Quasi-periodic solutions of forced Kirchhoff
equation
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Abstract. In this paper we prove the existence and the stability of small-
amplitude quasi-periodic solutions with Sobolev regularity, for the 1-
dimensional forced Kirchhoff equation with periodic boundary condi-
tions. This is the first KAM result for a quasi-linear wave-type equa-
tion. The main difficulties are: (i) the presence of the highest order
derivative in the nonlinearity which does not allow to apply the clas-
sical KAM scheme, (ii) the presence of double resonances, due to the
double multiplicity of the eigenvalues of —0.,. The proof is based on
a Nash-Moser scheme in Sobolev class. The main point concerns the
invertibility of the linearized operator at any approximate solution and
the proof of tame estimates for its inverse in high Sobolev norm. To this
aim, we conjugate the linearized operator to a 2 x 2, time independent,
block-diagonal operator. This is achieved by using changes of variables
induced by diffeomorphisms of the torus, pseudo-differential operators
and a KAM reducibility scheme in Sobolev class.
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1. Introduction and main results

We consider the Kirchhoff equation in 1-dimension with periodic boundary
conditions

Opv — <1 + /11‘(83611)2 da:)amv =d6f(wt,z), z€T, (1.1)

where T := R/(27Z) is the 1-dimensional torus, § > 0 is a small parameter,
feCyT” xT,R) and w € Q C R”, with Q bounded. Our aim is to prove the
existence and the linear stability of small-amplitude quasi-periodic solutions
with Sobolev regularity, for § small enough and for w in a suitable Cantor
like set of parameters with asymptotically full Lebesgue measure.

The Kirchhoff equation has been introduced for the first time in 1876 by
Kirchhoff, in dimension 1, without forcing term and with Dirichlet boundary
conditions, namely

Opv — (1 +/ |00 d:c)ﬁmv =0, v(t,0) =v(t,m) =0, (1.2)
0

to describe the transversal free vibrations of a clamped string in which the
dependence of the tension on the deformation cannot be neglected. It is a
quasi-linear PDE, namely the nonlinear part of the equation contains as
many derivatives as the linear differential operator. The Cauchy problem
for the Kirchhoff equation (also in higher dimension) has been extensively
studied, starting from the pioneering paper of Bernstein [9]. Both local and
global existence results have been established for initial data in Sobolev and

analytic class, see [2], [3], [23], [24], [32], [40], [42] and the recent survey [41].
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Concernig the existence of periodic solutions, Kirchhoff himself observed that
the equation admits a sequence of normal modes, namely solutions of
the form v(t, ) = v;(¢) sin(jz) where v;(t) is 2m-periodic. Under the presence
of the forcing term f(¢,x) the normal modes do not persisﬂ since, expand-
ing v(t,x) = >, v;(t)sin(jz), f(t,x) = >, f;(t)sin(jz), all the components
v;(t) are coupled in the integral term [.(9,v)* dz and the equation is
equivalent to the infinitely many coupled ODEs

o0+ o0 (14 Rl ®P) = ), =12
k

The existence of periodic solutions for the Kirchhoff equation, also in higher
dimension, has been proved by Baldi in [4], both for Dirichlet boundary con-
ditions (v = 0 on 99) and for periodic boundary conditions (2 = T¢). This
result is proven via Nash-Moser method and thanks to the special structure
of the nonlinearity (it is diagonal in space), the linearized operator at any ap-
proximate solution can be inverted by Neumann series. This approach does
not imply the linear stability of the solutions and it does not work in the
quasi-periodic case, since the small divisors problem is more difficult.

In general, the presence of derivatives in the nonlinearity makes uncertain
the existence of global (even not periodic or quasi-periodic) solutions, see for
example the non-existence results in [34], [37] for the equation vy —a (v, ) vy, =
0, a >0, a(v) =P, p > 1, near zero.

Concerning the existence of periodic solutions, the first bifurcation result is
due to Rabinowitz [44], for fully nonlinear forced wave equations with a small
dissipation term

Utt_vxa:+O‘Ut+Ef(t7x7v7vtavxavttaUta:avzcac):Ov meT? 04740

with frequency w = 1 (27-periodic solutions). Then Craig [20] proved the
existence of small-amplitude periodic solutions, for a large set of frequencies
w, for the autonomous pseudo differential equation

v — Dypv = a(z)v + bz, |D|Pv), g<1

and Bourgain [I8] obtained the same result for the equation Oyv—0,,v+mv+
(0¢v)? = 0. The above results are based on a Newton-Nash-Moser scheme and
a Lyapunov-Schmidt decomposition.

For the water waves equations, which are fully nonlinear PDEs, we mention
the pioneering work of Iooss-Plotnikov-Toland [29] about existence of time
periodic standing waves, and of Iooss-Plotnikov [30], [3I] for 3-dimensional
travelling water waves. The key idea is to use diffeomorphisms of the torus T?
and pseudo-differential operators, in order to conjugate the linearized opera-
tor to one with constant coefficients plus a sufficiently smoothing remainder.
This is enough to invert the whole linearized operator (at any approximate
solution) by Neumann series. Very recently Baldi [5] has further developed
the techniques of [29], proving the existence of periodic solutions for fully

Lthis is true except in the case where f is uni-modal, i.e. f(t,z) = fi(t)sin(kz) for some
k>1
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nonlinear autonomous, reversible Benjamin-Ono equations. We mention also
the recent paper of Alazard and Baldi [I] concerning the existence of periodic
standing-wave solutions of the water waves equations with surface tension.

These methods do not work for proving the existence of quasi-periodic solu-
tions and they do not imply the linear stability.

Existence of quasi-periodic solutions of PDEs (that we shall call in a broad
sense KAM theory) with unbounded perturbations (the nonlinearity contains
derivatives) has been developed by Kuksin [35] for KdV and then Kappeler-
Poschel [33]. The key idea is to work with a variable coefficients normal form
along the KAM scheme. The homological equations, arising at each step
of the iterative scheme, are solved thanks to the so called Kuksin Lemma,
see Chapter 5 in [33]. This approach has been improved by Liu-Yuan [38],
[39] who proved a stronger version of the Kuksin Lemma and applied it to
derivative NLS and Benjamin-Ono equations. These methods apply to dis-
persive PDEs like KdV, derivative NLS but not to derivative wave equation
(DNLW) which contains first order derivatives in the nonlinearity. KAM the-
ory for DNLW equation has been recently developed by Berti-Biasco-Procesi
in [I0] for Hamiltonian and in [I1] for reversible equations. The key ingre-
dient is to provide a sufficiently accurate asymptotic expansion of the per-
turbed eigenvalues which allows to impose the Second order Melnikov con-
ditions. This is achieved by introducing the notion of quasi-To6plitz vector
field which has been developed by Procesi-Xu [43] and it is inspired to the
Toplitz-Lipschitz property developed by Eliasson-Kuksin in [25], [26]. Exis-
tence of quasi-periodic solutions can be also proved by imposing only first
order Melnikov conditions. This method has been developed, for PDEs in
higher space dimension, by Bourgain in [I6], [I7], [19] for analytic NLS and
NLW, extending the result of Craig-Wayne [21] for semilinear 1-dimensional
wave equation. This approach is based on the so-called multiscale analysis
of the linearized equations and it has been recently improved by Berti-Bolle
[13], [12] for NLW, NLS with differentiable nonlinearity and by Berti-Corsi-
Procesi [14] on compact Lie-groups. It is especially convenient in the case of
high multiplicity of the eigenvalues, since the second order Melnikov condi-
tions are violated. As a consequence of having imposed only the first order
Melnikov conditions, this method does not provide any information about the
linear stability of the quasi-periodic solutions, since the linearized equations
have variable coefficients. Indeed there are very few results concerning the
existence and linear stability of quasi-periodic solutions in the case of mul-
tiple eigenvalues. We mention Chierchia-You [22], for analytic 1-dimensional
NLW equation with periodic boundary conditions (double eigenvalues) and
in higher space dimension Eliasson-Kuksin [26] for analytic NLS.

All the aforementioned KAM results concern semi-linear PDEs, namely PDEs
in which the order of nonlinear part of the vector field is strictly smaller than
the order of the linear part. For quasi-linear (either fully nonlinear) PDEs,
the first KAM results have been recently proved by Baldi-Berti-Montalto in
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[6], [7], [8] for perturbations of Airy, KdV and mKdV equations, by Feola-
Procesi [28] for fully nonlinear reversible Schrédinger equation and by Feola
[27] for quasi-linear Hamiltonian Schrédinger equation. For the water waves
equations with surface tension, the existence of quasi-periodic standing wave
solutions has been recently proved by Berti-Montalto in [15].

The key analysis of the present paper concerns the linearized operator ob-
tained at any step of the Nash-Moser scheme. The main purpose is to reduce
the linearized operator to a 2 x 2 time independent block diagonal opera-
tor. This cannot be achieved by implementing directly a KAM reducibility
scheme, since the constant coefficients part of the linearized operator has the
same order as the non-constant part, implying that the loss of derivatives
accumulates quadratically along the iterative scheme. In order to overcome
this problem, we perform some transformations which reduce the order of
the derivatives in the perturbation but not its size. We use quasi-periodic
reparametrization of time and pseudo differential operators to reduce the lin-
earized operator to a diagonal operator plus a one smoothing remainder, see
. At this point we perform a KAM reducibility scheme that reduces
quadratically the size of the remainder at each step of the iteration. Note
that, because of the double multiplicity of the eigenvalues |j|?, j € Z of the
operator —0J,,, the linearized operator cannot be completely diagonalized.
This problem is overcome by working with a 2 x 2 block diagonal normal form
along the iteration, which is obtained by pairing the space Fourier modes j
and —j. This strategy has been also developed by Feola [27] for quasi-linear
Hamiltonian NLS. We will explain more precisely our procedure in Section

LT

We now state precisely the main results of this paper. Rescaling the variable
v+ 830 and writing the equation (1.1) as a first order system, we get the
PDE

o =r =5t (13)
Op = (142 Jp|0s0]? d2) v + 2 f (wt, ) =T '
which is a Hamiltonian equation of the form
0w = V,H(wt,v,p) (1.4)
3tp = 7va(Wt7 va)

whose Hamiltonian is

H(wt,v,p)

= %/T(pQ-i-Wva) dx+5(%/qr|8mv|2dx)2—E/Tf(wt,x)vdx. (1.5)

In , V,H and V,H denote the L?-gradients of the Hamiltonian H with
respect to p and v.

We look for quasi-periodic solutions (v(wt,z),p(wt,z)), v,p : TV x T — R
of the equation (L.3)). This is equivalent to find zeros (v(i,z),p(p,z)) of the
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nonlinear operator

w-0,v—p
F(E,w,v,p) = 2 (16)
W+ Opp — (1 + & [1 [020] dz)(?mv —ef
in the Sobolev space H*(T**! R?) = H*(T*T!,R) x H*(T**!,R) where
}{s(qrv4-17ﬂg) (1.7)
= {vlp0) = 3 TOSEEI o2 i= 3720 < +ool,
tez? tez”
JEL JEZL
(¢, j) = max{1,|¢,|jl}, |¢| == max;=1, ., |¢;]. From now on we fix sy :=

[(v + 1)/2] + 1, where for any real number x € R, we denote by [z] its
integer part, so that for any s > so the Sobolev space H*(T**1) is compactly
embedded in the continuous functions CO(T**+1).

We assume that the forcing term f € C4(T” x T, R) has zero average, namely

flo,z)dpdr=0. (1.8)
Tu+1
Now, we are ready to state the main Theorems of this paper.
Theorem 1.1. There exist q := q(v) > 0, s := s(v) > 0 such that: for any
f € CYUT” xT,R) satisfying the condition (1.8), there exists eg = eo(f,v) >0

small enough such that for all € € (0,eq), there exists a Cantor set C. C Q) of
asimptotically full Lebesgue measure i.e.

ICc| — |92 as e—=0,
such that for any w € C. there exist v(e,w), p(e,w) € H*(T*T R), satisfying
[ sewndodi= [ pewpnded=0,  (19)
TV+1 Tu+l

such that F(e,w,v(e,w),p(e,w)) = 0, where the nonlinear operator F is de-

fined in (L.6) and
[v(e,w)ls, lp(e,w)||s =0 as e—0. (1.10)

Remark 1.1. The condition on the forcing term f is an essential re-
quirement to get the above existence result. Indeed, if does not hold
and if (v,p) solves F(e,w,v,p) = 0, integrating with respect to (v, ), we get
immediately a contraddiction.

We now discuss the precise meaning of linear stability. The linearized PDE
on a quasi-periodic function (v(wt,z),p(wt,x)), associated to the equation

(1.3), has the form
Ov=p
{ = (1.11)

0 = a(wt)ye® + R (wt)[7]
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where

a(wt) =1+ 5/ v, (wt, x)|* dz (1.12)
T

R(wt)[v] := —2£vm(wt,x)Avxm(wt,x)ﬁd:ﬁ. (1.13)

In order to state precisely the next Theorem, let us introduce, for any s > 0,
the Sobolev spaces

H* (T2, R) = {u(@) = ) uje™ : lullfyy = () [uy|* < +oo},
JEL JEZ
H{(Ty, R) := {u € H*(T,,R) : /u(x) dr =0},
T
where (j) := max{L, |j|}.

Theorem 1.2. (Linear stability) There exist i > 0, depending on v, such
that for all S > so + T, there exists g = eo(S,v) > 0 such that: for all
e € (0,e0), for all v = (v,p) € H3(T" 1, R?) with |v|sy+n < 1, there exists
a Cantor like set Qoo (V) C Q such that, for all w € Qoo (Vv), for all sp < s <
S — 7 the following holds: for any initial datum (), p) € H*(T,,R) x
H; (T, R) the solution t € R — (d(t,-),p(t,-)) € H*(T,,R) x HS ' (T,,R)
of the equation , with initial datum (0, -) = 5, p(0,-) = p'? is stable,
namely

sup ([[o(t, Mg + Io(t: gz ) < C) (10 Nmz + 15 =)

Remark 1.2. Note that the linear stability can be proved only for initial data
PO with zero-average in x. Indeed, the equation (1.11)) projected on the zero
Fourier mode is the ODE

{Mﬂ=m@
Po(t) =0
whose solutions are

po(t) = p?, vo(t) = v 4 pOt, v p® e R, vVt eR.
Hence, if p®) # 0, |vo(t)| — +o0 ast — +oo and we do not have the stability.

1.1. Ideas of the proof

In this section we explain in detail the main ideas of the proof. Because of
the special structure of the nonlinear operator F' defined in , it is conve-
nient to perform the decomposition (3.1]), (3.2), in order to split the equation
F(e,w,v,p) = 0 into the equation. The equation arises
by projecting the nonlinear operator F' on the zero Fourier mode in x and
it is a constant coefficients PDE which can be easily solved by imposing a
diophantine condition on the frequency vector w (see Lemma [3.1). Hence,
we are reduced to find zeros of the nonlinear operator F defined in ([3.7)

which is obtained by restricting F' to the space of the functions with zero
average in x. Theorems then follow by Theorem which is based
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on a Nash-Moser iteration on the nonlinear map F on the scale of Sobolev
spaces Hj(T"™1,R?), see (2.2)). The main issue concerns the invertibility of
the linearized operator £ = Oy, ) F (u,?) in at any approximate solu-
tion and the proof of tame estimates for its inverse (see Theorem [6.1). This
information is obtained by conjugating £ to a 2 x 2 time-independent block
diagonal operator. Such a conjugacy procedure is the content of Sections
Regularization of the linearized operator. The goal of Section [4] is to reduce
the linearized operator £ in to the operator L4 in which has the
form

h = (h,h) ~ w-9d,h+imT|D/h + R4h, (1.14)
where m € R is close to 1, T := ((1) 01), |D| = /=0, and Ry is a
Hamiltonian (see Section and 1-smoothing operator. More precisely
the operator Ry satisfies |R4|D||s < +00, see Lemma where the block-
decay norm |- |s is defined in . This regularization procedure is splitted
in three parts.

1. Symmetrization and complex variables. In Section we symmetrize the
highest order non-constant coefficients term ()0, in , by conjugating
L with the transformation S, defined in . The conjugated operator L,
defined in , has the form

(@) N ( w -9y + ao(p) —a1(p)|D| ) (E)

(2 ar(@)| D]+ R w9, —ao(p)) \¥

where a1, ag are real valued Sobolev functions in H*(T",R), with a; —1, ag =
O(e) and R™® is an arbitrarily regularizing operator of the form . In
section we introduce the complex variables h = %(ﬂ + 1@) and the
operator L1 transforms into Lo defined in which has the form

AN (w- 0y +1ia1(9)|D| +iRP)h + (ag(p) +iRP)h
complex conjugate ’

h
with R = 1R,

2. Change of variables. In Section we reduce to constant coefficients the
highest order term ia; (¢)|D| in the operator £,. Note that it depends only on
time. This is due to the special structure of the equation, since the nonlinear
term is diagonal in space. To reduce to constant coefficients ia;(p)|D|, we
conjugate Lo by means of the reparametrization of time Ah(p,z) := h(p +
wa(p,z)) induced by the diffeomorphism of the torus T, ¢ — ¢ + wa(p).
Since w is diophantine, choosing a(p) as in , the transformed operator

L3 defined in (4.34) is
B\, (w09 +im|D| +iR®)h + (bo +iRP)A
h complex conjugate

where m € R is a constant m ~ 1, by = O(e) is a real valued Sobolev
function in H*(T",R) and R™ is a one-smoothing operator still satisfying
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the estimates (4.44)). Actually R¥) is arbitrarily smoothing, since it has the
form (2.101f), but we only need that it is one-smoothing.

3. Descent method. In Section [£.4] we perfom one step of descent method, in
order to remove the zero-th order term from the operator L3. Since the opera-
tor R®) is already one-smoothing, we need just to remove the multiplication
operator h — bo(p)h. For this purpose we transform L3 by means of the
symplectic transformations V = exp(iV (¢)|D|™1), V(¢) = (—vo(go) U(SD)

where v : TV — R is a real valued Sobolev function. Choosing v as in (4.51)),
the transformed operator £4 in (4.52)) is the sum of a diagonal operator and
a l-smoothing operator R4, such that R4|D| has finite block-decay norm.

