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Emotions Recognition in Video Game Players Using Physiological Information

by Marco Granato

Video games are interactive software able to arouse di�erent kinds of emotions in players.

Usually, the game designer tries to de�ne a set of game features able to enjoy, engage, and/or

educate the consumers. Through the gameplay, the narrative, and the game environment, a

video game is able to interact with players' intellect and emotions. Thanks to the technological

developments of the last years, the gaming industry has grown to become one of the most important

entertainment markets. The scienti�c community and private companies have put a lot of e�orts

on the technical aspects as well as on the interaction aspects between the players and the video

game. Considering the game design, many theories have been proposed to de�ne some guidelines

to design games able to arouse speci�c emotions in consumers. They mainly use interviews or

observations in order to deduce the goodness of their approach through qualitative data.

There are some works based on empirical studies aimed at studying the emotional states directly

on players, using quantitative data. However, these researches usually consider the data analysis

as a classi�cation problem involving, mainly, the game events.

Our goal is to understand how the feelings, experienced by the players, can be automatically

deducted, and how these emotional states can be used to improve the game quality. In order to

pursue this purpose, we measured the mental states using physiological signals in order to return

a set of quantitative values used to identify the players emotions. The most common ways to

identify emotions are: to use a discrete set of labels (e.g., joy, anger), or to assess them inside an

n-dimensional vector space. Albeit the most natural way to describe the emotions is to represent

them through their name, the latter approach provides a quantitative result that can be used



xiv

to de�ne the new game status. In this thesis, we propose a framework aimed at an automatic

assessment, using physiological data, of emotions in a 2-dimensional space, structured by valence

and arousal vectors. The former may vary between pleasure and displeasure, while the latter

de�nes the level of physiological activation. As a consequence, we considered as most e�ective

to infer the players' mental states, the following physiological data: electrocardiography (ECG),

electromyography on 5 facial muscles (Facial EMG), galvanic skins response (GSR), and respiration

intensity/rate. We recorded a video, during a set of game sessions, of the player's face and of her

gameplay. To acquire the a�ective information, we showed the recorded video and audio to the

player, and we asked to self-assess her/his emotional state over the entire game on the valence

and arousal vectors presented above.

Starting from this framework, we conducted two sets of experiments. In the �rst experiment,

our aim was to validate the procedure. We collected the data of 10 participants while playing at

4 platform games. We also analyzed the data to identify the emotion pattern of the player during

the gaming sessions. The analysis was conducted in two directions: individual analysis (to �nd the

physiological pattern of an individual player), and collective analysis (to �nd the generic patterns

of the sample population).

The goal of the second experiment was to create a dataset of physiological information of 33

players, and to extend the data analysis and the results provided by the pilot study. We asked

the participants to play at 2 racing games in two di�erent environments: on a standard monitor

and using a head mounted display for Virtual Reality. After we collected the information useful to

the dataset creation, we analyzed the data focusing on individual analysis. In both analyses, the

self-assessment and the physiological data were used in order to infer the emotional state of the

players in each moment of the game sessions, and to build a prediction model of players' emotions

using Machine Learning techniques.

Therefore, the three main contributions of this thesis are: to design a novel framework for

study the emotions of video game players, to develop an open-source architecture and a set of

software able to acquire the physiological signals and the a�ective states, to create an a�ective

dataset using racing video games as stimuli, to understand which physiological conditions could

be the most relevant in order to determine the players' emotions, and to propose a method for the

real-time prediction of a player's mental state during a video game session. The results suggest

that it is possible to design a model that �ts with player's characteristics, predicting her emotions.

It could be an e�ective tool available to game designers who can introduce innovative features to

their games.
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Chapter 1

Introduction

H
uizinga [1] de�nes the action to play a game as �a voluntary activity or occupation executed

within certain �xed limits of time and place, according to rules freely accepted but absolutely

binding, having its aim in itself and accompanied by a feeling of tension, joy and the consciousness

that it is di�erent from ordinary life�. One of the main reasons people play games is that they

stimulate and generate all types of emotional responses [2]. Thus, generally, the development of

a game is focused on the players, with the main goal of inducing entertainment and engagement.

Hence, a game designer has to consider which is the target audience and, consequentially, how the

players' intellect and emotions will interact with the game.

A video game uses audio/visual information presented through electronic devices in order

to communicate the game structure. Furthermore, Sid Meier, a famous video game designer,

described the games as �a set of interesting decisions� [3]. Thus, the players' decisions may

provide a speci�c gaming experience that, usually, may have a di�erent emotional impact. In

order to investigate the connection between decision making and emotions, Damasio developed

the Somatic Marker Hypothesis (SMH) [4]: the author described how the decisions are de�ned by

previous outcomes. In particular, humans, consciously or unconsciously, associate somatic markers

to their past outcomes. Consequentially, if a person perceives a positive somatic marker, she may be

encouraged to continue in her behavior, feeling a sensation of �happiness� (vice versa for a negative

somatic marker). In addition, the author described [5] how emotions alter physiological condition

in relation to a speci�c stimulus, and how they can modify the future decisions. Starting from this

concept, many researches investigated the relationship between video games and emotions [6, 7, 8].

A good video game can create engagement with the player, maximizing the emotions induced by

the game choices. Thus, a game designer should consider and balance the di�erent video game

features in order to maintain players' attention and to generate the desired emotional response [9].

Furthermore, the players should adhere to a subset of game rules in order to receive a game output
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(e.g., use a sword to kill an enemy). This mechanism lays the foundation to an A�ective Loop [10,

11], where the human-computer interaction becomes an emotional communication process. Spatial

Presence [12] and Flow [13] are two theories of positive psychology that are commonly used to

identify how a video game, or a generic entertainment product (e.g., a movie), interacts with

the human emotions. Spatial Presence is a psychological condition describing how much a player

has the illusion to be transported in a virtual environment. This condition can be better elicited

by immersive technologies (e.g., Virtual Reality). Researchers have suggested that a high sense

of Spatial Presence can improve players' entertainment and it may also facilitate the players'

performance [14]. The Theory of Flow tries, instead, to de�ne a mental state where a user is

completely absorbed in a task. This theory describes a balanced channel between challenge and

ability: when in the �ow state, a person can bene�t of an experience of achievement and happiness.

In a video game session, the sensation of Flow seems to be connected with an increase of dopamine

level, a neurotransmitter that increases human attention [15].

These theories are only a subset of approaches aimed at describing the link between video

games and emotions: usually, studies on emotions and games involve di�erent disciplines, like

e.g., psychology, physiology, computer science, etc. A�ective Computing tries to merge these

disciplines: its main purpose is to automatize the recognition and/or simulation of human emotions

through a computer [16]. Our contribution aims to extend the researches in the a�ective computing

�eld, exploring a novel area regarding emotions recognition during video games fruition. Improving

the studies of emotions during video games fruition may improve the overall quality of the product,

and, consequentially, the engagement with the consumers. Moreover, this work may provide a

contribution to Game User Research (GUR) [17]. It is a novel approach which aims to consider

practical and research methods in order to ensure an optimal game quality. This approach involves

di�erent disciplines, and it considers all the aspects in game development, such as, infrastructures,

controls, menus, customer support, etc. Our research follows a scienti�c robust methodology,

taking care to follow the GUR guidelines, and providing a framework able to optimize the user

experience. This dissertation can also provide a contribution to the development of more e�ective

Serious Games. A Serious Game �is a game in which education (in its various forms) is the primary

goal, rather than entertainment� [18]. Thus, serious games di�er from the classic educational

tools as they use a di�erent framework, namely that of the game, to achieve an educational

purpose using an entertaining product. As an entertaining and interactive software, a serious

game should arouse speci�c emotions in order to engage the players and to transmit adequately

the educational message as intended by the game designers. As a consequence, improving the video
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game emotional e�ect does not a�ect only the playful aspect, but it may also improve the overall

life quality, providing a powerful tool able to enhance the general welfare, like e.g., entertainment,

education, sanity, etc.

As we mentioned above, some theories were developed to improve the possibility to design a

video game able to have an impact on players' emotions. However, these researches are based

mainly on the authors' expertise, and on the observations of the players' behavior. Consequentially,

the aim of our research is to design a framework that uses a�ective computing approaches to

understand, with empirical evidence, how to reveal the players' emotions during video games

fruition. Thus, we performed a set of experiments on players during gaming sessions. We acquired

physiological and emotional information in order to predict the mental state during video game

fruition. Starting from the results of the experiments, the main contribution of this thesis is to

develop a valid framework aimed at providing to game designers useful hints regarding how to

adapt their games to the players' conditions, like, e.g., to apply a novel and real-time method of

Dynamic Di�culty Adjustment (DDA) [19]. Furthermore, this thesis will provide other academic

contributions:

� The creation of an a�ective dataset named RAcing GAme (RAGA). It will be freely available

to the scienti�c community, and it will contain physiological and emotional (self-assessment)

data of players, acquired during video game sessions

� Starting from the collected data, to provide an analysis of the more e�ective physiological

information used to predict the players' emotions

� To propose a supervised learning method for the real-time prediction of a player's mental

state during a video game session.

The dissertation is structured as follows: in Ch 2 we provide the necessary background infor-

mation useful to understand the concepts presented in this thesis. We discuss about how A�ective

Computing and the physiological information connected with players' emotions can be integrated in

video game research �eld. In Ch 3, we contextualize the research in a�ective computing and video

games researches, investigating the di�erent connection points between the disciplines. The thesis

proceeds in Ch 4 with an overview of the methodologies applied to design the research framework.

Thus, we provide details about the di�erent types of emotions and the physiological data involved

in the research. Furthermore, we provide the architectural and software design in Ch 5. in Ch 6,

we describe the �rst experimental environment (a pilot study) used to validate the framework. We

have acquired data from 10 participants and we have applied Machine Learning (ML) techniques
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to predict the emotional participants' states considering an individual and a generic analysis. Then,

in Ch 7, we describe an extension of the previous experiment: we have involved 33 participants,

and we have improved the experimental setup, enhancing the quality of the physiological signals

acquisition, developing a novel method of feature selection, and using a more accurate ML algo-

rithm, in order to propose a more e�ective framework and to extend the results. Furthermore, we

present the RAGA Dataset, and we describe the analysis applied to the collected data to predict

the player emotional state during video games fruition. in Ch 8, we discuss the achieved results

and we provide �nal considerations on the overall research. Lastly, we suggest some possible future

works that will involve the design of a general model able to predict the emotional state without a

speci�c training on the player. Finally, the appendices provide further details on the outcomes of

the analysis of RAGA dataset. In particular, in Appendix A, we present detailed information about

the features considered in each experiment, in Appendix B we show the boxplots which represent

the overall accuracy of the di�erent applied models, and in Appendix C, we compare the outcomes

of the �nal model, considering di�erent indexes.
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Chapter 2

Background

I
n the following sections, we present the background information useful to understand the overall

dissertation. In particular, in Sec. 2.1, we discuss the di�erent proposed de�nition of a game,

and an overview of game design elements able to arouse emotions in players. The arguments

proposed in this section are valid for video games as well, since they are a subgroup of games.

In Sec. 2.2, we describe how an emotion arouses in humans, the physiological e�ects of

emotions in the human body, and the possible approaches to detect these phenomena.

2.1 Emotions in Games

Playing is a natural activity practiced by humans, such as the mammals and some birds [20].

It �lls the natural need to develop an emotional �exibility through the experience of di�erent

emotional aspects. Even if the activity of play can be observed across the species, humans are

the only mammals that play at games. Games are activities with the main goal to entertain the

players and they are limited in time and space. However, to �nd an exhaustive de�nition of game

can be a challenge. Usually, the game de�nitions are focused on particular game characteristics,

and, therefore, they can not provide a unique and exhaustive description of a game. Moreover,

the de�nitions of game are not necessarily exclusive, the di�erent descriptions (or parts of them)

can coexist. In our opinion, the most extensive and complete de�nition of �game� is provided

by Huizinga [1] and it is reported at the beginning of Ch. 1. However, di�erent authors have

provided a de�nition of game. Frasca, in his Ph.D. thesis [21], underlines a crucial point in the

de�nition of game, since it should be related to both system and activity. Both elements are

important in games, and a de�nition which excludes one of these two aspects can be considered

uncompleted. Another game de�nition is provided by Sid Meier, which considers a video game as

a set of interesting decisions, as already discussed in Ch. 1. Another de�nition provided by Salen

and Zimmerman describes a game as �a system in which players engage in an arti�cial con�ict,
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de�ned by rules, that results in a quanti�able outcome� [22]. Fullerton provides a description of

what is a game from the game designer point of view. She describes the art of game design as the

ability �to create that elusive combination of challenge, competition, and interaction that players

just call fun� [23].

Arjoranta observed that the game de�nitions are quite similar, since, usually, the authors look

the previous de�nitions, �nd common elements and problems, discern problems and provide a

synthesis able to �x them [24]. The author also quoted the dissertation of Wittgenstein [25]

(�rst philosopher that de�nes the word game), and he summarizes the philosopher argumentation

declaring that it is not possible to provide a unique de�nition of games, since they have not a

common core of attributes, but they �share attributes as family resemblances, which vary from

one instance to another�. Starting from this concept, we reduced the de�nitions to the minimum,

and we consider, for our study, �a game as an activity which is structured by rules able to arouse

emotions in players�, which is quite similar to dictionary de�nition provided by Merriam-Webster:

�activity engaged in for diversion or amusement�1. As a consequence, we studied di�erent ap-

proaches, provided by expert authors in the game design �eld, to study how to use the games

mechanics and environment to arouse emotions in players.

Hunicke et al. [26] tried to design, to the best of our knowledge, the �rst formal framework to

study the concept of game. This formal approach tries to develop a tool which considers the games

as artifacts, transforming the game components in the design counterparts. As a consequence:

� the Rules become Mechanics, with this term the authors �describes the particular compo-

nents of the game, at the level of data representation and algorithms�,

� the System becomes Dynamics, with this term the authors �describes the run-time behavior

of the mechanics acting on player inputs and each others' outputs over time�,

� the �Fun� becomes Aesthetics, with this term the authors �describes the desirable emotional

responses evoked in the player, when she interacts with the game system�.

Thus, MDA (Mechanics, Dynamics, and Aesthetics) has the main goal to study the games pro-

viding a common approach to di�erent game actors: designers, developers, critics, and researchers.

Lazzaro [27], through the observation of subjects playing at their favorite video games, identi�ed

4 elements able to arouse emotions without an explicit narrative:

� Player, that is focused on player's feeling during and after the game session. This point is also

divided into four di�erent sub-elements that describe the players' emotional reactions to four

1https://www.merriam-webster.com/dictionary/game

https://www.merriam-webster.com/dictionary/game


Chapter 2. Background 7

games aspects: Visceral, which describes the reaction to the game environment, Behavioral,

which describes the reaction to the product interaction, Cognitive, which describes the

reactions to the ideas, memories, and association, and Social, which describes the reaction

with the interaction with other players

� Hard Fun, that involves the game challenge. The challenge should be balanced with the

player skill and the game di�culty. The author has listed a set of hard fun features able

to engage the players: adjusting the level of di�culty, amount of commitment required,

progress and feedback, development of skills and feelings from growth, modifying games,

custom rules and messing around, and having choice between multiple strategies, skills, and

goals

� Easy Fun, that involves the player in game activity. It provides the sensation of immersion

in a virtual world. In order to improve this feature, the game designers have to consider the

di�erent types of interactions between the player and the environment.

� Other Players, that involves the cooperation or competition between players. This factor

is able to intensify the players' emotions. During her study, the author has observed that

people playing in groups demonstrate more signs of emotions than the �single-players�.

Freeman [28] listed 33 game design techniques useful to elicit players' emotions during the games'

fruition, summarizing these techniques with the term �Emotioneering �. In contrast to the Lazzaro's

approach, the author focused his attention on the narrative aspects of the game, proposing a set

of methods in order to develop a game story (e.g., plot, dialogues) conceptually interesting and

exciting. Koster published a popular book [15] which places the players' emotions at the center of

the game experience. An interesting statement extracted by his book is: �the destiny of games is

to become boring, not to be fun�. It is because the enjoyment in video games persists until the

player has the feeling to learn something new that helps her to master the game mechanics. Salen

and Zimmerman [22] developed the concept of Magic Circle starting from the ideas developed by

Huizinga [1]. The Magic Circle de�nes the boundaries of a game, i.e. a frame, limited in space and

time, in which the player plays at a game. In the circle, the game rules develop a special meaning

of the environments and the behaviors, since a new reality is created. The authors develop also

the concept of �Lusory Attitude� in which the player accepts to play in an environment with a

limited set of rules in order to experience the pleasure provided by the game. Yannakakis and Paiva

[29] described the games as �Emotion Elicitors�, since the emotions can be elicited through the

interaction with the game elements. They de�ne two di�erent clusters able to arouse emotions in
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player: game content, and game Non-Player Characters (NPCs). In the game content, the authors

considered the game environment, the game mechanics, story plot points, and reward system.

These elements can be further divided into more speci�cs elements, like, e.g., the audio/visual

settings. The NPCs, if they are implemented in the game, can be used as triggers to arouse

the desired emotions in the player. If an NPC has a credible behavior, it may arouse emotional

reactions if something good or bad happens. In addition, the NPC may have an impact on both

game environment and the virtual relationship. For example, if in a video game, for narrative

choices, a team member dies, the player loses the virtual relationship with the NPC and the

support of a team member (e.g., the forced decision of which crew member to sacri�ce in Mass

E�ect).

Di�erent studies also proposed to understand the types of sensations elicited by these enter-

tainments products. These researches are based mainly on two approaches: model-based, and

model-free [30]. The �rst uses a top-down approach, building the model on a theoretical frame-

work which maps the players' a�ect. For example, a model can be based on game emotion theory

([27, 15, 22]), or on a general emotion theory ([31]), such as the de�nition of a set of parameters

which describes the players' behavior. Modeling the players' characteristics allows to understand

their behavior and, consequentially, to suppose the emotions elicited by a speci�c video game

feature through simulations. In [32, 33] the researchers studied the players' satisfaction regarding

the game rewards (Looting System) in Massive Multiplayer Online (MMO) and Multiplayer Online

Battle Arena (MOBA) games, through a set of simulations where di�erent agents have peculiar

features (like, e.g., Bartle type [34], time usually spent playing video games, etc.). The second

approach (bottom-up) infers the players' emotions mapping them without the use of any particular

theoretical framework. This type of players' analysis can be performed in two ways: studying the

player's behavior in a video game, or using her physiological information to infer her emotions.

The former is usually considered in several moments during the game development, and sometimes

also after the game release to the market. This procedure is called playtest, and it has the main

purpose to have an overview of �the entire design process to gain an insight into whether the game

is achieving your player experience goals� [23]. Moreover, the playtest is usually used to evaluate

the player behavior in speci�c environments, and to �nd issues or lacks in the game levels. Usually,

it is carried out involving a set of participants (Game Testers), or using a software-based approach

such as AI-driven bots which mimic the humans behavior (e.g., [35]). Playtesting is widely used

in the industry, but, usually, it is not useful to extract quantitative data about the players. In-

stead, using directly the annotated emotional physiological information of the player may provide
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to the researchers quantitative results based on players' physiological conditions. An example of

study which uses the physiological information in order to improve the quality of the gameplay

information can be found in [36]. Unfortunately, it does not provide any direct information about

the participants' emotions elicited by the video game fruition. Further details on the methods

used to annotate the a�ective states will be explained in the next section.

2.2 What Our Body Says

Emotions arise spontaneously in humans, and they may modify our decisions and actions. The

�rst studies on emotions are mainly focused across the nineteenth and twentieth century. In 1872,

Darwin published a book [37] which reports the results of his research on emotions. He stated that

the emotions of animals and humans are "homologues". To support this hypothesis, he compared

photographs of animals and humans during the experience of di�erent emotional states. The

author, also, hypothesized the existence of a set of universal observable emotions across culture

and species. After some years, James [38] proposed a new theory about emotions. He stated that

they are an outcome of physiological changes. Thus, the author assumed that a solicited sensory

system sends information to the brain, which de�nes the appropriate emotion and, in turn, it sends

signals to the whole body in order to induce the correct reaction. In parallel, Lange proposed a

similar idea [39], and, as a consequence, the theory is widely known with the name of "James-Lange

theory". After some years, Cannon published in a paper [40] some criticisms to the work of James

and Lange. These criticisms were supported and partially corrected by the Cannon's doctoral

student, Bard [41]. In order to prove his theory, Cannon inhibited the sensory system (destroying

the sympathetic nervous system) of a set of animals, and he observed their emotional reactions. He

discovered that the removal of this body function has only a little e�ect on the animals' emotional

response. Thus, the authors formulated a new theory, known today as "Cannon-Bard theory".

This theory states that when a stimulus was perceived, the information is directly communicated

to the brain (involving, in particular, the hypothalamus), which provides the physiological reaction,

and, as a consequence, the emotional experience. In more recent years, Ekman [42] conducted an

empirical research, and he de�ned six basic and universal human emotions that can be revealed on

human face: anger, fear, sadness, happiness, disgust, and surprise, validating part of the Darwin

theory. These emotions have the same intrinsic meaning and physiological outcome across the

di�erent cultures. Moreover, the author de�ned a new set of 11 possible universal emotions, but

he has also stated that "the evidence [of these emotions] is certainly not available now" [43].
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Dalgleish [44] presented an overview of these and more theories on the relation between emotions

and physiological conditions.

Summarizing, di�erent researches proved that there is a connection between emotions and

physiological changes in the human body. Thus, the emotional reactions can be described and

acquired by at least three human output systems [45]: self-report measures (e.g., through verbal

expressions), behaviors (e.g., facial expressions), and physiological reactions of Autonomic Nervous

System (ANS), like, e.g., Heart Rate (HR), Brain Activity, etc. Hence, if emotions have a physi-

ological response, then they may be identi�ed through a set of tools able to detect the variations

in human physiology.

The self-report is a direct measure of the emotional states provided directly by the subject. It

can be reported mainly in three ways: asking the users to report the nature of their experience

with a �free-response�, considering a set of discrete emotions using, for example, the Ekman's

universal emotions [42] (i.e., happiness, fear, etc.), and through a dimensional model using two

or three vectors [46]. Using the free-response format, the researchers can provide a comfortable

environment to the participants [47]. With this method, the users can report their experienced

emotion using each type of label or any type of expression able to better describe what they have

felt. However, many participants may have a problem to use the appropriate label to identify

the emotions, since they normally do not communicate their emotional states. In addition, it

is not possible to study this type of emotion self-assessment using a quantitative analysis, since

the frequency of some labels is quite low. In order to reduce this problem, some researchers

sorted the free-response labels in a limited number of categories. For example, Geneva A�ect

Label Coder (GALC)2 identi�ed 36 a�ective states by parsing the text and looking for speci�c

words (or their synonyms). The discrete self-assessment of the emotions uses human language in

order to de�ne a set of markers able to describe, and clearly separate, the emotions. Thus, this

type of categorization is similar to the semantic organization of the emotions available in natural

languages (with unique patterns able to identify a speci�c feeling). The main approaches used to

identify the discrete emotions are [47]: Nominal Scale, it presents a set of terms that describe the

experienced emotion, Ordinal Scale, which indicates in a Likert scale the intensity of a speci�c

emotion, and/or Interval Scale, which uses an analog scale to indicate the level of experience

regarding an emotion. In order to standardize the list of discrete emotion labels commonly used in

the a�ective studies, Izard presented in the book �The Psychology of Emotions� [48] the Di�erential

Emotion Scale. It listed 10 standardized emotions (joy, surprise, anger, disgust, contempt, shame,

2https://www.affective-sciences.org/home/research/materials-and-online-research/

research-material/

https://www.affective-sciences.org/home/research/materials-and-online-research/research-material/
https://www.affective-sciences.org/home/research/materials-and-online-research/research-material/
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guilt, fear, interest, and sadness) described through a checklist structured by thirty-item adjectives,

each one evaluated in a 5-point scale. The last self-report method is the dimensional model. It is

structured by a 2D or 3D model, where each point in the dimensional space represents a particular

mental state. Usually, the considered vectors are Pleasure(Valence)-Arousal-Dominance (PAD),

and VA, where:

� Valence measures the emotion �quality� (from averseness to attractiveness). It de�nes how

pleasant (or unpleasant) is the participant feeling regarding an event

� Arousal measures the emotion �energy� (from very calm to very excited). It de�nes the level

of the participant physiological activation in front of a particular event

� Dominance measures the user �potency� (from submissive to dominant), which represents

the amount of in�uence a user feels in a speci�c environment.

