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Abstract In cereals, tillering and leaf development are
key factors in the concept of crop ideotype, introduced in
the 1960s to enhance crop yield, via manipulation of
plant architecture. In the present review, we discuss
advances in genetic analysis of barley shoot architecture,

focusing on tillering, leaf size and angle. We also discuss
novel phenotyping techniques, such as 2D and 3D
imaging, that have been introduced in the era of
phenomics, facilitating reliable trait measurement. We
discuss the identification of genes and pathways that are
involved in barley tillering and leaf development,
highlighting key hormones involved in the control of
plant architecture in barley and rice. Knowledge on
genetic control of traits related to plant architecture
provides useful resources for designing ideotypes for
enhanced barley yield and performance.
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INTRODUCTION

Humans have been cultivating barley (Hordeum vulgare
ssp. vulgare) for at least 10,000 years, since domestication
from the wild ancestor Hordeum vulgare ssp. spontaneum
(Pankin andvonKorff 2017).Goodadaptability todifferent
agro-climatic conditions facilitated spreading of barley
cultivation to a wide range of environments worldwide
(Russell et al. 2016). Today, barley is among the top four
cereal crops with a global production of over 141 million
tonnes, 41% of which comes from the European Union
(http://faostat.fao.org). Barley is mainly used as animal
feed and in malting for the brewing and distilling
industries. While currently accounting for a minor
proportion of barley production, use as human food is
attracting increasing interest for thenutritionalbenefitsof
beta-glucans present in grains (Munoz Amatriain et al.
2014). Recently, straw – previously considered a byprod-
uct of minimal value – is also receiving attention as a
source of renewable energy, so barleymay be considered

as a dual-purpose crop for production of grains and
lignocellulosic biomass.

As for other cereals, the Green Revolution has
brought innovation in barley breeding with the
introduction of semi-dwarfing genes to reduce lodging
and increase partitioning of photosynthates to seeds
(Dockter and Hansson 2015). The resultant varieties are
considered paradigms of the ideotype concept, that is, a
model crop plant rationally designed to combine
morpho-physiological features predicted to improve
quantity and/or quality of the end product(s) (Donald
1968). Over the past 50 years, different cereal ideotypes
have been proposed, placing major emphasis on shoot
architecture traits. Indeed, beside plant height, tillering,
leaf size, morphology and arrangement play a funda-
mental role in light interception, photosynthetic
efficiency, and ultimately, plant performance, biomass,
and grain yield (Hussien et al. 2014; Mathan et al. 2016).

Numerous studies suggest that the optimal plant
architecture would be achieved by smaller leaf angles
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from the upper canopy and more horizontally oriented
leaves in the lower canopy (Duncan 1971; Long et al.
2006; Ku et al. 2010; Zhu et al. 2010). This was also
recently emphasized by Ort et al. (2015) in the concept
of smart canopy for crop biomass and yield. The
concept refers to maximizing the potential of light
harvesting at the canopy level in a cooperative (rather
than competitive) manner between plants. Plant
phytochromes are red (R)/far-red (FR) light photo-
receptors that play key roles in sensing of light
conditions and consequent adjustment of plant devel-
opment and growth (Li et al. 2011). This ability to
perceive changes in light condition (R/FR ratio), could
be utilized to develop plants with smart canopies having
leaves adapted to the prevailing light conditions (Gilbert
et al. 2001; Ort et al. 2015).

Clearly, knowledge of the genetic and molecular
mechanisms controlling tiller and leaf development is
important for designing optimal shoot features to
maximize crop productivity for different/multiple
end uses, and efficient genomic and phenotyping
approaches are key to identifying the genes and alleles
needed to achieve this goal.

For its diploid genome (2n¼ 14, 5.1 Gb) and
autogamous reproduction, barley is an established
model plant in genetic research (Dawson et al. 2015).
Nine decades of mutagenesis programs have generated
thousands of barley mutants that have been character-
ized at various levels (Lundqvist 2014) (for more
information the reader is referred to the International
Database for Barley Genes and Barley Genetic Stocks,
http://89.221.255.170/bgs/index.php) and collected in
repositories such as NordGen (https://www.nordgen.
org/en/). For over 800 mutants, near-isogenic lines
(NILs) have been generated in the background of cv.
Bowman and genotyped with a genome-wide single
nucleotide polymorphism (SNP) array allowing to assign
the majority to unique chromosomal positions and
providing a platform for phenotypic characterization
and positional cloning of the corresponding genes
(Druka et al. 2011). Large collections of wild accessions,
landraces and cultivars offer an additional reservoir of
genetic variation for genetic research and breeding
(Munoz Amatriain et al. 2014; Dawson et al. 2015).

The parallel development of genomic tools has
revolutionized the characterization and exploitation of
genetic resources, with barley scientists pioneering
mutant analysis as well as genome-wide association

studies (GWAS) in plants (Waugh et al. 2009). The

recently released reference genome sequence for

cultivar Morex (Mascher et al. 2017), a novel 50 k SNP

array (Bayer et al. 2017) and an exome capture platform

(Mascher et al. 2013) are examples of the tools now

available to barley geneticists and breeders. For

example, exome sequencing has been used in gene

identification throughmapping-by-sequencing of barley

mutants (Mascher et al. 2014). As genomic tools

advance, the bottleneck in genetic analyses is increas-

ingly represented by phenotyping (Araus and Kefauver

2018).