2 x 2-block diagonal reducibility scheme. Once has been obtained, we
perform a quadratic KAM reducibility scheme which conjugates the operator
L4 to the 2 x 2 block diagonal operator L (see Theorems . The
reason for which we cannot completely diagonalize the operator L4 is the
following: since we deal with periodic boundary conditions, the eigenvalues of
the operator m|D| are double, therefore the second order Melnikov conditions
for the differences m|j| — m| £ j| are violated. This implies that after the
first step of the KAM iteration, the correction to the diagonal part im|D|
is an operator of the form iD, D = d1agJ€ND i,  where D] is a linear
self-adjoint operator span{el® e~#} — span{el/* =%} which we identify
with the 2 x 2 self-adjoint matrix of its Fourier coefficients with respect to
the basis {€'/%, e717%}. The self-adjointness of the 2 x 2 blocks is provided by
the Hamiltonian structure. In order to deal with these 2 x 2 block diagonal
operators, it is convenient to introduce a 2 x 2 block representation for linear
operators. We develop this formalism in Section We remark that the
problem of the double multiplicity of the eigenvalues has been overcome for
the first time by Chierchia-You [22], for analytic semilinear Klein-Gordon
equation with periodic boundary condition. We also mention that the 2 x 2-
block diagonal reducibility scheme, adopted in Section [5} has been recently
developed by Feola [27] for quasi-linear Hamiltonian NLS equation.

One of the main task in the KAM reducibility scheme is to provide, along
the iterative scheme, an asymptotic expansion of the perturbed 2 x 2 blocks

of form
mj| 0 -1
< 0 mj> +O(elj| =) . (1.15)
This expansion allows to show that the required second order Melnikov non-
resonance conditions are fullfilled for a large set of frequencies w. The as-
ymptotic is achieved since the initial remainder Ry is 1-smoothing
and this property is preserved along the reducibility scheme (see in
Theorem [5.1)). This is the reason why we performed the regularization pro-
cedure of Section up to order O(|D|~!). We use the block-decay norm | - |
(see ) to estimate the size of the remainders along the iteration. This
is convenient since the class of operators having finite block-decay norm is
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closed under composition (Lemma [2.7)), solution of the homological equation
(Lemma [5.1)) and projections (Lemma [2.11)).

Linear stablhty A final comment concerns Theorem [I.2] which is proved in
Section [9.1} Using the splitting (3.1 , the linearized equatlon is
decoupled into the two systems (9.2)), ) The system (9.2)) is a constant
coefficients ODE which can be bOlVQd exphc1tly, hence it is enough to study
the stability for the PDE , which is obtained by , restricting the
vector field to the zero average functions in x. All the transformations we
perform along the reduction procedure of Sections [} [5] are Téplitz in time
operators (see Section 7 hence they can be regarded as time dependent
quasi-periodic maps acting on the phase space (functions of z only). Hence,
by the procedure of Sections the linear equation , transforms into
the PDE , whose vector field is a time independent 2 x 2 block-diagonal
operator. Thanks to the Hamiltonian structure, such a vector field is skew self-
adjoint, implying that all the Sobolev norms of the solutions remain constant
for all time. This is enough to deduce the linear stability.

To conclude the introduction, we make some comments concerning possible
extensions and generalizations of the results obtained in this paper.

1. It would be interesting to study the existence of quasi-periodic solutions
for equations of the form

Opttt — Opzt + mu + e f (wt, T, Uy Uy, Uz) =0, m >0 (1.16)

where
f:TxTxR*—=R

is a g-times differentiable function. The analysis of the linearized opera-
tor associated to this equation, would be much more complicated, since
the highest order term depends also on the space variable  (whereas in
our case, it depends only on time). Indeed, the linearized equation asso-
ciated to , written as a first order system in complex coordinates,
will have the form

Oth + i(l + sa(wt,x))(\/fﬁm +m)h+...,

where . .. stand for terms of order smaller or equal than 0. The reduction
to constant coefficients of the term (1+6a(wt, x)) (V=022 + m) involves

Pseudo differential operators and Fourier integral operators much more
complicated than the ones used in the present paper.

2. Another possible generalization concerns the possibility to extend our
result in high space dimension. It is well known that the reducibility
of quasi-periodically forced wave-type equations is a difficult matter in
dimension greater or equal than two. The main reason is that, if

~il = VR4 + 53 5 = (1, sja) € ZF with d > 2, the
second order Melnlkov condltlons

|w - L4 pj — pjr| >

or
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for any (¢,7,5") € Z¥ x 7% x Z¢ with (¢,j], |5']) # (0,4, |j]) are vi-
olated. Of course one could try to combine the reduction in decresing
orders with a multiscale approach (developed in [12] for semilinear Klein
Gordon equation) in which it is required to impose only the first order
Melnikov non resonance conditions. In any case this approach does not
provide the linear stability of the quasi-periodic solutions.

2. Functional setting

We may regard a function u € L?(T” x T,C) of space-time also as a -
dependent family of functions u(yp,-) € L?(T,,C) that we expand in Fourier
series as

ulp, o) =Y u(p)e¥® =" @)l (2.1)

JEZ 1Y/
JEZL

where

1 ..
= —/u(gp,x)e_”m dz,
2T T
3N 1

(0 = Gyt /T u(p, 2)e EHD dipda.

We also consider the space of the L? real valued functions that we denote
by L*(T**1,R), L*(T,,R). We define for any s > 0 the Sobolev spaces
Hs(T"+1,C), H*(T,,C) as

u;i ()

H(T",0) 1= {u € L(T'XT,0) : ul2 = 3 (6,520 < +o0},
(£,7)EZY XZ

HY(T,,C) = {u € I(T, ©) : lullh, = 3243 5] < +oo)
JEZ
where (¢,7) := max{1, |¢], |j|}, (j) := max{1,|j|} and for any ¢ € Z", |{| :=
max;=1,.,|¢;|. In a similar way, we define the Sobolev spaces of real values

functions H*(T**1,R), H*(T,,R). When no confusion appears, we simply
write L?(T¥*1), L?(T,), H*(T**1), H*(T,). For any s > 0 we also define

HE (T i={u e H*(T"*) : /Tu(go,x) dx =0}, (2.2)

H§(T,) := {ue H*(T,) : /Tu(x) de=0}. (2.3)

and LZ(T**1) = HY(TY), LE(T,) = HY(T,). We define the spaces Hg(T"+1,C?) :=
H§ (T, C)x H3 (T, C) and H§(T,,C?) := H§(T,,C)x Hi(T,,C) equipped,
respectively, by the norms [|(h,v)[|s := max{[|h[s,[[v|ls} and [|(h,v)||xs =
max{||k| g , [|v]| g }. Similarly we define Hg(T**™!, R?) := Hg(T" " R) x
HE(T**Y R) and H§(T,,R?) := H§(T,,R) x H§(T,,R) and the norms are
defined as in the complex case.
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For a function f : Q, = E, w — f(w), where (E, |- ||g) is a Banach space
and €, is a subset of R”, we define the sup-norm and the lipschitz semi-norm
as

I [f(w1) = flw2)le
1flE%, = sw [[fWle, [fllgq, = sup (2.4)
weQ, w1,w2E€Q, le - W2|

w1 Fws

and, for v > 0, we define the weighted Lipschitz-norm

Li li
1F I, e, TfE (2.5)
To shorten the above notations we smlply omit to write QO, namely || f||%5" =
li li Li Li
LI5S, 1A = 1A, £ = IfI55) T £+ Qo — C, we sim-

ply denote ||fH}CJ1p(7 by |f|¥P0) and if E = HS(T”‘H) we simply denote

||f||Llp(7) Hf”gip(y). Given two Banach spaces E, F', we denote by L(E, F)
the space of the bounded linear operators £ — F. If E = F, we simply write
L(E).

Notation: The notation a <; b means that there exists a constant C(s) > 0
depending on s such that a < C(s)b. The constant C(s) may depend also on
the data of the problem, namely the number of frequencies v, the diophantine
exponent 7 > 0 appearing in the non-resonance conditions, the forcing term
f. If the constant C' does not depend on s or if s = so = [(v +1)/2] + 1, we
simply write a < b.

We recall the classical estimates for the operator (w - d,)~! defined as

. 1 .
. -1 — . =11 i1 il
(-0 MW =0. (w8,) ) = ot W0, (20)
for w € € -, where for v, 7 > 0,
Q. = {w €Q:|w-l| > If\ Ve Zv\ {0}}. (2.7)

If h(;w) € HS 2TV with w € Q, -, we have
— — — i — Li
1w0,) " Alls <7 lhllssrs  w-8p)  RIIEPO) <A~ AIEET) L (2.8)

Denote by N, the set of the strictly positive integer numbers N := {1,2,3,...}
and we set Ny = {0} UN. Given a function h € LZ(T**1), we can write

= > BN = N hy(e,x)e e (2.9)

ez’ ez’
JeZ\{0} JEN
where R R L N
B, (6,2) == By (0™ +h_j(0)e 9, VjeN. (2.10)
It is straightforward to see that if h € H3(T"™1), one has
IR[1Z =" (5> b (072 - (2.11)
Lez”
jEN

We now recall the following classical interpolation result.
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Lemma 2.1. Letu,v € H*(T"*1) with s > so. Then, there exists an increasing
function s — C(s) such that

[uvlls < C(s)llullsllvllso + Cso)l[ullsollv]ls -

If u(sw), v(hw), w € Q, C RY are w-dependent families of functions in
H* (T 1), with s > so then the same estimate holds replacing || - ||s by
I - ”g‘ip("/)'

Iterating the above inequality one gets that, for some constant K(s),
for any n > 0,

[u¥ls < K ()" [[ulll lulls (2.12)
and if u(-;w) € H®, s > s¢ is a family of Sobolev functions, the same inequal-
ity holds repacing || - ||s by || - [|5P.

We also recall the classical Lemmas on the composition operators. Since the
variables (p, z) have the same role, we present it for a generic Sobolev space
H?*(T"). For any s > 0 integer, for any domain A C R™ we denote by C*(A)
the space of the s-times continuously differentiable functions equipped by the
usual || - ||cs norm. We consider the composition operator

u(y) = £(u)(y) == fy, u(y)) .
The following Lemma holds:

Lemma 2.2. (Composition operator) Let f € C5T1(T" xR, R), with s > so :=
[n/2] + 1. If w € H*(T"), with |ulls, < 1, then [[£(uw)]|s < C(s,||fllcs)(1 +
llulls). If u(-,w) € H¥(T"), w € Q, C R¥ is a family of Sobolev functions
Li Li Li
satisfying |[ull* ™ < 1, then, [[£(u)[[s < Cs, [|flles) (1 + [lufl ™).
Now we state the tame properties of the composition operator u(y) —

u(y+p(y)) induced by a diffeomorphism of the torus T”. The Lemma below,
can be proved as Lemma 2.20 in [I5].

Lemma 2.3. (Change of variable) Let p := p(;w) : R® - R, w € Q, C R”
be a family of 2w-periodic functions satisfying

coort <172, |p|LPO) <1 (2.13)

I

where sg := [n/2] + 1. Let g(y) := y + p(y), y € T™. Then the composition
operator

Az uly) = (uog)(y) = uly +p(y))
satisfies for all s > sq, the tame estimates

[Aullsg s llullsy,  [[Aulls < Cs)llulls + Clso)llpllsllullsg+1 - (2.14)
Moreover, for any family of Sobolev functions u(-;w)
i Li
[ Au|5PO) <., ful 5557, (2.15)
i Li i Li
| Aul?P <ol 5+ IpIFP Ol Vs> s (2.16)



14 Riccardo Montalto
The map g is invertible with inverse g~'(z) = z + q(z) and there exists a
constant 0 := §(so) € (0,1) such that, if ||p||5;};$2) < 4, then

i Li
lglls <s llplls lgllE™™ <q [Ipf 5 (2.17)

Furthermore, the composition operator A~ u(z) := u(z + q(z)) satisfies the
estimate

A" ulls < [lulls + Ipllsllullsor1s Vs > so (2.18)
and for any family of Sobolev functions u(-;w)
_ i Li Li i
1AMl <l 5 + Il el Vs = s0. (219)

2.1. Toplitz in time linear operators

Let R : TV = L(L:(T.)), ¢ — R(¢), be a ¢-dependent family of linear
operators acting on L3(T,). We regard R also as an operator (that for sim-
plicity we denote by R as well) which acts on functions u € L3(T” x T) of
space-time, i.e. we consider the operator R € L(LZ(T” x T)) defined by

(Ru)(p,z) = (R(p)ulp;-))(2).
The action of this operator on a function u € L3(T**!) is given by
Ru(p,z) = Y R (p)uj(p)e”
33" €Z\{0}
= Y Ryl et (2.20)
0,0 er”
73" €Z\{0}
where the space Fourier coefficients R§'(¢) and the space-time Fourier coef-

ficients R?(E) of the operator R are defined as

-/

1 L
RY ()= o [ ReT "o, peT g €2\ (0}, (221)
T

, 1 . .
R (6) 1= 7/ R (p)e e dp, (€2’ j,j €Z\{0}. (222)
(271') Tv

We shall identify the operator R = R(¢) with the infinite-dimensional ma-
trices of its Fourier coefficiens

(R ) (R =) (ren (2:23)
73" €Z\{0}

and we refer to such operators as Toplitz in time operators.

If the map ¢ € T — R(p) € L(L3(T,)) is differentiable, given w € R”, we

can define the operator w - 0,R as

' €Z\{0}

wd,R = (w-0,R (1)) (iw.(e—fz')ngi’ (e—e’)) oo - (224)
33" €Z\{0}
We also define the commutator between two Toplitz in time operators R =

R(p) and B = B(y) as [R(¢), B(p)] :== R(p)B(p) — B(p)R(p), ¢ € T".

4" €Z\{0} T



Quasi-periodic solutions of forced Kirchhoff equation 15

Given a T6plitz in time operator R, we define the conjugated operator R by
Ru = R (2.25)
One gets easily that the operator R has the matrix representation

(R (v)

- ; eT”. 2.26
J (‘D)j,j'eZ\{o} 4 (2.26)

An operator R is said to be real if it maps real-valued functions on real valued
functions and it is easy to see that R is real if and only if R = R.
We define also the transpose operator RT = R(¢)T by the relation

(R(p)[u], v)r2 = (u, R(p) W)z,  Vu,v € Li(Ty), VoeT” (2.27)
where
(u,v)p2 = /u(:c)v(a:) ,dx Vu,v € L*(T,). (2.28)
T
Note that the operator R” has the matrix representation
(RT)} (p) =R} (9), Vi €Z\{0}, VpeT". (2.29)
An operator R is said to be symmetric if R = R”.
We define also the adjoint operator R* = R(p)* by
(R((p)[u] , v)Lg = (u, R((p)*[v])Lg . Yu,v € LE(T,), VYoeT”, (2.30)

where ( , -)L2 is the scalar product on L?(T), namely

(u, U)Lg = (u, V)2 = /Tu(x)ﬁ(x) dr, Yu,ve€ L*(T,). (2.31)

An operator R is said to be self-adjoint if R = R*. It is easy to see that
=T . . . P
R* =R and its matrix representation is given by

(R (0) =RL(p), Vij €Z\{0}, VpeT”.

In the following we also deal with smooth families of real operators ¢ +—
G(p) € L(LE(T,,R?)), of the form

_ (Alp) B(y) v
G(p) = (C(SO) D((p)), peT (2.32)

where A(p), B(¢),C(p), D(¢) € L(LE(T,R)), for all p € T”. Actually G
may be regarded as an operator in £(L3(T"*1,R?)), according to the fact that
A, B,C, D are Téplitz in time operators. By (2.27), the transpose operator
GT with respect to the bilinear form

((ur,91), (u2,¥2))r2 = (u1,uz)r2 + (Y1, ¥2)r2 (2.33)
V(u1, 1), (ug,1b2) € L3(T,, R?), is given by

AT CT
GT = <BT DT> : (2.34)
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Then it is easy to verify that G is symmetric, i.e. G = G7T if and only if
A=AT B=CT,D=DT. It is also convenient to regard the real operator
G in the complex variables

u ~+ i _ u—1iyY
= s z = 5 235
7 7 (2.35)

z+Zz z—Z
u= , = . 2.36
v T (2.36)
The transformed operator R has the form
_(R1 R

R = (R2 R1) , (2.37)

A+D—-i(B-0C) A—-D+i(B+C)
- ) R2 = .
2 2
Note that the operator R satisfies
R LT = LT, R(p) : Li(Te) = L(Ta), Ve €TV (2.38)

where LZ(T**1), resp. L3(T,) are the real subspaces of LZ(T**1,C?), resp.
L3(T,,C?) defined as

L3(T") = {(2,2) : z € L§(T"*1,C) }, (2.39)
L(T,) == {(2,2) : 2 € L§(T,,C)} . (2.40)

For the sequel, we also introduce for any s > 0, the real subspaces of
Hg(T**1,C?) and H§(T,,C?)

HG(T"H) = H (T, C?) n Ly (T, (2.41)
H(T,) := H(T,,C?) N L3(T,). (2.42)

Rll

2.2. Hamiltonian formalism

We define the symplectic form W as
0 1
W[U.l,IIQ] = <U1, JU—2>L§ N J = (1 0) 5 (243)

for all uy,uy € L3(T,,R?).

Definition 2.1. A p-dependent linear vector field X (o) : L3(T,, R?) — L3(T,,R?)
is Hamiltonian, if X (p) = JG(p), where J is given in (2.43)) and the operator
G is symmetric. The operator

L=w- 0,y —JG(p): HY(T"T R?) — LT, R?), I:= (Igo Igo)

where Idg : L3(TY*1) — LZ(T**1) is the identity, is called Hamiltonian op-
erator.

Definition 2.2. A ¢-dependent map ®(y) : L3(T,,R?) — L3(T,,R?) is sym-
plectic if for any ¢ € TV, for any uy,ug € LE(T,, R?),

W[R(p)ur, ®(p)uz] = Wlay, us],
or equivalently ®(p)T J®(¢) = J, for all o € T".
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Under a symplectic transformation ® = ®(p), assuming that the map

o € TV = ®(p) € L(L3(T,,R?)) is differentiable, a linear Hamiltonian

operator £ = w - d,ls — JG(y) transforms into the operator £, = &~ 'LP =
w - Oylly — JG4 () with

Gi(p) = ()T G(p) () + 0(p) Jw - 0, (). (2.44)

Note that for all ¢ € T¥, G4 (p) is symmetric, because G(y) is symmetric and

w-0,[®(p)T]JP(0)+P(p)T Jw-0,P(p) = 0 for all ¢ € T” and then L is still

a Hamiltonian operator. Actually the conjugation (2.44)) can be interpreted

also from a dynamical point of view. Indeed, consider the quasi-periodically
forced linear Hamiltonian PDE

Oth = JG(wt)h, teR, welR”. (2.45)

Under the change of coordinates h = ®(wt)v, the above PDE is transformed
into the equation

Opv = JG 4 (wt)v (2.46)

which is still a linear Hamiltonian PDE.