However, also di�erent vectors were applied, such as the motivation, which describes the a�ect

associated to approach or avoid a stimulus [49]. An example of other a�ective states used in the

dimensional model are tension, and control, which usually replace the Dominance in the PAD [47].

As a consequence, the di�erent intersections of these dimensions are able to provide a very �ne

classi�cation of emotions to the researchers. Moreover, di�erent works tried to map the discrete

emotions in the dimensional model (e.g., [50]). An estimation of discrete emotions, mapped in

the VA 2-dimensional space, can be see in Fig. 2.1.

In order to provide a greater accuracy in the dimensional emotion identi�cation, some researches

were addressed to develop markers able to support the users in emotions labeling. The most

common method used in di�erent research is the Self-Assesment Manikins (SAM) [52]. This tool

is structured by a series of anthropomorphic �gures representing di�erent human emotions. The

authors designed these manikins in order to support the mapping of the PAD value. Moreover, the

authors provided, for each vector, 3 set of �gures (with 5, 7, 9 manikins), in order to cover almost

all types of approaches used for the emotion self-assessment. A di�erent tool was developed by

Betella and Verschure [53]. They developed the A�ective Slider (AS) as a valid alternative to the

SAM. AS is structured by a set of emoticons that represent the emotions limits of PAD vectors.

It also uses a bow-tie graph where the narrow area indicates a neutral emotion. Through their

research, the authors showed that AS can be a valid alternative to SAM.

Each self-report measure is reliable only if the time spent between the measure and the emo-

tional experience is short (i.e., few hours) [54].
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Figure 2.1: Estimation of Discrete Emotion in VA dimensional space. The image
is taken from [51]

.

The measure of emotions de�ned by the behavior is mainly described by three components:

vocal features, body movements, and facial expressions. This measure describes how humans

communicate with each other their emotional states. The speech contains, besides a semantic

content, some information related to the tone. It has di�erent features (e.g., amplitude and

pitch) that can be used to infer the speaker's emotion. An overview of speech datasets, and

on the techniques commonly used to analyze emotional speech signals can be found in [55].

The study of the body posture received less attention than the analysis of the others human

behaviors. However, some researches are related the study on human posture and the link to

speci�c emotional states. For example, a work of Tracy et al. [56] demonstrated that pride has a

universal body outcome, i.e., a visibly expanded posture, and arms raised above the head or hands

on hips. The last body outcome is the facial expressions. Albeit Ekman's studies have found

only a limited number of universal facial expressions able to represent a corresponding number

of discrete emotions, the information acquired on human face can support the identi�cation of
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Figure 2.2: Example of facial decomposition based on FACS. The image is taken
from [60]

the emotions in the dimensional model. The facial behavior seems to have a strong connection

with the emotion valence [57]. For example, the contraction of the muscles that surround the

eye is usually linked with positive emotions [58], while when the eyebrows are lowered and closed

together, it reports, commonly, negative emotions [45]. In order to de�ne a universal methodology

to study the facial expressions, Ekman et al. [59] developed a coding system, named �Facial Action

Coding System (FACS)�, which assesses 44 movements of facial muscles that can be observed on

a human face (see Fig. 2.2).

Thus, more emotional information can be revealed on facial behaviors through an Electromyography

(EMG) analysis. Usually, the muscles most involved during the EMG studies are the Corrugator

Supercilii and the Zygomatic (see, e.g., [61]) which provide an approximation of the overall facial

expression.

Furthermore, the periventricular area of the hypothalamus controls the ANS. It is a system

which provides coordinated and autonomous functions at the various organs. The ANS is commonly

divided into two systems, the sympathetic and parasympathetic divisions. The former manages

the stressful situations (e.g., increasing the HR and the Blood Volume Pressure (BVP), etc.),

while the latter manages the calm situations. For example, two physiological outputs produced by

ANS that can be acquired with non-invasive techniques through di�erent types of sensors are: the

Electrodermal Activity (EDA), and the cardiovascular response, usually acquired through an ECG.
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EDA is mainly measured as the Skin Conductance (SC) or its inverse quantity, the skin resistance

Skin Resistance (SR). Until the 1980s, the common term of skin electrical measurements was

Galvanic Skin Response (GSR) [62], thus, in this paper, we use these names alternately. GSR can be

considered as a re�ection of the sympathetic system, it measures the electrical characteristics of the

epidermis, mainly altered by the sweating of the skin, and it is physically interpreted as conductance

[63]. Sweat glands, distributed on the skin, receive input only by the sympathetic nervous system,

and, as a consequence, sweat is a good indicator of arousal [64]. Its measure can be quanti�ed in

terms of: raw data (i.e., EDA/SC/GSR/SR), Skin Conductance Level (SCL) or Skin Resistance

Level (SRL), and Skin Conductance Response (SCR) or Skin Resistance Response (SRR). The

measure of the Level provides the tonic information of EDA, which de�nes information not related

to a speci�c and immediate stimulus, but it provides average information on slow ANS changes

(over a second). On the other side, the Response is a phasic measure which provides information

on the speci�c and immediate stimulus [62]. Summarizing, the sympathetic activity is linked to

the emotions and, therefore, GSR is often suggested as emotions index [65]. The ANS has also

the functions to innervate the heart and blood vessels. These functions provide alterations on

HR, as well in other related physiological information: BVP, Total Peripheral Resistance (TPR),

Cardiac Output (CO), Pre-Ejection Period (PEP), and Heart Rate Variability (HRV) [66]. Other

patterns managed by ANS, which can support emotions recognition, are: Respiration [67], Skin

Temperature [68], and Pupils Dilation [69]. Also, these physiological outcomes can be observed

through a set of non-invasive sensors. For a full list of the ANS physiological information solicited

by emotions and that can be acquired through non-invasive techniques see [70].

The last type of physiological information, usually acquired to infer emotional states, is the elec-

trical activity of the brain, which is usually measured through the Electroencephalography (EEG).

This kind of measure is categorized in the Central Nervous System (CNS), and in particular, the

non-invasive techniques have been addressed to acquire the electrical activity of the neocortex.

Empirical experiments revealed a particular behavior of brain electrical activity, named Event-

Related Potential, which generates an action potential (i.e., a positive signal de�ection) after

around 300 milliseconds from the presentation of a stimulus [71]. Commonly, this characteristic

is used as a diagnostic tool (in both psychiatry and neurology), as well as for the Brain-Computer

Interface (BCI) research �eld [72], where the passive BCI is a common measure to infer the user's

cognitive state. The BCI analysis addressed to study the humans' a�ective state is named aBCI, its

approach is based on stimulus-independent passive BCI, which includes general a�ect sensing for
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Human-Computer Interaction (HCI) scenarios, inferring the emotional states and adapting the en-

vironment in order to engage better the users [73]. Other common techniques used to measure the

brain activity are: Positron emission tomography (PET), Functional magnetic resonance imaging

(fMRI), and Magnetoencephalography (MEG). Albeit these methods are usually more informative

than EEG, they are also more invasive, more expensive, and with a greater demand in terms of

space.

Part of the content of this section were presented in UBIO workshop and it will be published in �

Granato, M., Gadia, D., Maggiorini, D., and Ripamonti, L.A., "Feature Extraction and Selection for

Real-Time Emotion Recognition in Video Games Players", Proceedings of International Workshop

on Ubiquitous implicit BIOmetrics and health signals monitoring for person-centric applications,

IEEE � [74].
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Chapter 3

State of Art

T
he aim of this chapter is to provide a review of the literature. In particular, in Sec. 3.1

we compare di�erent a�ective datasets, describing the types of stimuli, the experimental

procedure, and the eventual data analysis outcomes. The Sec. 3.2 aims to describe researches

that have used the players' physiological data in video game research �eld. Thus, we describe

studies addressed to understand the players' emotions during the game fruition, and studies aimed

at the developing of video games which use the player mental state as an additional input.

In Tab. 3.2, we provide a comparison between part of these datasets. Thus, we compare the

number of participants, the type of stimuli used for the experiment, the collected physiological

information, and the type of emotion assessment.

3.1 A�ective Studies and Datasets

Many A�ective Computing researches were addressed to recognize the human emotions, and to

develop a computer behavior which simulates, as closely as possible, their expression. In this

section, we focus on the emotion recognition starting from data acquired on humans and on the

description of di�erent data sets developed for academic purposes.

Usually, a�ective datasets contain di�erent types of human output information (e.g., video of

humans' face, voice, etc.). These databases can be unimodal, designed to collect a unique type

of data (e.g., images with di�erent facial expressions), or multimodal, which provides di�erent

types of information (e.g., video and audio). Below, we describe a set of a�ective datasets which

provide, at least, a physiological information generated by ANS. These datasets were designed to

be studied in the emotion recognition research �eld. Thus, they also contain an emotional target

variable used by the researchers to estimate the accuracy of their model (i.e., annotation).
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3.1.1 Multivariate response patterning of fear and anger

Sinha and Parsons in 1996 [75] were, to the best of our knowledge, the �rst researches which

collected an a�ective dataset using physiological information. In particular, they acquired: ECG,

BVP, GSR, facial EMG, skin temperature (acquired on a �nger), and eye movements. In order to

collect the eye movement, the authors placed two electrodes (GRASS Gold Cup) near to the right

eyeball: one below and the other one on the lateral canthus. They also acquired the EMG signals

of the electrical activity of 4 facial muscles: zygomatic, corrugator, masseter, and depressor. The

experiments were conducted on 27 participants, each volunteer was male with an age between 21

and 35. The participants were asked to listen a set of auditory scripts which suggest imagining

di�erent kinds of scenarios. The imagery trials were divided in mental trains able to arouse six

di�erent emotions, and one physical activity (a basket match). After the experimental session,

the authors asked the participants to assess their emotions, during each auditory script, using a

short version of the Di�erent Emotion Scale [76]. Thus, the authors classi�ed the physiological

signals according to the scenarios of fear, anger, and neutral, reaching an accuracy of 98.8%.

Unfortunately, the dataset was not released to the academic community.

3.1.2 Eight-Emotion Sentics Data

In 2001, Picard et. al [77, 78] collected a free and public dataset1 named Eight-Emotion Sen-

tics Data. Sentic is a term used to refer to the emotion categorization, which �basically means

understanding signals that convey emotions� [79]. The researchers considered 4 physiological

information (i.e., BVP, GSR, respiration, and a facial EMG along the masseter), involving a single

participant in an experiment in a 20-day long experiment. Each day, the subject had to partici-

pate to an experimental session, listening for 25 minutes to a set of auditory stimuli. During the

experiment, the participant listened a set of auditory stimuli. In particular, through a headphone

a random sequence of emotions was announced, and each element of the sequence was followed

by a series of soft metronome clicks. At each click, the participant had to press a �nger on a

sensor placed in front of him in order to evoke the speci�c emotions through physical expression

(see [80]). Also, in this case, the emotions were elicited through an imagery technique, where

the participant imagines di�erent scenarios. The considered emotions were: neutral, anger, hate,

grief, love, romantic love, joy, and reverence. The authors reached the 81% of accuracy in the

classi�cation of the emotion recognition over the eight discrete emotions.

1https://affect.media.mit.edu/share-data.php

https://affect.media.mit.edu/share-data.php
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3.1.3 Wearable Sensors to Recognize Humans Emotions

Lisetti et. al [81] collected, in 2004, a physiological dataset using a wearable sensor (BodyMedia

SenseWear Armband2). With this device, the authors were able to acquire the following data:

GSR, HR, and skin temperature. Thus, they used a set of movie clips and mathematics problems

in order to arouse, in the participants, the emotions of: sadness, anger, surprise, fear, frustration,

and amusement. A preliminary experiment was conducted on 14 students, which have participated

simultaneously in the study. They watched 14 movie clips and they reported, for each clip: the

experienced emotions (in the discrete subset), the emotional intensity, the concurrence of di�erent

emotions, and a brief description of the video clip. This preliminary study was conducted in order

to select the movie clips able to elicit a particular emotion. Thus, the clips that elicited the

correct emotion in at least the 90% of the participants, with an average intensity greater than

3.5, were considered. The main experiment was conducted on 29 participants, which participated

simultaneously in groups of 1 to 3. A set of slide-show with images of naturalistic landscapes were

shown to the participants in order to acquire a baseline of physiological data. After the slides,

the researches showed to the subjects the following sequence, repeated for each clip: the video of

a selected movie clip which is able to arouse a speci�c emotion, a slide which asks the participants

to answer some questions about the clips (the questions were similar to the pilot study), and

a slide which asks the participants to relax with some music. Thus, the authors classi�ed the

emotions using three di�erent ML algorithms, achieving an accuracy between 72.3% and 84.1%.

Unfortunately, the authors did not make the data available to the scienti�c community.

3.1.4 Emotion Recognition During Music Listening

In 2008, Kim and André [82], acquired an a�ective dataset on 3 participants with an age between

25 and 38 years old. The authors collected the EMG on the upper trapezius muscle, ECG,

GSR, and respiration signals using the Procomp In�nity device, produced by MindMedia3. They

used as stimuli 4 songs, each one selected directly by the participants in order to evoke a set

of emotional memories: positive/high arousal, negative/high arousal, negative/low arousal, and

positive/low arousal. The selection of the songs was carried bout each participant, because the

emotional responses to music may vary between people, due to past experiences and culture.

Thus, the authors used ML techniques in order to classify the physiological data in the four types

of emotional memory (using the leave-one-out CV). The average accuracy of data prediction on

2The company have been acquired in April 2013, and, unfortunately, the product is no longer purchasable
3https://www.mindmedia.com/
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the 3 participants, considering the individual analysis, was 87%, while the accuracy of the model

trained on all the subjects' data was 65%. Unfortunately, the authors did not make the data

available to the scienti�c community.

3.1.5 HCI-Tagging Database

TheMAHNOB HCI-TAGGING is a multimodal database [83] that was acquired in 2012. It provides

a set of physiological signals and the emotion self-assessment on 27 participants. The biofeedback

measures include eye gaze, ECG, EEG (on 32 channels), GSR, respiration, and skin temperature.

Moreover, the authors recorded the participants' voice with a microphone, and a video of the

participants through 6 video cameras. As described in the paper, the authors took special care

of the data synchronization. The experiment was structured in two parts: Emotion Recognition

Experiment, and Implicit Tagging Experiment. In the former, the participants watched a neutral

video clip, followed by a clip selected by the authors (in random order). 20 movie clips (with an

average length of 81.4 seconds) were selected for this experiment. The authors acquired these

videos with two methodologies: 6 videos have been de�ned manually and 14 through a collective

and web-based preliminary study [84]. Each video had an emotion annotation in arousal and

valence vectors, provided by more than 50 participants. After each stimulus, the participant had

to complete a set of 5 questions: the �rst to identify the experienced emotion in a discrete interval

(neutral, anxiety, amusement, sadness, joy, disgust, anger, surprise, and fear), the others questions

were designed to identify, in a 9 point scale, the information of PAD, and predictability [85]. The

authors applied a data classi�cation on VA values, collecting the results presented in Tab. 3.1.

Table 3.1: Manhob-HCI Classi�cation Results

Recognition Rate
Trainig Variables Arousal Valence
Physiological Data 46.2% 45.5%

EEG 52.4% 57.0%
Eye Gaze 63.5% 68.8%

Eye Gaze + EEG 67.7% 76.1%

In Implicit Tagging Experiment, images or video fragments were shown to 27 participants.

These stimuli present a tag at the bottom of the video, which describes the presented situation.

The tag can be correct or incorrect, and the participant had the task to select a correct button

according to his opinion, i.e., if she agreed with the image/video description. Thus, the authors

classi�ed the participants' facial expression and the eye gaze according to the correctness of the

displayed tags in image stimuli. The classi�cation accuracy obtained a result of 75% with a fusion
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modality (facial expression + eye gaze). Additional details on methods, analysis, and results can

be found in [86]. The dataset is freely available to the academic community4.

3.1.6 DEAP

DEAP [87] is a multimodal a�ective dataset which provides a 32 channels EEG information,

GSR, BVP, ECG, EMG on Zygomaticus and Trapezius muscles, respiration, skin temperature, and

Electrooculogram (EOG). The database is based on a pilot study [88] which involved 6 participants

and 20 music videos as stimuli, while DEAP has considered 40 music videos and 33 participants.

The faces of a subset (22) of participants were also recorded during the overall experiment. In

order to select the 40 music videos, the authors had initially selected 120 di�erent stimuli, with

half of them selected automatically. Thus, through an a�ective highlight algorithm, the authors

had extracted a one-minute video for each stimulus. As the last step, the authors had selected

the �nal 40 stimuli through a web-based subjective assessment experiment. Each experiment had

followed the same procedure, structured, for each video, in 4 di�erent steps: 2 seconds screen

which informs the participant of her progress, 5 seconds baseline recording, 1 minute of the video

clip, and the self-assessment stage. The latter was acquired on 4 di�erent values: PAD, and

liking. In order to acquire the PAD, the researchers used the SAM [52] with a Likert scale on 9

levels. For the liking scale, the authors used three thumb �gures: up, neutral, and down. In order

to describe the meaning of the valence information to the participants, the authors de�ned this

measure as a report of �the participants' tastes, not their feelings. For example, it is possible to

like videos that make one feel sad or angry�. Thus, the authors computed a classi�cation between

a set of features extracted by the EEG and the scales of arousal, valence, and liking, obtaining an

accuracy of, respectively, 62%, 57.6%, and 55.4%. The dataset is freely available to the academic

community5.

3.1.7 RECOLA

In 2013, another multimodal database was acquired. Its name is RECOLA [89] and it provides

audio, video, and physiological (ECG and GSR) information. It involved 46 di�erent participants,

however, only on 18 of them the authors had acquired the information for the dataset. The

database was addressed to investigate the humans emotions in collaborative work. Thus, the

participants were divided into two separate rooms and they had to complete a survey in order to

4https://mahnob-db.eu/hci-tagging/
5http://www.eecs.qmul.ac.uk/mmv/datasets/deap/



Chapter 3. State of Art 21

evaluate their emotional state. After an individual task, the participants were engaged in a remote

discussion. The emotion self-assessment were acquired on around 3.8 hours of audiovisual data,

and 2.9 hours with physiological data. To the best of our knowledge, this database is the �rst

to assess the emotions in a continuous time. The emotion was self-assessed, and identi�ed by 6

external annotators on two a�ective vectors (VA), the annotation values ranging from -1 to +1,

with a step of 0.01. The dataset is freely available to the academic community6.

3.1.8 DECAF

DECAF [90] is a multimodal dataset acquired in 2015. It provides the physiological information of

30 participants during the fruition of 36 movie clips. The clips were selected through a preliminary

stage, where 42 volunteers watched 58 movie segments, and they self-assessed their emotional state

on valence, arousal, and a set of discrete emotions. Thus, according to the acquired data, they

removed outliers movie clips. Moreover, the authors collected the emotional response on 40 music

videos already used in DEAP [87]. The authors' main goal was to compare di�erent types of stimuli

in order to investigate their e�ectiveness to elicit similar emotions. The acquired physiological data

are: Magnetoencephalogram (MEG), EOG, ECG, a EMG on the trapezius muscle, and an infra-red

facial video. Each participant completed two separate experimental sessions: in the �rst, the movie

clips selected by the authors were presented, while, in the second, the subject watched the music

videos. The videos were shown in random order, taking care that two clips with similar VA values

did not follow one another. The emotion self-assessment were acquired through a microphone, the

participants had to rate (in a range from 0 to 4) the values of PAD. The authors declared that

�MEG signals are seen to e�ectively encode arousal and dominance, while peripheral physiology

signals e�ciently encode valence. Facial expressions are also seen to best encode valence, while

audio-visual features achieve best arousal recognition for music clips with PB7 labels�. The dataset

is freely available to the academic community8

3.1.9 OPEN_EMOREC_II

In 2015, Rukavina et al. acquired a dataset named OPEN_EmoRec_II [61]. It is an evolution of

a previous pilot work (see [91]). In order to collect the dataset, the authors collected the video,

audio, and a set of physiological data on 30 participants. The biofeedback information acquired for

OPEN_EmoRec_II are: ECG, BVP, GSR, facial EMG (on zygomaticus, and corrugator supercilii

6https://diuf.unifr.ch/diva/recola/download.html
7The authors have used the acronym PB in order to indicate the stimuli label provided by Population-Based.
8http://mhug.disi.unitn.it/wp-content/DECAF/DECAF.html
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muscles), and respiration. The experiment was structured in two separate sessions. In the �rst

session, a set of pictures, acquired from IAPS [92] database, were showed to the participants.

A stimulus was composed by a set of 10 pictures (each one has been displayed for 2 seconds)

with similar emotional ratings. For each participant, the authors showed 10 sets of pictures, 2 for

each of the 5 considered a�ective states. The second part of the experiment aimed to investigate

the a�ective state in HCI. The subjects were informed that they had to interact with a virtual

environment controlled by a computer, able to receive users' natural inputs (i.e., natural speech).

Actually, the computer was controlled by an experimenter located in another room (Wizard of Oz

experiment). Thus, the participant was proposed to solve 6 task of mental training. Each task,

described in [91], was designed to induce di�erent emotions through the computer feedback (i.e.,

the operator in the other room). At the end of the experiment, the participants rated each task on

PAD. Moreover, 4 external annotators provided, for each participant, the information of valence

and � intensity, which is useful as it is identical to the dimensional approach like the whole emotion

induction� [61]. The annotators also provided a label for the facial reaction after positive/negative

events. Unfortunately, the authors had not provided a data analysis of the acquired data. In

addition, albeit the dataset is available for research groups, unfortunately, the website which hosts

the data is no longer available. However, the authors provided, in the paper, an email in order to

provide technical support.

3.1.10 AMHUSE

AMHUSE [93] is a multimodal and a�ective dataset collected in 2017. It involved 36 participants

with an age between 18 to 54 years old. Four videos were showed to each subject, 1 neutral, and 3

videos with comic contents. The comic videos were selected to induce amusement in participants.

During the stimuli fruition, 2 videos, with RGB and Depth cameras, and a set of physiological data

were collected. All biofeedback signals were acquired on the �ngers of the left hand: on the index

and the middle were placed the electrodes for the GSR sensor, on the ring �nger was acquired

the BVP, and on the pinke a was placed thermometer to acquire the skin temperature. At the

end of each stimulus, the participants annotated the levels of PAD using the A�ectButton tool

[94]. This tool allowed the users to intuitively self-asses their emotions in a range between [-1,1].

Moreover, the emotions were identi�ed by 4 external annotators on VA vectors. Unfortunately,

the authors had not provided a data classi�cation/regression of the acquired data. The dataset is

freely available to the academic community9.

9http://amhuse.phuselab.di.unimi.it

http://amhuse.phuselab.di.unimi.it
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3.1.11 Video Games Datasets that Use Physiological Data

To the best of our knowledge, there are not freely available datasets which consider the relationship

between a dimensional model and the video games as stimuli. However, two studies investigated

and collected datasets on the relationship between speci�c game mechanics or game events, and

the physiological information and the players' mental state. Unfortunately, these datasets use

di�erent approaches to assess the emotion rather than the dimensional model.

In 2010, Yannakakis et al. [95] recorded a dataset of physiological information in order to

investigate the players' experience under di�erent camera perspectives. Thus, the authors devel-

oped a 3D game (named Maze-Ball) with mechanics similar to Pac-Man, and they collected the

physiological information of HR ,GSR and BVP on 36 participants. During the experiment, di�er-

ent in-game camera conditions were tested and the participants had to choose which one provides

a better user experience considering the a�ective state of fun, challenge, boreness, frustration,

excitation, anxiety, and relax. The authors reached a classi�cation accuracy above the 80% on the

majority of the above mentioned a�ective state. The dataset is freely available10.

In 2015, Karpouzis et al. collected the Platformer Experience Dataset (PED). They acquired

the participants outcomes using only a HD camera. Thus, they collected the video of 58 play-

ers playing at to play at 2 automatic generated level of In�nite Mario Bros (IMB), a clone of

the Nintendo Super Mario Bros. The authors marked the game events in order to permit the

researchers to investigate the visual behavior in relation to di�erent game states. Moreover, the

players rated in a range between 0 and 4, in both game levels, the values of: engagement, frus-

tration, and challenge. Di�erent studies were applied to the dataset, for example, regarding the

player experience [96], or the study of the spontaneous movements according to �how the level

ends� (i.e., if the player �nishes the level successfully or not) [97]. The dataset is freely available11.