In this review, we briefly introduce barley shoot

morphology and development and revisit current

knowledge of the loci and genes that control tillering,

leaf size and angle. We also overview state-of-the-art

phenotyping approaches that promise to accelerate

genetic studies and identification of shoot architecture

genes with special emphasis on leaf angle.

BARLEY SHOOT MORPHOLOGY AND
DEVELOPMENT

When sowing a grass seed, within a few days (4–5 d)

germination occurs and the plant starts developing

along the apical-basal axis. From this axis the radicle

starts to grow, giving rise to the root, and later, the

epicotyl begins to grow which becomes the shoot. The

tips of this axis are pre-formed in the embryo and

correspond to the primary meristems of the plant,

that is, the shoot and root apical meristems (SAM and

RAM), respectively. The epicotyl comprises the SAM

and the leaf primordia enclosed by a tubular organ

called the coleoptile (Briggs 1978; Rossini et al. 2014).

The SAM and RAM are the ultimate determinants of

the architecture of aerial and basal parts of the plant,

respectively.

Stem cells responsible for meristem maintenance

constitute a small area, while other cells produced from

the meristem are destined to give rise to lateral organs.

The position of an individual cell in the SAM is the major

determinant of its fate. As in maize, the barley SAM is

thought to be structured into two clonally distinct

layers: the outer layer (L1) or tunica, and the inner layer

or corpus (L2), although it is possible that a third layer is

also present (Doring et al. 1999). In grasses, the first leaf
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primordia are produced by the SAM, during embryo-

genesis. For example, in barley, 3–4 leaf primordia are

typically present in the seed (Kirby and Appleyard 1987);

these will resume growth post-embryonically to

become visible as the first leaves on the main stem

(Figure 1A).
In plants, shoot architecture is modular, meaning

that it consists of units named phytomers. The
phytomer is comprised of a stem segment called the
internode, and a node with a leaf and an axillary bud
(Weatherwax 1923; Bossinger et al. 1992; Forster et al.
2007) (Figure 1B, C). The SAM originates new phy-
tomers, in succession, ultimately resulting in the final
architecture of the shoot (Figure 1D). The first
phytomers, in which internodes do not elongate,
form the basal region of the shoot, called the crown
(Figure 1D). By contrast, internode elongation occurs in
phytomers formed after the transition from the
vegetative to the reproductive phase.

In a fully grown barley plant, the stem, which is
called the culm in grasses, consists of alternating solid
nodes and hollow internodes (Figure 1B). Leaf arrange-
ment through the shoot is termed phyllotaxis. In barley
and other cereals, successive leaves are arranged on the
culm, at 180° to each other, leading to a distichous
pattern (Figure 1E). This same pattern is maintained also
in the spike, consisting of units called spikelets attached
to the rachis (i.e., the main inflorescence axis arising as
an extension of the culm). In barley, two types of spike
exist: in the first, the lateral spikelets in the triplets

are fertile and produce grains, and the result is the
six-rowed spike, in the second, the lateral spikelets fail
to develop (i.e., only central spikelets develop and
produce grains), and the result is the two-rowed spike
(Komatsuda et al. 2007).

Leaf morphology and development
Grass leaves have a distinctive strap-like shape with

veins running parallel to the central midrib. Along the

proximal-distal dimension, domains with different

functions can be recognized (Figure 2A–D). The distal

leaf blade projects from the stem and is the main

photosynthetic organ, while the basal portion, or

sheath, wraps around and supports the culm. At the

blade-sheath boundary, the lamina joint, with two

lateral projections called auricles, acts as a hinge for

the leaf blade, while the ligule, an adaxial epidermal

outgrowth, stops water and pathogens from

penetrating between the leaf sheath and the stem

(Figure 2A).
In grasses, each leaf originates as a ring of founder

cells, which are recruited on the SAM flank, and grows
from this disc of insertion surrounding the meristem.
While the term phyllochron defines the time interval
between emergence of two successive leaves (e.g.,
referring to appearance of the ligule), the time interval
separating the initiation of two consecutive leaf
primordia is called the plastochron (P: revisited in
Wilhelm and McMaster 1995) and P number is
conventionally used to designate the developmental

Figure 1. Illustration of barley shoot characteristics
(A) Schematic structure of the shoot apical meristem (SAM); P0, P1, and P2 are leaf primordia. (B) Barley nodes and
internodes on a fully developed culm. (C) An axillary bud at the crown region (the ensheathing leaf was removed).
(D) Barley whole-plant architecture, with the tillers producing fertile spikes. (E) An example illustrating leaf
arrangement on the culm, with leaves positioned at 180° to each other, leading to a distichous pattern.