2.2.1. Hamiltonian formalism in complex coordinates. In this section we ex-
plain how the real Hamiltonian structure described above, reads in the com-

plex coordinates introduced in (2.35)), (2.36)). According to (2.37)), under the
change of coordinates (2.35)), (2.36]), a linear Hamiltonian vector field JG(¢p),

transforms into
_ Ri(p)  Ra(yp)
re =ty Re) (247

where the operators R; = R;(¢), i = 1,2 are defined as

A+ D—-iB+iB” _A-D+iB+iB"
B 2 ’ B 2

(recall that the operator R is defined in (2.25))). Note that the operators
Ri(¢), Ra(yp) are linear operators acting on complex valued L? functions
L3(T,, C), moreover since G () is symmetric, A(p) = A(p)T, B(p) = C(¢)7,
D(¢) = D(¢)T, then it turns out that

Ri(p) = Ri(p)", Ry(p) = Ra(p)",  VpeT”. (2.49)

Since the operator R in (2.4) has the form (2.37)), it satisfies the property
(2.38). Furthermore, one has that R(y) is the linear Hamiltonian vector field
associated to the real Hamiltonian

Rli

2 - (248)

M) = (Gl 2. Gl = (147) 1) o)

namely

H(z,7) = /TRl(go)[z]de—i—%/TRQ(QO)[z]zdx—i-%/TRQ(QO)[E]de. (2.51)
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Indeed, G(y) is symmetric, since by (2.49), R 1 = R} = Ry and RY = Ry,
then

R(p)[z] = iV H(z) = —iJG(p)[z], z<cLi(T.), (2.52)
where V,H := (V. H, Vs:H) with
1 ) - 1 .
V. H = ﬁ(vnﬂ —iVyH), V:H:=V,H= ﬁ(vn}z +iVyH)

(recall (2.35), (2.40)). The symplectic form W in (2.43)), reads in the complex
coordinates ([2.35) as

T(z1,2z2] = '/(2122 —Zize)dr =(z1, Jz2)p2, V71,22 € L3(T,). (2.53)

Definition 2.3. Let ®; = ®,(p), ¢ € TV, i = 1,2 be p-dependent families of
linear operators L3(T,,C) — L(Q)(']I‘I,(C) We say that the map

Py (p )
, eT”
(‘1’2(@ v
s symplectic if

L[®(p)[z1], ®(¢)[22] = Tlz1,22], V2,22 € Li(T,), Ve €T
or equivalently ®(p)T J®(p) = J, for all p € T".

It is well known that if R(p) is an operator of the form (2.4)), (2.49)),
namely by (2.52) R(¢) is a linear Hamiltonian vector field associated to the

quadratic Hamiltonian # in (2.51f), the operators exp(£R(y)) are symplectic
maps.

Definition 2.4. If R(p) is a Hamiltonian vector field like in (2.4), (2.49)), we

define the Hamiltonian operator in complex coordinates as

L=w-0,ls —R(p) =w- 0,1y +iJG(p) : Hy(T* ') — LE(T ).

Under the action of a smooth family of symplectic map ®(p), p € T, a
Hamiltonian operator £ transforms into the Hamiltonian operator £, =
PILD = w - O,ls +1JG () where

Gi(p) = 2() G()2(¢) + 0(9) Jw- 0, D(p), Ve T".

Note that the operator G () is symmetric and it has the same form as G(¢p)

in (2.50). Arguing as in (2.45)), (2.46), under the transformation v = ®(wt)h,
the PDE

Oth = —1JG(wt)h, weR, teR, (2.54)
transforms into the PDE

In the following, we will consider also quasi-periodic reparametrizations of
time, namely operators of the form

Ah(p,z) = h(p +wa(p),z),
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where o : T” — R is a sufficiently smooth function and such that ||a||¢er is
sufficiently small. The transformation A is invertible and its inverse A~! has
the form

A7h(9, ) = h(¥ + wa (), x)
where ¢ — 9 + wa(d) is the inverse diffeomorphism of ¢ — ¢ + wa(p). The
conjugated operator is A1 LA = pL, where £ = w -, +1JG (V) with

p(¥) = A1+ w-0,a](¥), Gi(9):= (0 +wa(¥).  (2.56)

1
—G
p(9)
Note that £, is still a Hamiltonian operator. From a dynamical point of
view, under the reparametrization of time

T=t+ a(wt), t=7+alwr),
setting v(t) := A(wt)h := h(t+a(wt), z), the PDE (2.54)) is transformed into
0-v =—-1JGy(wr)v. (2.57)

2.3. 2 x 2 block representation of linear operators

We may regard a Toplitz in time operator given by (2.20]) as a 2 x 2 block
matrix

(R (=) ppene (2.58)
4,3’ eN

where for all £ € Z", 4,7’ € N the 2 x 2 matrix Rgl (¢) is defined by

R0 (RO RO (2.59)
- \RL 0 RI() -

The 2 X 2 matrix R;l(ﬂ) can be regarded as a linear operator in L(E;/, E;),
where for all j € N, the two dimensional space E; is defined as

E, := span{e’” e 7"}, (2.60)

Note that for any j € N, the finite dimensional space E; is the eigenspace of
the operator —d,, corresponding to the eigenvalue j2. We identify the space
L(E;,E;) of the linear operators from E; onto E; with the space of the
2 x 2 matrices of their Fourier coefficients, namely

L(E; B;) ~ {M - (M,’:) et } ~ Mat(2 x 2) . (2.61)
K =45’
Indeed if M € L(E;, E;), its action is given by

./ i1, Y Py
Mu(x) = E MEupe*®, YueEj, u(z)=upe?® +u_je T,
k=+

Wty
(2.62)
If j = j', we use the notation L(E;) = L(E;/,E;) and we denote by I; the
identity operator on the space E;, namely

IjZEj—>Ej7 Ur—=u. (263)
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According to (2.9), (2.58), (2.62]), we may write the action of a Toplitz in
time operator on a function h(yp, ) as
Rh(p,x) = > R (€—)[hy ()%, (2.64)

I NA=y/d
J:j' €N

We denote by [R] the 2 x 2 block-diagonal part of the operator R, namely
[R] := diag; R’ (0) (2.65)
and its action on a function h(yp, x) is given by

[Rlk(p,a) = > RIO)[b;(0)]e?.

€z, jeN
If R;l (¢) = 0, for any (¢,7,5") # (0,4,7), we have R = [R] and we refer to
such operators as 2 x 2 block-diagonal operators.

For any M € L(E;/, E;), we define the transpose operator M* € L(E;,E;/)
by

(MDY =Mk, k=+j, K ==j, (2.66)
the conjugate operator M € L(E;, E;) by
MO =M}, k=45, K ==j, (2.67)
the adjoint operator M* € L(E;,E;/) as
M =11 . (2.68)
Given an operator A € L(E;), we define its trace as
Tr(A) = A7+ A7S. (2.69)
It is easy to check that if A, B € L(E;), then
Tr(AB) = Tr(BA). (2.70)

For all j,5' € N, the space L(E;/,E;) defined in (2.61)), is a Hilbert space
equipped by the inner product given for any X,Y € L(E;/, E;) by

(X,Y) :=Tr(XY™). (2.71)
This scalar product induces the L?-norm

I1X|| ::\/Tr(XX*):( 3 |X,’:’|2) . (2.72)

|k|=3
|K'|=4"

[SE

Actually all the norms on the finite dimensional space L(E;/, E;) are equiv-
alent.

Given a linear operator L : L(E;, E;) — L(E;/, E;), we denote by || L||op(;,;7)
its operatorial norm, when the space £(E;/,E;) is equipped by the L*-norm

E72). namely
Illopg.n = sup {ILOD] : M € LB, By), M <1}, (273)
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We denote by I j: the identity operator on £(E;/, E;), namely
I]"j/ : ,C(Ej/, EJ) — [,(Ej/, Ej) R X=X, (274)
For any operator A € L(E;) we denote by M (A) : L(E;, E;) = L(E;/, E;)
the linear operator defined for any X € L(E;/, E;) as
Mp(A)X = AX. (2.75)
Similarly, given an operator B € L(E;/), we denote by Mg (B) : L(E;, E;) —
L(E;,E;) the linear operator defined for any X € L(E;/, E;) as
Mp(B)X := XB. (2.76)
The following elementary estimates hold:
Mz (Allopin < Al IMr(B)llop.in < I1BI- (2.77)
For any j € N, we denote by S(E;), the set of the self-adjoint operators form
E; onto itself, namely

S(E;) := {A € L(E;): A= A*} : (2.78)

which we identify with the set of the 2 x 2 self-adjoint matrices. Furthermore,
for any A € L(E;) denote by spec(A) the spectrum of A. The following
Lemma can be proved by using elementary arguments from linear algebra,
hence the proof is omitted.

Lemma 2.4. Let A € S(E;), B € S(Ej/), then the following holds:

(i) The operators My (A), Mgr(B) defined in [2.75), [2.76) are self-adjoint
operators with respect to the scalar product defined in (2.71)).
(i) The spectrum of the operator My (A) + Mgr(B) satisfies

spec(ML(A) + MR(B)> = {)\ +p:Aespec(d), pe spec(B)} .

We finish this Section by recalling some well known facts concerning
linear self-adjoint operators on finite dimensional Hilbert spaces. Let H be a
finite dimensional Hilbert space of dimension n equipped by the inner product
(-, -)x- For any self-adjoint operator A : H — H, we order its eigenvalues as

spec(A) = {A1(A) < Aa(4) < ... < \(4)}. (2.79)

Lemma 2.5. Let H be a Hilbert space of dimension n. Then the following
holds:

(i) Let A1, As : H — H be self-adjoint operators. Then their eigenvalues,
ranked as in , satisfy the Lipschitz property

Ak(A1) = Ae(A2)] < [|[A1 = Aollcry,  Vh=1,...,n.

(it) Let A = nldy + B, where n € R, Idyy : H — H is the identity and
B :H — H is selfadjoint. Then

)\k(A):’I]-i-)\k(B), Vk=1,...,n.
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(13i) Let A : H — H be self-adjoint and assume that spec(A) C R\ {0}. Then
A is invertible and its inverse satisfies

A1 == '
147 eo0 = S @]

2.4. Block-decay norm for linear operators

In this Section, we introduce the block-decay norm for linear operators. Given
a Toplitz in time operator R as in (2.20)), recalling its 2 x 2 block represen-

tation (2.58)), (2.59)), we define its block-decay norm as

1
Rl =swpen( Y (6i—FIR] @), (280
eezv , jeN

where || - || is defined in (2.72)). For a family of T6plitz in time operators

R =R(w) € LIH{(T" ™)), w € Qo, given v > 0, we define the norm
[RISPON = [REP +4RIF, (2:81)

; R -R s

R = sup (R, [RIP = sup PRl

weN, w1,w;é€Qo |w1 - w2|
w1 Fw2

For families of linear operators R(w), w € €, of the form

(R1 Ry
R = (R2 Rl) , (2.82)

where Ri,Rq € E(Hg('ﬂ“’“)) are Toplitz in time operators of the form

(2.20), we define
R := max{|Rls, [Rals}, [RIFPD) := max{|Rq |, |R,[FP} . (2.83)

In the following, we state some properties of this norm. We prove such prop-
erties for operators R € L(H§(T*™)). If R is an operator of the form
then the same statements hold with the obvious modifications. To state the
following lemma we need the following definition. For all m € R we define
the operator |D|™ as

DI™(1)=0,  |D"(e97) = |j|me” V) #0. (2.84)

Lemma 2.6. (i) The norm |- |s is increasing, namely |R|s < |R|s, for s < s'.
(ii) |R|s < |R|D||s and the operator w-9,R (see (2.24) ) satisfies |w-0,R|s <
IRs+1-

(iii) For any j € N, the 2x2 block R%(0) (see ([2.59) ) satisfies sup;ey IR}(0)[|<
|Rlo, where || - || is defined in (2.72). Moreover the operator [R] defined by
([2-65), satisfies |[R]]s < |R|s.

(iv) Items (i)-(iii)hold, replacing |- |s by |- |§ip(7) and || - || by || - ||“PO).

Proof. The proof is elementary. It follows directly by the definitions (2.80)),
(2.81)), hence we omit it. O
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Lemma 2.7. Let R, B be operators of the form (2.20)). Then
IRBls <s [Rls|Blsy + [Rls,|Bls - (2.85)
If R = R(w), B = B(w) are Lipschitz with respect to the parameter w € , C

Q, then the same estimate holds replacing | - |s by | \Llp .

Proof. According to the matrix representations ([2.58] 7 , the operator
RB has the 2 x 2 block representation

RB = ([RB];Z (¢ - z/))u,ezy , [RBE' ()= 3 RE((—¢)BI ().
4,5 €N vez”
kEN
By the Cauchy Schwartz inequality, ||R§(€—€')B{ (I < [[RE(e—2))]| HB{ e,
then for all j/ € N, we get

. 2

S (g = IRBE @2 < 37 (30 g - ) IR - )IB ()])
Lez” LeL”  W'ez
jeEN jEN keN

(2.86)

Using that (¢, j—5)° <s ({—0',j—k)s+{l', k—7")*, we get (2.86| -
where

(A=Y (-0 —k>SIIR§(€—E’)IIIIB{M’)H)z7 (2.87)
G

=3 (S kIR - ONBL @) . @)

Ler”  Ver”
JeEN  keN

By the Cauchy-Schwartz inequality, using that since so = [(v +1)/2] + 1 >
(v +1)/2, the series Yz pen(l's k — §') 72 = C(s0), one has

<3 ST R RE( - )2k — )20 B (2)]?

LETY V' ey
JEN keN
< S k= 2B )Y (¢ — kY| RE(— )2
VA V/d Le7”
keN JEN
<sup Y (0 k— 3B ()| sup S (€, 5 — k)F|REE 0]
J ENZ’eZ” € tez”
keN JEN
12.80)
< [REIBIZ, .

By similar arguments, one gets (B)<|R|? |B|? and hence the claimed estimate
follows by taking the supremum over j' € N in (2.86]). The estimate in |- \Llpm
follows by applying the estimate (2.85)) to

R(w1)B(w1) = R(we)B(w2) — (R(w1) — R(wz))B(W1)+R(W2)(B(w1) — B(wz))

w1 — w2 w1 — w2 w1 — w2
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and passing to the sup for wq,ws € Q, with wy # wo. O

For all n > 1, iterating the estimate of Lemma [2.7] we get
[R™ 5o < [C(s0)]" MR, . IR™s < nC(s)"[RI5HRls, Vs > 50, (2.89)

for some constant C'(s) > 0, and the same bounds also hold for the norm
| - |I§1p(ﬂy) if R = R(w) is Lipschitz with respect to the parameter w.

Lemma 2.8. Let R satisfy |R|s < +oo, with s > sg. Then for all u €
H§(TY+Y), the following estimate holds

IRulls <s [Rlsllullso + Rlso lulls -

If R = R(w), u = u(-,w) are Lipschitz with respect to the pammeter w €
Q, C R”, then the same estimate holds replacing | - |s by | - Le() 4nd Il Ils
by |- 157

Proof. The proof is similar to the one of Lemma [2.7] hence it is omitted. [

Lemma 2.9. Let a € H*(T"). Then the multiplication operator R : h(p,x) —
a(p)h(p,x) satisfies |Rls < |lalls. If a = a(-;w) is a Lipschitz family in
H*(T"), then the same estimate holds, replacing || - ||s by || - H?p(v) and | - |s
b . Lip(vy)
gl
Proof. The operator R admits the 2 x 2-block representation
R=RI(—0))pem, RO :=a(OL;, VLeZ', VjeN

JEN
(recall (2.63)). Since ||I;|| = v/2, by (2-80)), one has |R|s < ||a||s. The estimate
for |’R\£lp(7) follows similarly. O

Lemma 2.10. Let ® = exp(V) with ¥ := ¥(w), depending in a Lipschitz way
on the parameter w € Q, C R, such that |¥|D|[XP") < 1, |¥|D|LP™) <
400, with s > sg. Then

(@ —1d)[Dl]s <, [¥[Dlls, [(@*! ~1d)| D[ <, [¢|D||FP) . (2.90)

The differential Oy ® of the map ¥ — ®*! = exp(+V) in the direction T
satisfies for any |Vl|s, <1 the estimate

|00 ][5 <o (|05 + [W]s[T]s,) - (2.91)
Moreover the map ®>o = ® — Id — W, satisfies
|®>2|D||s <s [¥[DI[s[¥|D][s, , (2.92)
|2o| D||LPO) < |WD||FO W | D[P (2.93)
|8‘I’(I>22[\I']|s Ss (‘\I/|80|\I'|s + I‘Il‘s|\mso) : (2-94)
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Proof. Let us prove the estimate (2.90) for ®. We write

\I/k
<I>—Id:\ll+zﬁ.
E>2

For any k > 2 one has

Lemmal21l
WEIDI[, ST () (10D, + (95, D), )
259 B B
o (k= 1)C()" (1211 2Dl + 1915 w(D]l,)
Lemma(ii) _
< 20k = D)) D] w|D]
|¥|D||so<1 .
< 20k = 1)) D). (2.95)
Hence
e (k—1)C(s)F
(@—1)[Dl, "< (D]l (1+2) F—") <, 9D,

k>2

The same inequatity holds for the inverse O~ = exp(—W).
Now let us prove the estimate . For any k > 1, one has that

Op (TR = > v,
i+j=k—1
Foranyt+j=%k—-1

T feamnelLd 2(1wil 1S j iT j ioT j
WS C) (10 19 g+ [0 [ 99+ 07 D[ 971, )

(2.89) ~ ~
< 2KC(s) (19, + 191,91, ) - (2.96)
Hence
5 |0 (M) [ ] ¢ 2kC ()"
ogd]], < 0 P IE =y T(I\PIS + 19,91, )
E>1 E>1
<s [Vs + W |0, (2.97)
which is the estimate (2.91]). The estlmates -7 can be proved ar-
guing as above, using that &>, = Zk>2 T O

Given N € N, we define the smoothing operator IIxyR, for any operator R

as in (2.20))

% RI(C—0¢) if|—0|<N
MNR), (6~ ) =3 7 = 2.98
( N )] ( ) {O otherwise, ( )
or equivalently, using the block-matrix representation (2.58)), (2.59)
; Te—0) i U—¢|<N
(MNR)’ (=) = R;((=6) i If. b= (2.99)
J 0 otherwise.
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Lemma 2.11. The operator HJ- :=1Id — Iy satisfies
MRl < N7 Rlero, [HFRIMPD) < NPIRIEP 5 >0, (2.100)

where in the second inequality R is Lipschitz with respect to the parameter
we N, CRY.

