi-periodically forced Airy type equation that can be diagonalized into

v̇j + iµ∞j vj = fj(ωt) , j ∈ Sc , µ∞j ∈ R , (8)

which is a sequence of uncoupled harmonic oscillators. Moreover, near the diophantine invariant
torus, the Hamiltonian H assumes the (KAM) normal form (see [4])

K = const+ ω · η +
1
2
K20(ψ)η · η +

(
K11(ψ)η, w

)
L2(T)

+
1
2
(
K02(ψ)w,w

)
L2(T)

+O(|η|+ |w|)3.

(iii) A similar result holds for perturbations of mKdV (both focusing and defocusing)

ut + uxxx ± ∂xu3 +N4(x, u, ux, uxx, uxxx) = 0

for tangential sites S satisfying 2
2ν−1

∑ν
i=1 ̄

2
i /∈ Z. The KdV equation (1) is more difficult because the

nonlinearity is quadratic and so its effects near the origin are stronger than for mKdV. An important
point is that the fourth order Birkhoff normal forms of both KdV and mKdV are completely
integrable. The strategy in [3] for proving Theorem 1.1 could also be extended for generalized KdV
equations with leading nonlinearity up by using the normal form techniques of Procesi-Procesi [11].

2. Strategy of the proof of Theorem 1.1

Weak Birkhoff normal form. We decompose the phase space in the symplectic subspaces

H1
0 (Tx) := HS ⊕H⊥S , HS := span{eijx : j ∈ S}, (9)

and, accordingly, we write u = v + z, where v ∈ HS is called the tangential variable and z ∈ H⊥S the
normal one. The dynamics of these two components is quite different. The variable v contains the largest
oscillations of the quasi-periodic solution (7), while z remains much closer to the origin.

We write the KdV Hamiltonian (3) as H = H2 +H3 +H≥5 where

H2 :=
∫

T

v2
x

2
dx+

∫
T

z2
x

2
dx, H3 :=

∫
T
v3dx+ 3

∫
T
v2zdx+ 3

∫
T
vz2dx+

∫
T
z3dx, (10)

and H≥5 :=
∫

T f(x, u, ux)dx. We perform a “weak” Birkhoff normal form (weak BNF), whose goal is to
find an invariant manifold of solutions of the third order approximation of equation (1), on which the
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dynamics is completely integrable. Thus we need to eliminate/normalize the monomials of H which are
linear in z (this is the reason for which we call this BNF only “weak”). Since the KdV nonlinearity is
quadratic, two steps of weak BNF are required. We first remove the term 3

∫
T v

2zdx of (10). Since v is
Fourier supported on the finitely many sites S, these monomials are finitely many. As a consequence the
required Birkhoff map is the identity map plus a finite dimensional nonlinear operator (with finite rank
and which acts on a finite dimensional space), see (11). The key advantage is that such a transformation
modifies N4 only up to a finite dimensional remainder. Then a second step removes/normalizes also the
monomials of order 4 that are linear in z. In order to construct a sufficiently good approximate solution
such that the Nash-Moser iteration will converge it is necessary to remove also the terms O(v5), O(v4z)
(these further steps of Birkhoff normal form are not required if the nonlinearity of the original PDE is
yet cubic as for mKdV or in the KAM theorems [10]). This requires the hypothesis (S2) on the tangential
sites. The following Birkhoff normal form proposition holds.

Proposition 2.1 Assume (S2). Then there exists an analytic invertible symplectic map of the phase
space ΦB : H1

0 (Tx)→ H1
0 (Tx) of the form

ΦB(u) = u+ Ψ(u), Ψ(u) = ΠEΨ(ΠEu), (11)

where E is a finite-dimensional subspace such that the transformed Hamiltonian is

H := H ◦ ΦB = H2 +H3 +H4 +H5 +H≥6 , (12)

where H2(u) := 1
2

∫
T u

2
x dx and

H3 :=
∫

T
z3 dx+ 3

∫
T
vz2 dx , H4 := −3

2

∑
j∈S

|uj |4

j2
+H4,2 +H4,3 , H5 :=

5∑
q=2

R(v5−qzq) ,

H4,2 := 6
∫

T
vzΠS

(
(∂−1
x v)(∂−1

x z)
)
dx+ 3

∫
T
z2π0(∂−1

x v)2 dx , H4,3 := R(vz3) ,

R(vnzm) denotes a homogeneous polynomial of degree n in v and m in z, and H≥6 collects all the terms
of order at least six in (v, z).