3.2 A�ective Computing in Video Games

One of the main argument at the basis of the A�ective Computing research �eld [16] suggests

that any computer has the ability to express and recognize the people a�ects. In video games,

A�ective Computing is relevant in three main aspects: players emotions recognition - which leads

to the game response to the emotions -, generation of �a�ective behaviors� in the game characters

to enchant the realism with a credible output to various game events, and �modelization� of the

10http://www.hectorpmartinez.com/
11http://ped.institutedigitalgames.com/

http://www.hectorpmartinez.com/
http://ped.institutedigitalgames.com/


Chapter 3. State of Art 24

T
a
b
l
e
3
.2
:

C
o
m
p
ar
is
o
n
am

o
n
g
av
ai
la
b
le

a�
ec
ti
ve

d
at
as
et
s.

T
h
e
p
h
ys
io
lo
g
ic
al

si
g
n
al
s
co
n
si
d
er
ed

ar
e:

E
E
G

=
el
ec
tr
o
en
ce
p
h
al
o
g
ra
p
h
y
(w

it
h
th
e
n
u
m
b
er

o
f
ch
an
n
el
s)
,
E
C
G
=

el
ec
tr
o
ca
rd
io
g
ra
m
,
B
V
P
=

b
lo
o
d
vo
lu
m
e
p
u
ls
e,

G
S
R
=

g
al
va
n
ic
sk
in

re
sp
o
n
se
,
F
ac
ia
l
E
M
G
=

el
ec
tr
o
m
yo
g
ra
p
h
y
p
la
ce
d

o
n
p
ar
ti
ci
p
an
t
fa
ce

(w
it
h
th
e
n
u
m
b
er

o
f
m
u
sc
le
s
co
n
si
d
er
ed
),

R
es
p
=

re
sp
ir
at
io
n
,
T
em

p
=

te
m
p
er
at
u
re
,
G
az
e
=

ey
e
g
az
e
tr
ac
ki
n
g
.
T
h
e
la
st

3
co
lu
m
n
s
d
e�
n
e
th
e
ty
p
e
o
f
em

o
ti
o
n
id
en
ti
�
ca
ti
o
n
,
w
h
er
e:

E
S
=

E
m
o
ti
o
n
S
p
ac
e,

in
ty
p
e
co
lu
m
n
D

=
D
is
cr
et
e,

C
=

C
o
n
ti
n
u
o
u
s,

an
d
in

A
n
n
o
ta
to
r
co
lu
m
n
S
=

S
el
f
R
ep
or
t,
E
=

E
xt
er
n
al

R
ep
or
t
w
it
h
,
in

br
ac
ke
ts
,
th
e
n
u
m
b
er

o
f
an
n
o
ta
to
rs
.

D
at
as
et

St
im
ul
us

Su
bj
.

E
E
G

E
C
G

B
V
P

G
SR

Fa
ci
al

E
M
G

R
es
p

T
em

p
G
az
e

E
S

T
yp
e

A
nn
ot
at
or

E
ig
ht
-E
m
ot
io
n
Se
nt
ic
s
D
at
a
[7
7]

Se
nt
ic
[8
0]

1
-

-
X

X
1

X
-

-
8-
D

em
ot
.

D
S

M
A
H
N
O
B
-H
C
I
[8
3]

V
id
eo
,
Im

ag
es

30
32

C
h.

X
-

X
-

X
X

X
PA

D
D

S

D
E
A
P
[8
7]
°

M
us
ic
V
id
eo

33
32

C
h.

X
X

X
1

X
X

-
PA

D
+ Li
ki
ng

D
S

R
E
C
O
LA

[8
9]

C
ol
la
bo
ra
ti
ve

W
or
k

16
-

X
-

X
-

-
-

-
V
A

C
6(
E
)
+

S

D
E
C
A
F
[9
0]
*

M
ov
ie
C
lip
s/
M
us
ic
V
id
eo

30
-

X
-

-
-

-
-

-
PA

D
D

S

O
P
E
N
_
E
m
oR

ec
_
II
[6
1]

M
en
ta
lP

uz
zl
es

30
-

-
X

X
2

X
-

-
V
A

D
4(
E
)
+

S

A
M
H
U
SE

[9
3]

M
ov
ie
C
lip
s

36
-

-
X

X
-

-
X

-
V
A

C
+ D

4(
E
)
+

S

°
T
h
e
d
a
ta
se
t
p
ro
v
id
e
s
a
ls
o
th
e
si
g
n
a
ls
o
f:

E
M
G

o
n
T
ra
p
e
z
iu
s
m
u
sc
le
,
a
n
d
E
O
G

to
in
v
e
st
ig
a
te

th
e
e
y
e
m
o
v
e
m
e
n
ts

*
T
h
e
d
a
ta
se
t
p
ro
v
id
e
s
a
ls
o
th
e
si
g
n
a
ls
o
f:

E
M
G

o
n
T
ra
p
e
z
iu
s
m
u
sc
le
,
M
E
G

in
o
rd
e
r
to

m
e
a
su
re

th
e
b
ra
in

a
c
ti
v
it
y,

a
n
d
E
O
G

to
in
v
e
st
ig
a
te

th
e
e
y
e
m
o
v
e
m
e
n
ts



Chapter 3. State of Art 25

emotions' generations on the game characters in order to represent a believable physical reaction

(e.g. facial expressions) [98]. The possibilities of recognizing emotions, through physiological

information, during the video games fruition, allows the researchers and developers to investigate

what kind of game events can generate a speci�c emotion and to design games aimed at inducing

speci�c emotions in the players.

A common way to infer the players' emotions is to consider their in-game behavior and the

physiological information. The latter can be used to identify the user's emotions ([99]), or to

provide an input to a software or a device (e.g., [100]). In the following sections, we analyze

di�erent case studies considering two aspects: studies that have tried to understand the players'

emotions, and work that have used physiological information as input for a video game. Other

surveys on the relation between A�ective Computing and video games can be found in [101, 102].

3.2.1 Inferring Emotions in Video Games

In the video game research �eld, the main methods used to infer the players' emotions are mainly

two: the gameplay, and the physiological information.

The gameplay considers the player behavior inside the virtual world. The player provides a

set of input and decisions basing on her expertise in the game. This cognitive process may alter

the emotions, and, as a consequence, may in�uence the type of interaction within the game.

This approach can use di�erent types of measures, according to the kind of game. For example,

the researchers can evaluate the time spent on a task, or the selected weapon. These decisions

may support the researchers to infer the players' emotion in di�erent game stages [29]. However,

this type of metric is quite sensitive to the type of players, since the players may have di�erent

approaches to the game. Thus, it is mainly reliable with game prototypes designed to study

speci�cs e�ects of a subset of mechanics or level areas.

In contrast, using physiological information may provide a more reliable feedback also in com-

mercial games. This approach can be used to explore the relationship between the physiological

signals and the gameplay experience [103, 104, 105], as well to study the elicited emotional re-

sponse.

Hazlett [106] applied, during a racing game session, two EMG sensors on the face of 13 teenage

players. Through this study, the author has shown that the Zygomaticus muscle is more involved

during positive events, while the Corrugator muscle is involved in the negative ones.

Tognetti et al. [107] used an open-source racing game (TORCS) in order to understand the

players' preferences under di�erent game environment. They performed di�erent experiments with
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Figure 3.1: An example of screenshot acquired during a biometric-based study
conducted during the research presented in [108]

a set of participants, recording the following physiological signals: ECG, GSR, respiration, and

temperature. Thus, the players played at the same game 6 times, 2 for each customized opponent,

where: (W) the opponent keeps a distance of +100 meters, (C) it drives with a skill similar to the

player, and (L) it keeps a distance of -100 meters. The participants played the levels in a speci�c

order (CLWLCW), and, after each level, they provided the information of preference between the

current and previous level. Thus, they classi�ed the data through a Linear Discriminant Analysis,

and they reached an accuracy of 74%.

Mirza-Babei et al. [108] compared two methods useful to provide feedback to the developers,

and often used in GUR: observation-based, and biometric-based. Thus, the authors selected two

First Person Shooters with a di�erent user experience quality, considering the Metacritic score as

index: �Call of Duty: Modern Warfare 2� (with a score of 94), and �Haze� (with a score of 55).

Thus, the authors involved 6 participants without any previous experience with these games, and

they acquired the GSR signal via BIOPAC12 suite. Then, the participants played at both games,

and, during the game sessions, the two above mentioned methods were applied. The biometric-

based approach uses the SCR to log the micro-events on a per-individual basis (see Fig. 3.1). The

observation-based approach involves two experts to evaluate the gameplay. The authors observed

that even if the observation-based approach can expose the majority of game design issues related

to the usability, the biometric-based approach is able to acquire latent issues about players' feeling.

Another work [109] analyzed the e�ect of a horror game on the players' a�ect. The authors

involved 11 participants to play at �Slender: The Eight Pages�. In this game, the player, from

the �rst person point of view, has to collect eight pages of a diary, avoiding the Slender-Man.

12https://www.biopac.com/

https://www.biopac.com/
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Figure 3.2: Screenshot of the A�ect Annotation Tool GUI developed by Vachi-
ratamporn et al. [109]. It uses a discrete set of markers that were assessed in

particular phases of the gameplay.

The player is equipped with only a �ashlight (with limited battery duration) useful to see through

the fog and the dark. The antagonist character has the ability to teleport in di�erent map areas,

and if the Slender Man reaches the player, before she collects all the diary pages, the game is

over. The authors collected the physiological information via EEG, and ECG, and the log of the

keyboard and mouse inputs. They also developed a particular self-assessment tool, which presents

a video of the gameplay and the player face during the experiment, and in the salient points,

the participants had to mark the emotions (using the numeric key on the keyboard) in a discrete

interval: neutral, anxiety, suspense, low-fear, mid-fear, and high-fear. The authors classify the data

using an algorithm based on decision trees, obtaining an average precision of 0.88 (a similar value

have been reached also for recall).

3.2.2 Games that Interact with Players

The evolution of video games provided intensive studies on the input devices. The modern con-

trollers are developed to be comfortable and they have to provide an intuitive approach to the

game. Beside controllers designed for speci�c use and/or people [110], the tendency for the in-

novative controller design is to interact with the games using a natural and realistic interaction.

Some examples of commercial game peripherals, that use this approach, are: Nintendo Joy-Con,

Microsoft Kinect, and Oculus Touch. The implementation of biofeedback sensors in these devices

(or, more in general, in the use of biofeedback data game applications) may provide a further

contribution to expanding the HCI �eld.

Liao et al. [111] developed and described how to design a dry BCI device in order to interact

with games. The device uses 3 electrodes located on the prefrontal cortex, and a reference electrode

positioned on the earlobe. In their paper, the authors illustrated all the steps of the development
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of the device (e.g., architecture, communication module), and they presented a computer game

which acquires as input only the brain activity. The game consists in an archery level, where the

player has to hit, with his bow, the center of the target. The accuracy of the aim is based on

the �focus� level revealed by the EEG player's signal: if the concentration is high, the shot will be

more accurate. The �focus� algorithm was developed by the authors, and it is validated using 10

participants.

Similar, but commercial, approach was conducted by Neurosky13. The company produces

di�erent low-cost EEG devices that acquire the information, with a single dry electrode, on the

prefrontal cortex (the reference is positioned on earlobe). These devices are not invasive, and they

communicate with the computer via a wireless protocol (i.e., Bluetooth). Moreover, the company

developed a proprietary algorithm able to provide the information of �attention�, and �meditation�.

Another BCI device named EPOC+14, (produced by Emotiv) follows a similar approach. It involves

14 channels, using wet electrodes (with a saline solution). Another version of this device is the

INSIGHT15. It is lighter than EPOC+, and it acquires the information on 5 channels using a �semi-

dry� electrodes. The Emotiv products include a gyroscope, in order to detect the head movements.

Di�erent games (both digital and analogical) were designed to interact with this type of devices.

Moreover, the device is successfully used in educational, and research �elds. In an interesting paper

[112], the authors described how to combine these 3 topics using the EPOC+ in order to interact

with 2 games. The �rst game is named BrainPong, and it involves a competition between two

players which moving the paddle using only the brain activity. During the data classi�cation of the

EEG signals, a tutor explains the role of motor cortex in motor plan generation and the related

outcomes that can be detected via EEG. The second game is EmoBlaster, a single player twin-stick

shooter controlled via a gamepad. Two variables can be controlled through the EEG: the di�culty

(represented by enemy speed and spawn rate), and the enemy health. A high value of anxiety or

frustration increases the enemy health, but reduces the di�culty (vice versa for calmness state).

These two di�erent states are presented to the players through visual feedback. The player can

also defeat all the enemies on the screen through a motor imagery action. During the experimental

phase, a sta� member guided the player using di�erent relaxation techniques, while, occasionally,

she broke the focus disturbing the participant. Then, she started a conversation with the player

and the spectators about the involved brain structures. These experiments were performed during

two years in a summer camp, involving students between 8th and 10th grades. The researchers

13http://neurosky.com/
14https://www.emotiv.com/epoc/
15https://www.emotiv.com/insight/

http://neurosky.com/
https://www.emotiv.com/epoc/
https://www.emotiv.com/insight/
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obtained an overall positive feedback, and the students expressed an increased interest in science,

and in the scienti�c career (especially for 10th grade students).

As EmoBlaster, di�erent studies and games also tried to merge the standard gaming controllers

with further inputs provided by physiological information.

An example of a commercial video game which uses biofeedback as input is Nevermind16,

developed by Flying Mollusk. It is an adventure-horror game, which modi�es the environment

and the mechanics according to the player emotions. The game supports two kinds of devices:

physiological feedback sensors able to reveal the HR (e.g., Wild Divine IomPE17), and emotional

biofeedback (i.e., A�ective Tool18). These devices can be used separately or combined, in order

to provide a better user experience. In the game, the player has to explore and solve puzzles in

the surreal subconscious of a psychiatric patient. The physiological sensors are used to identify

the status of anxiety and fear, and, according to these felling, the game adapts dynamically its

environment. For example, when a player feels a sensation of anxiety, the map starts to �ll with

water. Thus, she must return to a state of calm in order to continue the level.

Nacke et al. [113] used di�erent physiological data in order to support the control of a 2d

side-scrolling shooter game. The game involves di�erent obstacles, enemies, and a �nal boss. The

authors implemented 5 di�erent power-ups, each one controlled by the physiological data:

� Enemy Target Size, which increases the enemy dimension, represented as a shadow, in

order to facilitate hitting the target. This power-up is controlled by GSR, and respiration

physiological information

� Flame Length, which increments shooting range of a speci�c weapon. This power-up is

controlled by GSR, and respiration

� Speed and Jump, which increases the avatar speed and jump height. The power-up is

controlled by ECG, and EMG

� Weather Condition, which modi�es the quantity of falling snow presented on the screen,

and, as a consequence, improving the visibility of the platforms and the enemies. This feature

is implemented only in the boss area, which behavior is controlled according to the quantity

of snow (more simple with a low quantity). This power-up is controlled by ECG, and skin

temperature

16http://nevermindgame.com/
17https://wilddivine.com/products/iompe-biofeedback-sensor
18https://www.affectiva.com/

http://nevermindgame.com/
https://wilddivine.com/products/iompe-biofeedback-sensor
https://www.affectiva.com/
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� Medusa's Gaze, which temporarily freezes the enemies and the moving platforms, when

the player looks at these elements. In order to enable this power-up, the player has to collect

a special item.

The authors performed a set of experiments on 7 participants and they collected their opinion

through a survey. The results show that the participants prefer the features controlled by �direct�

physiological outputs (e.g., EMG) rather than �indirect� (e.g., ECG).

BioPong [114] is a game which uses the biofeedback information (i.e., HR and GSR) to imple-

ment a DDA at the classic Pong video game. The authors developed two versions of the game,

the �rst becomes harder when the physiological signals increase, and easier when they decrease,

and the second vice versa. Thus, the researchers invited 12 participants to play at the two versions

of the game, and at the classic version of Pong. After the experiments, the authors reported that

albeit the biofeedback implementation has improved the user experience, it had not a�ected the

players' performance between the di�erent versions of the game.

A similar study was conducted by Chanel et al. [115]. They acquired di�erent physiological

signals (i.e., GSR, BVP, respiration, skin temperature, and EEG) in order to adapt the game dif-

�culty of Tetris game. The participants played at 6 consecutive game sessions, using 3 di�erent

di�culties. After the game sessions, they had to answer a questionnaire on the emotions aroused

during the game fruition and the level of involvement in the di�erent experimental stages. More-

over, they had to rate their emotions in the VA vector using SAM. The main experiment result

shows that the di�erent 3 di�culties had aroused di�erent types of emotions in players, which the

authors identi�ed as:

� easy di�culty: boredom

� medium di�culty: engagement

� hard di�culty: anxiety.

Tan et al. [116] conducted a study in which the participants played at Portal game. During

the game session, the physiological signals of GSR, ECG, and 2 facial EMG (on zygomaticus and

supercilii muscles) were acquired on the participants. After the game session, the participant had

to verbalize her prior experience (i.e., think-aloud) while watching a replay of their gameplay.

Then, the authors designed a set of think-codes in order to convert the think-aloud in discrete

emotions domain. Both types (physiological and think-codes) of data were used to investigate

di�erent game events, providing interesting results.
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A study on Free-to-Play Mobile game was conducted by Petersen et al. [117]. They inves-

tigated the �rst few minutes of gameplay (which can be considered the most important in this

game category) of 3 mobile games, considering two physiological signals (GSR, PPG) and a set

of self-report measures acquired through surveys and graphs. The authors identi�ed a relationship

between physiological measures and average player experience graphs, and self-reported engage-

ment measures indicate a connection between physiological arousal response and qualitative proxy

measures of engagement.

The use of biofeedback in gaming application can also improve the ability to control the desired

physiologic reaction. For example, Zafar et al. [118] developed 3 mobile casual games which

acquire in input the respiration of the player. The games main goal is to provide a support to the

players in order to investigate the potentiality of relaxing through the breathing. The three games

have simple mechanics and they are modi�ed versions of open source Android games. Each one

presents modi�cations to speci�c aspects of the game, in particular: PacMan Zen, a game inspired

at the classic game of Pacman, modi�es its game environment (where the player has to perform

respiration exercises to collect points), Dodging Stress, inspired at the tilt-based games where the

player has to move a ball from one side of the screen to the other, modi�es its game controlled

elements (i.e., the number of obstacles), and Chill Out, a version of bubble-popping game, modi�es

the player controlled elements (over 7 breaths per minute the cannon starts to �auto-shot� the balls,

increasing the shot ratio according to the player status). The authors performed the experiment

on 103 participants, in which they had to play at the games and to perform a cognitive task.

The authors observed that the biofeedback games provided an improvement in players' ability to

control the breath, both during the game sessions and during the cognitive task.

An exhaustive review on the di�erent applications of physiological data in video game research

is available in [119]. It investigates the research methods, and the di�erent game aspects in

which a study of physiological information can support the video game research (e.g., social game

experience, game events, game features, etc.).
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Chapter 4

Overview of the Applied Methods

T
he main goal of our research is to infer the emotions through the physiological changes

acquired on the players during video games fruition. In order to pursue this goal, we have

designed a set of experimental sessions addressed to reveal these types of data, and to acquire

further support information used to infer the players' emotions.

In the following sections, we present a high-level overview of the methodologies applied in the

experiments. In particular, we discuss the physiological signals that we have considered as the most

informative to infer emotions from video games players (in Sec. 4.2), and the di�erent typologies

of emotions identi�cation (in Sec. 4.3). Moreover, in the following chapters (Ch. 6, and 7), we

will provide a complete explanation and overview of every design choices and applied techniques

of the experimental setups.

4.1 Framework Design

The automatic emotion recognition is a topic widely explored in A�ective Computing research

�eld. Usually, during the experimental sessions, the researches consider short stimuli related to a

strong ability to arouse a speci�c emotion. However, video games are interactive software, and,

as a consequence, they can stimulate a wide range of emotions in players.

There are di�erent video game characteristics able to arouse emotions in players (see Sec.

2.1). For example, the game mechanics (e.g., jump) in di�erent conditions may arouse a set of

distinct emotions (e.g., jump on a platform, or jump on the head of an enemy). In addition,

aesthetics features in games (e.g., music, graphics) are also fundamental elements in order to

arouse emotions in players. The video games selected for our experiments should maximize the

mechanics and aesthetics aspects, as they can be found, with a good approximation, in almost all

video games. Instead, the selected games have to minimize other aspects able to arouse players'

emotions, as social factors (e.g., multi-player), the role/behavior of NPCs, an explicit narrative,
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Emotion
Detection d(t)Game
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Emotion
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p(t) Physiological Data Acquistion

p(0)

Figure 4.1: This A�ective Loop scheme is inspired to the model purposed by
Parnandi and Gutierrez-Osuna in [120]. In this scheme, p(t) describes the physio-

logical information at time t, while d(t) represents the game di�culties.

etc. They can de�nitely have an impact on players' emotions, however, they are strongly dependent

on the cultural heritage of the player, and they can not be controlled in time domain. Moreover,

these characteristics are not available in all the games, and, as a consequence, they can not

be considered representative of the whole media. In order to acquire a heterogeneous and large

number of participants, we have to select games that do not require speci�c skills to be played. As

a consequence, the games have to be designed for people with an age between 18 and 60 years old,

and they have to involve simple and intuitive mechanics. This condition should ensure the game

quality, and, as a consequence, the game ability to arouse players' emotions. These limitations do

not permit to collect results representative to the whole video game panorama, however, it should

provide a compromise between the generalization of the video game media and the experiment

feasibility.

Our framework is based on the A�ective Loop [11], in which the emotions can be acquired

and they can be used to manipulate the digital environment according to the player response. In

particular, the detection of the players' a�ect can provide the ability to the game designers to

implements adjustable elements (see Sec 8.1). In our research, the A�ective Loop can be viewed

as a cycle between three elements (Fig. 4.1): elicitation of emotion in player (see Sec. 2.1),

inferring the player's emotion (see Secc. 2.2 and 3.2.1), and adaptation of the video game to

the player emotion (see Sec. 3.2.2). In this dissertation, we focused mainly on the second point,

providing the basis for the design of a DDA novel method.

Our experimental approach is to acquire, through empirical experiments, information about

physiological changes in participants body during video games fruition. Moreover, we asked the

participants to report the emotions experienced during the experiment. Thus, we hypothesized

that there is a relation between the physiological data and the self-assessment provided by the
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player. Starting from this hypothesis, we designed a framework to study the players' emotions

during video game fruition using a quantitative approach. Thus, the framework had to provide a

"numerical" outcomes which can be used to state the emotion in di�erent moments in which the

player is involved to play.

In order to collect the data, we had �rst of all analyzed the di�erent techniques and tools

used in similar researches. Thus, starting from the devices and the software used in literature,

we developed new tools to use in the experimental setup, speci�cally designed to �t with the

experiments requirements. A detailed explanation of tools developed for the experimental sessions

is presented in Ch. 5.

Since the framework had to work autonomously, it was designed to use, during the data

analysis, di�erent techniques based on ML. Consequentially, all the aspects of the analysis (e.g.,

the procedure for the selection of the most relevant signals features) were designed to work without

any external operation.

These methods were designed with two main goals: to propose a valid research environment

available to the scienti�c community, and to develop a tool for game designers that may adapt

their game at the players' emotions.

Thus, the research plan was divided into three main steps: to design the framework character-

istics and to implement the necessary tools, to conduct a preliminary set of experiments in order

to validate the framework and to highlight the critical aspects, and to acquire data (through a

second set of experiments) with a signi�cant number of participants. Moreover, both experimental

sessions were divided into three separate steps: the architecture con�guration, the experiments

aimed to acquire physiological and emotional data, and the data analysis.

The participants information were anonymized, and at each participant was assigned an in-

cremental ID. The information on the relationship between the ID and the acquired video is not

provided to the scienti�c community, such as the videos, in order to ensure the anonymity of the

data. However, the participants signed an informed consent which permits to use the audio/video

information for the scienti�c divulgation purposes.

4.2 Considered Physiological Data

We had chosen to acquire 4 groups of physiological signals: ECG, EMG on facial muscles, GSR,

and Respiration. All these signals can be revealed in two areas: on the surface of the hands and

on the face. This restriction is applied in order to design (see Sec. 8.1), in a future work, an

embedded device able to reveal these data without the aid of external devices. Nowadays, many
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video games have started to support games in Virtual Reality (VR) through the use of a headset.