228 Shaaf et al.

March 2019 | Volume 61 | Issue 3 | 226–256 www.jipb.net



age of a leaf primordium on the shoot apex (Itoh et al.
2005) (Figure 1A). Here, P0 corresponds to the incipient
leaf primordium, when founder cells � although not
morphologically distinguishable from the SAM – acquire
a distinct fate from meristematic cells through down-
regulation of meristematic class I KNOTTED1-like homeo-
box (KNOX) genes (Sluis and Hake 2015). The youngest
visible leaf primordium protruding from the meristem is
called P1; P2 is the leaf primordium that developed
immediately prior to P1, and so on.

During leaf development, polarity is established
along the proximal-distal, medio-lateral and abaxial-
adaxial axes (Figures 2B–D) so that growth and
differentiation proceed in a coordinated fashion to
attain the final structure and size of the mature leaf.
At the initiation stage, founder cells are progressively
recruited from the central part of the incipient
primordium, proceeding laterally in both directions,
organizing the medio-lateral axis, easily recognized for
the bilateral symmetry around the midrib, which is
formed as early as P1 in maize (Scanlon et al. 1996;
Lewis and Hake 2016). Initially, the leaf primordium
grows mainly along the proximal-distal axis and, at P2,
it is shaped as a hood surrounding the meristem and
younger leaf primordia (Itoh et al. 2005). A recent
study in maize suggests that, at this stage, the
developing leaf consists entirely of blade tissue
(Johnston et al. 2015), placing between P3 and P4

the first emergence of the sheath from the disc of
insertion. However, the exact timing of differentiation of
the domains along the proximal-distal axis, may differ
between species: for example, the preligular band (i.e.,
the group of cells that will give rise to the ligule) forms
before P6 in maize (Lewis and Hake 2016), but this step
occurs at P3 in rice (Itoh et al. 2005).

Leaves continue to grow from meristematic zones
located at the bases of leaf blade and sheath (Briggs
1978; Itoh et al. 2005; J€ost et al. 2016). Starting from the
distal end of the leaf, cells expand andmaturewhile they
stop proliferating in a basipetal progression, so that
when cells at leaf tip are fully differentiated, cells at the
base are still dividing (reviewed in Nelissen et al. 2016).
Accordingly, the growing leaf is thought to be organized
in the distal maturation, central expansion and proximal
division zones (Fournier et al. 2005). In the division zone,
cells undergo both longitudinal and transverse divisions
to support growth in leaf width and length, respectively
(Sylvester and Smith 2009) (Figure 2E). Final leaf size and
shape result from spatial and temporal coordination of
these processes. For example, leaf length depends on
leaf elongation duration (LED) and leaf elongation rate
(LER), which is closely connected to the size of the
division zone (reviewed in Nelissen et al. 2016).
Interestingly, studies in maize and barley suggest that
LER and LED are under (at least partially) distinct control
mechanisms (Baute et al. 2016; Digel et al. 2016).

Figure 2. Illustration of barley leaf characteristics
(A) Structure of a barley leaf, comprised of the sheath and blade, the ligule and auricles; the insertion angle at
the lamina joint is shown (a). (B) Lamina joint connecting the leaf blade to the leaf sheath. (C) Leaf adaxial side:
proximal-distal and medial-lateral axes are indicated, along with the midrib (mid vein). (D) Leaf abaxial side.
(E)Measurement of leaf blade length (LL) is taken from the ligule to the tip (red arrows), leaf blade width (LW) is
taken at the widest point (dashed line). (F) Definition of the leaf inclination angle (LIA, uL), the leaf surface normal
(N) is the vector perpendicular to leaf blade and the zenith (Z) is the vertical vector.
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Beside blade size, an important factor for photosyn-

thetic efficiency is leaf orientation and angle, as

determined at the lamina joint connecting the blade

to the sheath (Figure 2A, B). During the development of

the lamina joint and when the leaf blade and sheath

have completed their elongation, the blade bends away

from the vertical leaf sheath (culm) to form the leaf

angle (Figure 2A, F) (Hoshikawa 1989). The lamina joint

inclination resembles the phenomenon of epinasty

caused by ethylene (Takeno et al. 1982).

During the period when expansion of cells on the

adaxial side (upper leaf surface at the lamina joint

region; Figure 2C) exceeds that of cells on the abaxial

side (lower leaf surface at the lamina joint; Figure 2D),

the leaf tends to bend outward from its vertically

oriented position. This requires cell wall loosening for

cell expansion on the adaxial side of the leaf (L�opez-

Bucio et al. 2002; Ekl€of and Brumer 2010). This increased

tendency of leaf bending with ageing is also well-known

and has been observed and discussed in other species

(Duan et al. 2016; Confalonieri et al. 2017).
Studies in rice have shown that leaf erectness is linked

to several morphological and developmental features,
such as loss of lamina joint structure, including ligule and
auricles (Lee et al. 2007), prevention of elongation of
parenchyma cells located on the adaxial side, and excess
sclerenchymacell divisionon theabaxial sideof the lamina
joint (Zhanget al. 2009; Sunet al. 2015). In contrast, excess
in proliferation of parenchyma cells on the adaxial side
results in enhanced leaf inclination (Zhao et al. 2010, 2013;
Zhang et al. 2015). Abnormal mechanical tissues, such as
vascular bundle formation and cellwall composition in the
lamina joint also play a crucial role in modification of leaf
angle (Ning et al. 2011), indicating a dynamic cytology of
the lamina joint where multiple factors are involved in
regulating its structure (Zhou et al. 2017).