The weak normal form (12) does not remove (or normalize) the monomials O(z2). We do not give such
stronger normal form (called “partial BNF” in Pöschel [10]) because the corresponding Birkhoff map is
close to the identity only up to an operator of order O(∂−1

x ), and so it would produce, in the transformed
vector field N4, terms of order ∂xx and ∂x. A fortiori, we cannot either use the full BNF computed in [6],
which normalizes all the fourth order monomials, because this Birkhoff map is only close to the identity
up to a bounded operator. For the same reason, we do not use the global nonlinear Fourier transform in
[6] (Birkhoff coordinates), which is close to the Fourier transform up to smoothing operators as O(∂−1

x ).

Note that the Hamiltonian H in (12) possesses the invariant subspace {z = 0} and the system restricted
to {z = 0} is completely integrable and non-isochronous (it is formed by ν decoupled rotators). The quasi
periodic solutions that we construct in (7) bifurcate from this invariant manifold.
Action-angle coordinates. We introduce the rescaled symplectic action-angle on the tangential directions

uj := (ε2ξj + ε2b|j|yj)1/2 eiθj if j ∈ S, uj := εbzj if j ∈ Sc, b > 1. (13)

After some calculations, (12) transforms into a Hamiltonian of the form

Hε(θ, y, z) = α(ξ) · y +
1
2

(N(θ)z, z)L2(T) + P (θ, y, z) (14)

where α(ξ) = ω̄ − ε26Aξ, ω̄ := (j3)j∈S+ , A := diag{j−1}j∈S+ , is the frequency-to-amplitude relation in
(7), the normal form 1

2 (N(θ)z, z)L2(T) is quadratic in z and does not depend on the action variable y, and
the Hamiltonian vector field of the perturbation P satisfies XP (ϕ, 0, 0) = O(ε6−2b), see [3]-section 5.
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Note that the normal form N(θ) in (14) depends on the angle θ, unlike those of the KAM theorems in
[10], [8]. This is because the weak BNF of Proposition 2.1 did not normalize the quadratic terms O(z2).
These terms are dealt with two “linear BNF” transformations in the successive analysis of the linearized
operator.
The nonlinear functional setting. We look for an embedded invariant torus i : Tν → Tν × Rν × H⊥S ,
ϕ 7→ i(ϕ) := (θ(ϕ), y(ϕ), z(ϕ)) of the Hamiltonian vector field XHε filled by quasi-periodic solutions with
diophantine frequency ω,

|ω · l| ≥ γ〈l〉−τ , ∀l ∈ Zν \ {0} , γ = o(ε2) . (15)
The diophantine constant γ = o(ε2) because ω is ε2-close to the integer vector ω̄ (the minimal condition
is indeed γ ≤ cε2 with c small). We shall also require that ω satisfies first and second order Melnikov-
non-resonance conditions. Actually, in this functional approach, the parameters are the frequencies ω. We
choose in the Hamiltonian Hε the unperturbed actions ξ = α−1(ω) = ε−2A−1(ω − ω̄) and we look for a
zero of the nonlinear operator

F(i, ζ, ω) := ω · ∂ϕi−XHε,ζ (i) (16)
where XHε,ζ is the Hamiltonian vector field generated by Hε,ζ := Hε + ζ · θ with ζ ∈ Rν . The unknowns
in (16) are the embedded torus i and ζ. The frequency ω is a parameter. The auxiliary variable ζ is
introduced in order to control the average in the y component of the linearized equation. If F(i, ζ, ω) = 0,
then ζ = 0, and so ϕ 7→ i(ϕ) is an invariant torus for the Hamiltonian Hε itself, see [4].

A solution of (16) is obtained by a Nash-Moser iterative scheme in Sobolev scales. The key step is to
construct (for ω restricted to a suitable Cantor-like set) an approximate inverse (à la Zehnder) of the
linearized operator at any approximate solution

di,ζF(i0)[̂ı , ζ̂] = ω · ∂ϕ ı̂− diXHε(i0(ϕ))[̂ı] + (0, ζ̂, 0). (17)

This means to find a linear operator T0 such that (di,ζF(i0) ◦T0 − I) = O(γ−1F(i0, ζ0)), see Theorem
6.10 in [3]. Note in particular that T0 is an exact inverse of (17) at an exact solution F(i0, ζ0) = 0.