Consequentially, it can be a valid support for the face sensors placement. Moreover, a common

way to interact with a video game is through a gamepad, which is usually held by the players with

their hands. Thus, the sensors may be placed inside these game peripherals in order to acquire the

data in a not-invasive way.

As stated in Sec. 2.2, the HR is an important information to infer the human emotions.

In our research, to collect the HR data, we acquired the ECG following the guidelines designed

by Einthoven's Triangle [121]. The physiologist discovered that it is possible to reveal the ECG

signal placing the electrodes in three di�erent limbs (left and right arms, and left leg), shaping

an equidistant triangle centered on the heart. Thus, during the experiments, we connected the

electrodes at the left and right writs, and at the left ankle. However, a novel researches [122, 123]

demonstrated that is possible to acquire the HR also on human face placing a microphone on the

temple. A di�erent solution in order to infer the HR is to use a standard webcam, with the lens

directed towards the user's face. Wang et al. [124] illustrated and evaluated di�erent solutions

proposed in literature using the video collected in the MAHNOB-HCI database [83]. In particular,

one of the most popular and e�ective method to detect the HR using a video of human face is the

Photoplethysmogram (PPG). The hemoglobin in human blood has a strong absorption spectrum

in the light: therefore, the measure of the light variation re�ected by a region of the skin provides

the information of the blood vessel volume variation and, as a consequence, the HR. As a

consequence, during the embedding of the architecture in video game devices, we may consider to

implement a sensor able to acquire the HR directly on the player face.

The EMG data can be used to acquire information about the electrical activity generated by

muscles. Di�erent muscles reactions are involved when an emotion arouse (see 2.2). We limited

the analysis on the facial muscles, permitting to embed the sensors into a VR headset.

The EDA signal is usually collected on two distal phalanges. As a consequence, it particularly

�ts with our purpose, as that area of skin is commonly in contact with the gamepad. A similar

approach had already conducted by Bacchini et al. [125]; they designed a controller similar to the

Playstation Dualshock which has installed di�erent sensors.

A common way to acquire the information about human respiration is to place two Respiratory

Inductance Plethysmography (RIP) bands on chest and abdomen. This methodology uses sensors

that are placed in an area usually not involves in-game peripherals. However, the respiration signal

can be also collected on human face, placing a thermometer under the player nose, as already

proposed in [126].
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4.3 Emotions Assessment

During the experiments, we need also to acquire information about players emotions. Thus, after

the game session, we directly asked the participants to self-assess their emotional state during the

video game fruition. Thus, an important decision to take is the type of emotions markers that

must be applied (see Sec. 2.2).

We considered acquiring the emotion self-assessment values in a continuous time over all the

game level. This created a novel challenge in the video game experimental design, since the

majority of the researches in a�ective video game �eld identi�ed the emotions in the discrete time,

labeling the game sessions (or highlights) through a �nal survey (see Ch. 3). We agree that using

a discrete time can provide a greater amount of data able to predict the emotional state, allowing

an overall better accuracy on the ML model. However, to self-assess the overall game session

with a single evaluation can be reductive, since a game stage can provide di�erent and con�icting

emotions. In contrast, if the research provides di�erent evaluations using the game highlights, they

may lose the focus on the overall emotions elicited by all the game session. In addition, de�ning

the highlights as the parts of the game able to arouse emotions may be reductive for mainly two

reasons: the game highlights may not a�ect the mental state of the player, and not all the games

have emotional highlights. For example, some repeated mechanics in a game may a�ect the game

ability to elicit emotions in players, and as a consequence, may not provide the desired emotion.

Moreover, to evaluate only the salient parts of the game (excluding the context) can induce the

player to assess the emotion following what he thinks it is �expected�, to the emotional bias [127]

and response bias [128], or to confuse the events if they are similar. Considering, for example, a

basketball video game, where the player makes and receives several points. If only the most salient

moments of the match are shown to the player, she loses the context, and, as a consequence, she

may confuse the a�ective state elicited by a particular action, since each event is similar. Thus, to

consider only the highlights may make the whole vision of the game lost. On the other side, some

emotional games may not provide game highlights, but the implicit narrative and the environment

are able to elicit the players' emotions. For example, Journey (developed by Thatgamecompany)

does not provide any particular game highlights, however it is able to provide strong emotions in

players [129]. A novel approach for the emotion classi�cation may be to evaluate the physiological

changes rather than game highlights. Of course, it does not resolve the issues based on biases and

on the loss of the overall vision of the game stage, however it may assess the relevant information

with the player point of view.

The most common way to describe an emotion is to identify it among a discrete set of labels
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(e.g., joy, boredom, etc.). This type of emotions identi�cation may support the comparison between

the participants, since it provides the most common method for humans to identify the emotions.

Scienti�c researches identi�ed several markers, however, they are often not uniformly de�ned across

the di�erent cultural backgrounds. In addition, di�erent researches may adopt di�erent sets of

emotions labels. These characteristics of the discrete emotion assessment provide serious problems

in order to compare the results across di�erent studies. Moreover, using a �xed number of markers

to identify an emotion may �prime�1 the participant. This labeling method may also provide the

opposite problem, where the participants want to self-assess their emotions with a category not

available in the list, forcing the user to answer with the closest alternative. Even if the participant

�nds a category which corresponds to the experienced emotion, she may not be familiar with the

label chosen by the researcher, being used to refer the a�ective state with a near synonym, for

example, a more popular or slang expression (e.g. jittery in place of anxious) [47]. For our speci�c

case, also the Ekman's six universal emotions [42] (see Sec. 2.2) can not be considered a valid

approach. They are limited considering the range of emotions that can be experienced during video

game fruition. Furthermore, Russell [130] underlined the gaps of Ekman's research by showing that

the names of di�erent emotions have an overlapped meaning in some languages. Summarizing,

the discrete set of emotions may provide in speci�c cases a better accuracy in the comparison of

the emotions between the participants of the same culture, providing a labeling near to the natural

language. However, our goal is to provide a support to study the player emotions during video

game fruition. Thus, due the limitations of the discrete emotion metric, we preferred to lean on

a dimensional model to assess the emotions, since it naturally supports the data annotation in

continuous time (see, e.g., [93, 89]).

As a consequence, we considered to map the emotions in an n-dimensional space. As stated in

Sec. 2.2, the most common approach is to map the emotions into a 3D vector space, considering

PAD as axes [131]. Following the approach of other datasets [89, 61, 93], in the present work we

considered, for the emotions identi�cation, only the VA vectors. This helps to reduce the time

of the experimental sessions, and to attenuate the participants' bias. Moreover, the dimensional

model can support the players to assess their emotions continuously over all the game session

watching her face and her gameplay, without bother the game �ow.

As mentioned in Sec. 2.2, a common practice to allow the players to self-assess their emotions

is to use the SAM [52]. Moreover, Betella and Verschure [53] developed a valid alternative named

1To provide a list of markers may suggest a response that the participant would not have chosen in a natural
way
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AS. In our framework, we aim to maximize the support of the emotion labeling, implementing a

valid combination of both tools.
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Chapter 5

Tools

I
n A�ective Computing, several datasets were developed, each one containing information about

users' emotions and a physical correspondence. In our research, the main approach used to

develop tools able to study players emotions is inspired to the methodologies already presented in

others papers which present a�ective databases [93, 83, 61, 89]. However, some characteristics of

video game research (e.g., the duration of a game session, the di�erent events that happen in a

video game, and their consequent variability in the players' emotional responses) led to the need

to design some novel tools.

Our solution is designed to be applied in a�ective experiments on video games research, how-

ever, the framework can be also used for di�erent a�ective case studies; in particular studies with

medium/long experimental sessions (around 10/20 minutes) which present di�erent types of events

(e.g., a short movie).

Part of the content of this section were presented in GOODTECHS conference and it will be

publisheds in the �M. Granato, D. Gadia, D. Maggiorini, L. A. Ripamonti, "Software and Hardware

Setup for Emotion Recognition During Video Game Fruition",Proceeding of GOODTECHS 2018

- 4th EAI International Conference on Smart Objects and Technologies for Social Good, ACM�

[132].

This chapter is organized as follows:

� in Sec. 5.1, we provide a brief overview of the devices and the software already used to

collect a�ective datasets
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� in Sec. 5.2, we present the hardware architecture used to acquire physiological dataset,

providing also our solution to de�ne the experimental events and the data synchronization

� in Sec. 5.3.1 and 5.3.2, we present, respectively, the software designed to store and visualize

the physiological information - DAPIS - and the emotion self-assessment tool - ESAT -.

At the end of the section 5.3.2, we also discuss the ESAT validity, starting from a set of

experiments.

� in Sec. 5.4, we provide conclusions and �nal considerations for future works.

5.1 Available Tools for Emotion Recognition

In our framework, we need three components: a hardware architecture able to reveal human

physiological information, a software able to store the data, and another software to acquire

the emotions self-assessment. In order to acquire a dataset structured by multiple physiological

data, the hardware has to respect two main requirements: to record in real-time the physiological

information, and to synchronize them with a common sample rate. In literature di�erent open

source and commercial tools were used, which are able to satisfy these constraints; for sake of

brevity, we present only the most common devices. Biosemi1 and Mindmedia2 are two companies

that sell to the researchers their biofeedback suites. These devices are already successfully used

to create physiological databases (e.g., [83, 61], and they allow to acquire and to synchronize a

prede�ned set of physiological data. For example, NeXus-32, developed by Mindmedia, is designed

to reveal EEG, EMG, ECG, and EOG. Unfortunately, these devices present limited programmability,

and they are often constrained by proprietary communication structure and sensors. Boccignone

et al. [93] provides an alternative, using a more suitable methodology. They used an Arduino

Uno, a programmable board, connected to an e-Health Sensor Platform shield3. Consequentially,

the authors were able to de�ne a personal communication protocol. However, the Arduino UNO

Analog to Digital Converter (ADC) can quantize data at 10-bit precision, a resolution that can be,

in particular cases, not su�cient to understand some peculiar physiological features. Furthermore,

the e-Health Sensor uses the analogical Arduino pins with presets sensors. As a consequence, the

inclusion of additional devices able to acquire physiological data on the board is limited.

Usually, companies that develop devices able to record physiological data also provide a software

to acquire and store the digitized data on a computer. For example, Biosemi developed ActiView, a

1https://www.biosemi.com/
2https://www.mindmedia.com/
3https://goo.gl/B5qFsy

https://www.biosemi.com/
https://www.mindmedia.com/
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software to acquire data collected by ActiveTwo4. Albeit the software is an open source project, it

is designed to work with the company proprietary device, making the porting on di�erent hardware

setup a challenge. Others software (like, e.g., OpenVibe [133]) were designed to support a wide

range of devices, however, often they are focused on a speci�c physiological signal. LabView

[134] is a general purpose software which can be used to acquire and to elaborate almost all data

acquired by sensors. It also supports a wide range of devices, including Arduino boards, and can

be programmed by a peculiar visual programming language. However, it is a proprietary software,

with high-level minimum hardware requirements.

The current approach in emotion tagging applications is to report the users' emotions on n

vectors (with n equal to 2 or 3). A common implementation is to support the annotators, visualizing

in the software GUI the SAM [52]. Feeltrace [135], DANTE [93], and ANNEMO [89] are all valid

tools used to identify the emotions in VA vectors. Unfortunately, none of these were designed

for events management, like, e.g., the beginning and the end of di�erent levels. Moreover, they

usually require to tag the emotions on vectors one at a time, a solution that improves the accuracy

but that can be suitable only for short video sequences.

Lastly, in our architecture, we focused on understanding how to implement an accurate syn-

chronization between the data. Noldus has developed the Oberver-TX5, it is a software developed

for multimodal researches purpose able to synchronize di�erent types of data, such as audio/video,

physiological, and eye gaze. Unfortunately, the software is able to integrate and to synchronize

data acquired through speci�c commercial suites, like, e.g., BIOPAC6 (for physiological data),

Tobii Pro Studio7 (for eye tracking), and Viso8 (for video recording).

5.2 Design of the Core Hardware Architecture for Signal Ac-

quisition

Our research objective is to infer users' emotion using physiological data. Consequentially, the

hardware architecture has to acquire physiological information, and a set of digital inputs used as

��ag values�. These values describe di�erent events which happen during the experimental session.

Moreover, the device has to provide an ADC, and to prepare a communication protocol to send

data to the computer. Therefore, we designed a hardware architecture based on Arduino Due.

4https://www.biosemi.com/products.htm
5https://www.noldus.com/the-observer-xt
6https://www.biopac.com/
7https://www.tobiipro.com/product-listing/tobii-pro-studio/
8http://www.noldus.com/viso

https://www.noldus.com/the-observer-xt
https://www.biopac.com/
https://www.tobiipro.com/product-listing/tobii-pro-studio/
http://www.noldus.com/viso
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It is a programmable board that uses an Atmel SAM3X8E ARM Cortex-M3 CPU with a 32-bit

core9: its computational e�ort should guarantee a correct functioning of the data elaboration and

communication. The micro-controller has also 12 pins able to read analog information and 54

pins for digital I/O. These pins tolerate a maximum tension of 3.6V, however, in our setup, we

used a voltage equal to 3.3V, as suggested in Arduino Due documentation10. Moreover, the ADC

embedded in the CPU permits a conversion at 12-bit, obtaining, as a consequence, an ADC step

equal to 805.66 µV/bit.

Using a set of sensors connected to the Arduino, we acquired 4 groups of physiological signals:

ECG, EMG up to 5 facial muscles, GSR, Respiration. We also considered the recent evolution

of VR headsets in gaming applications, which lead to a higher level of immersivity in the players'

experience. Thus, our architecture was designed to support and to be embedded in these devices.

Moreover, as we will describe in the following pages, it is possible to add any analog sensor (e.g.,

a thermometer to measure the skin temperature) to the architecture. Focusing on physiological

signals, we used 6 Olimex EKG-EMG shields11 to acquire information about ECG and EMG. It

is a device already used in biomedical engineering [136], and it is able to read a 3-lead electrode

connector via 3.5 jack. Thus, we connected the leads of an Olimex shield at the wrists and the

left ankle, following the guidelines provided by Einthoven's Triangle [121]. The other 5 shields

were used to acquire the EMG information up to 5 facial muscles. Lastly, we connected a common

reference at the border of the hair line. A couple of electrodes were used to collect the GSR

signal connecting them to the phalanges of two adjacent �ngers which are not involved during the

experimental session. We used the Grove GSR sensor, which is equipped also with an ampli�er

(LM324) in order to improve the information quality provided by the skin potential di�erence. The

last physiological signal is the respiration rate/intensity. It is collected by placing a thermistor

under the participant's nose. We also isolated the base of the sensor to avoid the direct contact

with the user's skin, minimizing the noise generated by the epidermis temperature. The thermistor

provides an accuracy of ±0.5 C° (between 25 C° and 85 C°), and it reduces the tension when the

temperature increases, in our speci�c case when the user exhales (vice versa when she inhales).

We used a 4x4 keypad in order to de�nes game events. At each key was associated an integer

value in a range [0,15], while the value 16 was used to identify a no event state (i.e., when no

buttons have been pressed). In our experiment, the considered events are only the beginning and

the end of the game levels, however, the architecture was designed to capture information up to

9datasheet: https://goo.gl/ZM8zpQ
10https://store.arduino.cc/usa/arduino-due
11datasheet: https://goo.gl/TDD8UZj

https://goo.gl/ZM8zpQ
https://goo.gl/TDD8UZj
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CLOCK

Arduino Due Windows
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Figure 5.1: Packet structure sent by Arduino to the Computer.

15 events. However, these events can be used to analyze speci�cs and di�erent game scenarios.

In a future study, we will consider di�erent parts of the level, as well as di�erent game events,

synchronizing the physiological and emotional data through the keypad. We also used two bytes

to, respectively, delimit the bu�er and clock alert advertise (STOP and CLOCK). The former was

used to provide an information of bu�er control and to de�ne the end of the data bu�er, while

the latter was used to de�ne the start of Arduino CPU clock. These bytes were sent after the

data quantization performed by the Arduino Due ADC. Furthermore, they modify their values

when Arduino starts a new clock, in order to communicate this information to the computer. The

delimiter byte was also used to support the clock byte (in case of communication loss), modifying

its value according to the CLOCK byte.

The analog data were converted to digital through the built-in ADC provided by Arduino Due

CPU. As we mentioned, it permits to quantize the data at 12-bit precision. However, the serial

communication can send only one byte at a time (28). Consequentially, we split each converted

analog data into two bytes, that we named h-byte, and l-byte. The bu�er structure is presented

in Fig. 5.1. The overall architecture is presented in Fig. 5.2. If a new sensor is added to the
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Figure 5.2: General architecture model. It considers 4 di�erent types of physi-
ological information acquired and synchronized by an Arduino and communicated

to a computer

hardware setup, the acquired information may be appended to the end of DATA area using the

guidelines presented in this section, increasing the packet size.

In this section, we described an overview of the hardware used to acquire physiological data,

providing the information about only the architecture core. A detailed description of the imple-

mentation used for the pilot study is provided in Sec. 6.1.3. Then, starting from the outcomes of

the pilot study, we had further enhanced the implementation in order to create the RAGA dataset.

The �nal implementation of the hardware acquisition setup is described in Sec. 7.1.

5.3 Data Acquisition and Self-Assessment Software Design

In order to store the physiological data revealed by the architecture presented in the previous

section, we designed a software able to visualize, and store the information communicated by the

Arduino. Moreover, w designed a software to collect data about emotion self-assessment.

5.3.1 Software for Physiological Data Acquisition: DAPIS

For our experimental setup, we developed two di�erent software: DAPIS, a software developed

on the basis of an open-source project12, used during the experimental phase to acquire, to syn-

chronize, and to visualize the physiological data, and ESAT, which is used immediately after each

12https://github.com/vsquared/ECG_UNO_Processing3_2_3

https://github.com/vsquared/ECG_UNO_Processing3_2_3
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video game session to self-assess the participant's emotional states. Both applications were de-

veloped in Processing13, a programming language based on Java, which aims mainly to produce

visual contents. For our experimental setup, a video of the screen during the game session was

recorded, placing DAPIS GUI in the top-left area of the acquired video. In particular, the video

contains the participant's face, acquired through a camera, and the video of the gameplay (Fig.

5.5). The DAPIS GUI is structured by 3 main components: the top bar, which presents a set

of buttons used to interact with the software functions, two colored bars used to synchronize the

physiological data with the self-assessment information acquired by ESAT, and the central area

which visualizes, in real-time, the signal plot. The visualization of the plot is used only to identify,

during the experiment, the quality of the acquired signals through the top and bottom colored

bars. DAPIS supports the serial communication, which is used to exchange packages with external

devices. Thus, selecting the correct COM port, the application is able to receive data from the

architecture based on Arduino Due presented in Sec. 5.2. Moreover, the software automatically

writes, in real-time, in a speci�c path selected by the user, all the acquired physiological data.

DAPIS also analyzes the value of the event �ag (i.e., the �rst byte in the bu�er). According to its

value, the bars switch their color, permitting the data synchronization with ESAT (Fig. 5.4). In

our speci�c case, a button is used to identify the beginning of the game level (green bars), while

another button de�nes the level end (red bars). DAPIS contains also di�erent functions able to

improve the overall experimental quality. The mains functions are: to change the physiological

data visualized in the central area using the keyboard space-bar, to move the center of the plot

through the keyboard arrows, to clear the central area, to take a screenshot of the plot, and to

record a data baseline of custom duration in a separate �le.

5.3.2 ESAT: Tool for Emotion Self-Assessment

When the experimental session ends, the video acquired was reproduced into ESAT. In our speci�c

case, the video was structured by three components (Fig. 5.5): the player face (c), the gameplay

(d), and DAPIS GUI (e). The sta� member had to ask the participants to focus only on the area of

the video that concern the face and to support the assessment with the video of the gameplay. The

DAPIS GUI was used only to synchronize the acquired data as mentioned in Sec. 5.3.1. Then,

ESAT synchronizes its data with the physiological data acquiring the color of the bars presented

in the left area of the video. At each color it associates a speci�c value; in our case study, we have

associated 0 for the red bars, and 1 for green. During all the video, the participant interacts with

13https://processing.org/

https://processing.org/
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the left and right analog joystick of the same gamepad used to play at the video games to control

the self-assessment bars, respectively the left is used to identify valence values (a), while the right

is used for arousal (b). To support the self-assessment, we implemented two tools, SAM [52] and

AS [53] (see Sec. 2.2). Moving the analog joysticks on the horizontal axis, the participants move

the green and the red rods on the bow-tie graphs and a semitransparent square underlines the

manikins faces.

Figure 5.3: These bars have been used to self-assess the participants' mental
state during the experiments. It involves SAM and AS tools in order to support

the emotions identi�cation

A red line (f) underlines the time spent from the beginning of the self-assessment. Moreover,

the participants can stop and rollback the video; however, during the experiment, we suggested

for each user to limit the uses of these functionalities.

Both applications provide in output a CSV �le containing tables of length ( f ps ∗ seconds)× 4

for ESAT, and (samplerate ∗ seconds)× (2 + N° of Data) for DAPIS (Tab. 5.1). Moreover, the

tools are persistent, thus, they try to minimize the data loss: if a computer crash happens, saving

acquired data at regular intervals.

Table 5.1: The markers presented in these tables are the headers of CSV �les.

Emotion Tag
Frame ID Arousal Value Game Status

Physiological Data
Game Status Data 1 Data 2 ... Data n SampleRate
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Figure 5.4: DAPIS GUI, it shows the colored bars used to synchronize the data,
in particular, the green bar represents the start of the game level. After pressing
a button connected to the Arduino, the bars change their color to red, which

identi�es the level end.

Figure 5.5: ESAT GUI, used to identify the emotion tagging. It shows the video
of a game session and asks the user to identify hers emotions over all the playback.
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The experiments and the data analysis were performed on a computer with Windows 10 OS, an

i7 6700k CPU, 32gb RAM (DDR4), and a NVIDIA GeForce GTX 1080. During the experiments,

a camera (a 5 MegaPixel camera with an image resolution of 1280x1024, able to record video up

to 60 frames per second) was placed under the monitor used during the gaming sessions (i.e. a

32� LCD display). During the experiments, the participants used a standard gamepad (GameSir

G3w) in order to interact with the games and ESAT software.

Although functional tests were performed on a computer with Windows 10 OS, both applica-

tions were developed in a multi-platform language, taking care to produce a software able to work

on the most common operating systems.

5.4 Final Considerations

In this chapter, we presented a novel and �exible architecture to acquire human physiological data

during video game sessions. Moreover, we provided a description of two software developed in order

to store the digitized physiological information (DAPIS), and to acquire emotion self-assessment

data (ESAT). We also performed a validation of ESAT concurrently with the collection of RAGA

dataset, that will be presented in Ch. 7. Thus, the participants used for the ESAT validation are

the same users involved to collect RAGA dataset. As a consequence, we will present the validation

analysis in Sec. 7.5.1.

The descriptions of the software and of the hardware setup are freely available on GitHub14.

Albeit the tools presented in this paper are su�cient for our experimental setup, DAPIS can be

further improved, for example implementing a dynamic adaptation on the number of physiological

data acquired. A similar solution can be also applied on the overall package structure, permitting

to place the STOP and CLOCK byte in any position of the stack.

Other improvements can be considered for the ESAT tool, like the support for other input

devices (e.g., the signal of two potentiometers connected to an ADC). Lastly, the two software

collect data at two di�erent sample rates: DAPIS samples at the same rate of the Arduino, while

ESAT at the video frame rate. Thus, these data, usually, are aligned in post-processing. A

future implementation of ESAT can consider a built-in algorithm for signal alignment, in order

to interpolate the VA matrix length equal to the physiological data matrix, simplifying the data

analysis.

14https://github.com/grano00/VGRDevicesAndTools
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Chapter 6

Pilot Study

I
n this chapter, we provide a description of the pilot study used to validate the framework

presented in Sec. 4.1, and, as a consequence, to verify its reliability. Then, we conducted a set

of empirical experiments, using the methodology and tools presented, respectively, in Ch. 4 and 5.