Tiller development
In addition to the SAM, shoot architecture is further
determined by activities of lateral meristems, called
axillary meristems (AXMs). An AXM develops in the axil
between the stem and developing leaf/coleoptile. Once
established, the AXM initiates its own leaf primordia,
becoming an axillary bud that may remain dormant or
grow out to produce a lateral shoot or tiller, similar in
structure to the main culm (Hussien et al. 2014). In
contrast to lateral branches in dicots, tillers are

produced from the axillary buds in the axil of the
leaves from basal phytomers of the stem, correspond-
ing to the crown region where internodes do not
elongate (Figure 1D). Tillers produced from the main
stem are called primary tillers and those produced from
the primary tillers are called secondary tillers, and so on
(Hussien et al. 2014). The final number of tillers
determines the entire architecture of the mature barley
plant, and depends on the number of AXMs, the axillary
buds, their outgrowth and subsequent plant dynamics.
Tiller outgrowth is especially plastic, being strongly
dependent on environmental factors that may pro-
mote, or repress lateral shoot development through a
complex network of hormonal and regulatory signals
(Kebrom et al. 2012). Variation of these parameters
leads to high morphological diversity in different
genotypes and even within the same genotype.

GENETICS OF BARLEY SHOOT
ARCHITECTURE

The following sections provide a review of the genes

involved in barley tillering, leaf size and angle, as well as

novel phenotyping approaches that may be used in

conjunction with cutting-edge genomic tools to charac-

terize mutant and germplasm collections, toward

identification of new genes and pathways involved in

barley shoot architecture.

Genetic control of leaf size in barley
A recent review (Nelissen et al. 2016) summarizes

conserved genetic and molecular mechanisms sub-

tending leaf growth in dicots and monocots, drawing

especially on research in Arabidopsis, maize and rice.

By contrast, only a few genes involved in leaf-size

control were identified in barley. This section

assesses current knowledge of the genetic determi-

nants of barley leaf dimensions. Studies on mutants

and germplasm collections have focused especially

on length and width of the lamina for its importance

in photosynthesis. Effect on leaf features of major

genes for spike morphology and phenology is also

discussed.

Barley leaf size mutants
Compared to the wide variety of leaf mutants described
in maize (Neuffer et al. 1997), barley leaf mutants are
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not so well characterized. A number have been
assigned chromosomal positions (Druka et al. 2011)
as a starting point for identification of the underlying
genes. Information for some of these loci is presented
(Table 1; Figure 3). In terms of leaf size, barley mutants
have been categorized as having narrow (e.g.,
angustifolium, fol), wide (e.g., broad leaf1, blf1), long
(e.g., curly3, cur3) or short leaves (e.g., curly dwarf1,
cud1), although classification is complicated by pleio-
tropic phenotypes in leaf and shoot architecture traits
that often characterize individual mutants. The
following paragraphs focus on two mutants whose
causative genes have been functionally characterized,
offering insights into the molecular regulation of
leaf size.

Recessive narrow leafed dwarf1 (nld1) mutants are
characterized by reduced plant height and leaf blade
width, but similar blade length compared to wild type
(Yoshikawa et al. 2016). The narrow leaf phenotype is
caused by a reduction in the number of cells across the
lamina, and consistent phenotypic effects in all leaves
indicate that normal Nld1 function is required to
promote medial-lateral, but not proximal-distal, lamina
growth throughout plant development. In agreement
with this interpretation, reduced width is evident
already in developing leaf primordia. Histological and
morphological analyses demonstrated that nld1 leaves
lack lateral domains, as reflected by the absence of
auricles and sawtooth trichomes typically present on
wild-type leaf margins. Further analyses demonstrated
pleiotropic effects of nld1 in leaflike organs of the
inflorescence. Each barley spikelet comprises two
bracts, called palea and lemma, enclosing the stamens,
pistil and a pair of lodicules (organs that play a role in
flower opening and anther extrusion). The lemma and
its distal extension, called an awn, were shown to be
homologous to the leaf sheath and blade, respectively
(Pozzi et al. 2000). Based on width reduction of the
palea and lemma in the nld1mutants, wild-type Nld1 also
regulates lateral development of foliar organs during
the reproductive phase, although other reproductive
organs are not affected (Yoshikawa et al. 2016).
Positional cloning demonstrated that the Nld1 gene
encodes a WUSCHEL-RELATED HOMEOBOX (WOX)
transcription factor, related to redundant maize factors
NARROW SHEATH1 (NS1) and NS2 (Yoshikawa et al.
2016). Several similarities support conserved functions
between Nld1 and its maize homologs (Nardmann et al.