A major difficulty is that the tangential and the normal components of (17) are strongly coupled.
This difficulty is overcome by implementing the abstract procedure in Berti-Bolle [4]: in a suitable set of
symplectic variables the “tangential” and the “normal” dynamics are almost decoupled and it remains
to invert a Hamiltonian linear operator Lω of H⊥S . This is, up to a finite dimensional remainder, a
quasi-periodic perturbed Airy operator with variable coefficients like

Lωh = Π⊥S
(
ω · ∂ϕh+ ∂xx(a1∂xh) + ∂x

(
a0h
)
− ε2∂xR2[h]− ∂xR∗[h]

)
, h ∈ H⊥S , (18)

where Π⊥S denotes the projection on H⊥S , the functions a1(ϕ, x), a0(ϕ, x) are multiplicative coefficients,
R2,R∗ are finite rank regularizing operators, and R∗ = o(ε2). The precise expression is in [3]-section 7.
Reduction of the linearized operator in the normal directions. The first task (obtained in sections 8.1-8.6
of [3]) is to conjugate Lω to another Hamiltonian operator with constant coefficients

L6 := ω · ∂ϕ +m3∂xxx +m1∂x +R6 , m1,m3 ∈ R , (19)

up to a small bounded remainder R6 = O(∂0
x). Such an expansion in “constant coefficients decreasing

symbols” is similar to [2] and it is inspired to the work of Iooss, Plotnikov, Toland [5] in water waves
theory, and [1] for Benjamin-Ono. The main perturbative effect to the spectrum of Lω is due to the term
a1(ϕ, x)∂xxx, which cannot be reduced to constants by the standard reducibility KAM techniques.

In order to eliminate the x-dependence from a1(ϕ, x)∂xxx we cannot use the symplectic transformation
A(ϕ)u = (1+βx(ϕ, x))u(ϕ, x+β(ϕ, x)) used in [2], because Lω acts on the normal subspace H⊥S only, and
not on the whole Sobolev space as in [2]. We need a symplectic diffeomorphism of H⊥S near A⊥ := Π⊥SAΠ⊥S
(which is not symplectic). The first observation is that, at each ϕ, A(ϕ) is the time 1-flow map of the
linear Hamiltonian time dependent transport PDE

∂τu = ∂x(b(τ, x)u) , b(τ, x) := β(x)(1 + τβx(x))−1.
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Hence we consider (section 8.1 of [3]) the Hamiltonian flow map of the projected transport equation on
H⊥S , which is Hamiltonian. This step may be seen as a quantitative application of the Egorov theorem
which describes how the principal symbol of a pseudo-differential operator (here a1(ωt, x)∂xxx) transforms
under the flow of a linear hyperbolic PDE. After a quasi-periodic reparametrization of time (section 8.2
of [3]) we reduce to constant coefficients the term O(∂xxx) of Lω and we eliminate the term O(∂xx).

Since the weak BNF (12) did not normalize the quadratic terms O(z2), the operator Lω in (18) has
variable coefficients also at the orders O(ε) and O(ε2). These terms cannot be reduced to constants by
the perturbative scheme in [2], which applies to operators R such that O(Rγ−1)� 1 where γ = o(ε2) is
the diophantine constant of the frequency ω, see (15). These terms are reduced to constant coefficients in
sections 8.4 and 8.5 of [2] by means of purely algebraic arguments (linear BNF), which, ultimately, stem
from the complete integrability of the fourth order BNF of the KdV equation (5), see [6]. These Birkhoff
transformations are symplectic maps of the form I + εO(∂−1

x ).
In section 8.6 in [3] we complete the task of conjugating Lω to L6 in (19) via a symplectic transformation

of the form exp(Π⊥S w∂
−1
x Π⊥S ). It is at this point that the assumption (S1) on the tangential sites is used,

see Lemma 7.5 in [3]. If f5 = 0 (see (4)) then (S1) is not required. Finally, we apply the abstract reducibility
Theorem 4.2 of [2], which diagonalizes L6, and thus conjugate Lω to (see (8))

v̇j + iµjvj = 0, j /∈ S, µj := −m3j
3 +m1j + rj ∈ R, m3 − 1, m1 = O(ε4), sup

j
|rj | = o(ε2).
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