In the experiments, we involved a limited number of participants to play at a set of video games

and to self-assess their emotional state. The pilot study main goals are:

� to understand the reliability of our framework to infer the players' emotions

� to underline the technical and practical issues of the experimental setup

� to test the prediction on general and individual models, using only the data acquired by the

participants

Part of the contents of this chapter were published in �M. Granato, D. Gadia, D. Maggiorini,

L. A. Ripamonti, "Emotions Detection Through the Analysis of Physiological Information During

Video Games Fruition", Springer Lecture Notes in Computer Science (Proceedings of 6th Inter-

national Conference of Games and Learning Alliance - GALA 2017) 10653, pp. 197-207, Lisbon,

Portugal, December 2017.� [137].

6.1 Experiments Overview

To investigate the players' emotions during video games fruition, we performed a set of experiments

with a group of participants. We asked the participants to play di�erent video games. During

the gaming sessions, we recorded a set of physiological information, and we also collected the

emotional feedback using the dimensional model (see Secc. 2.2 and 4.3). The participants had to

play di�erent video games and, they were asked to self-assess their emotional state. After the data

collection, we analyzed the acquired signals and we used ML techniques in order to predict the
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Experimental Setup

Participant Arrived in
Laboratory

Explaination Of
Experimental Procedure

Electrodes Placement

Verification of Signals
Quality

Play Platforms Games

Emotion Self-Assessent

Data Analysis 

Signals Alignment 

Data Filtering 

Feature Exraction 

Feature Selection 

Individualized Model General Model 

Compare the Results 

Figure 6.1: Pilot Study Flowchart. On the left, the �gure shows the di�erent
steps involved during the experimental setup, while, in the right, it illustrates the

main steps involved in the data analysis.

self-assessment values provided by the participants. The di�erent pilot study steps are summarized

in Fig. 6.1.

6.1.1 Participants

The group of participants was composed of 10 males between 18 and 38 years old (in particular,

50% of them has an age between 21 and 24 years). 90% of participants usually plays video

games more than 3 days by week, and 30% plays every day. Furthermore, the 60% of participants

declared that they play at home at least two hours for each game session. For each participant, we

assigned an incremental ID, and the acquired data have been anonymized. Moreover, we asked the

participants to take note of their ID, and to report it in case of application in future experiments.
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When asked about the preferred game category, half of the participants indicated platform

games, also claiming to be su�ciently skilled in this genre. Unfortunately, due to technical issues,

one participant was not eligible for the study, and then his data was discarded.

All the participants were volunteers from Italy and they had not received any monetary or

academic contribution for the experiment.

6.1.2 Considered Games

All video games selected for the experiment are platform games. This video game category is

typically structured by a linear environment where the player starts from a position A and must

reach a position B, avoiding obstacles and defeating enemies. Usually, platformers have simple

mechanics (i.e., the character can jump, run, and attack the enemies), and a linear progression

structured in levels.

This game category has received several changes in the game design and level design over the

years (both in the game di�culty and in the interaction with the game environment). Albeit this

genre received a great di�usion on home consoles, many important platform games have been

also released to arcades, mobile consoles, and computer. As a consequence, its di�usion has

permitted to consider this category of games as one of the most fruited, and, consequentially,

it is particularly indicated for this type of study. Thus, we selected a heterogeneous topology

of video games belonging to this genre. The di�erent indexes used to de�ne the topologies are:

game environment (2D/3D), release date (recent/�classic� games), and license (commercial/non-

commercial games). Moreover, all games should have received a good rating by the specialized

critic (≥ 80 in Metacritic1, or ≥ �C � in Video Game Critic2) or, in any case, they should be

considered enough fun to play [138, 139].

The selected games are:

� Rayman Origins3 (2011) is the fourth chapter of its series and it is developed by Ubisoft.

It consists in a 2D side-scrolling platformer with collectible items. The participants have to

play the �rst level (as a tutorial) and the third level in the third stage.

� Six platform levels generated with FunPledge 2.0 (developed in 2016) [139]. Evolution

of a previous work [138], it is a tool able to generate 2D side-scrolling platform levels

automatically, on the basis of a musical rhythm used as a basis to de�ne challenging and

1https://www.metacritic.com/
2https://videogamecritic.com
3https://www.ubisoft.com/it-it/game/rayman-origins
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entertaining levels. The players should �nish all the levels. The game session has been also

stopped if the player reaches the game over.

� Earthworm Jim 2 (1995) is the second chapter of a series developed by Shiny Entertainment.

It is a 2D side-scrolling platform where the protagonist can also shoot to the enemies. The

game presents also some puzzle elements. The player should �nish the �rst level. The game

session has been also stopped if the player reaches the game over.

� Crash Bandicoot (1996) is the �rst game of a series initially developed by Naughty Dog. It

is structured by levels similar to the classic 2D side-scrolling platforming and 3D levels. The

players have to play the thirteenth level (a 3D level). The game session has been stopped

also if the player reaches two game overs. This softening of end-of-session rules is given to

allow the user to switch between an analog cursor to the directional crosses.

6.1.3 Acquisition of Physiological signals

In Sec 5.2 we described the core architecture we proposed for the acquisition of physiological data

from players during video game sessions. For the pilot study, we extended the core architecture by

adding the support up to 6 facial EMG, a digital thermometer in order to acquire the respiration

signal, a serial communication via a virtualized USB. More details about the extensions used for

the pilot study are descried in the rest of the section.

From each player, we acquired di�erent physiological data: ECG, EMG on 4 facial muscles,

GSR, and respiration rate. As stated in Sec. 5.2, the data was collected with a set of sensors

connected to an Arduino Due, that performs a 12-bit quantization with its ADC, and it sends

the data to a computer through Serial Communication (virtualized on USB). The Arduino was

feed directly by the computer, and the sensors were powered by the Arduino pins. The video was

recorded through a camera with a frame rate of 30 fps.

The EMG electrodes were placed on 4 di�erent areas of the right side of the players' face as

illustrated in Figure 6.2: on Zygomaticus Major (EMG1), Orbicularis (EMG2), Nasalis (EMG3),

and Supercilli (EMG4) muscles. Furthermore, on three users we acquired an additional EMG

signal on Temporalis (EMG5) muscle, while on other three users the electrodes were placed on

Depressor Labii Inferioris muscle (EMG6). Although EMG5 and EMG6 data are not used in the

current analysis, they were recorded in order to study the e�cacy of the related muscles to infer

the players' emotions, and the ability of the sensors to acquire a valid signal on the participants.
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Figure 6.2: Representation of facial electrodes positions connected to EMG
sensors. Original medical illustration from Patrick J. Lynch (https://goo.gl/ttgxo6)

These pairs of electrodes used to acquire the EMG signals have a common reference electrode,

placed on the forehead, near the hair border, as suggested in [140].

To interact with the selected games, the players used only the frontal gamepad buttons (i.e.,

the direction arrow, the digital joystick, and the frontal buttons). These buttons were designed to

be used through the thumbs. Consequentially, we collected the GSR data placing two electrodes

on the index and the middle phalanges of the left hand, because, as above said, these �ngers were

not used to control the selected games.

The respiration intensity/rate was measured placing a digital thermometer (DS18B20) under

the player's nose. The thermometer was placed avoiding the contact with the player's skin, limiting,

as a consequence, the noise generated by the epidermal temperature. The respiration data were

stored with an 11-bit resolution (the sensor has a �uctuation of 0.125 C◦) and it was sampled each

375 ms as indicated by the DS18B20 Datasheet4. Due to the sample rate of the thermometer,

the overall Arduino frequency was not stable, having a �uctuation between 952Hz and 989Hz.

However, this issue was corrected in post-processing analysis.

The communication bu�er involved 19 bytes, each one transmitted at a frequency band of

250000, without parity control and with 1 stop bit (250000/8N1).

For each experiment, we used the Fiab F9079/100 disposable electrodes (36x40 mm) to acquire

the ECG, EMG, and GSR data. Their dimension is quite sizable compared to the electrodes usually

used for the facial EMG and the GSR data, because they are designed to acquire data for ECG or

4Datasheet: https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf

https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
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(a) Electrodes used to acquire facial EMG (b) Electrodes used to acquire ECG

Figure 6.3: Two photos captured during the experiments. They illustrate the
electrodes placement on a participant

EMG on a great skin surface. However, we arti�cially reduced their dimension in order to acquire

data on the participant's face. Moreover, for the GSR sensor, we separated the metal area from

the conductive gel and the surrounded band. Thus, we cleaned the �nger skin with a disinfectant

alcohol, we wet the metal area surface with a conductive gel, and we placed the electrodes on the

participants' �ngers, �rmly keeping them through an insulating tape.

6.1.4 Procedure

The participants were invited to sit on a comfortable chair. They were informed about the experi-

mental procedure and they were invited to read and sign an informed consent, and a permission to

use the video and images recorded during the experiment for research and academic purposes. The

acquired data were collected anonymously, and at each participant, an incremental identi�er was

assigned to be used for the data analysis and for future experiments. Lastly, each user performed

the experiment in a unique daily session. In order to attenuate the observer-expectancy e�ect

[141], in each phase of the experiment, the sta� member was positioned in a prede�ned area out

of the participant's �eld of view. She also avoided any kind of interaction or observation during

the di�erent experimental phases. Moreover, we asked the participant to reduce the contacts with

the sta� member, and to report only technical problems.

The experiment consisted of three di�erent stages: electrodes placement, game session, and

emotion labeling.

In the �rst stage, the sensors were placed taking care to not bother the players during the

session. Thus, we asked the participant to perform speci�c movements with her face in order



Chapter 6. Pilot Study 55

EMG Data 

Respiration Data
GSR Data

ECG Data

Analog
Digital Cabled

Signals:

ADC

L
ON

RX

RX1

TX

TX1

1

5V

GND

SPI

Arduino

DUE

0123456789

10111213

A
0

A
1

A
2

A
3

A
4

A
5

6 A
7

A
8

A
9

A
10

A
11

D
A
C
0

D
A
C
1

C
A
N
R
X

C
A
N
TX

22

24

26

28

30 31

32 33

34 35

36 37

38 39

4140

4342

45

47

49

51

44

46

50

48

5352
ANALOG IN

COMMUNICATION

POWER

A
R
EF

SD
A
1

SC
L1 G
N
D

TX
0

R
X
0

R
ES

ET

3V
3

5V V
IN

G
N
D

G
N
D

SD
A
 2
0

SC
L 
21

TX
2 
16

R
X
2 
17

R
X
3 
15

TX
3 
14

R
X
1 
19

TX
1 
18PWM

D
IG
IT
A
L

IO
R
EF

ISCP

V

Figure 6.4: The �gure shows the overall architecture used to acquire the physi-
ological information during the pilot study

to check the EMG signals through the DAPIS GUI. In case of a noise-rich signal, we discarded

the electrodes of the speci�c EMG and we replaced them with a new set. A similar procedure

was applied also for the ECG. To check the GSR data, we asked the participants to perform a

deep breath. Usually, a deep breath elicites the GSR signal, which provides a general sympathetic

discharge [142], and, as a consequence, it increases the sweating of the �ngers. Thus, if a small

wave on GSR signal was not shown on DAPIS GUI, we removed the GSR electrodes, we cleaned the

metal area and the participant's skin, and we replaced the conductivity gel. Lastly, we controlled

for anomalies in the respiration signal. In case of a low general di�erence between low-peaks and

high-peaks data, we repositioned the sensor in order to avoid di�erent sources of heat (e.g., the

skin warmth).

In the second stage, the participants had to play all the game levels, in the same order described

in Sec. 6.1.2. Before each game session, the games mechanics and the level goal (as described

in Section 6.1.2) were explained to the participant. In each game, we considered the level ended

when the participant have completed it, or at game over. Moreover, before the start of each

level, the electrodes were controlled and, in the case of unsticking, they were replaced. Before and
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Figure 6.5: A screen shot captured during the self-assessment stage. Here,
the participant was identifying his emotions during the playback of a video which

presenting the information about the player' face and the gameplay

after each level, the player had to press a physical button (connected to the Arduino) in order to

synchronize the physiological data with the game sessions as illustrated in Sec. 5.2. During all the

game sessions, we asked the participants to limit the interaction with the laboratory sta�.

In the third stage, we asked the participant to map their emotional states on the VA dimensional

model using ESAT (see Sec. 5.3.2). In particular, we asked the participants to remove all the

electrodes and to have a little break. After the small pause, a video of the recorded game session

and of the participant's face, during the playing time, was shown to the player. All the videos

regarding games levels were reproduced in the same order of the second stage. In particular, the

videos were composed by three zones (see Fig. 6.5): in the left area, the synchronization bars of

DAPIS are shown, in the central area the gameplay, while in right area the player's face.

After an initial training with ESAT, a sta� member asked the participant to use the two

gamepad analog joystick to set two pointers, one for arousal and one for valence, following the

SAM and the AS markers as described in Section 5.3.2. She could also rewind the video in

order to correct her choice evaluation, however, we discouraged the use of this feature. We have

hypothesized that a �uent view of the video can evoke better the emotions experienced during

the experimental session, thus we recommended to rewind only after making a serious mistake.

To support the participant's focus during the emotions self-assessment, we added a little pause

between each video in order to split the tagging session into small parts.

Lastly, each user was asked to answer a survey with questions regarding her gamer skills and

habits, and regarding the overall experiment considerations.
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6.2 Data Analysis

After collecting the physiological data and the self-assessment information on each participant, we

designed a data analysis. In particular, the analysis consisted of 4 speci�c points:

� Data Filter, in order to remove the signals noise produced by the electrical current, and the

participants' skin,

� Feature Extraction, in order to de�ne a set of features, starting from the signals of RAW

data, which we can use to predict the players' emotions

� Feature Selection, in order to remove the unnecessary variables, and, as a consequence,

have a shorter training time, have a lighter �nal model, and have a panoramic on the most

relevant variables

� Self-Assessment Data Prediction, in order to de�ne a model able to infer the players'

emotions during video games fruition

6.2.1 Data Filtering

To correct the variable sample rate, each signal second was sub-sampled to the lowest value

(i.e., lw = 952Hz). Thus, we separated all the physiological data in di�erent matrices of one

second, where each column de�nes the physiological information. Thus, for each matrix in the set

S = M1, M2, ..., Msecond, we applied a linear interpolation on their columns obtaining a new set of

matrixes.

The signal of each physiological information was smoothed using Savitzky/Golay �lter [143],

applied with a polynomials �t of order 30 and a �oating window with a length equal to the odd

value nearer to half sample rate (i.e., 475). This �lter is typically used to smooth noisy signals,

such as electrical ones. Unlike the classic low-pass �lters, this �lter does not cut all the high

frequencies, leaving the information intact. The �ltered signals were also de-noised using an

orthogonal wavelet with 5 levels of decomposition. A Penalized Contrast Function [144] was used

to identify the location and the variance change points.

Moreover, all the physiological data were normalized between [-1,1]. Let y a generic physio-

logical signal:

∀yi ∈ y : yi = −1 + 2 ∗ y−min(y)
max(y)−min(y)

(6.1)
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Figure 6.6: A schematic representation of the �duciary points in an ECG. The
central area is the QRS complex, which is usually used to acquire the HR informa-
tion. The �gure has been produced by Anthony Atkielski on Wikimedia commons.

The self-assessment data was acquired in a range between 0 and 100. During data �ltering,

we also centered and scaled this signal in a range between [-1,1] (cse = (e− 50)/50, where e is a

generic emotion tagging information).

6.2.2 Considered Features

For the validation, we considered to study the participants' emotions with a precision of half second.

Thus, the features extracted by RAW signals and the self-assessment data were compacted.

In order to acquire the players' Heart Rate (HR) during the game session, we analyzed the ECG

signal over all the game session. The ECG data presents three signal de�ections that repeat over

time and occur in rapid succession. They correspond to the depolarization of the heart ventricles.

The name of these signal de�ections is QRS complex [145], where Q wave is a downward de�ection,

followed by R wave, an upward de�ection, and in turn followed by a second downward de�ation,

the S wave (see Fig. 6.6). The distance between two equal points in two repetitions of QRS

complex provides the necessary information to calculate the HR [146]. Usually, the R wave is used
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for this purpose, thus we detected the RR interval on ECG signal using OSEA algorithm [147]. The

algorithm returns the points where the QRS waves are located, thus we selected only the �duciary

points of R waves. Usually, during the ECG, the clinical sta� ask to reduce the movement in the

speci�c locations where the electrodes are placed; however, this is not applicable to our experiments

because the participants should not have movements limitations in order to better interact with

the games. A second and more in-depth analysis of the ECG was performed to �nd the motion

artifacts (or signal zones where the QRS can not be detected correctly), and, in order to have

an approximation of RR intervals, we applied a data interpolation placing a dummy RR peaks on

motion artifacts.

Then, each physiological signal (except for the ECG) was sampled with a range of half second

and for each subsample the values between 1Hz to 180Hz in the frequency domain (using FFT)

were calculated. Lastly, the self-assessment data (30 data/sec) were subsampled in order to have

the same length of the other signals (2 data/sec).

Summarizing, the features (583) used for predicting the arousal and valence values are: row

data of each physiological signal (avoiding ECG), HR, and the magnitude information of each

physiological signal considering only the frequencies between 1Hz to 180Hz. Albeit most of these

features are not designed to be speci�c for our physiological data, they were selected in order to

understand if the overall framework is able to predict the players' emotions.

6.2.3 Features Selection and Supervised Learning in Pilot Study

In order to identify the most informative features, we randomly split our sample into two di�erent

groups called TRs and TE. TRs group is composed of 8 participants (a matrix with 40954 instances

and 583 features) selected to train the ML algorithm; this group was used to determine the most

informative features. TE group is composed by only the remaining participant (a matrix with 6510

instances and 583 features), and it was used to test the features extracted by the ML algorithm

trained on TRs. In order to have a robust feature selection, we randomly created 50 di�erent

permutations of a subset of 6 subjects extracted in TRs. The data of these participants were

merged and we trained a Random Forest (RF) [148] on them in order to predict the self-assessment

data of valence and arousal, labeled by the users as described in Sec. 6.1.4. The RF creates a

bagging of decision trees [149], and it is able to extract an index of importance for each feature

as described in [150]. After each training, the importance of each feature was stored obtaining

a matrix M = R× C = 50× 583. For each row, we extracted the most important k features,
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where k is an incremental iterator from 1 to C. Among these features, we selected those available

in all permutations (R), and we extracted the features from the joined data of TRs (Algorithm 1).

T ← user1, user2, ..., usern
r ← randomIntegerbetween[0, n− 1]
TRs← T[−r]
TE← T[r]
arousalFeatures← Matrix(50, C)
valenceFeatures← Matrix(50, C)
for i = 0 to 49 do

aroTrain← model of RF using arousal as target variable
arousalFeatures.addRow(aroTrain.FeaturesImportnace)
sortedTRs← shu f f le(TRs)
toTrain← sortedTRs[1 : 6]
valTrain← model of RF using valence as target variable
valenceFeatures.addRow(valTrain.FeaturesImportnace)

end
Algorithm 1: Robust Feature Selection Algorithm

For each k, we trained a RF using 1/3 of features subset for each decision split and with 128

trees as suggested in [151]. The obtained hypothesis was used to predict the self-assessment values

of user TE. Thus, we saved the Root Mean Square Error (RMSE) index calculated between the

estimated data and the original target variables. After all interactions, we acquired two sets of

C RMSE values, one for arousal values and one for valence. On these vectors, we selected the

features that minimize the RMSE value, as shown in Algorithm 2.

Using only the most important features, we trained two new RFs with the same parameters

described before. The �rst model was used to understand if the framework is able to predict the

players' emotion starting from the self-assessment data provided by the other participants. Thus,

we trained a RF using a Holdout method: we performed the training on TRs and we tested the

data on TE. The second model was developed to understand if the framework is able to predict

the labeling data using the self-assessment information provided by the participant herself. In this

case, the self-assessment data were more homogeneous, however, the number of instances used

to train the ML algorithm are signi�cantly reduced. Thus, we used a Cross Validation (CV) with

10 folds, considering the physiological data and the self-assessment information provided by the

participant. It uses 9 folds for training and the last fold for evaluation. The process is repeated 10

times, leaving one di�erent fold for evaluation each time. A summary of the methodology used

for supervised learning is shown in Figure 6.7.
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//dataFeatures can be both arousalFeatures and valenceFeatures

C ← numberO f Column(dataFeatures)
RMSE← f loat(C, 1)
f eaturesList← list(C, 1)
for k = 1 to C do

foreach row in dataFeatures do

row←
{

1 for the most important k features

0 otherwise
end
indexes← bool(1, C)
for c = 0 to C-1 do

column← dataFeatures.getColumn(c)
if sum(column) == numberOfRow(dataFeatures) then

indexes[c]← true
else

indexes[c]← f alse
end

end
tr ← train RF on TRs data considering only indexes features
pr ← predict using atr hypothesis on TE data
rmse[k]← RMSE(pr, TE.targetVariable)
featuresList.append(indexes)

end
minRMSE← min(rmse).getPos
f eatures← f eaturesList[minRMSE]
return f eatures

Algorithm 2: Global Minimum Error Selection

6.3 Results

In order to consider the framework as a valid tool, we analyzed three di�erent factors: the acquired

self-assessment data, the most important features, and the ability to predict the players' emotions

during game fruition.

To analyze the annotated data, we considered the emotion self-assessment mapped on the

2-dimensional space. In Fig 6.8a, we show the distribution of the emotion tagging values of each

participant. As shown in the �gure, the acquired self-assessment data are unbalanced, since the

most of the assessed emotion data are distributed on positive arousal values. It may be due to the

genre characteristics, since platform games require to be focused and precise during the game task.

Furthermore, the self-assessed values of valence show an average tendency to neutrality, covering,

however, almost all the values. As shown in Fig. 6.8b, these considerations are in-line with the

values provided by user TE.
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To train a RF on TRs data

Predict
Physiological

data of TE 
using H1 Holdout

Train a RF with a 
10CV on TE data 
(Hypothesis H2)

10CV

Figure 6.7: The general prediction model is shown in the top side of the �gure.
It uses the information of a set of users in order to predict the information provided
by another participants (Holdout). The method of validation used to study the

individualized hypothesis (10CV) is shown in the bottom area.

Scatter Plot on Emotion
Self-Assessment Data of Each

Participant

(a) Overall emotions tagging distribution
on each participant of validation experi-

ment

Scatter Plot on Emotion
Self-Assessment Data of TE

(b) Emotions tagging distribution of par-
ticipant TE

Figure 6.8: The �gures show the distribution in the 2-dimensional model of the
participants' emotions identi�cation during the validation experiment

The process of feature selection has obtained di�erent results for arousal and valence (see Fig.

6.9). The number of features required to minimize the arousal RMSE value is quite large (i.e.,
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Figure 6.9: The �gures show the number of features which minimize the pre-
diction error. These results have been provided using algorithm 2

349). In contrast, valence uses only 28 features in order to obtain the lower prediction error.The

variables used for the ML process are shown in Tab. 6.1, while a table with a complete overview

of the feature selection process and, as a consequence, the selected variables at each step of the

Algorithm 2, is available on GitHub5.

Summarizing, our analysis produced two ML models:

� A general model, using a RF trained on the joined data of the 8 participants TRs (i.e.,

Holdout).

� An individualized model, using a RF trained using a 10CV on the TE.

Fig. 6.10 illustrates the predictions data trends on the self-assessment values during the TE

game session. The Plots 1 and 2 show the predictions trends on the data trained on TRs. Albeit

the RMSE values (1.6 for arousal and 1.2 for valence) do not indicate a statistical signi�cance

of the results, we can, however, observe from the graphical plots that the values remain in the

emotional range provided by the user TE. Predictions represented in Plots 3 and 4, trained with the

CV on TE, follow coherently the data labeled by the user TE through self-assessment (Sec. 6.1.4)

obtaining an RMSE index, respectively, equal to 1.0 and 0.8. Also in this case, due to the users

variability in the self-assessment methods, with the consequent introduction of several peaks in the

evaluation data, the observed RMSE index does not provide a signi�cant information. Although

5https://github.com/grano00/EmotionsAnalysisInVideogames

https://github.com/grano00/EmotionsAnalysisInVideogames
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Table 6.1: This table summarizes the features that the algorithm revealed most
important in order to predict the test user data. The rows with �F_*� contain
the values on the frequencies of the corresponding signal. In valence column, the
frequencies values considered as informative are only in EMG1 and EMG3. The
other information in frequency domain were not considered informative according

to the feature selection algorithm.