Proof. The proof follows easily by the definitions (2.80)), (2.81)) and hence it
is omitted. O

Lemma 2.12. Let us define the operator

Rh(p,z) == q(p, x) / g(p,x)h(p,x)dx, q,9€ Hy (T, s>s.
T

(2.101)
Then
IRls <s llgllsollalls + llgllsllalls, - (2.102)
Moreover if the functions g and q are Lipschitz with respect to the parameter
w € Q, CRY, then the same estimate holds replacing | - |s by | - \I;ip(w and
-l by - 17,

Proof. A direct calculation shows that for all £ € Z¥ and for all k, k' € Z\ {0}
REWO) =" Gt —)g-w(0).

ez
Using definition (2.72) we get that for all £ € Z¥, j,j' € N,

||R;i <e>||2= > wE0P< (Y RE@)

k==+j k==+j
k'==4j' K =+
2
(X X @e-0lge))
VeLy k==+j
k/::tj/
~ y S 2
< (3 Uas(e— ) ealg ()22 (2,103
env

where the last inequality holds, since, recalling (2.10)), for any k = 475, k' =
+5', |qe(¢ — )] < ||g;(¢ — €')||z2 and [g_p (¢)| < ||g;j/(¢")|| 2. Now for all
j' €N,

2
S (- IR OF B (X (s - a5 - Ol B ()]12)
Lez” Legy ez
JeN JEN
(2.104)
Using that (€, —j')° <; (€=, 5)5 + (', 5')%, one gets (2.104) <, (A) + (B),

where

= (-l Ol Oll) . (208)
Lez” terv
JEN
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2
=3 (@ lE = Olslg@ll) . (2106)
Lez”  terv
jeN
By the Cauchy-Schwartz inequality, using that Y-, ;. (¢/) 2% = C(so) (re-
call that s = [(v+1)/2] +1 > (v +1)/2), one gets

<o Do D = CilE e = Ol ()0 llgy (¢ ||L2! lallsllglls, -
LeL” U el”
JeN

By similar arguments one can prove that (B) <; ||g||s,|lg|ls and the claimed

estimate follows by taking the sup over j/ € N in (2.104]). The Lipschitz
estimates follow by applying (2.102)) to

Rfw1) = R(wz) _ gq(wr) —Q(W2)<' o))z +g(w2)<9(w1) — 9(w2) >
T ! L2

W1 — Wa w1 — W2 W1 — Wy

and passing to the sup for wi,ws € Q, with wy # ws. O

As we already mentioned, a T6plitz in time operator R in (2.20) may be
regarded as (p-dependent family acting on the space of functions depending
only on the z-variable

R(SO) = (Ri ((p))j,j/EZ\{O} )
and it admits the block representation

R(e) = (R (2)), e R§/(¢):<7§;A((i)) gj_jg) VoeT”, Vjj €N.

The 2 x 2 matrix R?((p) may be regarded as a linear operator in L(E;/, E;),
given by

Z Rk Yupre® Vu(x)—ujlejm—l—u e 1JIGE/.

k==+j
k=5’

For the operator R(y), we denote by |R(p)|s,. the block-decay norm (only
with respect to the z-variable)

1
2

[R(#)]s,2 := sup (Z<] —j’>25||R’ (@)l ) (2.107)
J'eN Nieg,
If R is an operator of the form (2.82)), we define
IR(©)]s,0 := max{|R1(¢)|s,z; [R2(#)s,2} - (2.108)

The following Lemma holds:

Lemma 2.13. Let R be a Toplitz in time operator. Then the following holds:
(¢) Let s > 1. If for any ¢ € T, |R(p)|s,x < +00, then for any u € H§(T,)

[R()ullz <s |R(#)1, s+ R(@)s,ellull a1 -
(i1) [R(p)s,x < IR |s+s0 -
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Proof. The proof of item (7) is similar to the one of Lemma hence it
is omitted. Item (4i) follows since, expanding Rg:/(gp) = > renr Rgl(ﬁ)ew'*”,
applying the Cauchy-Schwartz inequality and using that >-,.,. (£)72% =
C(sg), one has that for all 7/ € N,

DU =IFIRT @I < D G =3O IR (O < [Rlstso +
jEN Lez”
JjEN

which implies the claimed estimate passing to the supremum on j' € N. [

3. A reduction on the zero mean value functions

For any function u € L?(T), we define

1
ToU 1= — / u(z)dx, 7y = 1Id — 7o (3.1)
2T T

[T 0 1. 71'3' 0
m- (3 0, me( 0). e

Given a function v € H*(T"*1), v(p, x) = > jez Vi (p)e?, we write

and

’U(QD, :L’) = 00(90) + UL(SD, :IZ) ) (33)

UO(@) = WOU(QDﬂ 1') ) UL(@? SC) = 7T(J)_’U((:Da {IJ) = Z Uj (Qp)eijx :
370
Then according to the splitting (3.3)), applying the projection Iy, ITg- to
the nonlinear map F defined in (1.6) and setting u := 73 v, ¥ := 73 p, the
equation F(v,p) = F(g,w,v,p) = 0 is decomposed in

w-0,u—yY =0
) (3.4
w - Dpth — (1+€fT|8xu| dm)ﬁmu—sﬁ_ =0,
w~8¢vo — Po =0 (35)
w - 0ppo —€fo =0

(we have used that d,v = 9,v, = Ozu in (3.4)). The above two systems
are completely decoupled, hence they can be solved separately. In the next
lemma, we solve explicitly the second system (3.5). We use the hypothesis

(1.8) on the forcing term f (¢, ).

Lemma 3.1. Lety,7 > 0 and ¢ > 27. Then, for allw € Q, ; (see (2.7)) ), there
exists a solution vo(:;w,€) ,po(+;w, ) € HI72T (T, R) of the system (3.5]) with
Jrv Po(@) dp =[5, vo(@) dp = 0 and satisfying the estimates

lvolls <ev™2[1fllss2r s llpolls <ev ™ fllser,  VO<s<g—27. (3.6)
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Proof. Since
/ folp) dgp = /  f(p.a)dpda 3,
Tv Tv 1

the second equation in can be solved by taking pg := e(w-ag,)_l fo where,
since w € Q -, the operator (w - 890)_1 is well defined by . Then we can
solve the second equation in by defining vy := (w-0,) ' po=e(w-0,) > fo .
Clearly [, vo(¢)de = [1. po(¢) dp = 0 and the claimed estimates follow by
applying . O

In all the rest of the paper, we will study the equation (3.4) on the
zero mean value functions in x. We will find zeros of the nonlinear operator
Fleyw, )« Hy(TYT1,R?) — H 2(TY*+!,R?) (recall (2.2)), defined as

- B w - Opu — 37
(e,w,u,9) == w - Dpth — (1+5f1r(a$u)2 dm)amu—&?fJ_ ’ 8.7)

Note that, setting u := (u, ), F(u) = F(e,w, u), one has

F)=w-d,u— JVeH(u),  Ji= <01 (1)) , (3.8)

where JVyH,. is the Hamiltonian vector field
(0 1 VuHe\  [(—VyH:
= (5 0) (v) = ()
generated by the Hamiltonian
1 1 2
He(u, ) := 7/ (1/)2 + \8mu|2) da:+€(f/ |8mu|2d:c) ,5/ frudz, (3.9)
2 Jr 2 Jr T

defined on the phase space H}(T,,R) x L3(T,,R). The Hamiltonian #. is
simply the restriction of the Hamiltonian H in to the space of the
functions with zero average in x. We look for the zeros of by means of
an implicit function Theorem of Nash-Moser type. The Theorem [T.1] will be
deduced by Lemma [3.1] and by the following Theorem

Theorem 3.1. There exist ¢ := q(v) > 0, s := s(v) > 0 such that: for any
f € CYT” x T,R), there exists g = €o(v, f) > 0 small enough such that for
alle € (0,e0), there exists a Cantor set C. C Q of asimptotically full Lebesgue
measure i.e.

ICc| — |92 as e—0,
such that for anyw € C. there ezists u(e,w) = (u(e,w), ¥ (e, w)) € H (T 1 R?)
satisfying F(e,w,u(e,w)) = 0 where the nonlinear operator F is defined in

and

lu(e,w)|ls = 0 as e—=0.

Theorem is based on a Nash-Moser iterative scheme implemented in Sec-
tion [7} he key ingredient in the proof—which also implies the linear stabil-
ity of the quasi-periodic solutions—is the reducibility of the linear operator
L = L(u) = 0uF(u) obtained by linearizing at any approximate (or
exact) solution u = (u,). This is the content of Sections The proof
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of the invertibility of £ and the tame estimates for its inverse is provided
in Section [f] The measure estimate of the set C. of the good parameters is
provided in Section [§

4. Regularization of the linearized operator

For any family w € Q,(u) — u(;w) = (u(-;w),¥(;w)) € HF (T, R?), we
consider the linearized operator £ = L(u) = L(w, u(w)) := 0uF (e, w,u(w)) :
HE(TY1,R?) — HE (T, R?) for 2 < s < S — 2 (recall (2.2)). It has the

form

where
a(p) =1+ ¢ / Opu(p )2 de, R = 20pmu / (Opeu)Tdz.  (4.2)
T T

Along this section, we will always assume the following hypothesis, which will
be verified along the Nash-Moser nonlinear iteration of Section

e AsSUMPTION. The function u := (u, ) depends in a Lipschitz way on
the parameter w € Q, := Q,(u) C Qy , with v € (0,1), 7 > 0 (recall
(2.7)) and for some p := u(r,v) > 0, for some S > sg + u, the map
w € Q,(u) = u(w) € Hy (T R?) satisfies

M52 <1 and ey <1 (4.3)

where we recall that sg := [(v+1)/2]+1, so that H* (T**1) is compactly
embedded in CO(T**!). We remark that in Sections the constant
7 > 0 is independent from the number of frequencies v. It will be fixed
as a function of v only in Section[§]for the measure estimates (see (8.2)).

The function ¢ and the operator R in depend only on the first com-
ponent u of the function u = (u,v). We denote by dyalh], 9, R[h] their
derivatives with recpect to u in the direction h.

Note that, since a(y) is a real valued function and R is symmetric, the op-
erator £ is Hamiltonian in the sense of the definition Let us give some
estimates on ¢ and R defined in .

Lemma 4.1. Assume (4.3)), with y = 2. Then for any sg < s < S — 2 the
following holds:

i Li
la—1)ls <s ellullsrrs  lla = 1EPO < efful| X2, (4.4)

0ualh]lls <s e(|hlls+1 + l[wlls+1llPllsg+1) - (4.5)
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The operator R in (4.2) has the form (2.101), with g and g satisfying the
estimates

lalls <s ellullsras  Nglls <s llullsre (4.6)
i Li i Li

ISP <, elfull X557, [lglBPO) <, flul B, (4.7)

10ug[h]|s <s ellbllsras  0uglhllls <s [Pllssa- (4.8)

Proof. The estimates (4.4), (4.5) follow by the definition (4.2) and by the
interpolation Lemma using the condition (4.3]). The estimates (4.6)-(4.8))

follow since R is an operator of the form (2.101), with ¢ := 2e9,,u and
g = Opz . O

Notation. In the following, with a slight abuse of notations, for any function
a(p), we simply denote by a = a(p), the multiplication operator h(p,x) —
a(p)h(p, x), acting on the space of functions with zero average in x.

4.1. Symplectic symmetrization of the highest order
We start by symmetrizing the highest order of the operator

r— w- 0y -1
—0pz +R w-0,)
Let us consider the transformation
Blp)ID| "2 0 >
S=85(p) = ( _ 1 4.9
) 0 Ble) i) )
where 5 : TY — R is a Sobolev function close to 1 to be determined (recall

also the definition (2.84)). The inverse of the operator S (acting on Sobolev
spaces of zero average functions in x) is given by

sy (F@TIDE 0
stestert = (M) e

Using that for any function ¢ = a(p) depending only on time, the comm-
mutators [a,|D|™] = 0, [a,R] = 0 where R is defined in (4.2]) and since
—0ze = |D|?, we have

-1 w8, + B w-8,P) —B72|D|
= 1 1 . 4.11
S5 = (ot D RIDL -0, < s op ) 41D
We choose 3(y) so that 372(p) = a(¢)B%(¢), namely we define
1
Blp) = T (4.12)
[a(p)] %
Since fw - 9,(B71) = =B 1w 9,3, we get that
o1 _ [ w0y +ao —a1|D|
L1 =8LS= (a1|D| + RO .8, —ap) (4.13)
where
w- 0P (1) 2| 1y — 4 -1
apg 1= 5 , a1 = \/Zl, R = ﬁ |D 2'R,|D| 2. (414)
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Since B(p) is a real-valued function and the operators |D|z are real op-
erators, the operator S is real. A direct verification shows that it is also
symplectic (see Definition . Hence the transformed operator £ is still
real and Hamiltonian (see Definition . Now we give some estimates on
the coefficients of the operator L;.

Lemma 4.2. Assume , with = 2. Then for any so < s < 5 — 2 the

following holds: the maps ST g+2 (TY+1,R?) — H(TY+1, R?) satisfy the
estimates

IS R, <o Bl s + JullorlBly oy, he HTHTFLRY).  (4.15)

For any family h(-;w) € H9+2 (TY+1,R?), w € Q,,

IS RIEPO <, IRIEY + ful 5 IRIED (4.16)

The functions ag, a1 defined in satisfy the estimates
llax = 1s llaolls <o e+ Jullos2), (4.17)
llax = 15O lag|5PO) <, (1 + [|ul¥ %) (4.18)
10uarlhllls <o (Ihllosz + ullorallbllprz) s k=01 (419)

The remainder R in (@.14) has the form [2.101), with ¢ = q1, ¢ = 1

satisfying the estimates

larlls <s ellullsrzs  Ngrlls <s llullsse, (4.20)
i Li i Li

lqu[|ZP) <, eflul MR gy |BPO) < JJul HE (4.21)

18uaqr[B]s < e(||h||s+2 + ||u\|s+2||h||30+2)  110ugi[B]]ls <o [Bllsra. (4.22)

Proof. The estimates follow by the deﬁnitions (4.9), (4.10),

-, - ), by the estlmates 1.} and by Lemmata -, 2l Let us prove

the estimates (| - . By (4.2 ., -7 using that |D|~2 is symmetric,
R

one has that qn T g1 hdx with
1 _1
¢ = 2eB? (|D] 3 ez l) g1 := |D|720,u. (4.23)

One can estimate the function £ in (4.12) by using Lemma and the es-
timate (4.4). Applying the interpolation Lemma the claimed estimates
follow. O

Lemma 4.3. The operators S*! defined in ([&.9), (@.10) can be regarded as an
operator acting on the Sobolev space of the functions in x, namely for any

s>1, for any p € T,
S(¢) € £(Hy ™ * (T2, R), H3 (T2, R) x Hy ™ (To, R))

S(yp)~ e,c(HO(T,,R) x H3™N(T,,R), HY™ 2(11‘90,1&2))
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Proof. By the definition of the function 3(y) in (4.12), using the estimate

(4.4) on a(yp), the Lemmaand the ansatz (£.3)), one gets || 3% oo (v <1.

Moreover |||D|2h|gs < ||k]] .1, |IDI"2h|g: < ||h] .1 and then the
@ Hy ' 2 g H. 2

Lemma follows. O

4.2. Complex variables

Now we consider the complex variables z := a\‘%@ introduced in (2.35), (2.36))

in order to write the operator £; defined in (4.13) in complex coordinates.
More precisely, we consider the transformations

I R

and we get that the conjugated operator Ly := B~1L£,B is given by

£ (@ 0o +ia|D] +iR® ap +iR®
2 ap —iR? w-dy —iay|D| —iRP) )

(4.25)

with R(?) .= g Since a; and ag are real valued functions and R(") (and

then R()) is symmetric and real, the operator £, is a Hamiltonian operator
in complex coordinates, in the sense of the Definition (2.4]). Note that the
transformations B! satisfy for all s > 0

B:Hy (T ) — H (T R?), B~ HS (T, R?) — HS(TY ™), (4.26)

B:Hi(T,) — HS(T,,R?), B~':H;T, R?*) — H(T,) (4.27)

where we recall that the real subspace Hg(T" 1), resp. H§(T,) of H3(T*+1, C?),
resp. H§(T,,C?), is defined in ([2.41]).

4.3. Change of variables

The aim of this Section is to reduce to constant coefficients the highest order
term a1 ()| D| in the operator Lo defined in (4.25). In order to do this, let us
consider a diffeomorphism of the torus T” of the form

peT— p+wa(p)eT”,

where « : TY — R has to be determined. This diffeomorphism of the torus
induces on the space of functions h(p, x) a linear operator

(Ah)(p, ) 1= h(p + walp), z), (4.28)
whose inverse has the form
AR, x) i= h(Y + wa(d), z), (4.29)

where ¥ — 9 + wa(9) is the inverse diffeomorphism of ¢ — ¢ + wa(yp). One
has

AN (w0,)A = A 14w 0,0]w-09, A 'D|A=|D|, A 'aA=A"'[q]
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where we recall that a denotes the multiplication operator h — ah. Recalling

that Ip := (Ido 0 > ,  where Idg : L2 — L3 is the identity and defining

0 Idy

p=A 14w 9,al, (4.30)
we get
A, L, Al
- (pw 09 + 1A a1]|D| +1ATTRP A A Hag) +1ARP A )
- A ag] —iATTRP A pw - 0y —iA " a1]|D| —iATTRPIA)

We want to choose the function « so that the coefficient p in front of w - 9y
is proportional to the coefficient A~1[a;] in front of the operator |D|. To this
aim it is enough to solve the equation

m(l+w-9d,a(p)) =ai(p) meR. (4.31)

Integrating on T" we fix the value of m as

m:= ﬁ /TV a1 () dyp (4.32)

and then, since w € Q, C Q, -, recalling the definitions (2.6), (2.7) we get
a1

ap) = (w-9,)7 |7~ 1](0). (4.33)

Note that, since the function a; is real valued, m is real and then « is a real
valued function. We have A~ '1,L5Al, = pL3, with

_ (w-0y +im|D| +iR® by +iR®)
Ls = ( by —iR®) w- 0y —im|D| —iR®) ) (4:34)
bo:=p A ag), R i=pTTATIRPA. (4.35)

Note that the operator L3 is still Hamiltonian in the sense of the definition
(2.4), since m € R, |D| is a symmetric real operator, by is a real valued
function and R®) is a real and symmetric operator, implying that (R(3))* =

(RGH)T = RG).