2004). For example, like NS1/2, Nld1 is expressed in
lateral domains of leaf primordia to promote margin
development; expression is also evident in the
marginal edges of palea and lemma, supporting
shared functions in margin development of different
foliar organs (Nardmann et al. 2004; Yoshikawa et al.
2016). In maize ns1 ns2 double mutants, leaf founder
cells of the marginal leaf domains are not recruited
into the leaf primordium because of a failure to
downregulate KNOTTED1 gene expression (Scanlon
et al. 1996; Nardmann et al. 2004). It would be
interesting to test whether Nld1 also acts through
repression of class I KNOX genes such as Bkn3, the
barley ortholog of maize KNOTTED1 (M€uller et al.
1995). However, the role of Bkn3 in barley leaf
development is not known and speculation about
the possible interaction between Nld1 and Bnk3 in
development of other organs is difficult. A gain-of-
function mutation causing ectopic expression of Bkn3
in the developing lemma was shown to have profound
effects on morphogenesis of this organ, including
formation of wing-like marginal outgrowths (M€uller
et al. 1995; Richardson et al. 2016). These findings
indicate that control of Bkn3 expression is needed for
correct patterning of the lemma margins, but
contrasts with the phenotype of nld1 lemmas.

Contrary to nld1, broad leaf1 (blf1) mutants are
characterized by wider leaf blades, as a result of
increased numbers of cells along the medial-lateral axis
(J€ost et al. 2016). Interestingly, no significant effect was
detected on the leaf sheath, whereas the palea and
lemma also showed increasedwidth, further supporting
the existence of shared genetic mechanisms for control
of medial-lateral growth between these organs and
leaves. The effect on blade width appears from P6
onward, indicating that Blf1 functions to limit cell
proliferation in the medial-lateral axis, during blade
outgrowth, but does not affect recruitment of leaf
founder cells as NS1/2 do (J€ost et al. 2016). The Blf1 locus
encodes an INDETERMINATE-domain (IDD) protein
expressed in nuclei of SAM cells, epidermal and sub-
epidermal cells at the base of P2 and P3 leaf primordia
and later throughout the epidermis (P5/P6), especially
in correspondence with presumptive veins (J€ost et al.
2016). Based on the role of related Arabidopsis IDD
proteins and expression in presumptive veins, BLF1 was
speculated to affect auxin transport (J€ost et al. 2016).
Studies on narrow leaf mutants in rice and maize also
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show the importance of auxin-related genes in control
of leaf width (reviewed in Yoshikawa and Taketa 2017).

Ongoing and future work on additional leaf mutants
(e.g., Table 1) will be important to improve our
understanding of the genes and genetic interactions
that regulate leaf size in barley and their effects on
other traits.

GWAS analysis for leaf size in barley
Recent association mapping studies have provided a
different perspective, by analyzing natural genetic
variation for leaf size, linking it to other morphological
and life history traits.

Two major growth habits are known in barley: in
winter types, flowering is promoted by an extended
period at low temperatures (vernalization), whereas
spring barleys do not respond to vernalization. In
addition, winter barley flowering is generally stimulated
by long days (LDs; Turner et al. 2005). This response to
photoperiod (accelerated flowering under LDs) is under

the control of the PHOTOPERIOD-H1 (Ppd-H1) gene,

encoding a PSEUDO-RESPONSE-REGULATOR (PRR)

protein (Turner et al. 2005): the wild-type Ppd-H1 allele

is widespread in winter barley, whereas a natural

recessive mutation (ppd-H1) reduces photoperiod

sensitivity and has been selected in some spring barleys

to delay flowering in areas with extended growing

seasons (Turner et al. 2005; von Korff et al. 2006; Jones

et al. 2008; von Korff et al. 2010; Wang et al. 2010).

Variability for leaf blade width and length, as well as

flowering date, was explored by GWAS in a collection of

European winter cultivars (Digel et al. 2016): integrating

data collected from field-grown plants in two different

locations provided robust evidence for the association

between all three traits and the Ppd-H1 locus, whereby

the recessive late flowering allele correlated with larger

blade width and length. The direct effect of Ppd-H1

on leaf blade size was confirmed by photoperiod-

dependent increases in width and length in ppd-H1

Figure 3. Physical map of barley genes controlling leaf morphology and tiller number
This map illustrates the physical position (Mb) of barley genes controlling leaf angle, leaf size, and tiller number.
Only genes with unique positions are shown. Positions of genes in black color were obtained either using BLAST
searches against the barley genome available in the IPK database (http://webblast.ipk-gatersleben.de/
barley_ibsc/) (Mascher et al. 2017), or the James Hutton Institute database (https://ics.hutton.ac.uk/
morexGenes/). Other genes highlighted in red or green color were mapped based on markers developed by
Druka et al. (2011) and available in the Nordgen database (https://www.nordgen.org/bgs/). Only genes with an
inter-marker distance of 30 Mb or less are represented. The suffix “_S” or “_E” denotes the “start” and the
“end” of the area that contains the gene.
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spring barley cultivars compared to the respective

introgression lines (ILs) carrying the Ppd-H1 allele (Digel

et al. 2016). Although LER was similar in Ppd-H1 and ppd-

H1 genotypes, longer leaf blades in the spring barley

lines were shown to derive from increased phyllochron,

extended LED, and increased number of cells along the

proximal-distal axis. Under LDs, ppd-H1 lines produced

more leaves compared to Ppd-H1 ILs, showing that Ppd-

H1 affects multiple aspects of canopy development

(Digel et al. 2016). Consistent results on association

between Ppd-H1 and leaf blade area were obtained

under LD greenhouse conditions in a spring barley

association panel, where additional quantitative trait

loci (QTLs) were identified and associated to potential

candidate genes (Alqudah et al. 2018). QTLs for flag leaf

length were also identified in chromosomes 1H, 3H, and

4H from a recent analysis of a doubled-haploid

population (Vafadar Shamasbi et al. 2017).