Arousal Valence
Heart Rate yes yes
GSR yes yes
Resp. yes yes
EMG1 no no
EMG2 no no
EMG3 no no
EMG4 no no
F_EMG1 All frequencies 1.9 - 11.2,

14.9 - 35.4,
39.2, 42.9,
57.9

F_EMG2 1.9 - 7.5, 39.2, 44.8, 57.9 - 61.6, 78.4, 80.3, 93.3
- 98.9, 106.4, 110.1, 115.7, 130.6, 145.6, 149.3,
153, 177.3

no

F_EMG3 1.9 - 11.2, 14.9 - 85.9, 89.6, 93.3 - 104.5, 108.3 -
113.9, 121.3, 123.2, 126.9 - 151.2, 154.9 - 169.9,
173.6, 175.5

1.9 - 7.5

F_EMG4 1.9 - 9.3, 14.9, 18.7, 20.5, 24.2, 28, 33.6, 35.5 - 41,
42.9, - 57.9, 63.5 - 69, 76.5 - 84, 87.7, 91.5, 93.3,
98.9, 102.7 - 108.3, 119.5, 132.5 - 136.3, 145.6,
154.9 - 160.5, 164.1, 171,7

no

F_GSR 1.9 - 5.6, 31.7 - 44.8, 50.4, 52.3, 56, 57.9, 61.6,
65.3 - 70.9, 84, 85.9, 91.5, 93.3, 98.9 - 102.7, 110.1
- 113.9, 119.5 - 127, 130.7 - 134.4, 138.1 - 145.6,
149.3,153, 162.4 - 166.2,169.9, 177.3, 192.2

no

F_Resp. 1.9 - 22.4, 26.1, 31.7, 35.5, 44.8, 46.6, 50.4 - 54.1,
57.9 - 61.6, 72.8, 78.4, 80.3, 100.8, 104.5, 106.4,
119.5, 125, 130.7 - 134,4, 138.1, 143.7, 154.9 -
166.1

no

the prediction data do not follow the peaks in the self-assessment values, they follow the pattern

identi�ed by the user TE. The prediction of the cross-validation analysis on TE is more accurate

than the prediction of RF trained on TRs, since the self-assessment data can be considered user

sensitive.
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Figure 6.10: The �gure represents the mapped value of TE on emotional as-
sessment. The time of each game session (using half second as step unit) is shown
on the x-axis, the emotional assessment values are shown on the y-axis. The pre-
diction values of the �rst two plots are de�ned by a Random Forest trained on
TRs, while, the remaining two plots illustrate the predictions of a Random Forest

trained with a 10CV on TE.

6.4 Pilot Study Outcomes

Summarizing, in the pilot study, we performed a set of experiments on participants involved to

play at 4 di�erent platform games. Thus, we acquired the physiological data and the self-assessed

emotions evaluation through the tools presented in the Ch. 5. We also analyzed the data, �ltering

the noise on physiological signals, considering a set of extracted features starting from RAW data

with a precision of half-second, selecting the most important features, and predicting the emotions

of a random participant. We also proposed two di�erent methodologies to predict the players'

emotions: the �st considers a model trained on a di�erent group of subjects (Holdout), and the

second applies a 10CV on the participant herself.

Albeit the results are not particularly signi�cant, our study shows that is possible to predict the

players' emotions during video games sessions using the considered types of physiological data and

the emotions self-assessment values. Moreover, we hypothesize that collecting additional data on

a larger sample of users, and through the support of external annotators, the di�erence between
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the two predictions can be attenuated.

During the experimental sessions, we found technical problems and a poor signal quality on

the EMG placed on Depressor Labii Inferioris (EMG6), especially in men with beards. Moreover,

the electrodes of EMG6 were placed in an area not covered by gaming devices, like, e.g., a VR

headset. For these reasons, we decided to no longer consider the electrical activity produced by

this muscle in future analysis.

In conclusion, we consider the described approach as a potentially valid starting point for

the developing of a framework to analyze the players' emotions. In order to develop a more

e�ective framework, we designed a set of possible improvements, starting from a full validation

with a larger number of subjects. This extension permits to have a large database of participants,

which may improve the accuracy of the data analysis and, consequentially, the prediction outcome.

Moreover, a study on a larger sample may improve the signi�cance and the reliability of the

overall experimental outcomes. The experiment results suggested critical aspects, which have

been thoroughly investigated in the extension of this work. In particular:

� an extension of the experiment using a di�erent game category. As shown in Sec. 6.3

the selected platform games have been not able to cover all the area of the 2-dimensional

emotional space. Moreover, the acquired self-assessment values are strongly unbalanced

� an improvement of the overall data analysis, starting from the quality of the signals, the types

of extracted features, the feature selection algorithm, and the supervised learning technique

� the support of a VR headset, in order to improve the players' immersion, which may be able

to arouse di�erent type of emotions. In addition, we can compare the two game fruition

modalities

� a new design of the experimental procedure, reducing the required time of the overall ex-

perimental session, and, as consequence, improving the participants' performance, and min-

imizing the participants' bias during the emotion labeling.
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Chapter 7

Creation of RAGA Dataset and

Data Analysis

T
he pilot study provided interesting results which seem to suggest the adequateness of our

framework to infer the players' emotions during video game fruition. Moreover, it gave the

opportunity to identify technical issues and to consider a set of improvements as discussed in Sec.

6.4. In particular, we decided to modify some characteristics of the signals acquisition, of the

experimental procedure, and of the data analysis. Thus, through a larger set of experiments and

considering a di�erent game genre (i.e., racing games) in the experimental setup, we collected

the RAcing GAme (RAGA) dataset, a dataset of physiological data acquired during video game

fruition using both a standard monitor and a VR headset.

Part of the content of this chapter were used for the paper �Granato M., Gadia D., Maggiorini

D., and Ripamonti L. A., An Empirical Study of Players' Emotions in VR Racing Games Based on

a Dataset of Physiological Data�, submitted to the journal �Multimedia Tools and Applications�.

7.1 Experimental Setup Improvements

A common problem that a�ects the analogical signal acquisition is the noise provided by the electric

hum of AC current. A solution to avoid this noise is to put a band-stop �lter at the electric hum

frequency in cascade to the Arduino, or to remove the noise in post-processing, as we have done in

our previous data analysis. However, this approach deletes the information at (and often near) the

hum frequency. Therefore, we decided to completely isolate the device and sensors from the AC

current, feeding the board with an external battery. Moreover, we avoided the computer current
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implementing a wireless connection using an Arduino module to convert serial data to Bluetooth

(HC-06). It simulates the serial communication using the Bluetooth protocol instead of the cable

connection. This solution also provided a greater �exibility to the overall experimental setup, giving

the ability to place the sensors not close to the computer.

Thus, for ECG and EMG signals acquisition, we involved six Olimex-EKG-EMG shields. One

Olimex was used to acquire the ECG data connecting three disposable electrodes Fiab F9079/100

(36x40 mm) on clean skin (Fig. 7.3c). Like the previous experiment, we followed the Einthoven

triangle guidelines [121], placing two electrodes on both wrists and one at the left ankle.

The other 5 Olimex sensors were used to collect the data on 5 di�erent areas on the right side

of participants' face using disposable electrodes of size 32x32 mm, (Fiab F9053N) as illustrated

in Fig. 6.2: on Zygomaticus Major (EMG1), Corrugator Supercilii (EMG2), Nasalis (EMG3),

Orbicularis Oculi (EMG4), and Temporalis (EMG5) muscles. We used again a common electrode

connected to the forehead (near the hair border) as a reference. Even if the Fiab F9053N electrodes

are designed for the pediatric use, their reduced dimension particularly �ts with the experiment

requirements. Using these electrodes, we were able to better cover better the participant's face,

without arti�cially altering their shape (see Fig. 7.3b). Moreover, they were equipped with cables,

avoiding the direct connection of the terminal part of the EMG cables to the electrodes. This

solution reduced the vision occlusion and it improved the general comfort of the experimental

setup. The terminal cables and the electrodes are shown in Fig. 7.3a.

We also changed the sensor used to acquire the respiration signal, adopting an analog thermistor

(NTCLE203E3 SB0). The base of the sensor was isolated using insulating tape and it was placed

avoiding contact with the user's skin in order to limit the noise involved with the epidermal

temperature. Thus, when the user exhales, the temperature under the nose area rises and, as

a consequence, the tension information acquired by the sensor is reduced (vice versa when she

inhales). The thermistor has an accuracy of ±0.5 C° in a range between 25 C° and 85 C°, as

declared by the manufacturer1. Removing the digital input of the previous sensor, we stabilized

the communication frequency.

In addition, we collected the information about the light presented in VR headset using a

photoresistor (GL5516)2. This signal is actually not used during the data analysis, however, it can

be an interesting variable for a future study.

The GSR signal was acquired by placing two small electrodes (Fiab F9053N) on two distal

phalanxes of the left hand. Usually, the players control racing games with the left area of a

1Datasheet: http://www.vishay.com/docs/29118/ntcle203.pdf
2Datasheet: http://en.nysenba.com/upfiles/file/LDR.pdf

http://www.vishay.com/docs/29118/ntcle203.pdf
http://en.nysenba.com/upfiles/file/LDR.pdf
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Figure 7.1: Bytes communicated by the Arduino to the Computer. It involves a
bu�er of 21 bytes

gamepad, using the left-hand thumb to steer through an analog joystick and the left index to

brake using a trigger. Thus, we connected the electrodes on two �ngers, middle and ring, which

usually are not used to control racing games.

During the gaming session, the video of the player face and the gameplay was acquired at

60fps.

We structured a new bu�er of 21 bytes (Fig. 7.1), each one transmitted at a frequency

band of 115200, without parity control and with 1 stop bit (115200/8N1). The analogical data

were collected using the Arduino Due that uses its built-in ADC to perform a 12-bit and the

communication bu�er was transmitted at a frequency of 556Hz. All the sensors received a tension

of 3.3V directly by the Arduino Due, thus the ADC step is equal to 805.66 µV/bit. An architecture

overview is presented in Fig. 7.2.

7.2 Motivation of Dataset Construction

Starting from the overview of the a�ective datasets provided in Sec. 3.1, we considered that the

reason for the creation of a novel physiological dataset is given mainly to the lack of a�ective data

regarding video game players with annotations in a dimensional space. In fact the most common
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Figure 7.2: Improvements of the hardware architecture used to acquire physio-
logical information for collected RAGA dataset

available datasets [75, 77, 81, 82, 87, 83, 89, 90, 61, 93] are mainly based on di�erent kind of

stimuli, like, e.g., video, images, etc. Summarizing, they provide information on the physiological

signals acquired from the subjects, the method of the emotions annotation (self-assessed or using

external annotators), and the representation of emotions in a 2D or 3D vector space. At the best of

our knowledge, RAGA is the �rst freely available dataset, developed for academic research, based

on the use of racing video games as stimuli, which provide annotation in a continuous dimension:

in particular, we considered game sessions based on a standard monitor and a VR headset. Table

7.1 presents a comparison of the features (i.e., kind of stimuli, physiological data acquired, type

of emotions identi�cation) between RAGA and part of the above-mentioned datasets.

7.3 Dataset Acquisition

In this section, we describe the steps followed to acquire RAGA. In particular, we present some

information of the participants, the methodology used to select the appropriate games, and the

detailed procedure used during the experiments. We conclude the section providing some pratical

consideration. The di�erent steps used to acquire and analyze RAGA are summarized in Fig. 7.4.
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(a) EMG terminal electrodes. The black snap of
black wire was connected together at a common ref-
erence, while the other couples of snaps (red and
white) were placed on the face skin over the muscles

that you want to consider.

(b) Electrodes placement to acquire the facial
EMGs, and respiration sensor placed under the par-

ticipant's nose

(c) Overall hardware architecture and sensors used
to infer physiological data during the experimental

sessions.

(d) Photoresistor used to collect the light on the
VR headset lens

Figure 7.3: Photos of the hardware architecture and example of elec-
trodes/sensors placement used to collect the physiological and events data for

RAGA

7.3.1 Participants

The group of participants was composed of 33 players (29 males and 4 females), between 18

and 40 (µ = 24.66 and σ = 5.15) years old. The recruitment was performed in di�erent classes

of the Computer Science department at the University of Milan, through social networks, and

through lea�eting. They usually play video games 3.6 days per week in average (σ = 2.16).

More than half of the participants reported their game sessions to be longer than 2 hours. The

60.00% of the participants had already tried a VR headset, while the 13.33% had already used

it in a gaming application. Moreover, the 57.14% of the participants declared to reach better
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Experimental Setup

Participant Arrived in
Laboratory

Explaination Of
Experimental Procedure

Electrodes Placement

Verification of Signals
Quality

Emotion Self-Assessent

Data Analysis 

Signals Alignment 

Data Filtering 

Random VR/Monitor 

Play PCars with Selected
Modality

Play RO with Selected
Modality

Emotion Self-Assessent

Change the Game
Modality

For Each Group

Split in Groups Of
Analysis 

Feature Selection 

Regression 

Compare the Results 

Feature Extraction 

Figure 7.4: RAGA Flowchart. On the left, the �gure shows the di�erent steps
involved during the experimental setup and the database acquisition, while, in the

right, it illustrates the main steps involved in the data analysis.
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performance during video game fruition in VR rather than standard monitor. All participants were

Italian and volunteers, and they had not received any monetary or academic contribution for the

experiment.

7.3.2 Considered Games

In the previous work, we used as stimuli four platform games. However, they resulted not adequate

enough in order to cover all the VA dimensional space (see Sec. 6.3). It may be due to the

characteristics of the considered media, which, usually, was designed to keep the player focused.

Moreover, a level of a platform game may be too di�cult and long for players without an appropriate

skill. As a consequence, one of the �rst decision to take, designing the creation of a physiological

dataset based on video games, is which kind of game is the more adequate for the �nal purpose.

Focusing only on the in�uence of the game mechanics, and avoiding the emotional e�ect of

narrative elements (like e.g., cinematic sequences), we decided to consider racing video games. In

racing video games, the users start from a point A, and they must arrive at a point B, usually

driving vehicles, in the shortest possible time or overcoming the opponents. Racing games usually

have a set of possible events that can arouse players' emotions. In fact, players are involved in high-

speed races where usually: accidents, overtaking, high-speed corners, etc. can occur. Therefore,

we hypothesized a high variability of players emotions during a racing game and, as a consequence,

of the corresponding VA values. This genre can be further divided mainly into three sub-categories:

� Arcade Racing games, where the priority is given to fun and feel of speed

� Simulation games, designed to guarantee a user experience similar to the reality (the goal

of the game engine is to simulate a truthful vehicles physics)

� Kart games, based on a simpli�ed driving mechanic characterized by features that usually

do not appear in other racing sub-genres (e.g., obstacles, weapons, possibility to jump,

power-up, etc).

We decided to consider 2 racing games from di�erent sub-genres. We de�ned a set of constraints

for the games' selection: they should have an intuitive and straightforward game mechanic and

environment; they must have comparable input controls and level length; they can be played either

in VR or using a standard monitor. Albeit the VR in the video game �eld is a novel technology, we

are interested to study the emotional impact of these devices on players in order to provide also

a novel contribution in this research �eld. Moreover, we considered to collect the data on both

peripherals (i.e., VR headset and monitor) in order to have a comparison and, at the same time,
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to keep the generalizable information provided by the standard monitor. Thus, we selected a

simulation driving game, Project Cars3 (PCars from now on), and an arcade driving game, RedOut4

(RO). PCars, a game released to the market in 2015, is developed by Slightly Mad Studios and

published by Bandai Namco. It is a simulation game, where the drivers are involved in races on

virtual reproductions of existing cars that compete on famous circuits. RO is a futuristic racing

game developed by an Italian company (34BigThings) and released in September 2016. It is an

independent game where futuristic shuttles compete in full acrobatics tracks. The main inputs

for the above-mentioned games are quite simple and symmetrical: a steering input, an input to

accelerate, and an input to brake. RedOut (RO), due to its arcade nature, has two other inputs:

the �rst dedicated to control the shuttle inclination, and the second used to activate the turbo

speed. Both games can be played from the driver point of view, with or without a VR headset, and

they have received positive scores by the critic (i.e., 83 for PCars, and 81 for RO on Metacritic).

7.3.3 Experimental Procedure

Upon arrival in the laboratory, the participants were invited to sit on a comfortable chair. They

were informed about the experimental procedure and they were invited to read and sign an informed

consent, and a permission to use the data and the video recorded during the experiment for research

and academic purposes. The acquired data were collected anonymously, and we assigned, at each

participant, an incremental identi�er for the analysis and for future experiments. The participants

with ID lower than 10 are the same users who participated in our pilot study (see Ch. 6). Lastly,

each user performed the test in a single daily session. As in the previous experiment, to attenuate

the observer-expectancy e�ect [141], the sta� member was positioned in a prede�ned area out

of the participant's �eld of view in each phase of the experiment. She also avoided any kind

of interaction or observation during the di�erent experimental phases. Moreover, we asked the

participant to reduce the contacts with the sta� member, and to report only technical problems.

The experiment consisted of three stages: electrodes placement and test presentation, main

test, and a �nal survey. We connected the electrodes and the thermometer on the participant's

skin, taking care to not bother her view or attention. After the electrodes placement, we powered

the Arduino Due and, as a consequence, all the sensors. After checking that all the sensors were

working, we controlled the signal and communication quality asking the participants to perform

facial movements, in order to evaluate the EMGs signals, and to have a deep breath to check the

GSR signal.

3https://www.projectcarsgame.com
4https://34bigthings.com/portfolio/redout/
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(a) Screenshot of a game session with PCars (b) Screenshot of a game session with RO

Figure 7.5: Screenshots of di�erent game sessions with both games.

A video with the demo of the games, the tracks, and the vehicles were also shown to the

participants. This preliminary phase were performed in order to provide at each participant a

common knowledge of the game environments, and a brief overview of the structure of the level.

For all the gaming session, we selected a McLaren, 12C in the California Highway Stage 2 track for

PCars (Fig. 7.5a), while we used Asera, Yoshinobu shuttle on Alaska, Airbone on RO (Fig. 7.5b).

Furthermore, a member of the laboratory sta� explained the game mechanics for both games and

he made sure that the participant understood how to interact with the games.

ESAT (see Sec. 5.3.2) were presented to each participant, and a short training to familiarize

with the input system have been conducted. The assessment software shows to the participant a

video with the information of the player's face, a video of the gameplay, and a data synchronization

graph. We asked the participants to identify their emotions during the entire video playback using

the SAM/AS tools described in Sec. 4.3.

We modi�ed the placement in the ESAT GUI of the window with the recorded videos, placing

the video of the participant's face in a more isolated and bigger area. Following the structure of

Fig. 5.5 presented in Sec. 5.3.2, the three di�erent areas of the video are structured as follows:

(c) In the bottom right area, the player's face during the game session is shown: we asked the

participant to focus on this area in order to re-evoke the emotions experienced during the

game session

(d) In the top right area, the gameplay useful to support the emotions recall was shown

(e) In the top left area, the acquired physiological information is shown. It was used only to

synchronize, through its top and bottom bars, the collected data with the VA values acquired

by DAPIS.
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The main test were structured in two stages, each repeated two times (i.e., with and without

VR): game session and emotion annotation. Randomly, the participants started the game session

with or without VR: 14 participants have started with VR, while 19 have performed the �rst game

session without VR. Each player, whether she used VR or not, played to PCars as the �rst game.

The beginning and end of each race were synchronized to physiological and assessment data by

pressing two di�erent buttons, connected to the Arduino Due. The synchronization starts/ends at

the beginning of the Arduino clock cycle. As in the pilot study, the �rst button pressure inserts

in a speci�c column of the physiological dataset the value 14 (a number used only to identify the

session beginning), and, at the same time, it switches the color of the two bars (e) to green. In

the same way, the second button pressure was used to insert the value 15 and to switch the color

of the bars to red. Thus, the two buttons were used to synchronize the physiological data with the

�rst emotion tagging performed immediately after the game session. However, in this experiment,

a member of the sta� was in charge to de�ne the start and the end of the level, permitting the

participants to focus only on the game.

The second game session was performed right after the �rst, followed by another emotion

tagging stage. Before the VR stage, the laboratory sta� explained the potential risks related to

the device. The possible motion sickness deriving from the VR device may arise due to a not

accurate settings of the VR parameters [152, 153], or to physiological issues of the players with

stereoscopic vision [154].

Figure 7.6: Photo acquired during the experimental session in the VR gaming
stage

Lastly, we asked the participants to �ll out a survey with questions about their habits and game

skills, and regarding the overall experiment considerations.
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Practical Consideration

Albeit the experiments were conducted on 36 people, we had not considered in the analysis the

data of participants with ID 11, 12 and 15 due to technical issues. Furthermore, the participants

20, 23, and 40 experienced sickness during the VR session, although they have completed the

experiment. The acquired RAGA dataset and the data analysis source code are freely available to

the academic community5.

7.4 Data Analysis

The data analysis consisted in four main steps: data �ltering, extraction of features from raw data,

selection of the most informative features, and application of an algorithm of supervised learning,

in order to understand if these data can be used to predict the players' emotions during the game

sessions.

Since the physiological data and the emotions self-assessment information were acquired at two

di�erent frequencies, it was necessary to uniform the number of instances. Thus, let a f and v f be

respectively the values of Arousal and Valence at the instance f ∈ {1, 2, 3, .., F}, where F is the

length of VA arrays, and let N the number of instances of their corresponding physiological data,

we calculated the new points in the interval [1, F] to have a length equal to N. Consequentially,

let n1 be a set of integers {0, 1, 2, .., N − 1}, the new set of points n f = [1, F] is:

n f = 1 + n1� ((F− 1)� (N − 1)) (7.1)

Where � de�nes the Hadamard product, and � means the Hadamard division. As a con-

sequence, we obtained two arrays: f ∈ N of length F, and n f ∈ Q of length N, with values

in [1, F]. Thus, we applied a linear interpolation on each Arousal and Valence data in n f . For

each element in n f , we considered the integer neighbors in f such that f j ≤ n fi ≤ fk. Lastly, we

generated the new Arousal (an) and Valence (vn) points for every i in {1, 2, 3, ...N}.

ani =
aj( fk − n fi) + ak(n fi − f j)

fk − f j
(7.2)

vni =
vj( fk − n fi) + vk(n fi − f j)

fk − f j
(7.3)

5https://github.com/grano00/GameVRRacingPhysioDB
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As a consequence, we calculated two new sets of values with the same length, and frequency,

of the physiological data.

7.4.1 Data Filtering

All the physiological and emotional tagging data were separated for each game session, thus getting

4 sets of data for each participant: RO, PCars, RO in VR, PCars in VR, Thus, we �ltered the

groups of data separately in order to minimize the probability to introduce data patterns that may

alter the future analysis. For each type of physiological information, we centered and scaled, using

the standard deviation, the acquired data [155]. Let x be a set of physiological data (e.g., ECG

signal):

cs(x) =
x− µ(x)√

∑i=1 N(xi−µ(x))2

N−1

(7.4)

where µ(x) = 1
N ∑N

i=1 xi; x ∈ [1, N].

As in the previous experiment, the emotional tagging data was initially expressed as an integer

value from 0 to 100. Thus, the value 50 underlines a neutral emotion and, as a consequence, we

centered the data at this value, scaling them in order to create a signal in the interval [-1,1].

Thanks to the use of an external battery and the removal of a direct connection between the

sensors and the laboratory electrical system, we were able to considerably remove most of the

noise present in the signal. However, we �ltered some frequencies of the physiological data in

order to remove the noise generated by other sources of data acquisition. Starting from ECG data,

we were interested to collect the HR of the players during video games fruition. As suggested

by Fedotov [156], the most informative frequencies to understand the HR are between 5 to 30

Hz. We considered an upper band frequency of 35 Hz, �ltering the data using an Equiripple FIR

band-pass [157], in order to consider also a possible excessive increase of heartbeats. All the EMG

signals were �ltered using a high-pass Equiripple FIR with the cut-o� band at 20Hz as suggested

in [158].