Lemma 4.4. There exists a constant o = o(1,v) > 2 such that if (4.3) holds
with p = o, then for all s < s < S — o the following estimates hold:

m—1]<e, |m—1YP0 < |9,m[h]| <ellh]siz2- (4.36)

The transformations A*' : H3(Tv+1,C) — HE(T**+*,C) satisfy
A= A5 <s Ihlls + lullstollPllso41 s (4.37)
AT RIEPO) <, AT + lull 57 105D (4.38)

Hau(-Ailh)g”s <s 57_1<||hH8+U||9||80+0 + ||h||50+0||g||s+0

+ Nullsto Bl o Pl o ) - (4.39)
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The function p defined in (4.30) satisfies

i Li
o™ —1lle <o et llullaro), o =1IEPO) < e+ ]fufS27), (4.40)
Haupil[h]”s <s 5(||h||s+0 + ||hH5+U||h||SO+U) . (4.41)
The function by defined in (4.35)) satisfies
lbolls <s e(1+ ullsro),  MolZP) <, e(1+ [lul2257), (4.42)
10ubollls <o e(I0lsto + lulssolbllonso ) (4.43)

The remainder R®) defined in ([£.35) satisfies the estimates
i Li
RO Dl <u 61+ ullaro), [ROIDIFPD <, e+ [ul 7). (444)

0RO <o & (Ihllsto + ltllstollBllspto ) - (4.45)

Proof. The estimates (4.36) follow by the formula (4.32) and using the es-
timates (4.17)), (4.19). The transformation A has been also used in [6], [7],

[8], [I5], [28]. The proof of the estimates (4.37))-(4.41) can be done by using

Lemma as in these papers. For a detailed proof see for instance [28], Pages
25-26.
Let us prove the estimates ( - - One has

: 1 B
RO} = pt AR 45 B2 S ATRO 4 B2 g /g3 hdz,
T

with .
= 5071/‘71((11), gs = A" (g1).
Therefore, the functions g3 and g3, can be estimated by using (4.20)), (4.22),

(4.37)-(4.41)) and Lemma The estimates in (4.44)) then follow by apply-

ing Lemma The estimate for 9, R©)[h] follows by differentiating the
expression of R, g3, g3 given above and applying again Lemma O

4.4. Descent method

Introducing the notation

_(Idy O
T:= ( ) —Id0> (4.46)
we can write the operator L3 in (4.34) as
L3 =w- 0,0y +imT|D| + By + Rs , (4.47)
where
(0 bl R®  RE)
BO(@) T (bO(LP) 0 ) R3 =i —R(3 _R(g) . (448)

Our aim is to eliminate from the operator L3 the terms of order |D|%, namely,
since R®) is an operator of the form (then arbitrarily regularizing),
we only need to remove the multiplication operator by the matrix valued
function By ().
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For this purpose, we consider the operator

V=i men(@ID ). Vo= (L V) @)

where v : TY — R is a real valued function to be determined. Note that V is
symplectic, since iV ()| D|~! is a Hamiltonian vector field. We write

:k
V=H2—|—iV|D|_1+V22, V>2 ZZZ%VMDV]C?

k>2
hence
L3V =V (w - 0,ls +imT|D|) + [imT|D|,iV|D| "] + By + By(V — L)
+ [imT|D|, Vsa] +iw - 0,(V — Iz) + RV . (4.50)
The term of order |D|° is given by
[imT| D], iV ()| D|™"] + Bo(¢) = (_va(ga(; +bo() _2mv(¢3 i bo(@)) '
In order to remove it, we choose
bo
v(p) = 2%) (4.51)
and we get
Ly:=V 'LV =w 0,0y +imT|D|+ Ry, (4.52)

Ry:=V! (Bo((p)(v—]lg)+[imT|D|, VZ2]+UJ'6¢(V_]12)) +V IRV (4.53)

Note that, since L3 is Hamiltonian and V is symplectic, we have that £, is
still a Hamiltonian operator. In the next lemma we provide some estimates
on the transformation V and on the remainder R4.

Lemma 4.5. There exists @ = o(r,v) > o > 0, where o is the loss of

derivatives in Lemma such that if (4.3) holds with p = &, then for
any so < s < S —7, V=L H(T!) — H(TY) (recall (2.41))) and the
following estimates hold:

(VY — 1) Dy <o e(1 + [[ullsta) » (4.54)
(VEL — L) | D[P0 <, e(1 + [lu 27, (4.55)
10.VE s <s e(|Pllsra + lullssalhllsosa) (4.56)
[Ra|D|[s <5 e(1+ [fullsaz) . [Ra|D|EPO) <, (1 + [lul X2),  (4.57)
0. RaPls <o e(Bllsso + lullsrallhllsora) - (4.58)
Proof. PROOF OF ([4.54)-(1.56). By Lemma [2.9) one has
B 39, {1
((VIDI YD = Vs < llolls — <6 e(1+ [[ullsro) - (4.59)

By (4.3) we have that |(V|D|=1)|D||s, = ||V |ls, <& < 1, for £ small enough,
then Lemma can be applied and the claimed estimate (4.54)) follows.
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The estimate (4.56]) follows by applying the estimate (2.91) and using that
by [@31), (@36), (@A3), [|D| ', < 1

|8uV|D|_1|S < ||0uwv[h]lls <s e(|Blls+o + [[ulls+o Pl so+0) -

Proor ofF (4.57), (4.58)). The claimed estimates follow by the definition

4.53)), by applying Lemmata and by the estimates (4.42))-
4.45)) and (4.54)-(4.56|). ([l

Lemma 4.6. Assume (4.3|) with u =7+ sg. Then for any so <s < S—7—sg
for any ¢ € TV, VE(p) : H(T,) — H(T,) (recall (2.42))) and
|Vi1(@)|s,x <s 1+ ||ulls45+s0 -

Proof. The claimed estimate follows by applying Lemma M(m) and by the
estimates (4.54]). [l

5. 2 x 2 block-diagonal reduction

The goal of this section is to block-diagonalize the linear Hamiltonian oper-
ator £4 obtained in (4.52). We are going to perform an iterative Nash-Moser
reducibility scheme for the linear Hamiltonian operator

ﬁo =Ly=w- 8¢H2 + Do+ Ro: Hé(Tu+1) — Lg(TV—H) N (51)
where
(DY 0 ) . .
Po=i| " pw | Doli= m|D| = diagcz, 1oy mlJ| (5.2)
—+o

and Rg := R4 is a Hamiltonian operator of the form

RV RY 1 1)y * 2 2

moi( B M) mY D) RP @ 6
—Ro" Ry

satisfying, by (4.57)), for any sg < s < S — 7 the estimates

[RoIDIIEP) <, e(1+ [ullsta)  19uRolAlls <o &(lsss + ullosallbllsgss)

where @ is the loss of derivatives given in Lemma We define o4
N_y:=1, N,:=N)Y Ww>0, x:=3/2 (5.5)
(then N,y1 = NX, Vv > 0) and
a:=06r+4, b:=a+1. (5.6)
We assume that holds with 4 = & 4+ b, so that by
RoDIES <. 10uRolM|sg+n < llhllspsosn- (5.7)

For the reducibility Theorem below, we use the 2 x 2 block representation of
linear operators, given in Section According to (2.58) and recalling also

(2.65)), the operator D(()l) can be written as
DV = diag;cymil; , (5.8)



38 Riccardo Montalto

where I, : E; — E; is the identity, E; = span{e'/*, e~} is the two dimen-
sional space and the real constant m satisfies the estimates . We
also recall the definition of the space S(E;) given in which is isomor-
phic to the space of the 2 x 2 self-adjoint matrices, the definition of the norm
| [lop(j,j) given in (2.73), the identity Ij,j/, the definition of M, (A)
in and the definition of Mg(B) in (2.76]). Now we are ready to state
the following

Theorem 5.1. (KAM reducibility) Let v € (0,1) and 7 > 0. Assume (4.3)
with u = & +b and with S > sg +7 + b. There exist Ng = No(S,7,v) >0
large enough, do = 60(S,7,v) € (0,1) small enough, such that, if

eyl <8 (5.9)
then:
(S1), For all v > 0, there exists an operator
Ly, :=w-0,lo+D, +R, (5.10)
(D0 . .
D, =i ( o _pM)> DV = diag;cyD7 , (5.11)
D” :=D%(w) = D%(w) + D¥(w), DY:=mjl;, VjeN, (5.12)

(with f)g) = 0) defined for all w € Q}(u), where QJ(u) := Q, = Qy(u),
and for v > 1, QY = QY (u) is defined by

o7
Q’Yi (‘UGQ : A;— évjv./il H’S%avga}./ 07.a'a
{ 1416530 ontan < S (6 5) # (0.3.9)
1< Nomr A (65.8) opo < —b—s
— ’ v—1\"J» p3,3") — 7<,]+]/> ’

V(ﬁ, jaj/) ) |€| § Nv—l} ) (513)
where the operators AL | (¢,7,5') : L(Ej, E;) — L(Ejr, E;) are defined
by

A, (0,4,5") = w M + ML(DY1) = Mp(D%71), (5.14)
AL (6.3,4) = w1+ MDY ) + Ma(Dy ). (5.15)
Forv >0, for all j € N, the 2x 2 self-adjoint block DJ’f € S(E;) satisfies
IDY|LP() < 571 WjeN. (5.16)
The Hamiltonian remainder R, : HE(TY ™) — H5(TY ™) satisfies Vs €

[5075 —0 - b];

Li

RD Lip(7) < ‘R0| Hbfb R\D Lip(7) < |RalD LIP(’Y)N 517
IRu|DI|5 S TN, Ru|Dl[p " < [Rol DIl (5.17)

Moreover, for any v > 1,

L,=012, 0, 1, &, 4:=exp(¥,_ 1), (5.18)
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where V,,_1 is Hamiltonian, ®,_1 is symplectic and they satisfy ¥, _1, CID?LI

H(TV+1) — H{(T ),

|\I,1/71|£Jip(w)7 \‘I’ufl\DHfip(’Y) < \RolDIIEfé” 71N27'+1N—a (5.19)

(S2), For all j € N, there exists a Lipschitz extension to the whole parameter
space Q,, DY(:) : Q, — S(E;) of DY() : Q) — S(Ej) satisfying, for
v2>1,

1B — By L0 < 7R, 4| DI|LPO) < N2yt (5.20)

(S3), Let u;(w) = (ui(w),v;(w)), ¢ = 1,2 be Lipschitz families of Sobolev
functions in H®+ oTP(TY+L1 R2) defined for w € Q, satisfying (4.3)
with @ = & + b. Then there exists a constant Ky > 0 such that, for
v >0, Vw e QJ (ur) N QP2 (a2), with v1,72 € [v/2,27],

Ry (u1) = Ru(uz)]s, < KoN, 2 ellur — uzllse 4740, (5.21)
Ry (u1) = Ry (uz)]so+v < KoNy—1€llur — uzllsg+7+b - (5.22)
Moreover, forv >1,VjeN,

1(D (uz) — DY (1)) — (DY (u2) = DY (ua)) |

< [Ru-1(uz) = Ru—1(u)ls, (5.23)
D (u2) = DF (u1)|| <eflur — uzllso+zo - (5.24)

(S4), Let uy,uy like in (S3), and 0 < p < /2. For allv >0
eKINy lur —welfiss <0 = Q) S (u2),  (5.25)

where K1 is a suitable constant depending on T and v.

5.1. Proof of Theorem [5.1]
PROOF OF (Si)y, i = 1,...,4. Properties (5.10)-(5.17) in (S1), hold by
(6.1)-(.3) with DY defined in and ﬁg(w) =0 (for recall that
N_1:=1, see ) Moreover, since m is a real function, D? is self-adjoint.
Then there is nothing else to verify.

(S2), holds, since the function m(w) = m(w,u(w)) is already defined
for all w € Q, = Q,(u).

(S3), follows by the estimate and by the mean value Theorem, by
taking Ky > 0 large enough.

(84), is trivial because, by definition, Q] (u;) = Q, =: Q] " (u2).

5.2. The reducibility step

We now describe the inductive step, showing how to define a symplectic
transformation ®, := exp(¥,) so that £,,1 = ®,1£,®, has the desired
properties. To simplify notations, in this section we drop the index v and
we write + for v + 1. At each step of the iteration we have a Hamiltonian
operator

L=w- -0, +D+R (5.26)

1-
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where

2N L
Di=i|l " _pw). DYi=dagieD;, (5.27)

D; € S(E;), Vj € N (recall the definiton (2.78))) and R is a Hamiltonian
operator, namely it has the form

R R(2)
A (‘R(Z) LR ] RU=®RO) RO = (RE)TL (5.28)
Let us consider a transformation
) v(2)
P .= v, U=i — — , 5.29
exp(¥) H_og® _go (5.29)
with U1 = (M) ¢ = (TCHT, Writing
\I/k
D=1y + U+ Doy, @ZQ;ZZH, (5.30)
k>2
we have
L = <I>(w~8¢}12 +D) + (w~6¢\11+ D, ¥] —|—HNR) +IER
tw - 0, P04+ [P, P>2] + R(®—I). (5.31)
We want to determine the operator ¥ so that
w- 0,V + [D,¥]+IIyR = [R], (5.32)
where, recalling the notation (2.65),
([RW 0 . ;
[R] =1 ([ 0 ] _[R<1>]) , [RW]:=diag;en(R™M)(0).  (5.33)

We recall that, according to (2.58]), the operator (R(l)); (0), j € Nisidentified
with its 2 X 2 matrix representation

(RMYZ(0) = (RU)F(0)) s -

Since RM) is self-adjoint, all the 2 x 2 blocks (R(l))g(O) are self-adjoint and
then also [R(M] is self-adjoint.
Lemma 5.1. (Homological equation) For all w € Q) (see (5.13)), there
exists a solution ¥ of the homological equation (5.32)), which is Hamiltonian
and satisfies
@[ D||5P™) < N>y~ R D[P0 (5.34)

Moreover ify/2 < v1,72 < 27, and if u;(w) = (u;(w), ¥;(w)) € HOTITP(TVH1 R2),
i = 1,2 are Lipschitz families, then for all s € [sg,s0 + b], for all w €
Q) () NQY (u2)

(W (u1) — W (uz)ls (5.35)

< N7ty 1 (|R(U1)\s||ul — Uzl so474b + [R(u1) — R(U2)|s> :
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Proof. Recalling (5.28)), (5.29)), the equation ((5.32]) is splitted in the two equa-

tions

iw -9, ¥W 4 [@W DO piryRW =i[RW], (5.36)
iw-0,0@ — (DOF® 1 gADM) {iyR® = 0. (5.37)
Using the decomposition (2.58)), the equations (5.36)), (5.37) become, for all

J,7' € N, £ € Z¥ such that |[(| < N,

w - (BT (0) + Dy (TW)T () — (D) (D = (RM)F(0) —iRM]T,

(5.38)
w - LB (0) + DTN (0) + (D)2 (D =R (). (5.39)
By the Definitions ([5.14)), (5.15)), the equations (5.38)), (5.39)) can be written

in the form
- L. NV . NV . 1)74
A (0,5, 7)(®W)T () = iR (0) —iRD]T
L 24 . 24
AT, 5, ) (BP)E () = i(RP)(0).

Then, since w € Q) ;, we can define, V(¢,j,j') € Z" x Nx N, (¢,7,5") #
0,5,5), HI<N,

1)\7" A — A | 1)\4"
(TW)F () =iA~(,4,5") " RM)T(0), (5.40)
with the normalization (¥ (1))%(0) = 0, and V(¢, j, j') € Z“xNxN, |[¢| < N,
2)\4 A+ - =1 2)\4
(TE)7(0) =iAT (4, 5,5) T RP)] (). (5.41)
Since
e 0" - "
A gaa/ ! "’§¥7 A+£’7/ ! "’Sf;
1A~ (€, 5,5) " lopgi,m) o AT 5,5) " lopg,m) ST
(recall (2.73])) we get immediately that
IO @ < Ny THRD) (@], i=1,2. (5.42)

Now, let wy,ws € Q) ;. As a notation for any function f = f(w), we write
Auf = flwr) = flw2).
By (5.40)), one has

AT (0) = H{ALA(44,5) T RO (Gwn)
AT (6,4, 7 w2) " H{ALRD) (0)} (5.43)
The second term in the above formula satisfies
[A7 (€. '5w2) H{ALRM) (O} < Ny IALRD) (O], (5.44)
hence it remains to estimate only the first term in . We have
ALA (45,57 (5.45)
= —A7 (04,55 w1) " H{ACAT(£,5,5) JAT (6,5, 5 5 w2) 7T

therefore

PN N27 i
|ALA (57,77]/) 1||Op(j,j') SWnAwA (57]73/)”0p(j’j’)' (5.46)
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Moreover
ALAT(4,5,5') = (w1 —wa) - L L jy + M(A,Dj) — Mr(A,Dy)  (5.47)
and using that, by (5.12]), (5.16)
D;(w) = m(w)jI; + Dj(w), with [[D|[MP0) <™, VjeN, (548)
we get
M(A,D;) = Mp(AuDy) = (Aum) (j = )iy + Mi(AuD;) - Mr(ALDy).
By (4.36)), (5.48)) and using the property (2.77) one gets
IML(AuD;) = Mr(AuDj)llopg.in<ey™ (7 = 5)lwr —wa| . (5.49)
Recalling (5.47)), we get the estimate
1A~ (€5, lop( < ({0 + 277G = 7)) lwr = wal,
which implies, by (5.46)), for ey~! < 1 that
||AwA_(Zvjaj/)_l”Op(j,j’) < N2 |wy — wyl .
By (5.43), (5.44] , we get the estimate
1ALEOY (0] < Ny~ AL RD)T (0)] (5.50)
+ NzT“TQII(R(U)? ()]l
Thus (5.42)), (5.50) and the definition 0) imply
|\If 1)|D||L1p < N2‘r+1 71|R 1)|DHL1p

The estimate of U(?) in terms of R(? follows by similar arguments and then

(5.34) follows.