In addition to growth habit and photoperiod
response, spike row-type is another major trait
partitioning barley varieties. Two-row cultivars and
wild barley accessions carry the wild-type allele of the
major row-type gene VRS1, while recessive mutants
were selected by ancient farmers giving rise to modern
six-row cultivars (Komatsuda et al. 2007). A recent study
on a worldwide collection of spring barley accessions
showed that the VRS1 gene impacts leaf size, at
different developmental stages, with six-row barleys
having increased leaf area (LA) compared to two-row
(Thirulogachandar et al. 2017). Detailed analyses on vrs1
mutants and their wild-type backgrounds showed that
VRS1 affects leaf width from as early as the P1
primordium stage, possibly by controlling cell prolifera-
tion (Thirulogachandar et al. 2017). Interestingly, QTL
analysis in a double haploid progeny detected a major
QTL for flag leaf area, width and length in correspon-
dence with the VRS1 locus (Liu et al. 2015). As row-type
genes are also known to affect tillering (Liller et al.
2015), understanding the pleiotropic effects of these
genes on tiller number and leaf size is a prerequisite to
optimize source-sink relationships and improve yield.

In summary, studies of natural genetic variation are
providing essential information on the genetic links
between leaf size and other agronomically relevant
traits, and lay the foundations for rational development
of new crop ideotypes.

Genetic control of leaf angle in barley
Studies in rice have demonstrated that most of the
genes associated with lamina joint bending and leaf
angle are involved in signalling, or biosynthesis of
phytohormones, including brassinosteroids (BRs), gib-
berellins (GAs), and auxin (IAA) (reviewed by Luo et al.
2016). Among these phytohormones, BRs have the
major role in regulating leaf angle (Sakamoto et al.
2006; Hartwig et al. 2011). BRs are endogenous plant
hormones which have similar structures to animal
steroid hormones and were first characterized by
Mitchell et al. (1970).

Many physiological and developmental processes and
traits are controlled by BRs, such as cell expansion,
stomata development, vascular differentiation, reproduc-
tive development, photomorphogenesis, plant height,
grain size, and stress responses (Clouse and Sasse 1998;
Bishop and Koncz 2002; Fukuda 2004; Yang et al. 2011). In
fact, both GAs and BRs are major determinants of plant
height or dwarfismwith pleiotropic effects on other traits
(Mandava 1988; Clouse and Sasse 1998; Taiz and Zeiger
2002; Fujioka and Yokota 2003); however, BR-related
genes have amore distinctive effect on leaf angle (Fujioka
et al. 1998; Hong et al. 2003). BRs regulate leaf angle, at
the lamina joint, by promotion of cell proliferation on the
adaxial side and suppression of cell division on the abaxial
side (Sun et al. 2015): increased BR content or enhanced
BRsignaling are associatedwith lamina joint inclination, or
enlarged leaf angle, whereas BR-deficientmutants display
erect leaves.

Numerous BR-related genes in rice have been well
studied and cloned, and most control leaf angle,
including key genes that are involved in BR signalling
(D1, BRI1, BAK1, BZR1, DLT, GSK2, TUD1, ILI1, IBH1, LIC1, BU1,
LC2, and OsGSR1) (Yamamuro et al. 2000; Nakamura
et al. 2006; Wang et al. 2006; Bai et al. 2007; Li et al.
2009; Tong et al. 2009, 2012; Wang et al. 2009; Zhang
et al. 2009; Zhao et al. 2010; Zhang et al. 2012; Hu et al.
2013) and BR biosynthesis (BRD1, BRD2, D2, D4,
OsDWARF, and OsDWARF4) (Hong et al. 2002, 2003,
2005; Tanabe et al. 2005; Sakamoto et al. 2006).

Among barley BR-related mutants, uzu was the first
to be cloned and shown to correspond to the ortholog
of Arabidopsis and rice BRASSINOSTEROID-INSENSITIVE1
(BRI1) encoding a BR receptor (Li and Chory 1997; Chono
et al. 2003). Barley cultivars carrying the uzu1.a allele are
widely cultivated in East Asia, mainly due to their short
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and sturdy culm that provides lodging resistance, and
tolerance to dense planting.