As breathing produces a low-frequency signal alteration, we applied a moving average �lter [159]

with a coe�cient equal to 1/SampleRate. As a consequence, we obtained the average temperature,

under the participants' nose, over a period of 1 second. For the GSR, we applied a 1st order

Butterworth low-pass �lter with 5Hz cuto�. Through Ledalab [146], we also extracted the SCL

and SCR information [160], and we added them to the set of physiological signals in RAGA.
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Each �lter was designed to be applied as zero-phase in order to minimize the di�erences (i.e.,

the phase) in the signal ends. In order to obtain a �ltering with zero phase, the applications of

our �lters were performed in both directions, forward and backward [161]. Albeit this type of data

�ltering is not applicable in real time, it was applied to better synchronize the labeling data with

the physiological data. In a future real-time application, where the hypothesis of a ML algorithm

was already de�ned, a �lter with linear phase can be applied without excessively a�ecting the

overall goodness.

In order to improve the emotion recall, we suggested to the users to not stop or rollback the

video. However, in some cases, some participants performed a wrong assessment, and they have

quickly corrected the mistake by moving back the SAM/AS slider pointer. This action produced

high-frequency noise in the �nal assessment data, i.e., in the VA vectors. Consequentially, in this

experiment, we removed the high-frequency information applying a moving average �lter with a

coe�cient equal to 1/Samplerate on both vectors.

7.4.2 Overview of Features Extraction

After the data �ltering, we proceeded to extract features from the physiological data. In order to

preserve the ground truth, we collected numerous variables following the approaches of di�erent

papers in literature . Once all the features were extracted, an automatic features selection algorithm

was applied to the extensive number of variables in order to remove the noisy data (see Sec. 7.4.3).

We used a 1-second precision in order to analyze the physiological data and to predict the

players' emotional states, thus the features were structured considering this constraint.

The �rst extracted feature was the HR, collected on the ECG signal. In order to acquire the

position of the QRS complexes, we leaned on the same algorithm used during the pilot study. As

mentioned in Sec. 6.2, the algorithm is not able to �nd correctly the QRS points in the noisy

areas (e.g., on motion artifacts). Thus, we developed an algorithm able to create or to remove

the �duciary points on these signal segments, according to the length of each RR interval. As a

consequence, for each RR interval (rr), we de�ned a score de�ned as:

rrscore = ‖rr/µ(rr)‖ − 1 (7.5)

where rrscore = 0 indicates a correct interval dimension, rrscore > 0 means an underestimation,

and rrscore < 0 underlines an overestimation (Fig. 7.7). According to rrscore, we used the

Algorithm 3 to generate new points in the underestimated areas, and to remove overestimated

points.
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foreach rr do
r1← r point at start to rr interval
r2← r point at end to rr interval
if rrscore >0 then

for i = 0 to rr do

add new R position as follow: r1 + (r2− r1) ∗ i + 1
rr + 1

end
else

if rrscore <0 then
delete point at start of rrscore interval

end
end

end
Algorithm 3: The algorithm checks the overestimated and underestimated r points, and it
corrects their positions.

In order to have RR data in a more understandable measure unit, we converted RR distances in

the time domain (seconds), and we multiplied the result by 60 in order to obtain Beats Per Minute

(BPM): bpm = 60 ∗ SampleRate/rr. Lastly, we applied a moving average �lter with a coe�cient equal

to 1/4 on the BPM data, and we acquired the information at second precision extracting, for each

second, the average BPM value.

Considering the breath signal, we collected the information on the time passed between the

inhalation and the exhalation. Thus, we calculated all the slopes (upper and lower), and the

frequency between the peaks, which returns the time spent between the breaths (Fig. 7.8).

Finally, on the EMG, GSRs (Raw, SCL, and SCR), and respiration data, we extracted a set of

features using a �oating window. Usually, these types of analysis were directed on the central area

of the approximation window, which considers also the past (left area) and the future (right area)

information. However, our goal is to predict the players' emotions in real-time during game sessions,

and, as a consequence, we placed the area of analysis on the right side of the 3 seconds �oating

window, joining the data of the present (the last second) with those of the past (the previous 2

seconds), as shown in Fig. 7.9. In literature [162, 163, 164, 165, 166, 167], some features were

usually suggested for the EMG signal analysis, however, most of them can be considered reliable

also for other physiological signals. Table 7.2 summarizes the overall extracted features.

Time Domain Features

Huang and Chen [164] suggested to estimate the signal power computing the integration of the

raw data available in the sliding window. For example, considering an EMG signal, a resting muscle



Chapter 7. Creation of RAGA Dataset and Data Analysis 82

Figure 7.7: Example of overestimation points due to noise in ECG signal. The
red points were considered as overestimated.

does not show any particular change over the time, while a contracting muscle provides changes in

potential. Since the acquired signals were digitalized, we can approximate the integral as follows:

IntEMGw =
N

∑
i=1
|xi| (7.6)

where xi considers each data of the �oating window w ∈ 1, 2, ..., N.

Englehart and Hudgins [165] proposed to calculate the Mean Absolute Value (MAV) as follows:

MAVw = 1/N
N

∑
i=1
|xi| (7.7)

Starting from MAV, we also calculated two di�erent Modi�ed MAV (ModMAV) functions,

applying a pre-processing on the original data. These modi�ed versions smooth the signal keeping

the data of the last second unchanged, in order to focus the analysis on the current second. As a

consequence, ModMAV1w(x1n) implements a fade in, where:

x1n =

xn/2 if n < 0.75N

xn otherwise
(7.8)
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Figure 7.8: Respiration peaks detection, where the green circles indicate the
inhalation end, and the red circles show the exhalation end.

while, the second modi�ed function (ModMAV2(x2n)) uses a more gradual fade in, applying

an incremental weight between 0 to 1, with:

x2n =

xn ∗ n/0.75N if n < 0.75N

x otherwise
(7.9)

Moreover, we calculated the average value only of the �oating window last second. Let sr be

the value of the sample rate:

PMAVw = 1/N
N

∑
i=N−sr

xi (7.10)

The Waveform Length (WL) is a feature able to summarize the measures of waveform ampli-

tude, frequency, and duration in a single parameter. Its value indicates the cumulative length of

the waveform over the considered �oating window. It is de�ned as follows:

WLw =
N

∑
i=1
|∆xi|

where ∆xi = xi − xi−1

(7.11)
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Figure 7.9: Floating Window, the sub-area of the window (Win) Tar is the
actual second of analysis.

The Zero Crossing (ZC) is a simple measure of the frequency obtained in the time domain.

Its output value was calculated counting, in the �oating window, the number of times the signal

crosses the zero axis. Due to an eventual signal noise, it is useful to introduce a threshold (εzc).

The result is provided as follows:

ZCw =
N−1

∑
i=1

g(xi, xi+1)

where g(x, y) =



1 if {x > 0 AND y < 0} OR

{x < 0 AND y > 0} AND

{|x− y| ≥ εzc}

0 otherwise

(7.12)

For each type of signals, we de�ned speci�c thresholds:
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� εzc = 0.5 for the EMGs signals

� εzc = 0.05 for the respiration signal

� εzc = 0.001 for the GSRs signals

Another feature that provides a measure of frequency, calculated in time domain, is Slope Sign

Changes (SSC). It calculates the number of times the signal slope changes its sign. A speci�c

threshold (εssc) is required also for this feature, in order to not accidentally increment the SSC

counter due to an eventual signal noise. It is de�ned as follows:

SSCw =
N−1

∑
i=1

h(xi, xi+1, xi−1)

where h(x, y, z) =



1 if {x > y AND x > z} OR

{x < y AND y < y}) AND

({|x− y| ≥ εzc} OR

{|x− z| ≥ εzc})

0 otherwise

(7.13)

For SSC, we de�ned the following thresholds:

� εssc = 0.5 for the EMGs signals

� εssc = 0.005 for the respiration signal

� εssc = 0.001 for the GSRs signals

In order to have another measure of the signal power, in [163] the authors suggested to include

in the data analysis the signal variance (VAR):

VARw =
1
N

N

∑
i=1

(xi − x̄)2 (7.14)

where x̄ is the mean value of the �oating window.

In their paper, Phinyomark et al. [166] extended the proposed features, adding other interesting

variables. Starting from the MAV, they computed the di�erence between the next window (w + 1)

and the current window (w). However, it does not �t with our goal to provide a real-time prediction

of the players' emotions. Thus, we calculated the slopes between the windows as follows:
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MAVSLPw = MAVw −MAVw−1 (7.15)

In the same paper, the authors also suggested to acquire the Root Mean Square (RMS). It

is a measure of signal power (comparable to MAV [168, 169]), however, �the measured index of

power property that remained in RMS feature is more advantage than MAV feature� [166]. It is

expressed as follows:

RMSw =

√√√√ 1
N

N

∑
i=1

x2
i (7.16)

The Willison Amplitude (WAMP) calculates the number of times that the absolute value of

the di�erence between the amplitudes of two consecutive signal samples exceeds a predetermined

threshold (εwamp). We set the εwamp equal to 0.5 for each physiological signal. The WAMP

function is implemented as follows:

WAMPw =
N−1

∑
i=1

f (|xi − xi + 1|)

where f (x) =

1 if x ≥ εwamp

0 otherwise

(7.17)

SCC, ZC, and WAMP features require the de�nition of threshold values. As suggested in [166],

the threshold of EMGs signals should be chosen between 10 and 100mV, through an accurate

observation and analysis of the overall signals. In our speci�c case, due to the data centering and

scaling performed separately for each experiment, we were not able to identify uniform voltage.

This issue will be corrected in next versions, acquiring the corresponding threshold before the

data �ltering. Moreover, we used these features also for di�erent types of data (i.e., GSRs and

respiration), and, to the best of our knowledge, there is not a de�ned range of values for the

threshold de�nition in these kinds of signals. However, we de�ned the threshold values through an

accurate observation and analysis of the overall �ltered signals.

An additional feature, proposed by the same authors, able to consider the current window

energy of a signal, is the Simple Square Integral (SSI). It is calculated as follows:

SSIw =
N

∑
i=1
|xi|2 (7.18)

Lastly, only for GSRs signals, we acquired the minimum and maximum amplitudes, the number

of peaks, and the peaks average amplitudes as suggested in [170].
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Frequency Domain Features

For each approximation window of the EMGs, GSRs, and Respiration signals, we collected the

average spectrum power, and we also acquired the average power in di�erent subsets of the

frequency range, considering steps of 5Hz regarding EMGs, and 0.05Hz for GSRs and Respiration.

Oskoei and Hu [163] proposed also to consider the Frequency Median (FMD) and the Frequency

Mean (FMN). These features were both calculated through the Power Spectral Density (PSD)

analysis. The �rst splits the density of the power spectrum in two equal parts. Let M be the

power spectrum length, and di the ith value of the PSD:

FMDw =
1
2

M

∑
i=1

di (7.19)

The FMN indicates the mean frequency value:

FMNw =
∑M

i=1 di
i ∗ sr
2 ∗M

∑M
i=1 di

(7.20)

Two modi�ed versions of FMD and FMN were proposed in [166], respectively named Modi�ed

FMD (MFMD), and Modi�ed FMN (MFMN). These features consider the amplitude instead of

the PSD. As a consequence, let Ai be the spectrum amplitude at frequency f :

MFMDw =
1
2

M

∑
f=1

A f (7.21)

and

MFMNw =
∑M

f=1 A f
f ∗ sr
2 ∗M

∑M
f=1 A f

(7.22)

The last variable is the Frequency Ratio (FR) [167], it was calculated applying Fast Fourier

Transform (FFT). It computes the ratio between the amplitude of low and high frequencies com-

ponents:

FRw =
|F(.)|w low freq.
|F(.)|w high freq.

(7.23)

The authors suggested to de�ne the two ranges through the observation of the acquired signals.

Thus, we considered:
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� for EMGs signals

� low freq. [20 - 100]

� high freq. [100 - sample_rate/2]

� for GSRs signals

� low freq. [0.01 - 0.2]

� high freq. [0.2 - 2]

� for respiration signal

� low freq. [0.01 - 0.2]

� high freq. [0.2 - 1]

Table 7.2: Features Extraction of Raw Data

Feature Collected without Approximation Window

ECG BPM
Respiration Respiration Rate (RR)
EMGs, GSRs, and Respiration Raw Data

Features Collected with 3 sec Approximation Window

Common Features for
EMGs, GSRs, and Res-
piration data

Band Power (BP), Power, Integral [164], Mean Amplitude (MA),
Mean Absolute Value (MAV) [165], Precise MAV (PMAV), Mod
MAV1 [166], Mod MAV2 [166], MAV Slope (MAVSLP) [166], Root
Mean Square (RMS) [166], Variance σ2 (VAR) [163], Waveform
Length (WL) [165], Zero Crossings (ZC) [165], Slope Sign Changes
(SSC) [165], Willison Amplitude (WAMP) [166], Simple Square In-
tegral (SSI) [166], Frequency Median (FMD) [163], Frequency Mean
(FMN) [163], Modi�ed Frequency Median (MFMD) [166], Modi�ed
Frequency Mean (MFMN) [166], Frequency Ratio (FR) [167]

Features of GSRs data MIN, MAX, # of Peaks (NP), Mean Amplitude of Peaks (PA)

After the feature extraction process, we collected: 1 feature for ECG, 38 features for Respira-

tion, 62 features for each GSR signals, and 77 features for each EMG signal. Therefore, the overall

number of features is equal to 610.

Part of the content of this section were presented in UBIO workshop and it will be published in �

Granato, M., Gadia, D., Maggiorini, D., and Ripamonti, L.A., "Feature Extraction and Selection for
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Real-Time Emotion Recognition in Video Games Players", Proceedings of International Workshop

on Ubiquitous implicit BIOmetrics and health signals monitoring for person-centric applications,

IEEE � [74].

7.4.3 Feature Selection

For each experiment, we considered 9 groups of analysis:

RONOVR : RO game session with a standard monitor

PCarsNOVR : PCars game session with a standard monitor

ROVR : RO game session in VR

PCarsVR : PCars game session in VR

NOVR : the merged data of game sessions with a standard monitor

VR : the merged data of game sessions in VR

RO : the merged data of RO in both con�gurations

PCars : the merged data of PCars in both con�gurations

Player : all the data collected on each participant

The �nal goal of each analysis is to select a restricted and informative subgroup of features

able to support the de�nition of an accurate regression hypothesis through a ML algorithm. We

used as target variables the values of emotion self-assessment (VA) provided by participants during

the experiment.

Moreover, we reduced the number of features in order to alleviate the curse of dimensional-

ity [171]. In addition, we removed the redundant or irrelevant variables in order to improve the

training performance of the ML algorithm. In order to not falsify or manipulate the data, the

feature selection was applied through an automatic procedure.

The �rst �lter aims to remove the features not relevant for the prediction (with ML methods) of

the target variables. It is applied to calculate the Pearson linear correlation between each variable

and the VA arrays. Thus, we tested the hypothesis of no correlation and we have stored only

the features rejecting the hypothesis (p-value < 0.05). On the resultant subgroup, we applied an

algorithm which identi�es only few variables considered as most informative. It is a modi�ed version
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of Sequential Floating Forward Selection (SFFS) [172] algorithm. It returns a set of features that

should be able to minimize the regression error provided by the ML hypothesis. We show the

pseudo-code of the method in Algorithm 4. Considering a generic predictor method, the ERR(x)

function returns the predictor error index. In our speci�c case, it is calculated using a 10CV in

which a set of RFs [149] were trained. Each RF used 100 trees, as suggested in [173], and with

1/3 of features for each decision split. For each fold, we acquired the RMSE index divided by the

number of the elements available in the test set.

Y ← {∅}
F ← {ExtractedFeatures with corr. p-value < 0.05 }
oldY ← emptyseto f Y
while length(Y) < length(F) do

ERRListOne← {∅}
for each V ∈ (F−Y) do

ADD ERR({Y ∪V}) to ERRListOne
end
Y ← FEATURES that MIN(ERRListOne)
if Y ∈ oldY OR
ERR(Y) = 0 OR
ERR(Y) is a local minimum then

return Y
end
ADD new line in oldY with Y features

ERRListTwo ← {∅}
for each V = element ∈ Y do

ADD ERR({Y−V}) to ERRListTwo
end
if MIN(ERRListTwo) < MIN(ERRListOne) then

Y ← FEATURES that MIN(ERRListTwo)
end

end
Algorithm 4: Modi�ed version of SFFS. F is the subset of features selected in the �rst step
of feature selection.

Part of the content of this section were presented in UBIO workshop and it will be published in �

Granato, M., Gadia, D., Maggiorini, D., and Ripamonti, L.A., "Feature Extraction and Selection for

Real-Time Emotion Recognition in Video Games Players", Proceedings of International Workshop

on Ubiquitous implicit BIOmetrics and health signals monitoring for person-centric applications,

IEEE � [74].
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7.4.4 Emotional State Prediction

Considering only the selected features, acquired through the feature selection process presented in

Sec. 7.4.3, we tested di�erent supervised learning techniques in order to verify which one performs

better on our dataset. As a consequence, we listed a set of potential regression algorithms (further

details on the parameters used to train these algorithms can be found in appendix B):

� Gaussian Process Regression (GPR) [174]

� Random Forest (RF) [148]

� Gradient Boosting [175] of trees (GBoT)

� Support Vector Machines [176] with Linear kernel

� Support Vector Machines [176] with Gaussian kernel

Each algorithm was tested using a 5CV on each group of analysis. Thus, we used the algorithm

which, in average, provided a model reaching a better accuracy on the depended variables prediction

(i.e., VA self-assessment values) to infer the players' emotions. If the error levels of the subgroup

of models that provide the better accuracy do not present a signi�cant di�erence, all the models

were trained n times, and the algorithm with the average better accuracy were selected.

In our speci�c case, the Gaussian Process Regression (GPR), also known as Kriging, provided

the better results. Moreover, it is a di�erent method than the ML algorithm used in the second

step of feature selection: this should minimize the probability to obtain biased results. Although

the GPR computational cost is quite high (O(n3)), the limited number of instances for each

experiment does not a�ect excessively the overall performances of the method. Moreover, GPR

has a non-parametric approach, which only assumes that similar data points, de�ned by a covariance

function, are close in the output space. As suggested in [177], GPR is robust to errors in input

sources (e.g., loss of an electrode contact), since it depends directly on data, and not on the

features' relationship. In our approach, to reduce computational time, we lowered the number

of cross-validation folds from 10, used for the feature selection, to 5. Reducing the number of

folds, we increased the number of elements in the test set and, consequentially, the algorithm

returns a more pessimistic error. However, as we discuss in Sec. 7.5.3, the �nal results show

how this choice does not a�ect excessively the accuracy of the prediction of Kriging. For each

experiment, the average time required for a single core to train the Kriging algorithm, on the

computer con�guration presented in Ch. 5, is ≈ 4 seconds, and the 5CV, computed in multi-

thread, requires in average ≈ 12 seconds (Fig. 7.10). Moreover, we tested, for each training, a
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Figure 7.10: Box Plots of the GPR algorithm training. In (a) and (b) the
algorithm were trained on a single core, while in (c) and (d) each experiment has
distributed the 5CV training on 4 cores. The cross inside the boxes underlines the

average value, while the outliers are represented with the stars.

set of σgpr values in a range [10−3,σ(x)] and we collected the results which minimize the internal

CV using Bayesian optimization as suggested in [178].

7.5 Results

In the following subsections, we present the data analysis outcomes. In Sec. 7.5.1, we focus on

the data acquired by the survey, and on the evaluation of the emotion self-assessment provided

by the participants. In Sec. 7.5.2, we compare the importance of the di�erent signals, and their
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related features. Lastly, in Sec. 7.5.3, we present the results of the di�erent prediction models,

with a particular attention on the results of the �nal model.

7.5.1 Overall Experiment Outcome

After each session, we asked at each participant to evaluate the overall experience of the experi-

ment. Almost all participants had not reported a signi�cant discomfort due to the motion sickness

(µ = 2.85, σ = 2.59, in a rank between 1 to 10), and the 82% claimed they were not disturbed

by the sensors used in the experiment. One of the crucial hypothesis at the basis of the proposed

method is that the a�ective self-assessment performed by the participants, using the video tagging

procedure described in Sec. 7.3.3, is reliable. To validate this, we performed a post-experiment

evaluation of the participants' self-assessment accuracy. Thus, we asked the participants to �ll out

a survey with a set of questions aimed at evaluating how they think they were accurate during the

emotion tagging stage. In particular, a subset of the survey questions were designed to evaluate the

average emotion assessment in VA vectors, and to evaluate the accuracy during the self-assessment

stage. The main hypothesis is that the users are able to express their emotional state using ESAT

software, and, as a consequence, that the video annotation procedure can be considered reliable.

The participants declared an average precision in emotion tagging equal to 7.48 (in a rank between

1 to 10) for Arousal, and 7.30 for Valence. Moreover, they ranked their focus during the game

session (Arousal) equal to 0.56 (in a range between -1 to 1), while the ability of the game to arouse

positive or negative emotions (Valence) was equal to 0.28. In particular, the ability to arouse a

positive emotion was ranked equal to 0.34, while 0.14 was the rank in case of a negative emotion.

Considering the data acquired by ESAT, the average values of Arousal and Valence were,

respectively, 0.41 (σ = 0.44), and 0.18 (σ = 0.49). Considering individual participant outcome,

the Mean Square Error (MSE) index between the average value acquired by ESAT and the survey

answer was, for Arousal, equal to 0.2655, while for Valence was 0.2858. These data seem to

validate ESAT, although the survey answers are slightly overestimated.

The results seem to suggest that ESAT is a valid tool to self-assess the emotions of players

during video game fruition, and that the proposed hardware setup is an e�ective solution for the

detection of physiological data in the video game research �eld. In addition, we can consider the

answers in line with the information given by emotion tagging, validating thus the reliability of

the self-assessment stage. Summarizing, this seems to suggest that the participants were able to

report their emotions through the self-assessment phase.
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Scatter Plot of Labeling Data

Figure 7.11: Distribution of self-assessment evaluations collected on RAGA par-
ticipants

Considering the self-assessment data distribution (Fig. 7.11), the reported values on the current

set of experiments can be considered balanced in the 2-dimensional space, albeit, as in the pilot

study (see Ch. 6), the arousal data tend more on the positive values. Moreover, the self-assessment

data are more contracted at the ends of valence and top of arousal, and in positive values for both

type of emotions.

7.5.2 Features for Players' Emotions Prediction

The feature selection through the Pearson linear correlation has the main goal to store only the

informative variables. In our case, this procedure reduced the number of variables, for each analysis,

to less than half. In particular, the average number of features considered for arousal and valence
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Table 7.3: The table provides an overview of the features that have not provided
a correlation with the target variables in any experiments

Signal Arousal Valence

RESP MAVS, WL, MFMN, Breath Rate
InterpData, MAVS, WL, MFMN,
BP 0-70Hz

SCR FR, NPeaks InterpData, FMN, NPeaks, BP 1-1.65Hz

SCL PeaksMean
InterpData, VAR, PeaksMean,
BP 0.7-2Hz

GSR
MAVS, VAR, MFMN, FR, PeaksMean,
BP 0-0.65HZ

InterpData, FMN, PeaksMean,
BP 1-1.65Hz

EMG5

Mean, PMean, MAVS, WL,
FR, BP 25-30HZ, BP 85-90HZ,
BP 110-120HZ, BP 125-130Hz ,
BP135-145HZ, BP 165-175Hz,
BP 180-185Hz, BP 225-235Hz,
BP 255-260Hz, BP 275-280Hz

InterpData, PMean, MAVS, WL, FR,
BP 0-25Hz, BP 30-45Hz, BP 50-55Hz,
BP 100-105Hz, BP 150-155Hz,
BP 160-165Hz, BP 175-180Hz,
BP 205-215Hz, BP 250-255Hz

EMG4 Mean, PMean, WL, MFMN, FR

InterpData, PMean, MAVS, WL, FR,
BP 0-20Hz, BP 30-40Hz, BP 60-65Hz,
BP 95-105Hz, BP 150-155Hz,
BP 195-205Hz

EMG3 Mean, PMean, WL, FR

Mean, PMean, MAVS, WL, MFMN,
BP 0-15Hz, BP 70-75Hz, BP 85-90Hz,
BP 95-105Hz, BP 130-135Hz,
BP 140-145Hz, BP 160-165Hz,
BP 170-175Hz, BP 200-205Hz,
BP 220-230Hz

EMG2 InterpData, Mean, PMean, WL, FR
Mean, PMean, MAVS, WL,
FR, BP 0-15Hz, BP 190-195Hz,
BP 230-235Hz

EMG1 Mean, PMean, MAVS, WL, MFMN, FR
InterpData, Mean, PMean, MAVS, WL,
MFMN, FR, BP 0-15Hz

analysis is, respectively, 303.6 (49.77%) and 286.2 (46.92%). In the overall experiments, the

variables never considered were presented in Table 7.3. This set of features was considered not

informative in our research, and, as a consequence, they will no longer be calculated in future

analysis.