Now we prove the estimate . As a notation, we write Ao A := A(uy) —
A(ug), for any operator A depending on u. We prove the estimate
for the operator (). The estimate for ¥(?) is analogous. By , for all
57 €N, ez, (£,5,7) #(0,7,7), €] < N one has

Ar(TOY(0) = i{Ap A~ (4, 4,) L HRWD)] (z u) (5.51)
AT (4,7 us) " ARRD) (0}
Since w € Qu+1(u1) N Q:ﬁ_l(ug ) and v/2 < 71,72 < 27, we have
1A= (€5, '3 u2) " H{ARRDY (O} < Ny HA®D)T (@), (5.52)

Moreover, arguing as in , - (replacing wy resp. we by uq resp. usg),
one has

[A12A7 (£, 5,5) Hlop.in <

By the definition (5.14)), we get
ApA™(0,5,7") = ML (A12Dj) — Mr(A12Djr)
(5.48) (

2T

N .
WHAQA (0, 3,5 Mop(iny - (5:53)

Aram)(j — ) 140 + M1 (A12D;) — Mp(A12Dyr), (5.54)
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therefore by (4.36), (2.77)), (5.24)

[A12A7 (£, 4, )lop(ijn <€l — 3 lur — uzllsy+aro - (5.55)

Then (5.53)), (5.55), ey~! < 1 imply that

II{AuA’(M,J 1} ROV ()| < N7y~ RDY (G un) [[lur = uolsg 740
and recalling (5.51} , -7 we obtain the estimate
18128V (0N (JRDY (¢ ) =25+ 12ROV (0)])

This last estimate imply the estimate (5.35) for A1, (), by using the defini-
ton of the norm |- |, in (2.80). The estimate for A1, ¥ follows by similar

arguments and then the proof is concluded. (]
By (6.31), (6-32), (5:33). we get
Ly =0Ld=w 0,1y +Dy+Ry, (5.56)
where
Dy =D+ [R],

Ry =(® ' —L)R+d! (HﬁR T w:0p®so + [D, @xo] + R(P — 112)) -

Lemma 5.2 (The new 2 x 2 block-diagonal part). The new block-diagonal part

18
(Yo W) ._ () 4 Rl
Dy :=D+[R] = 0 D(1) DY =DW L [RW] = dlagjeND
where
D} :=D; + (RM)}(0) = mjI; + D; + (RM)!(0) = m I, + D],
D :=D; + RM)j(0), VjeN, (5.57)
and
D} — Dy|[**™) < j~HRI D[P (5.58)

Moreover, if u;(w) = (u;(w), s (w)), ¢ = 1,2 are families of Sobolev functions,
Jor allw € Q(ur) N2 (a2), v/2 < yi,72 < 2, forall j €N,

I(D} (u1) — D} (u2)) — (Dj(u1) — Dj(ua)) [ g2 < [R(ur) — R(uz)ls, - (5.59)

Proof. Notice that, since R(Y)(y) is selfadjoint, the operators (R(l))g(O) :
E; — E; are self-adjoint for all j € N, i.e. (R(l)) (0) € S(E;). Since D, D

are self-adjoint, we get that Djﬁﬁj are self-adjoint for all j € N. Further-
more, by Lemma

D} — D[99 = B — B 145 = (R0
< j  suppenlRMW)EO0)K|MP) < j7HR|D| L)
which is the estimate (5.58]).
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Since, by (5.57) we have (ﬁj(llq)—ﬁj(’lla))—(ﬁJ(U1)—ﬁJ(UQ)) = (RM)(0;uy)—
ER(UJ;-(O; 1§) , the estimate (5.59)) follows since, applying again Lemma
or all j €

IRM)(0;u1) — (RD)Y(0;ug) ]| < [RM (ur) = R (ug)] 5, -

5.3. The iteration

Let v > 0 and let us suppose that (Si), are true. We prove (Si), 1. To
simplify notations, in this proof we write | - | for | - |I§ip(7).

PROOF OF (S1),+1. Since the self-adjoint 2 x 2 blocks DY € S(E;) are
defined on Q7, the set Q) is well-defined and by Lemma the following

estimates hold on Q) ;

) .
W, |D|]s <s NVZTJFLY 1|RV|DH3 <s N3T+1Ny—17 1|,RO|D||s+bz (5.60)

and in particular, by (5.7), (5.9), (5.6)), (5.5), taking dy small enough,
(W, |Dlls < 1. (5.61)

By (5.61]), we can apply Lemma to the map ®*! := exp(£¥,) and using
also Lemma [2.6} (ii) we obtain that

|9 = La|s < [(@5" — )| Dl[s <s [¥,| D]l (5.62)

By (5.56) we get L,41 := @, 'L, ®, = w- dyla + Dyi1 + Ryt1, where
Dyi1:=D, +[R,] and

Rot1 = (P, —)[R,]
+ ot (HﬁVR,, W 0,Uy 50 + [Dy, Uyna] + Ry (P, — 112)) . (5.63)

Note that, since R, is defined on Q7 and ¥, is defined on 7, ,, the remain-
der R,11 is defined on €], too. Since the remainder R, : H§(T" ') —
H3(T*1) is Hamiltonian, the map ¥, : H§(T**!) — H3(TY*1) is Hamil-
tonian, then ®, : H5(T"™!) — H5(T"!) is symplectic and the operator
L1 H(TY ) — HEH(TY*!) is still Hamiltonian.

Now let us prove the estimates (5.17) for R, ;1. Applying Lemmata [2.6]
and the estimates (5.61)), (5.60), (5.62), we get

(@, —I)[R,][Dl|s, [®, 'R, (P, — I2)| D]
<s NET-H’Y_l|RV|D||S‘RV|D||SO (5-64)

and

@, 'y, Ry|Dlls < My, Ro|Dlls + N7 Ry D5 Ry |Dlls, - (5.65)
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Then, it remains to estimate the term @, (w - 9,®, 2 + [Dy, ®,,>2])|D| in
(5.63)). A direct calculation shows that for all n > 2

w-0,(U)) + Dy, W] = Y Ui(w- 9,0, + Dy, 0,)) 0}

i+k=n—1
.32 > WL([R)] - R)EE, (5.66)
i+k=n—1

Lemmal|2.6—(i1)
therefore using (5.61)), (5.60), (2.89) and that |¥, |, < |, |D||s

we get that for all n > 2
|(«- 0,(02) + D, w21) 1DI|

< 7120(8)"((\‘I’ulDl\so)"fllRu\Dlls + (I‘If»IDIISO)"”I‘I’U\DIISIRVIDIISO)

< 2n2C(s)" Nty 7R, |D||s|Ru|Dls, , (5.67)
for some constant C'(s) > 0. Thus
‘(w 0,0y 55 + [Dy, \IJVZQ]) |D|‘ 7’( +[D,, U7 )|D|‘
S

2

| N2 R, DR, |D||5022 L)

n>2

<s NET+1771|RV|D||S|RV|D||SO . (5~68)

The estimates (5.62), (5.68) and Lemma [2.7]imply that
@, (@ 0,052 + [Dy, W2])
<s N37+17_1|RV|D||S|RU‘DHSO . (5.69)
Collecting the estimates — we obtain the estimate

[Ru41|Dlls <s |HNVR [Dlls + N7y Ry IDII R, IDHSO, (5.70)
which implies (using the smoothing property (2 and ( -7 5.17)) )
[Ru+1|Dlls <s Ny °|Ry D[54 + Nf”lv’lIRVIDHSIRVIDIISO ;o (5.71)
[Ru41]Dl[s46 < C(s + )[Ry [ D||s4 - (5.72)
Hence
[Ru41] DIl s+o é C(s +1)[Ro| Dl|stoNo—1 < [Ro| Dl[s45 Ny,

for Ny := Ny(s,b) > 0 large enough and then the second inequality in ([5.17])
for R, 11 has been proved. Let us prove the first inequality in (5.17) at the
step v + 1. We have

3.6

|R,,+1\D||S <s Nu_le/fl|R0‘DHs+b+N3T+1N;—2i7_1‘R0|D||80+b|R0|D||s+b

< |Ro|D||s+u N, *,
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provided

N2a N—a—27——1
NE—aN 1 > o0 RoIDspay < —=L v
v v—1 = (8)7 Y | 0| || o+b = 20(5) )

which are verified by (5.5)), (5.6]), (5.7) and (5.9)), taking Ny large enough and

do small enough.

The estimate for ]A);+1 follows by a telescopic argument, since f);-”r1 =
ZZ:O ]A)?+1 - ﬁf and applying the estimates , , .

PROOF OF (S2),11 We now construct a Lipschitz extension of the function
we ., — D?H(w) € S(E;), for all j € N. We apply Lemma M.5 in
[36]. Note that the space S(E;), defined in , is a Hilbert subspace of
L(E;) equipped by the scalar product defined in (2.71). By the inductive

hypothesis, there exists a Lipschitz function ]5’; : Qo = S(Ej), satisfying
D} (w) = D¥(w), for all w € Q7. Now we construct a self-adjoint extension
of the self-adjoint operator Dg“ = DY + [D]¥, where [D]¥ := (R,(,l))g(()). By
, for all j € N, one has that

v ||Li v v||Li .— i —a c—
I[D]7 [P = DY — DY|MPO) < j7HR,[D[5PD) "< N2 Ro| D) g 40~

(3
< N, %¢j

v

1

and then by Lemma M.5 in [36] there exists a Lipschitz extension [D]¥ : Q, —
S(Ej) of [D]7 : Q7 — S(E;) still satisfying the above estimate. Therefore we

define D¥*! := D¥ + [DJ]y.

PrOOF OF (S3),,,. As a notation we write A1z A = A(u1) — A(uz), for
any operator A = A(u) depending on u. Now we will estimate the operator
A12R, 41, where R, 41 is defined in (5.63). Moreover, we define
R, (s) :== max{|R, (u1)]s, |Ru(u2)|s} , Vs € [so, 80 + b].
Note that, by (5.17) and (5.7) and by Lemma [2.6}(i7), one gets
R,(so) <eN,2, R, (so+b)<eN,_;. (5.73)

By (5-34), (5.35), (5.73), (5.21)), (5-22)), Lemma[2.6}(ii), one has

AW, | <NJTHING 2 ey Hun — ual|sg4a4n

‘AIQ\Ijulsoer < N3T+1NV715’7_1||U1 - u2||so+?+b ,
Wy (ur)lso » [Wo(u2)ls, < N3T+1Ny_—algV71 )
[Wo (u1)]so46 5 [ Vo (u2)|s4b < NBT-HNuflE’Y_l .
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By the estimates (5.62)) (applied to ®, = ®,(u;), i = 1,2 ), (5.76)-(5.77) and
using also (2.91]), one gets

|DFE (u;) — Iofs < NZTTIN, 22y, (5.78)
1D (u;) — olsgqn < NZTTIN, 1oy, (5.79)
[A12®; |5y < NTHIN, 2 ey lur — usllsotain s (5.80)
[A1205 56 < NJTTIN, 16y Jus — uallso 4 4s - (5.81)
We estimate separately the terms of A15R, 11, where, by
Rot1= (0,1 —)[R,] + @, 'H, , (5.82)

H, = Hﬁ,,Ry +w- acp\IJu,Z2 + [Dw \IJV,Z2] + RV((I)V o H2) :

In the following we will use that by (5.5), (5.6, (5.9) (choosing dy small
enough)

NZTHINT2 ey b <1, W >0. (5.83)
Lemma %mz), Lemma and the estimates (5.78)-(5.81), (5.73)), (5.21),
, :5.83 imply that
|A{(®," — )[Ry} » [B12{R0(®) —T2) } s, (5.84)
< NJTHIN B2y Huy — usllso4m4n
|A12{ ot —Ty)[ y]}|so+b ) \Am{Ry(‘Dy - 1[2)}\so+b (5.85)

< Ny_ieljur — ual|sg+5+b -

Moreover by (2.100), (5.21), (5.22) one gets

|H]J\_]VA12RV|SO < N, °Ny_qellur — ual|sy+5+b » (5.86)
T, ARy [sotp < Nu—refur — ua o440 - (5.87)

It remains to estimate only the term Alg{w - 0,®y >0 + [Dy, @V,Zg}}, where
we recall that ®, > =" <, %L By (5.66)), for all n > 2 we have

Arafw- 0,97 + D, 0]} = 3 Ap{UL(R,) - R)EE}.  (5.88)
i+k=n—1

Iterating the interpolation estimate of Lemma and using (5.21)), (5.22]),
(5.73), (5.74)-(5.77), we have that for all i + k =n — 1,

|A12{\I’i([Ru} - RV)\IIIDC}|SO

n—
< nC(so)" (N2 N 2oy ) " NZTHN 2y i — sl

(5.83))
nC(s0)" Ny HN, 2y lur — uallso oo (5.89)
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and
[ A1 { W} ([RM] = Ru) WS}t
n—1
S HC(SO + b)n (N2T+1N_a15’)/ 1) NV_16||u1 - u2||so+E+b
(5.83)
TLC(S() + b)n V_1€||’LL1 — u2||30+5+b . (590)
Hence

? Z Z | A { WL ([ u)‘I’IIszO

n>2 ! itk=n—1
G29) m o)
< NIUINEE Y un = uallsg iz Y %
n>2 .
< NZTHIN, 222y Hlug — uallso4m4w o

‘w 0Py >0 + Dy,¢u>2

and

w - atp(bl/,ZQ + [Dua (I)u,>2

so+b Z Z |A12{\I} \Illlf}|so+b

n>2 .7,+k n—1

(5.90) n2c(50 +b)n
< Nyoagl|ur — uzllsorz4o Z —
n>2
< Nl,_lé'”Ul — UQ‘|SO+3+*D . (592)

Collecting the estimates (5.86)), (5.87)), (5.91)), (5.92)) and recalling the defini-
tion of H, in (5.82)), one gets

|A12Hu|so (N Nl, 1€ + N27+1N 2;62’}/ )Hul — ’LLQ”SO_A,_g_A,_b (593)

|A12Hy[so+b < Ny—1€ur — U2HSO+E+b' (5.94)

Arguing as in the proof of ( one can obtain that for i = 1,2
|7—[,,(ui)|50 <N, °N,_1e + NN, 222y 71 (5.95)
My (wi)|so+v < Ny—1€, (5.96)

thus, by (5.82), writing ®,*H, = H, + (®,! —I3)H,, using Lemma and

the estimates (5.78)-(5.81)), (5.83)-(5.85), (5.93)-(5.96), one obtains
|A1Ry41]s, < C(T,v) (N PN, _1e + NJTHN ey~ )||u1 — Uzl sy +7+b
< K()N;a:‘:,

and
[A12R 41 sp46 < C(T, V) Ny—se|lur — uz|lsyrz4o < KoNvellur — uz|lsgr+o

by (5.5), (5.6), taking Ny large enough and ey~! small enough. Then the
estimate (5.21)), (5.22) has been proved at the step v 4+ 1. The estimates

(5.23)), (5.24) follow by (5.59), (5.21) and by a telescopic argument.
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PROOF OF (S4),1 We have to prove that, if
KiNJelluy — uzlso4z40 < P (5.97)
for a suitable constant K1 = K;(7,v) > 0, then
we ) (u) — w e Q) F(ug).

By the definiton (5.13), we have Q) (u;) € Q}(u;), and by the inductive
hypothesis QY (u;) C Q)7 (uz), hence

we Q) (u) = we QP (uy) C /3 (uy). (5.98)

Then for all j € N, the 2 x 2 matrices D¥(uz) = D¥(w, u2(w)) are well defined
on Q) (ur). We set for convenience

Al?A;(‘evj,j/) = A;(&j,jl,@@) - A;(ga.jvjlaul) .

By (5.98)), on the set ), ; (u1), both the operators A} (¢, 7,5";u1) and A (£, j, j'; u2)
are well defined. By the estimate (5.55)),

[1A12A 7 (4, 5,7 )lopgn) <€l — i )lur — uallso+a4n - (5.99)
Now we write
A (0, ],5u2) = A (45,5 un) + AaAy (4,5, 5)
= A (6 7T+ AZ (GG 7 u) T ARAL (G40} (5:100)
For all |¢| < N, we have
1A, (€4, 5" u1) " Ara Ay (£, 5, 5" lopg.in
<AL (€4, w1) M opan 121247 (6 4,5 lop(ia

B ()7 C o1
< el — i)l = uallsprzie < (O)7ey T lur — uz|lsorm 1o
Y —J")
15.97)
<NJey Hur —wzllsgrase < oyt (5.101)

Since p < /2, we get that the operator I; j+A, (¢, 4,7 ;u1) " *A12A, (4, 7,5)
is invertible and by Neumann series we get

(15 + As €. AAs (15.5) |

By (5.100)), (5.102) we get

_ .. _ vy _ .. _
||AV (za.]a.]/;UQ) 1||Op(j,j’) < HHAV (é7jaj,;u1) 1||Op(j,j’)

<7 (5102

Op(j") ~ Y= P

o7 o7
< T 0T (50
Y=pyG—3) T (v=p0 =)
By similar arguments one can also prove that on the set ) 41(u1) the fol-
lowing estimate holds

0HT
AF (0,4, u2) Mopn < 5.104
|| u( 2y J 2) ||Op(m) (v=p) G+ 4" ( )
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Summarizing we have proved that if w € Q| (u1), then [5.103)), (5.104) hold,

implying that w € Q) 7(uz) (recall the definition (5.13)). Thlb concludes the
proof of (S4),41.

5.4. Conjugation to a 2 x 2-block diagonal operator

In this Section we prove that the operator £y in can be conjugated to
the 2 x 2, time independent, block-diagonal operator L, in . This will
be proved in Theorem [5.2] and it is a consequence of the KAM reducibility
Theorem 5.1} First, we state some auxiliary results.

Corollary 5.1. (KAM transformation) Vw € N, >0} the sequence
P, :=Pygodyo---0d, (5.105)

, Li
converges in | - |s P 4o an operator B and

Llp

|t! — 1, <, |Ro|D||H2) 41 (5.106)

s+b

Moreover ®L! is symplectic.

Proof. The proof is similar to the one of Corollary 4.1 in [6] and hence it is
omitted. O

By Theorem (SZ)U, for all j € N, the sequence of the 2 x 2 blocks
(D¥)u>0 (defined for w 6 Q,) is a Cauchy sequence in S(E;) (recall (2.78))

with respect to || - [|MP() then, it converges to a limit D°°( ) € S(E;), for
any w € ,. We have

Dy (w):= lim_ D’ (w) = DY(w) + D®(w). (5.107)
D(w) == » D" (w) - DY(w).
v>0

It could happen that Q) = 0 (see (5.13)) for some vy. In such a case the
iterative process of Theorem- stops after finitely many steps. However, we
can always set ]5]” = f)”” Vv > v, and the functions D$° : Q, — S(E;) are
always well defined.

Corollary 5.2. (Final blocks) For allv > 0,5 € N,
HD;O _ ]5?||Lip(v < N2 ¢&j 17 ||]3]QOHLip('y) <€j_1- (5.108)

Proof. The bound ([5.108]) follows by a telescoping argument, applying the
estimate (5.20)). O
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Now we define the Cantor set

0% =Y (u)

:{wEQO:HA;O(E,j,j’;w) H < 52 . V(,j4,7)€eZ" xNxN
2v(j —j")
(657) £ 0,50, IALE ), 750) ) <
2v(j +4")
(€, 4,5) € Z x N x N} , (5.109)

where the operators AL (4, 7,5) = AL (47,7 5w) = AZ(L 5,75 w,u(w))
L(E; E;) = L(E;/,E;) are defined by

AL (0,5,") = w01 + M (D) — Mp(D5), (5.110)

AL(0],5) =w (L ; + M (D) + Mr(D;/). (5.111)

Lemma 5.3. (Cantor set)

Q2 C N0 (5.112)
Proof. Tt suffices to show that for any v > 0, Q% C Q). We argue by induc-
tion. For v = 0, since QJ = €,, it follows from the definition (5.109) that
Q27 C QF. Assume that Q% C Q) for some v > 0 and let us prove that

02 C Q). Let w € Q%. By the inductive hypothesis w € Q7, hence by
Theorem the self-adjoint matrices D} (w) € S(E;) are well deﬁned for all

j € Nand D¥(w) = ]5;’ (w). By the definitions (5.14)), (5.17)), also the matri-
ces A (¢, 4,7';w) are well defined. Since w € Q%, AL (¢, j,j';w) is invertible
and we may write

A (45" w) = AL (5,5 w) + AL (L 5,5 w)
AL (05,730 (L + A (65,750) 7 AL (64 w) )
where
AL (44,55 w) := My (D% (w) — D°(w)) — Mg (D% (w) — D} (w)) .