By screening 160 near-isogenic lines (NILs) belong-
ing to the brachytic (brh), erectoides (ert) and
breviaristatum (ari) classes, Dockter et al. (2014) were
able to select 16 short-culm mutants fulfilling the BR
phenotype criteria, that is, reduced seedling leaf length,
reduced number of seminal roots (brh group), increased
size of the outer metaxylem vessels in seminal roots,
lower density of lateral roots, and insensitivity to lamina
inclination by exogenous brassinolide in seedlings (ert
group). By comparing genomic introgressions of
different mutant NILs to the Bowman background,
different mutants were suggested to be alleles of three
BR biosynthetic genes, BRASSINOSTEROID-6-OXIDASE
(Ari or Brh/HvBRD), CONSTITUTIVE PHOTOMORPHOGENIC
DWARF (Brh/HvCPD), and DIMINUTO (Ari/HvDIM), or of
the BR receptor gene Uzu/HvBRI1 (Dockter et al. 2014).

Interestingly, HvDIM was also associated with
biomass-related traits by using a high-throughput
phenotyping approach in a diverse collection of two-
rowed barleys under both controlled and field con-
ditions (Neumann et al. 2017). Seven major biomass
QTLs were identified explaining 55% of the genetic
variance at the seedling stage, and 43% at the
booting stage. The most important locus for biomass
co-located with HvDIM independent from phenology:
this locus explained approximately 20% of the genetic
variance and was shown to act at different growth
stages. These results indicate that HvDIM, or genes
responsible for BR pathway or signalling, could bemajor
targets for themodification of such characters including
leaf angle.

In rice, mutation of the OsDWARF gene causes
reduced plant height due to defective BR synthesis, as
well as erect leaves and defects in skotomorhogenesis
(dark-adapted morphogenesis) (Hong et al. 2002).
Similar to rice, the barley HvDWARF protein is expected
to be a BR-6-oxidase, participating in the last step of BR
biosynthesis. Two semi-dwarf (BR-deficient) mutants,
522DK and 527DK, from barley variety “Delisa”, were
identified by exogenous BR assay using a lamina
inclination test. Resequencing of the mutant lines
identified missense substitutions in different fragments
of the HvDWARF coding sequence potentially affecting
the conserved fragment of the protein (Gruszka et al.
2011). These authors also detected a significant reduc-
tion in the transcription level of barley HvBAK1 in the

HvDWARFmutant 527DK. HvBAK1 is highly similar to rice
and Arabidopsis BAK1 genes encoding a component of
the BR signalling (Gruszka et al. 2011). The expression of
OsBAK1 was shown to be associated with changes in
plant height, leaf erectness, grain morphological
features, and resistance to disease (Li et al. 2009).
The function of the gene is highly conserved between
rice and Arabidopsis, but further studies are required in
order to know if the function is also conserved in barley.

Rice has two partially redundant C-22 hydroxylases
encoding genes called CYP90B2/ DWARF4 and
CYP724B1/D11, that catalyse C-22 hydroxylation in a
rate-limiting step of BR biosynthesis (Sakamoto et al.
2006). These two genes have distinctive effects on
shoot architecture, with DWARF4 playing a predomi-
nant role in control of leaf angle as supported by
phenotypic effects seen in the knockout mutant: this
causes erect leaves, a mild semi-dwarf stature and
enhances crop yield, under dense planting, even
without increased fertilizers, suggesting allelic variation
in this gene may have agronomic value (Sakamoto et al.
2006). Unlike OsDWARF4, mutation at the rice gene D2
causes severe dwarfism. This gene encodes a cyto-
chrome P450 enzyme (CYP90D) involved in the late BR
biosynthesis (Hong et al. 2003).

Currently the functions of the barley orthologs of
HvDWARF4 and HvCYP90D are unknown as mutants
have yet to be identified (Dockter et al. 2014). Future
work on their functional characterization may be
possible through targeted mutagenesis, for example
by genome editing.

The barley ari.e-GP semi-dwarf locus waswidely used
in breeding because of desirable effects, including early
flowering, salt tolerance, sturdy culms, and shorter
awns. This locus was recently shown to correspond to
the barley ortholog of the rice Dense and erect panicle1
(Ari-e/HvDEP1) gene encoding a g subunit of hetero-
trimeric G proteins: phenotypic characterization
showed pleiotropic effects on plant architecture similar
to those known in rice (Wendt et al. 2016). Hetero-
trimeric G proteins consist of three a, b and g subunits,
with the latter (also called AGG3 type) being present
only in plants. Their impact on the aboveground plant
architecture including plant height, branching, and seed
size were studied in model plants (Wendt et al. 2016).
Unlike rice, the barley genome contains only one gene
encoding an AGG3-type g-subunit protein and the effect
of HvDEP1 on barley yield is environmentally dependent
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(Wendt et al. 2016). Temperature-conditional effects
were also described for the uzu1.a allele, with larger leaf
angle at higher temperatures, but less sensitivemutants
such as ert-ii.79 or uzu1.256 have been also identified
(Dockter et al. 2014). The role of heterotrimeric G
proteins appears to be important in leaf angle and plant
architecture, as was supported by further studies.