In literature, there are some feature selection models able to de�ne which variable is more

informative than others (e.g., [179]). For example, RF provides an index for each feature, consid-

ering which split of the tree will be the most e�ective to distinguish the classes, and reporting the

importance through a standard index, like e.g., Gini index [179]. Unfortunately, Algorithm 4 does

not provide a direct measure, using a standard index, of the importance ranking of each feature.
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As a consequence, we were not able to identify accurately which feature is the most important.

However, considering the number of times in which a feature were selected by our algorithm, we

were able to obtain the information on the most involved features in the de�nition of di�erent kind

of players' emotions during racing video games. In particular, the proposed method involved 154

features to analyze the Arousal self-assessment values, and 206 for the Valence, for an average

of, respectively, 6.46 and 6.89 variables considered in each group of analysis. Moreover, starting

from the features �ltered through Pearson correlation, our model selects (in average) 2.50% of

the arousal and 2.88% of the valence variables. In Fig. 7.12 the number of features occurrences

is shown, grouped by their origin signal, while an overview of the importance of each extracted

features is shown in Fig 7.13. The tonic component of GSR (SCL) can be considered as the most

informative signal: its features have been selected 882 times for Arousal and 852 times for Valence

analysis. Moreover, its minimum and maximum amplitudes are the features most involved during

the feature selection process. These results seem to be in line with racing game design, as they

are designed to maintain the player's attention over the time, increasing stress levels as the player

approaches to the end of the race. Thus, it is coherent with the behavior of the SCL, which

provides information on the emotional status in the medium period (over a second).

Focusing, for example, on Player analysis which considers all the data of each participant during

the overall experiment (see point Player in the list presented in Sec. 7.4.3), the selected variables

used to predict the VA target values are in line with the features occurrences distribution above

mentioned (Fig. A.9).

The proposed feature selection method can be also used to validate novel features, since it

compares all the features and it extracts only the most interesting. It is also designed to work

autonomously, looking for the best set of features that maximizes the data prediction, and, as a

consequence, the ground truth of the hypothesis. Lastly, it provides a history of the selected vari-

ables, structured in the order in which the features are selected. As a consequence, during the test

of a novel feature, the algorithm may provide (with a certain approximation), beside the boolean

information of feature importance (i.e., considered or not considered), an index of informative level

which contains the variable, according to its position in the history.

Part of the content of this section were presented in UBIO workshop and it will be published in �

Granato, M., Gadia, D., Maggiorini, D., and Ripamonti, L.A., "Feature Extraction and Selection for

Real-Time Emotion Recognition in Video Games Players", Proceedings of International Workshop
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Figure 7.12: The �gure presents, for each feature, the number of occurrences,
grouped by their original signals. On the top of each bar the percentage of features
involved in the process is presented. The correspondence of EMGs number are

shown in Fig. 6.2.

on Ubiquitous implicit BIOmetrics and health signals monitoring for person-centric applications,

IEEE � [74].

7.5.3 Emotions Prediction Outcomes

We also evaluated the e�cacy of the ML algorithm to predict the emotions, in the Valence and

Arousal space, during the video games sessions. We extracted the results of 5CV, for each partici-

pant, and we acquired the RMSE6 between observed and estimated data. Thus, we calculated the

Normalized Root Mean Square Error (NRMSE), presented in Eq. 7.24, in order to have scale-free

results.

NRMSE(y, ŷ) =
RMSE(y, ŷ)

max(ŷ)−min(ŷ)
(7.24)

6for the RMSE formula see Appendix C
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Figure 7.13: The Word Clouds indicate the number of times each feature has been selected as
informative

The NRMSE may vary between 0.0, that indicates a perfect overlap among the estimator (ŷ) and

observed (y) sets (i.e., a perfect prediction), and 1.0 that indicates two divergent sets of data.

This range is respected only under two constraints: if max(ŷ) ≥ max(y) and min(ŷ) ≤ min(y),

which were satis�ed in our case study.

In Table 7.4 and in appendix B the accuracy values comparison of each ML methods used for

the preliminary analysis are shown. As it can be seen from the results, and as already mentioned in

section 7.4.4, the GPR algorithm holds a higher accuracy in the prediction of the results. Thanks

to its signi�cant ability to provide a better accuracy than the others models, it was not necessary

to repeat the train several times. For example, the higher outcome of valence data using SVML

prediction model is an outlier. It were calculated on a participant which su�ered of a strong

motion sickness during the VR session, albeit she completed the experiment (see Appendix B).

In particular, the NRMSE value of the overall VR session is 29.695. Instead, GPR handled this

particular case better, predicting the valence observed data with a good accuracy (NRMSE =

0.078).

Starting from the previous outcomes, we provided a Hyperparameter (i.e., σgpr) tuning as

described in section 7.4.4. This procedure has the main goal to improve the model accuracy, and,
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Table 7.4: Average NRMSE between observed and estimated for each ML
method

Method Arousal Valence
Mean STD MIN MAX Mean STD MIN MAX

GPR 0.086 0.031 0.033 0.242 0.089 0.031 0.03 0.233
RF 0.113 0.031 0.039 0.239 0.113 0.0283 0.043 0.233
GBoT 0.143 0.039 0.034 0.301 0.142 0.035 0.045 0.284
SVML 0.220 0.064 0.078 0.698 0.316 1.714 0.114 29.695
SVMG 0.181 0.053 0.056 0.348 0.176 0.050 0.072 0.330

Table 7.5: NRMSE of GPR algorithm (with tuning hyperparameters) results for
each experiment.

Experiment Arousal Valence
Mean STD MIN MAX Mean STD MIN MAX

PCars in Classic Enviroment 0.090 0.037 0.036 0.241 0.095 0.036 0.041 0.236
RO in Classic Enviroment 0.089 0.032 0.034 0.152 0.097 0.033 0.037 0.162
Classic Enviroment 0.086 0.030 0.045 0.195 0.090 0.024 0.050 0.158
PCars in VR 0.091 0.035 0.036 0.189 0.096 0.045 0.028 0.195
RO in VR 0.091 0.031 0.041 0.167 0.093 0.029 0.045 0.165
VR 0.087 0.034 0.042 0.187 0.080 0.028 0.051 0.176
PCars 0.079 0.026 0.035 0.135 0.082 0.025 0.044 0.147
RO 0.082 0.032 0.034 0.192 0.089 0.028 0.037 0.161
Player 0.073 0.020 0.046 0.125 0.078 0.021 0.050 0.121

AVERAGE 0.085 0.031 0.039 0.176 0.089 0.030 0.043 0.169
MIN 0.073 0.020 0.039 0.125 0.078 0.021 0.028 0.121
MAX 0.091 0.037 0.046 0.241 0.097 0.045 0.051 0.236

as a consequence, minimize the prediction errors [180]. In Fig. 7.14 and in Tab. 7.5, respectively,

the box plots that indicate the NRMSE dispersion of Valence and Arousal, and the experiments

numerical results are shown. The average regression error is quite low, which indicates the ability

to design a hypothesis that is able to predict the values of Arousal and Valence during video

game session with a precision of 1 second. In Fig. 7.14, we present the box plots of the acquired

NRMSE data for each kind of experiment. Plots related to each single prediction are available

on the RAGA homepage7 presented in Sec. 7.3.3, while box plots of the di�erent indexes can be

found in appendixes B and C.

7https://github.com/grano00/GameVRRacingPhysioDB
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Arousal Normalized RMSE BoxPlot on GPR with Hyperparameter Tuning

Valence Normalized RMSE BoxPlot on GPR with Hyperparameter Tuning

Figure 7.14: The box plots present the NRMSE distribution between the esti-
mated data collected using the GPR (trained with di�erent hyperparameters) and
the observed self-assessment data across the experiments. The cross inside the
boxes underlines the average value, while the outliers are represented with the

stars.
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7.6 Discussion

In this chapter, we presented RAGA, an a�ective dataset based on the acquisition of physiological

signals from video game players. We provided an overview of the considered physiological data

and of the improvements in hardware setup and procedure used to acquire it. We collected the

physiological signals and self-assessment information from a set of participants playing racing

games. The players played in two di�erent environments, using a monitor, and a VR headset.

Furthermore, we provided an analysis of the relevance of each signal and of their contribution

to predict the players' emotional state. Lastly, we described the ML algorithm used to design

a hypothesis able to predict the emotions of participants at second precision. The results seem

to con�rm the validity of the experimental framework, since the ML model obtain low errors in

each experiment. Thus, the considered algorithm is able to predict, with a certain precision, the

self-assessment emotion into the VA 2-dimensional space. Moreover, to the best of our knowledge,

there are not freely available databases of a�ective annotation using video games as stimuli.

Lastly, we can propose a potential interpretation between some of the acquired results, and the

Spatial Presence and theory of Flow concepts, introduced in Sec. 1. In the �nal survey, the 88% of

participants reported more intense emotions during the sessions with VR games; however, we had

not found a signi�cant di�erence in the Valence and Arousal values between the sessions with and

without VR. However, some researches hypothesized higher level of Spatial Presence condition

when using immersive devices. Our results seem to suggest that the evaluation of the Spatial

Presence condition can not be de�ned using the 2-dimensional Valence/Arousal space used in our

experiment. As a consequence, the future analysis may investigate the use of a more complex

system for the identi�cation of emotions (like e.g., PAD). Moreover, analyzing the Valence and

Arousal values for each game, we can notice how these values are, in average, quite positive. In

fact, PCars collected µ = 0.38 for Arousal and µ = 0.15 for Valence, while RO obtained µ = 0.44

for Arousal and µ = 0.21 for Valence. Considering the average absence of emotions tending to

averseness, and also the high level of positive feedback provided by the players through the post-

experiment survey, we can hypothesize that the players were relevantly absorbed (thus, in the Flow

state) during the game sessions.
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Chapter 8

Conclusion

T
he purpose of this dissertation was to provide a novel contribute to the A�ective Computing

and video game research �eld. In particular, our aim was to explore the emotions of the

players during video game fruition. We used techniques inspired at di�erent studies in A�ective

Computing �eld. Since this thesis has as a transversal approach, which includes di�erent disciplines,

we provided in Ch. 2 a background on the relation between video games and emotions, and how

to measure the emotional state of the players. In particular, we analyzed how the video games can

arouse the emotions in players, and we described some examples of methods useful to study and

design games able to elicit emotions in players. Then, we described the relationship between the

human physiology and the emotions, and how to assess them. In addition, in Ch. 3 we analyzed

the related work, considering the available a�ective datasets, the researchers that inferred the

emotions, and the studies that use physiological information as game input.

In Ch. 4, we described the methodology used to design a novel framework able to infer, in

real-time, the players' emotions. Thus, we presented a high-level framework architecture, focusing

on the emotion recognition node of the A�ective Loop. We also justi�ed the di�erent types of

physiological data acquired on the players, and the methods used to assess the emotions.

In Ch. 5, we presented an open source architecture able to reveal the humans' physiological

data. It is based on Arduino Due, and it is designed to provide a robust data synchronization.

Two software were developed to support the data acquisition. DAPIS is a software able to store

the data from the Arduino. It also visualizes the physiological signals in order to detect eventual

noises. ESAT is a software used to acquire the emotions self-assessment values by the players. It is

designed to acquire the VA vectors values in a dimensional space, and it provides the annotations

continuous on the overall game sessions.

In Ch. 6, we described a pilot study conducted on 10 participants. We invited the players to

play 4 platform games. During the game sessions, we acquired a set of physiological data. Hence,
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we asked the players to assess their emotions using ESAT. Lastly, we performed a data analysis,

and we developed a regression model, based on RF, in order to predict observed emotional data.

The analyzes were performed in two ways: a general model, and an individualized model. The

pilot results are not particularly signi�cant, however, they shown some design criticism that we

�xed in the main experiment.

Finally, in Ch. 7, we performed an extensive experiment on 33 participants. We corrected

the design and architecture issues revealed during the pilot study, and we improved the overall

experimental setup. The participants played at two racing games on a standard monitor and with

a VR headset. Thus, we collected a dataset, available to the scienti�c community, which provides

the physiological information of ECG, GSR, EMGs on 5 facial muscles, and respiration. These

data are well synchronized with emotions labeling provided by the participants after each game

sessions. Thus, we performed an analysis which shown signi�cant and interesting results.

Summarizing, the dissertation contributed to introduce a modality to study the players' emo-

tions, widely used in A�ective Computing, in the video game research �eld. This dissertation can

also contribute to improve the research in GUR [17], since one of the methods applied in this

research �eld is the biometric measure of the physiological activity of the players. It could be used

to understand which part of a game can generate a speci�c physiological state, and, therefore, a

corresponding emotion. For example, during the beta test of a game, the developers can identify

the game areas which unwittingly induce unwanted emotions, and, consequentially, redesign them.

In addition, the developers can handle and design an algorithm for a real-time adaptation of some

game mechanics (e.g., the mechanics that a�ect the di�culty), in order to avoid speci�c unwanted

emotions (e.g., boredom). These techniques may help the players' engagement, and, therefore,

the possibilities to transmit the desired message.

In particular, the dissertation contributes are:

� To provide a framework and a set of tools able to investigate the players' emotions during

video game fruition. The framework is coherent with the A�ective Loop approach, since it

is able to infer the players' emotions in real-time

� The creation of an a�ective dataset named RAGA. It is freely available to the scienti�c

community. It contains synchronized physiological and emotional data

� To propose a novel algorithm to select the most important features in a large set of variables

� To investigate the di�erent physiological signals and features, considering the more e�ective

in order to infer the players' emotions
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� To propose a method for the real-time players' emotions prediction, and to show a comparison

of di�erent ML algorithm accuracy

8.1 Future Work

In a future extension of this work, we will design a racing game (as case study) based on the

prediction features introduced in the current research: this game will adapt its di�culty on the

basis of the players' emotions, trying to keep the players' entertainment at a qualitative standard

required by the video game industry.

Moreover, future works will address two challenges: to design an integrated set of gaming

devices able to reveal the physiological data of the players, and to identify game features able to

provide the evaluation of players mental state, avoiding a speci�c self-assessment for the players.

The former can be achieved by the integration of the sensors in the game devices (see Fig. 8.1).

Almost all the electrodes used in the experiments are located near the hands and face of the

players; therefore, it is possible to design their integration into, respectively, a gamepad and a VR

headset.

Figure 8.1: The �gure shows an architecture to embed the sensors used during
the experiment in a VR environment. In this example, the architecture is based
on Oculus Rift Suite. In particular, in the left image, the headset embeds almost
all sensors. The electrodes for acquiring the GRS data are placed in the gamepad.
This environment may also support other sensors, like, e.g., a thermometer placed

in the bottom area of the gamepad, under the pinkie.
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Considering the second challenge, currently, the prediction model is linked to the individual

player, as it has to be trained on data collected by each player. As a consequence, our algorithm

needs to acquire, for each subject, the self-assessment data in order to provide the target variables

to the ML algorithm. However, during the game design process, di�erent options aimed at the

acquisition of the emotion labeling can be considered, for example borrowing gami�cation elements

in the �nal game [181]. A possible approach could be the design of a mini-game that asks to

evaluate the emotions on the game highlights, providing, after the identi�cation, an in-game reward.

Another solution can be represented by the adoption of a di�erent ML algorithm, with a general

hypothesis aimed at predicting the emotion on a wide range of players avoiding the limitation to

request the self-assessment information by each player. It could be supported by external annotators

in order to decrease the noise due to the emotion tagging variability. Albeit it is commonly used

in a�ective computing research, the time required to provide all the evaluations may not comply

with industry production standards. Furthermore, the VR headset may be an obstacle in the

consideration of external annotators. During the experiment, we curbed the problem by asking

the participants to evoke their emotional state immediately after the game session. However, for

an external annotator, it could be a challenge to identify the emotions of players with part of the

face covered. As a consequence, a thorough investigation of the methodologies to acquire the

players' emotions have to be performed. This generalization can contribute to the investigation on

common traits of emotional response to certain game events, in order to build a common model.

The developing of these steps will complete the cycle of the A�ective Loop, providing also

more data, and, consequently, improving the accuracy in the players' emotions prediction.

Other minor research goals will be:

� The design of a novel framework addressed to study di�erent and speci�c video game aspects,

such as the narrative or the social aspect

� To consider di�erent types of measures (e.g., the log of the gamepad buttons) in order

to apply a mixed-method approach and to compare the e�ectiveness with the dissertation

outcomes

� To compare the actual experiments results, and the results achieved without implementing

the algorithm of Feature Selection (see Sec. 6.2.3 and 7.4.3). It will provide a measure of the

di�erent regression errors using both approaches. Unfortunately, this comparison requires

the availability of dedicated hardware with high computational speci�cs.
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� To collect a greater and more dedicated set of participants. It will permit to investigate

di�erences of emotional responses according to di�erent personal parameters, e.g., age or

gender. Moreover, increasing the number of users familiar with VR technologies can provide

a better comparison of the device emotional impact over the headset usage time.
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Appendix A

Plots of Features Selection in

RAGA

Starting from the overall representation of the most important features, grouped from the original

signal and presented in Sec. 7.5.2, we provide details of each selected features and the number of

occurrences in the di�erent experiments (see Sec. 7.4.3). Albeit we have separated the selected

features in the di�erent considered experiment, the bar plots represent the cumulative information

of each participant. The bar plots have been divided in colors, in order to visually separate the

original signals. Moreover, the signals of the same type have the same color, but with di�erent

tonalities (e.g., all the EMGs are blue).

The x-axis of the plots has a range between [0,24], and the vertical dotted lines, used as a

reference, are located every 3 integers.
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Figure A.1: VA Features Occurrences on RONOVR Analysis
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Figure A.2: VA Features Occurrences on PCarsNOVR Analysis



Appendix A. Plots of Features Selection in RAGA 110

Valence

Number of Occurrences

Arousal

Number of Occurrences

Figure A.3: VA Features Occurrences on ROVR Analysis



Appendix A. Plots of Features Selection in RAGA 111

Valence

Number of Occurrences

Arousal

Number of Occurrences

Figure A.4: VA Features Occurrences on PCarsVR Analysis
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Figure A.5: VA Features Occurrences on NOVR Analysis
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Figure A.6: VA Features Occurrences on VR Analysis



Appendix A. Plots of Features Selection in RAGA 114

Valence

Number of Occurrences

Arousal

Number of Occurrences

Figure A.7: VA Features Occurrences on RO Analysis
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Figure A.8: VA Features Occurrences on PCars Analysis
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Figure A.9: VA Features Occurrences on Player Analysis
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Appendix B

Plots of Di�erent Machine Learning

Methods

In this appendix, we compare the results, grouped for each experiment, of the di�erent ML methods.

The box plots present the NRMSE distribution between the estimated data collected using di�erent

models and the observed self-assessment data across the experiments. The cross inside the boxes

underlines the average value. The considered algorithms are:

� Gaussian Process Regression (GPR) [174], which uses a rational quadratic kernel function.

The starting sigma value is σgpr = σ(x)/
√

2

� Random Forest (RF) [148] using 1/3 of features subset for each decision split and with

128 trees

� Gradient Boosting [175] of trees (GBoT), with the number of ensemble learning cycles

equal to 100

� Support Vector Machines [176] with Linear (SVML), and with Gaussian (SVMG) kernels.

In both SVMs methods, ε = iqr(y)/iqr(N(µ, σ)), where iqr is the interquartile range, y is

the target variable (i.e., VA), and N is the normal distribution, with µ = 0 and σ = 1. It is

a robust estimator of the standard deviation [182]

As it can be noticed, the SVM with Linear Kernel has been not able to predict correctly the

valence data provided by the user 20. She was the only participant to have su�ered of a strong

motion sickness in both games (and in particular in RO) during the VR sessions. Moreover, in this

case, the NRMSE condition, presented in Sec. 7.5.2, is not respected, since the estimated data

have a range greater than the observed data. However, it seems that this particular participant's

condition has not in�uenced the performances of the other algorithms.
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Arousal Normalized RMSE BoxPlot on GPR

Valence Normalized RMSE BoxPlot on GPR

Figure B.1: Accuracy of the GPR algorithm on the observed data. We have
used the NRMSE index as error metric. The cross inside the boxes underlines the

average value, while the outliers are represented with the stars.
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Arousal Normalized RMSE BoxPlot on RF

Valence Normalized RMSE BoxPlot on RF

Figure B.2: Accuracy of the RF algorithm on the observed data. We have
used the NRMSE index as error metric. The cross inside the boxes underlines the

average value, while the outliers are represented with the stars.
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Arousal Normalized RMSE BoxPlot on GBoT

Valence Normalized RMSE BoxPlot on GBoT

Figure B.3: Accuracy of the GBoT algorithm on the observed data. We have
used the NRMSE index as error metric. The cross inside the boxes underlines the

average value, while the outliers are represented with the stars.
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Arousal Normalized RMSE BoxPlot on SVML

Valence Normalized RMSE BoxPlot on SVML

Figure B.4: Accuracy of the SVML algorithm on the observed data. We have
used the NRMSE index as error metric. The outlier with the larger NRMSE is the
user 20, which has su�ered of a strong motion sickness. The cross inside the boxes
underlines the average value, while the outliers are represented with the stars.
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Arousal Normalized RMSE BoxPlot on SVMG

Valence Normalized RMSE BoxPlot on SVMG

Figure B.5: Accuracy of the SVMG algorithm on the observed data. We have
used the NRMSE index as error metric. The cross inside the boxes underlines the

average value, while the outliers are represented with the stars.
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Appendix C

Extended Results of GPR with

Hyperparameters Tuning

In the following pages, we present the errors produced by the �nal estimator considering di�erent

indexes. For further details of the hypothesis design and the discussion of the outcomes see,

respectively, Sec. 7.4.4 and Sec. 7.5.3. The considered error indexes are (where y are the

observed data, ŷ are the estimated data, and ȳ is the average value of the observed data):

� RMSE: it is an error index frequently used in several researches. It measures the di�erences

between 2 set of discrete values of the same length. It has always a value greater than

0, where 0 indicates a perfect �t of the predictor with the observed data. The result is

dependent to the observed data scale (scale-dependent). Its formula is:

RMSE(y, ŷ) =
√

1
N ∑n

i=1(yi − ŷi)2

� MAE: it is the average vertical distance between the points and the identity line. The result

is dependent to the observed data scale (scale-dependent). Its formula is:

MAE(y, ŷ) = ∑N
i=1
|yi − ŷi|

N

� R2: it indicates the percentage (in a range between 0 and 1) of the variance in the observed

data, which the estimated data explain collectively. The result is not dependent to the

observed data scale (scale-independent). Its formula is R2(y, ŷ) = ∑N
i=1(ŷi − ȳ)2

∑N
i=1(yi − ȳ)2

� NRMSE: it has the same meaning of RMSE, but it facilitates the comparison between data

with di�erent scales (e.g., results provided by further researches). Thus, the result is not

dependent to the observed data scale (scale-independent). For more details see Sec. 7.5.2.

Its formula is NRMSE(y, ŷ) =
RMSE(y, ŷ)

max(ŷ)−min(ŷ)
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Arousal RMSE BoxPlot on GPR with Hyperparameters Tuning

Valence RMSE BoxPlot on GPR with Hyperparameters Tuning

Figure C.1: The box plots present the RMSE distribution between the estimated
data collected using the GPR (trained with di�erent hyperparameters) and the
observed self-assessment data across the experiments. The cross inside the boxes
underlines the average value, while the outliers are represented with the stars.
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Arousal MAE BoxPlot on GPR with Hyperparameters Tuning

Valence MAE BoxPlot on GPR with Hyperparameters Tuning

Figure C.2: The box plots present the MAE distribution between the estimated
data collected using the GPR (trained with di�erent hyperparameters) and the
observed self-assessment data across the experiments. The cross inside the boxes
underlines the average value, while the outliers are represented with the stars.
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Arousal R2 BoxPlot on GPR with Hyperparameters Tuning

Valence R2 BoxPlot on GPR with Hyperparameters Tuning

Figure C.3: The box plots present the R2 distribution between the estimated
data collected using the GPR (trained with di�erent hyperparameters) and the
observed self-assessment data across the experiments. The cross inside the boxes
underlines the average value, while the outliers are represented with the stars.
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