By the property (2.77) and by the estimate (5.108)

185, ) lopgn < Nied ™ (5.113)
Moreover, one has that for all [¢| < N,, 7,7 € N, with (¢, 4,5") # (0,4,7)
NJN 3 1
LA et S
NGy T2
by (5.6]), and for dg in ([5.9) small enough. Therefore the operator A (¢, 7, j'; w)
is invertible, with inverse given by the Neumann series. For all |¢| < N,

A (4,55 w) T AL (44,55 w) lopg,n < (5.114)
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j.3" € Nwith (£, 7, 5') # (0, 4,5)

A (5,5 w) Hlope,in
~(l, 7,7 w) LA, 4, 575 w) |l op i)

E® (o)
S 2 Ac:o E,j,j/ﬂx) -t Op(7,5’ S - N -
H ( ) || p(4,3") (G =)

A, 57 B .I; ! i) <
H u( JJ UJ) HOp(],j)flinA

By similar arguments, one can also obtain that for any (¢,7,j') € Z¥ x Nx N
with |[¢| < N,

IAS (5,5 0) Mlopi,n <
and then the lemma follows. O

To state the main result of this section we introduce the operator
(DY 0 . .
Do =1 ( (;o _pWv ) DY) = diag ;D357 (5.115)

where the 2 x 2 self-adjoint blocks D3° € S(E;) are defined in (5.107). Fur-
thermore, we introduce, for w € €, the operator

Loo(w) :=w - O,ls + Doo(w). (5.116)
Then Lo (w) is a p-independent block-diagonal bounded linear Hamiltonian
operator Lo (w) : Hy(TY 1) — H5™H(TV*1), for any s > 1.

Theorem 5.2. Under the same assumptions of Theorem the following
holds:

(i) For all w € Q% and s € [s9,S — & — b|, the transformations ®L! :
H (T +Y) — H (T ) satisfy the estimates

|BE! — T WP <, ey~ (1 + [|ul| 227, (5.117)

(ii) On the set Q% , the Hamiltonian operator Ly in (5.1) is conjugated to
the Hamiltonian operator Lo, by ®oo, namely for all w € Q%

Loo(w) = O (w)Lo(w)Poo (w) - (5.118)

Proof. (i) Since Q27(u) "€ NMy>02)(u), the estimate (5.106) holds on the
set, Qgg, and Vsp <s< S -7 —b,

i — Li Li
|(I)oio1 - H2|£ p(’Y)SS’Y 1|R0‘D||s+pb(7) ’ 1 + Hu||sfa+b)

which is the claimed estimate (5.117)).
(i) By (5.18), (5.105) we get

L, =01 Lo®, 1 =w-00s+D,+R,, B, =dp0...0,. (5119)
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Note that, for all v > 0,

Lip(7) Lemma< (i)
s >

Y - DY) (DY) = D)D)+

(5-108)
0 EB s g

= sup j||D5° — DY||1rt (5.120)
jEN
and for any s € [sg, S — 7 — D]
. Lemmoal|2.61—(i1) . (5-17),(5.4) i v 0o
R, e “ET g, i) EIRED e (4 age)) .

Hence, |£, — EOO|I;ip('Y) Y20 for all sp < s <S8 —3—b. Since, by Lemma
=LV 2E® $E1 in the norm | - [2P7) | formula (5.118) follows by passing
to the limit in ([5.119)). (Il

Corollary 5.3. Assume (4.3) with u = @ + b + sg, then for any sp < s <
S —G —b — sg, for any ¢ € TV, the maps ®L!(¢) : H§(T,) — H(T,.) and
they satisfy the estimates

1951 (0)]s,0 <s 1+ [|[tlls+74+b4s0 -

Proof. The claimed estimate follows by Lemma (i4) and by the estimate
(5-117). O

6. Inversion of the operator £

We define
W1 = SB(.AHQ)V(I)OO y W2 = SB(A]IQ)[)V‘I)OO (61)

(recall the Definitions (4.9), (4.28), (4.49), (4.30) and Corollary. By Sec-
tions the operator £ in (4.1) may be written as

L=Wrl W, (6.2)
where the operator L, is given in ([5.116)).

Lemma 6.1. There exists po := po(r,v) > 0, po > 6 + b such that if (4.3)
holds with p = pg, then the operators Wy and Ws defined in (6.1) satisfies
for any so < s <8 —pg, m=1,2

W, H8+%(TU+1) s HS(TVJ'_I,RQ), W;LI : Hg+%(Tu+1’R2) N HS(TV+1)
i Li Li Li
Wi e 1P <, g [550) + Tl e 15250, mo=1,2
for any Lipschitz family of Sobolev functions hy (- w) € Hy ™ (TY*1), h_(;w) €
HsTro (T R?), w € Q% (u).

Proof. The lemma follows by the estimates (4.16), (4.37), (4.38), (4.55)),
(4.40), (5.117) and applying also Lemma O
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For all £ € Z”, for all j € N, for all w € Q, = Q,(u), we define the 2 x 2
matrix Beo (¢, j;w) = Boo (4, J; w, u(w)) as

Bo(l,jiw) :=w- L 1; + D7 (w) (6.3)
(recall (2.63)), (5.107)). Then we define the set
0T
2y - . . -1 < <7 . v
A () : {w € Do(w) : [Boo(l i) M < 5 VL) €2 N}. (6.4)
We prove the following

Lemma 6.2 (Invertibility of £..). For all w € A%I(u), the operator Lo is
invertible and its inverse L' : HETTTH(TvHY) — HE(TY*!) satisfies the
tame estimate

_ i — Li
1L B)|%P) < ||y,

for any Lipschitz family h(-;w) € HyT2TH(TY 1), w € A2 (u)

Proof. By (5.115)), (5.116|) the operator L., has the form

JSUN
Loo = —n ., £Y:=w.a,+iDY,
( 0 ES;) ®

then it suffices to prove that Lg) is invertible and its inverse satisfies the
claimed estimate. Let w € A2Y(u), and let h € Ht™(T**+4). Using the block-

representation (2.64]), we have

LY Mpm) = D Booll,jiw) Hhy(0))e (6.5)
(£,§)EZY xN

where the 2 x 2 self-adjoint matrices Boo (¢, j;w) are defined in (6.3). Using
(2.11), we get

HELT R2 < ST (05)ZIBoe(l, jiw)~ hy(0)][2
(¢,j)€Z¥ XN

(6.4) -\ 25 T =211 -
< > POy P07 <y PRI, . (6.6)
(£,7)EZ" xN

Now let us consider a Lipschitz family of Sobolev functions w € A% (u) —
h(-;w) € H3T? 1 Then, for any w;,ws € A% (u) one has that

(£ )]~ hlwr) = (£ (wn)) ™ hiws)
= LD )] (h(wr) = b)) + (£Q (1) = £0(w2) )h(wa) . (6.7)
Arguing as in (6.6), the first term in satisfies
e @01 ((wr) = Alwa) )| <37 I1(wr) = h(ws)llosr

< 2Rl s —wal . (6.8)
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Now we estimate the second term in . One has that
(L8 @) = £ (wa) ) Alaw2)

= Y (Boo(&j;m)_l—Boo(&j;wz)_l)ﬁj(ﬁ;wz)ew’”.
(€,5)E€ZY xN

Since
Boo(€>j;w1)_1 - Boo(£7j;w2)_1
= Bao(f,jiw1) " (Boo (£ jiwz) = Buo((, jiw1) ) Buo (i) "

using that wy,ws € A%2Y(u), one has that

|Buc(sion) ™ = Buo (b siwn) 7|
2T
U
Furthermore, by , one gets
||Boo(€,j;(A}2) - Boo(évj;wl)”
< Jwi — wal €] + [m(wy) — m(w2)]j + D (wa) — D (wy)

Buo (£, jiwz) — Boo £, json) (6.9)

(11 + 2315 oy — . (6.10)
The estimates (6.9), (using that ey~! < 1) imply that
|Boc(tegion) ™ = Buoltjswn) | < (07 2on —wal . (6.11)
Therefore

2

(29 ) = £0(w2) ) h(ws)

S

, o e 2
< D> (Boo(&];wl) ' = Boo(l, j;w2) 1)hj(€§W2)‘L2
(£,§)EZY xN
. s 2
7t Y G )POTRR (6 ws) |2 |wi — wa? (6.12)
(£,§)€Z” xN
which implies (recalling (2.11])) that
| (£9 ) = £B @) hwa)|| <A 2RI lwr —wal . (6.13)
Hence, by (6.7), (6.8), (6.13), one gets
_ i _ Li
YNEDT T RIEP <4~ |AlIERD), (6.14)

Recalling and the definition of the norm || - |5* in (25), the lemma
follows. O
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Theorem 6.1 (Invertibility of £). Let v € (0,1) and 7 > 0. There exists a
constant

w1 = pi(T,v) > o > +b (6.15)
where g s given in Lemma such that for any Lipschitz family u(-;w) €
H (T, R?), S > sq + 1, satisfying

Li
)20 <1 (6.16)

there exists a constant 61 = 61(S, T,v) > 0 (possibly smaller than the constant
do given in Theorem such that if

eyl < 51 , (6.17)

then for all w € Q2 (u) := Q2 (u)NAZ(u) (see ., (5.109)), the operator
L defined in ([A.1) is invertible and its inverse L1 HS+“1(TV+1,R2) —
H(TY+L R?) satisfies Vsg < s < S — uy the tame estz’mate

i _ Li i Li
127 )| 5PO) <y () X0 4l [FEO R L0 (6.18)

for any Lipschitz family h(-;w) € HS T (T R?), w € QX (u).
Proof. The estimate (6.18)) follows by (6.2)) and by Lemmata O

7. The Nash-Moser iteration

Our next goal is to prove Theorem [3.1] It will be a consequence of Theorem
below where we construct iteratively a sequence of better and better
approximate solutions of the operator F(u) = F(e,w,u), defined in ,
and of the Sections [§] [0}

We consider the finite-dimensional subspaces

Hy = {u € LA(T"T',R*): u= Hnu}
where II,, is the projector

M= (Mu, ),  Ihlpz)= Y h@)eEet=  (71)
[(€,3)|<Nn

with N, = NS‘H (see (5.5)). We also define IT;- := Id — II,,. The projectors
I1,,, IT;- satisfy the following classical smoothing properties for the weighted

norm | - || namely Vs, b > 0,
Li i i Li
ML Y50) < Ko a0 [Ia)5P0) < K0 a2 (7.2)

In view of the Nash-Moser Theorem [7.1] we introduce the constants

Ki=6p1+19, byi=2u +4+r(1+x)+1, (7.3)
_ 3
ayi=RX T =2, Xi= 3 (7.4)

where pq := p1(7,v) > 0 is given in Theorem
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Theorem 7.1. (Nash-Moser) Let v € (0,1) and 7 > 0. Assume that f €
CUT” x T,R), with ¢ > sg + by1. There exist 6 € (0,1) small enough and
Ny >0, C, > 0 large enough such that if
) (7.5)
then:
(P1),, For alln > 0, there exists a function u, = (Un, V) : Gn € Q — Ha,
w i Uy (W) = (up(w), Y (w)), with

Li
a5 < 1, (7.6)
ug := 0, where G, are Cantor like subsets of Q) defined inductively by:
Go=Qr, Gni1:=02"(u,), Vn>0, (7.7)

Theorem with Qo(u,) = Gy. There exists a constant C, > C\ such
that for all n > 1, the difference h,, := u,, —u,_1 satisfies

I, |55 < Cley N2 (7.8)

so+H1

(recall (2.7)) where vy, := v(1 4+ 27") and the set Q> (u,) is given in

(P2), For alln >0, ||F(u,)||5P" < C,eN7*.
(P3), Foralln >0, |[u,|S%0) < CoeyINE,  ||F(w,)|530) < CLeN.
All the Lip norms are defined on G,.

Proof. To simplify notations, in this proof we write || -||s instead of || - ||Llp ",

STEP 1: Proof of (P1,2,3)p. They follow, since by (3.7 -,

FO= (g o)+ IOl eIl
and. taking O > a1/ N5 » 1050,

STEP 2: Assume that (P1,2,3),, hold for somen > 0, and prove (P1,2,3),11.
We are going to define the successive approximation u,11. By (P1),, one
has ||uy|[sy+u, < 1, moreover the smallness condition implies the small-
ness condition of Theorem by taking § < 61 = §1(S5,7,v) with
S = s+ 11 +b1. Then Theorem [6.1] can be applied to the linearized operator

Ly =L(uy,) = 0uF(u,), (7.9)

implying that for all w € G,+1 = Q%" (u,), the operator L, is invertible
and its inverse satisfies Vso < s < s + by, Vh € Hyt#1 (T**+1 R?), the tame
estimate

122l <oy (Il + Ml Bl ) - (710)

Specializing the above estimate for s = sg, using ([7.6]), one gets
127 Bllso <o v I Blsgt s - (7.11)
7.12)

We define the successive approximation
Upt1 :=u, +hyp, hyyg = —Hn+1£;1Hn+1]‘—(un) € Hpt1 (7.13)
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where I1,, is defined in (7.1)). We now show that the iterative scheme in ([7.13))
is rapidly converging. We write

-F(un-‘rl) = ‘F(un) + thn+1 + Qn
where £,, := 0, F(u,,) and
Qn = Q(up,hyy1), Q(up,h):=F(u,+h)—F(u,) —L,h, (7.14)

h € H,11. Then, by the the definition of h,; in (7.13)), writing II,,41 =
Id — II;;, ;, we have

Fupi1) = F(u,) = Lol 1 £, 1 F(wn) + Qn
=TI F(u,) + Ry + Qn (7.15)
where
Ry =Ly, 1L 1 F(uy) = Mg, L], T, F(w,) . (7.16)

We first note that, for all w € G,, by (P2),, and by the smallness condition

(7.5), one has that
[F () llsor " < 1. (7.17)

Lemma 7.1. On the set G,41, defining

By, == ||-7'—(un)||50+b1 Jr5||un||30+b1 ) (7.18)
we have
Bn+1 Sso+b1 Nzill+6Bn7 (719)
2 4— 2 6 _
H]:(unJrl)HSO <so+by J\[nillJr ban "‘]\fnillJr €y 2”]:(1171)”?0 (7'20)

Proof. We first estimate h,,1 defined in ([7.13]).

Estimates of h, ;. By (7.13) and (7.2)), (7.10) (applied for s = so + b1),
(7.11), (7.6), we get

Byt sgtbr sotvy ¥ (Mgt F(Wn) s 40+

+ ‘|unH80+u1+b1 ||Hn+1~7:(un)||50+lt1)

A

o
S50+b1 Nnill’y 1(||f(un)||so+b1 + ||un||80+b1 H]:(un)HSO) )
(7.17) 2% 4
Sonror N2 (3 HF @) o, + [nllsg ;) (7.21)
Ity oo 7™ N IF (0) s, - (7.22)

Now we estimate the terms @,, in (7.14) and R,, in (7.16).
Estimate of Q,,. By (7.14)), (3.7)), (2.1), (7.6), (7.2), we have the quadratic

estimate

1@ Bl <5 eNg ey (IBllIbll + uallo 12, ), (7:28)
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Vh € H,11, Vs > sg. Then the term @, in (7.14) satisfies, by (7.23), (7.21)),
2, 1)

1@nllsator Sowtos Vi e (IF () logt0a7 ™"+ unllogto ), (7:24)
2u1+6__ —
1@nllso oo N2 2y F (un) 2, - (7.25)

Estimate of R,. Now we estimate the term R,, defined in (7.16)). By (7.9),
(4.1)), Lemma (7.2), (7.6) the operator L,, satisfies the estimates

N T By agron N2t e (IBlsgns + tn o Bl 2)
||[‘Cn7Hn+1]h||50+bl = ||[Hn+17£n]h||80+b1
ootor N2 g1 (IIllog o, + tnllop o B2 )

The above estimates, together with the estimates (7.10), (7.11)), (7.2) and
using also (|7.17]) imply

241 +4—b —
|Rallso soron NoiiH e (IF () lapt0a7 ™"+ [unllogtns ) 5 (7:26)

1Rallagsor Ssormn N2 (1F @) g™+ Ml ). (7:20)
Estimates of u,,1. By and by the estimates one gets
st Seoron Mo (Iallsoern, + IF () lsgwi770) - (7.28)
Finally, by (7.15)), (7.24), (7.25), (7.26), (7.27), (7-28), (7.2 , ey ! <1 and
recalling the definition (7.18)), we deduce the estimates (7.20] - (Il

The estimates , ), together with ( , Vs (P3)n, (7 ,

taking §; small enough and No large enough 1mply (”P2)n+1, (P3)nt1-
The estimate ([7.8]) at the step n + 1 follows since

||hn+1||80+,u1 > n+1||hn+1||90 ! C(s0) +1'771||]:(un)|‘80
(P2)n 21 71

< C(So)c N +1]\7

which implies the claimed estimate, by (7.4]) and taking C, = C(sg)Ck.

The estimate ([7.6]) at the step n + 1 follows since

n+1
||un+1||80+M1 < Z HthSoJer < 0457_1 ZNl;al < Clg’y_l < 1

k=0 k>0

by taking ¢ in ([7.5) small enough. Then (P1),,4+1 follows and the proof is
concluded. 0
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8. Measure estimates
In this Section we estimate the measure of the set

goo = ﬂnzogn (81)

where the sets ... C G,11 € G, C ... C Gy are given in Theorem (’Pl)n.
First, let us define the constants

TN i=v 42, Ti=2T"+v+1, (8.2)
v = by, vri= (14277, Yn >0 (8.3)

and recall also that the constants
wm=71+27"), Vn >0, (8.4)

are given in Theorem (Pl)n. We prove the following
Theorem 8.1. One has
[0\ Goo| <.
we write

n>0
Since Gy = Q.+, see (7.7), it follows by standard volume estimates
Q\Go=0(v). (8.6)
For any n > 0, we define the set

O (un) = {w e Gt lw- L+ mlun)j| > ZZ;TJB ; (8.7)

(¢, 4) € (Z¥ x No) \ {(0,0)}}

where we recall that the constant m(u,) = m(w, u,(w)) satisfies the estimates
(4.36]) (recall also that Ng = {0} UN = {0,1,2,...}). For all n > 0, we make
the splitting

Gn \ Gn1 = AP UAD | (8.8)

where
AL 1= (G \ 1) N O . (wa) (89)
AP = (G \ Gnr1) N (G \ O - (un) - (8.10)

Estimate of ASJ) .

By , using the inductive definition of the sets G, given in (7.7) and
recalling (6.4), (5.109), one has that for all n > 0,

AV=U el U  Bye)U U &S )
(£,5)€Z” xN Lez” Lez”
j,j' €N 7,5’ €N
(€,5,3")7(0,5,4)
(8.11)
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where

Qej(uy,) = {w €g,n QEYI*),T* (uy) : the operator B (4, 5w, upn(w))

is not invertible or it is invertible and

1B (6,53 0, ()1 > 2<f;>j} (8.12)
R () == {w €G,nN nyl*)wT*(un) : the operator A__(¢, 7,5 ;w, un(w))

is not invertible or it is invertible and

1A (i g5 ) ows > g} (813)
Rij,(un) = {w €gyn QSYI*),T* (u,) : the operator AT (¢, 5, i’ w, u, (w))

is not invertible or it is invertible and

. _ 0Hr
AL (2,7, 5w, tun(w)) 1||Op(j7j/) > W}, (8.14)

where we recall that by (5.110)), (5.111)), (6.3)
Boo (4, jiw, un(w)) == w - M; + D (w,up(w)), £€Z¥, jeN, (8.15)

A (4,5, wun(W)) == w- LT 5 + ML (D5 (w, un(w))) (8.16)
— Mr(DF (w, un(w)))

for all £ € Z¥, j,j" € N, (£,5,7") # (0, 4,7) and
A (4,7 wun(w)) =w- L1 + M5 (D3 (w, un(w))) (8.17)
+ Mp(D$ (w, un(w)))

for €7, 4,7 € N.
First we need to establish several auxiliary Lemmas.

Lemma 8.1. For alln > 1,

sup Hﬁ;O(un> - ﬁ;@(un,l)H <eN®, VweGn, (8.18)
JEN

where ]/jjoo(un) = ﬁ;o(mun(w)) is given in (5.107) and a is defined in (5.6)).

Proof. We first apply Theorem [5.1}(S4), with v =n, v = y,—-1, 7 — p = Vn,
and uq, ug, replaced, respectively, by u,_1, u,, in order to conclude that

Q=1 (1) € Q0 (u,) - (8.19)
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The smallness condition in ([5.25) is satisfied because @+ b < p; (see (6.15))
and so

KNy _ellun — un—1llsorz+0 < KiN_qel|up, — un—1||80+m

@8
2, —1 -
S KN jellun —unallsgrp, < ClKae™y Ny N

SYn-1—Yn=:p= 72771
for ey~! small enough, Ny large enough and using that a; > 7 (see (7.3)),

(7.4), (6.15), (5.6)). Then, by the definitions (7.7)), (6.4]), (5.109)), we have

(5.112) (8.19)
Gn C gn—lng’oyn_l(un—l) - ﬂ an_l(un—l) - Q;Yln_l(un—l) C an (un)

v>0
Next, for all w € G,, C Q3" " (u,_1) N Q" (u,,) both the operators f)?(un_l)

and f);‘(un) are well defined and applying the estimate (5.24)) with v = n,
we deduce that

< ellun — un—1 H80+5+b

(6.13) _
< ellup —wp—ilsotpn < eNZF L (8.20)

Moreover by (5.107), (5.108) (with v = n), for all j € N, we get

~

|5 (tn-1) = B ()| + | D5 (un) — D} (1)

sup H]S?(un) - ﬁ;‘(un,l)H
jeN

’ <eN;®.  (821)

Therefore, for all w € G,,, Vj € N,

~ ~

55 () = B3 ()| < || 10) = B ()| + || D5 (10 -1) = B )|

~

+ D5 (un) — D} ()
E20, 21
g 9

(N2, + N;™) <eN 2 (8.22)

n—1>

since by (7.3), (7.4) one has a; > p1, and by (6.15) 3 >3 +b > a. Then

the claimed estimate is proved. (I

Lemma 8.2. For ey~! small enough, for allm > 1, |[{| < N,,_1,

Proof. We prove that R, (u,) C R, (an—1). The proof of the other inclu-
sions is analogous. For all j,5' € N, |¢| < N,,—1, (¢,4,5) # (0,4,7), w € G,
we write

AL wn) = Ak (g ) (L + AL (6,7 500-1) " A (G5 m))
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where
Auc(j,d'n) == My (D;O(un) - D;O(un_l)) (8.24)
~ Mg (D;?(un) - D;?(u,,_l)) .

Note that

., ED).EI09) o
A (4,4, m) = (m(un) — m(un—1)) (G — )5

+ My, (ﬁ;@(un) - ﬁ;@(un,l)) ~ Mg (ﬁ;?(un) - ﬁ;?(un,l)) . (8.25)

By (8.25), (4.36)), (2.77), (8.18) one gets
1800 (G, 5" )l op (5 <03 = 3"V N2 (8.26)

Hence for |¢] < N,_1 we get

o
Ago Eajaj/;unf _1Aoo jvjlan ‘ = < - - Aoo .7 ",n N
|as( D7 A ) S e e 18 (7 ) g
Gz . 1
< v n—1 < §

for ey~! small enough and since a > 7 (see (5.6)). Then for all |[¢| < N,,_1,
for all j,j" € N, the operator A (¢, 7, j';uy) is invertible by Neumann series
and

1A (6 5.7'51m)  loptry < 1AL 5,75 n-1) op.n (1 + Cer " N77S)
Ol ( —1 77—
< ——— 1+ Cey N,La) .
2Yn-1(j — J') '
Since by the definition of ~,,
Tn—1 — Tn _ 1
Yn 142n7

1

it follows that for ey~ sufficiently small

Cg’y—lN:l':T S Tn—1 — Tn .
Tn
Hence
o 0"
Aoo(év.]u]/;un ! Op(7,3’ S o /-
[ )" llopn 27, (j — j')
which implies the claimed inclusion R, (u,) C Ry (up—1) in (8.23). O

Corollary 8.1. For anyn >1 (i) Q¢j(uy,) =0, for all |¢| < N,_1,
(i4) Ry (un) = 0, for all [(| < Ny, (6,7,57) % (0,),),
(#1) Rz;j,(un) =10, for all |¢]| < Np_1.
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Hence for any n > 1,

A0 el U Rl U AS )

[€|>Np 1 [€]>Nyp 1 []>Nyp 1
JeN J,j' €N j.j' €N
(€.5,3")#(0,5,5)
(8.27)

Proof. By definition, R;tjj,(un),ng(un) C G, and, by (8:23), for all |¢| <
N,,_1, we have Rfjj/(un) C Rz.j,(un_l) and Qgj(u,) € Qgj(up—1). On the
other hand again by definition Rfjj,(un_l) NG, Qrj(up—1) NG, = 0. As a
consequence, V[{| < N,_1, Reijj,(un), Quj(uy) = 0. O

Lemma 8.3. For all n > 0 the following statements hold:

(1) If Qej(uy) # 0, then £ #0 and j < |¢].

(id) If Ry (un) # 0, then £ # 0 and |5 — j'| < |€], j,5" < €]

(iii) If R, (wn) # 0, then £ # 0 and j,j' < ().

Proof. We prove item (ii). The proofs of items (7) and (4i7) are similar. The
statement follows by the following claim:

1

e CrLAIM If ey~ is small enough and

(07" < (j — j/ymin{j, '} (8.28)

then for all w € G, N QE/QT* (uy,) (recall (8.7))), the matrix A (¢,7,5') =
A (4,7 w,un(w)) is invertible and

— iy s e ()
AL (055 Mot < 5 -
H ( ) ||Op(_],j ) 2,}/”0 _],>
PROOF OF THE CLAIM. By (5.110), (5.107)), (5.12), (5.8]), we can write

AL(,5,7") =10, 5,5") + Bos (4, 57) (8.29)

where
Lot ) = (w- 0+ m(G = 7))L, Belin) i= ML(DS?) = Mr(D5F).

Since w € Q(W{)’T*(un), for any (¢,7,5") # (0,4,7), the operator I.(4,j,j') is
invertible and its inverse satisfies the bound

*

-
< 0T
Y =3
Moreover the operatorial norm of the operator A, (7, ') satisfies
e G108 1 1 £
< € (*, 7) <"
j min{j, j'}

1Too (€, 5, 5") " Hlope.i (8.30)

Ao (7, 5)lop .50 (8.31)

The estimates (8.30]), (8.31]) imply that

J

()™
Y (d — j') min{j, j'}

N . 1
HIoo(ga]v.]/) 1AOO(.7a]/)||Op(j,j’) < S 57
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by (8.28) and for ey~! small enough. Hence by (8.29)), the matrix A__ (¢, 4,5’)
is invertible by Neumann series and

*

B30 2(0)7

Al éa.jvj/ -t Op(4,5’ SQ I 67.].’.]./ -t Op(7,7’ S . . S . TN
| oo( )l p(J4.3") [[Too ( )| p(4,5") ,m<j_]/> 2’Yn<]—3/>

since by (8.3), (8.4) we have 7 < 7* and ~}; > 4,.

By the deﬁmtlon , the claim implies that if w € G, N Q(I) .(uy,) and if
the condition holds then w ¢ R, (u,), hence if Reﬂ,(un) # (), then

(j =y min{j, '} < (07" (8.32)
For ¢ = 0, since (¢) = max{|{|,1} = 1, the above condition becomes (j —
j'ymin{j,j’} < 1 which is violated since (j — j')min{j,j’'} = max{|j —
J'l,1} min{yj, j'} > 1, therefore Ry;j:(u,) = 0 for any j # j'. Finally, by
(8.32), we may easily deduce that

5,3 <0

By similar arguments, it can be proved that if R, (1,,) # 0, then [j—j'| < (¢)
and the proof is concluded. ([

Combining Corollary and Lemma recalling the formulae (8.11)),
(8.27), we get

AV = Ul U RyyolU U R, (533)

(40 (0 (0
JEN 5,7’ €N j4.j’ €N
j<le] (€.3:3")7#(0,5.5) 3.3' <14
V] |<|L’\
3:d' <7
AV="U @)y U Ry@)J U By
[€)>Ny 1 [€]> Ny 1 [€]> Ny —1
jEN 040 (40
i<(f) j3,j'eN 4,5’ €N
(£.3:3)#(0.3.5) 3,37 <(0)
G’ <07

(8.34)
Vn > 1. The measure of the resonant sets on the right hand side of the latter
identities now are estimated separately:

Lemma 8.4. For ey~! small enough, if Qj(u,), Rgijj,(un) # 0, then
Qe (uy)] |R?:jj’(un)‘ <)

Proof. We prove the estimate of the set R, (u,). The other estimates can
be proven arguing similarly. Recall that for all j € N, the 2 x 2 blocks D}° =

mjl; + D € S(E;), are self-adjoint and Lipschitz continuous with respect
to the parameter w. We set

spec( DOO = {7‘1 éj)(w)} with rgj)(w) < réj)(w), (8.35)
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By Lemma(i) the functions w r]ij) (w) are Lipschitz with respect to w,
since

e (@) = 1 (@2)] < |ID§°(wr) = DF°(wa)]| < D5 *Pler — wil

J
(5.108))

ey 1wy — wal. (8.36)

Setting also
spec(D5* (@) = (A (@) (@)} with AP (@) <A5(w),
by Lemma [2.5}(ii) we have that
AW wy=mw)j+rPw), k=12 (8.37)
By the definition (5.110) and by Lemmata[2.4] 2.5} (1) the operator AL (¢, 7, 5') :
L(E;,E;) — L(E;,E;) is self-adjoint with respect to the scalar product
(2.71) and
spec(A;(&j,j’;w)) = {w A+ /\,(Cj)(w) - /\,(CJ;I)(W) . kK =1, 2} .
Therefore, recalling the definition (8.13) and by Lemma [2.5}(iii) we get
2 ~
Ry () C | Ry (k, k), (8.38)
kk'=1

where

: - ’ 29 (j — J'
Ry (k) i= {w o 0420 (@) = A ()] < EW >}.

We estimate the measure of the set E[jj/(k‘, k') defined above for all k, k' =
1, 2. Since, by Lemma (m), £ # 0, we can write

w|§|s+v, with v-£=0.

and we define
é(s) == |ls + AP (s) — A (s) | (8.39)

where for any j € N, for all k =1,2

4 o
)\,(j)(s) = )\g)<ms+v) .

According to (8.37)), (8.36)

)\,(Cj)(s) =m(s)j+ r,(fj)(s) , |r,(€j)\lip <ey it (8.40)
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One gets
|6(s51) — d(s2)| > [El|s1 — s2| — [m(s1) —m(s2)llj — 5|
_ (|r](€J)|lip + |rl(cj’ )|1ip)|s1 .

= (=G = 1) ls1 = s2]

Lemma-—(u) |€‘| ‘
S1 — 82

for ey~! small enough. The above estimate implies that

{s: v e Bup (i)} < W

and by Fubini Theorem we get

‘ e
Regy (k)] < =00

(yr+1
The claimed estimate follows by recalling (8.38) and using that by Lemma
B.3F(i0), 5 — 7' < |4]. 0
Lemma 8.5. For all n > 0, we get
AP <N,

Proof. We prove the estimate for AL in (8.34) with n > 1. The estimate for
(1) in - follows similarly. One has

AP« D0 Qe+ YD Bl YD IR ()

[]>Np 1 [£]>Nyp 1 [€|>Np 1
jeN 5,7’ €N 4.4' €N
A (€.5,5")#(0.5.5) J:5" <)
li—3"l<(0)
33’ <07
Lemma B4 1 1 1
< 7 ( > et > w T > W)
v O i 0T S @
n—1 n—1 n—1
JeN 3,3’ €N 43" €N
7<) g <) 4.’ < ()
1 1 (8-2)
<’Y Z ( T—27% + 7-—2) < ’YN"_*ll (841)
o IR 0
n—1
which is the claimed estimate. O

Estimate of A%Z). By the same arguments used to prove Lemma one may
deduce that the sets A'? defined in (8.10) satisfy the lemma below.

Lemma 8.6.
AP | <N, Yn>0.



68 Riccardo Montalto

Proof of Theorem The theorem follows by (8.5]), , (8.8), by Lemmata

using that the series > -, Nnill < 400, since N, = Nacn, N_,:=1
with Ng > 1. B

9. Proof of the main Theorems concluded

PROOF OF THEOREM [3.1] Set v = €%, with 0 < a < 1. Then ey~! = &'~ and
hence the smallness condition ((7.5) is fullfilled by taking e small enough. By
the estimate (7.8 we deduce that the sequence (u,)n>1 is a Cauchy sequence

with respect to the norm || - ||Lip(ﬂ’) on the set G defined in (8.1)), then it

So+p1
converges to a limit u.,, which satisfies the estimate
luse [520) < eyt < etme =00, (9.1)
Moreover, by Theorem [7.1}(P2),,, we deduce that for all w € G0, F(us) =0

and by Theorem since v = €%, we get
|2\ G| — 0 as e—0.

PRrOOF OF THEOREM [L.1] Recalling the splitting (3.4), (3.5), if (vo(¢), po(¢))
31

are the solution of the equation (3.5)) found in Lemma (3.1} and by applying
Theorem we get that for any w € Go the function (veo, Poc) = (vo,Po) +
Uy, satisfies F'(Voo, Poo) = 0. Furthermore, choosing v = £, with 0 < a < 1/2,

by (3.6
lvolls <29 °3%0,  |polls <& =00,

hence, (|1.10) follows by recalling (9.1). Finally (1.9) follows since
/ Voo (5 ) dsodx=/ vo(¢p) dep, / Poo(sp, @) dsod:v=/ po() dep
Tv+1 v Tv+1 Tv

and by Lemma [3.1] vy and py have zero average in ¢, this concludes the proof
of Theorem [L[11

9.1. Linear stability

In this section we prove Theorem [I.2] The linearized equation on a quasi-
periodic Sobolev function v(wt, z) = (v(wt, x), p(wt, x)), with v, p € HS(T*T1, R)
has the form (1.11). Since the linearized vector field

L{wt) = (a(Wt)amo+ R(wt) (1))

(recall (1.12)), (1.13])) preserves the space of the functions with zero average
in x, the equation ([1.11f) can be splitted into the two systems

9tpo =0

O = 1
{@&:a@mmﬁ+nwmm, ©:3)
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where, recalling (3.1)), Do = 70, Po = 7D, U = TV, QZ = 7y p. By assump-
tion, the initial datum p{®) has zero average in z, hence the solution of the
system is given by vy (t) = const, po(t) = 0, for all t € R, implying that
the system projected on the zero Fourier mode in z is stable. It remains to es-
tablish the stability for the system projected on the z-zero average functions

(9.3). By Lemmal[d.3] by (4.27)), by Lemmata[4.6] using also Lemma

there exists @ > 0 such that for S > so + T, for any sg < s < S — i, for any
w € Q% (see (5.109)), the linear and continuous maps 71 (wt) := S(wt) o B
and Ta(wt) := V(wt) o oo (wt) satisfy

s—3 —
Ti(wt) - Hy *(To) — Hi(Te,R) x Hy ™ (Tq, R)

Ti(wt)~ : HY(T4,R) x HSY(T,,R) — H. 2 (T,),

1
S—3

1
Tawt)™  HY 4 (T,) - H AT,

Setting Ah(t,z) = h(t + a(wt),z), A~ h(r + &(wT),z), where a and & are

given in Section by the results of Sections by Theorem [5.2] and

using the arguments of Section we get that a curve u(t) = (u(t), v(t)) €

H§(T,,R) x Hy *(T,,R) is a solution of the PDE (9.3) if and only if

Mﬂz(%ﬁ)zﬁ@@loAloﬂwﬂ1&06H85@g

is a solution of the PDE

h = —iDWh
{ = (9.4)

ah =DV
where DY is defined by (5.115), (5.107)). Using that DY is a 2 x 2-

block diagonal operator, it is straightforward to verify that the commutator
[DC(XID), |D|*] = 0. Furthermore, using the self-adjointness of DY one sees by a
standard energy estimate that d;||h(t,-)||%. = 0, implying that

h(t, )|l s = const, VieR.

Arguing as in the proof of Theorem 1.5 in [6] one concludes that [[U(2, )|l o a1 <s
[Q(0, )|l g7s » grs—1 for all £ € R, which proves the linear stability of (9.3) and
the proof of Theorem [T.2]is concluded.
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