Recently, Ito et al. (2017) explored the barley Brh1

locus and identified some mutants resembling the rice

dwarf mutant, daikoku (dwarf1; d1) (Akemin 1925;

Kadam 1937). The daikoku mutant has a mutation in

the heterotrimeric G protein a subunit (Ga) (Ashikari

et al. 1999, Fujisawa et al. 1999). Genetic studies have

located Brh1 on chromosome 7H (Li et al. 2002; Dahleen

et al. 2005; Druka et al. 2011), and a candidate gene

approach identified a gene coding the Ga in close

proximity to Brh1 (HvD1), indicating that the brh1mutant

has mutations in the Ga gene, similar to rice d1 which is

involved in BR signaling.

Another brh mutant was also characterized by
Braumann et al. (2018): studying a group of allelic brh2
and ari-lmutants in the background of cv. Bowman, lines
BW050 (ari-l.3), BW090 (brh2.b) were shown to respond
to exogenous brassinolide in a leaf lamina-inclination
assay, indicating that these genes are not in the BR
signalling pathway. Based on previous mapping of the
Brh2 locus on chromosome 4H (Takahashi et al. 1971), a
candidate gene was identified as the ortholog of rice
OsTUD1. The HvTUD1 gene encodes a protein with 92%
identity to OsTUD1 which encodes a U-box E3 ubiquitin
ligase (Hu et al. 2013). The brh2 and ari-lmutants display
BR-deficient phenotypes and responded to exogenous
application of brassinolide (Dockter et al. 2014), indicat-
ing they are related to BR biosynthesis.

Novel phenotyping approaches for leaf morphological
traits
Classically, measurements of leaf length and width can
be taken with a ruler (Figure 2E), but these will not fully
describe leaf shape, perimeter and area. Measuring leaf
angle is evenmore complex as it requires knowledge on
the 3D single leaf surface, in a complex canopy
architecture, with changing leaf orientations both in
space and time (Wirth et al. 2001; M€uller-Linow et al.
2015). This complexity is further increased by the
effect of environmental cues, such as irrigation, light
condition, and temperature (M€uller-Linow et al. 2015).

Lack of accurate measurement is a bottleneck that will
negatively affect linking phenotype to genomics data in
plant genetics and breeding (Houle et al. 2010).

The most widely used measurements of leaf angle
are the leaf insertion angle (LI) and leaf inclination angle
(LIA) (Confalonieri et al. 2017). Other important
parameters of the vegetation canopy directly related
to grain yield are derived from LIA. LI is a direct
measurement and is the angle between the proximal
part of the leaf with respect to the stem (a, Figure 2A).
This value, especially in cases of species with curved
leaves, like barley, wheat, and oat, does not provide the
actual distribution of photosynthetic tissues
(Confalonieri et al. 2017). LIA, is defined as the angle
between the zenith direction and the leaf surface
normal, measured along the whole leaf length (uL,
Figure 2F).

Assuming a uniform leaf azimuth distribution, for flat

leaves without curvature, the LIA along thewhole leaf is

expected to be uniform and can be also representative

even for unmeasured leaves. In such cases, LIA and leaf

size become independent of each other and no

additional measurement of leaf size (length and width)

is required. However, in crops with narrow and curved

leaves, like barley, the LIA will not be unique and differs

along the leaf (Zou et al. 2014). In addition, the

inclination angle and leaf weight along the leaf

segments (larger leaf width, higher weight) are no

longer independent. In such cases, and when the values

are extracted from photographic images, the leaves are

visually divided into small segments and both area and

leaf inclination angles are recorded at each segment

(Zou et al. 2014). The relative values of the leaf segment

areas become the weights for calculation of the

statistical characteristics of LIA.
Another approach for this situationwas proposed by

Confalonieri et al. (2017), where they developed a
bending index (BI), which is derived from the LIA values
to derive the structural characteristics of the vegetation
canopy. The most commonly used characteristic of the
canopy structure is the leaf angle distribution (LAD). In
reality, direct LAD measurement in the field (e.g., using
a clinometer) is time-demanding and tedious, as it
requires field-based sampling.

Indirect measurements of LAD, for example leaf
mean tilt angle (MTA), the central moment of LAD, also
have been associated with large uncertainties and
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require specialized equipment. Therefore, mathemati-

cal descriptions were introduced to approximate

canopy LAD. In most plant canopies, the LAD function

is the probability density function of uL, assuming that

the distribution of LIA values approaches azimuthal

symmetry (de Wit 1965). There are several distributions

to describe the probability density function of LIA, such

as Wit’s six special (deWit 1965), Beta (Goel and Strebel

1984), ellipsoidal (Campbell 1990), Verhoef’s linear

combination of trigonometric (Verhoef 1997), and

rotated-ellipsoidal functions (Thomas and Winner

2000). Among them, the Beta distribution with two

parameters has been shown to be the best for

describing the probability density function of LIA

(Wang et al. 2007), especially for complex canopies

with various fractions of LA and leaf angles. LAD

influences the leaf area index (LAI), an important index

with relevance to many biological processes, such as

photosynthesis, transpiration, respiration, and grain

yield. Assuming the two-parameter Beta distribution,

the distribution function of uL can be estimated as

follows:

fðtÞ ¼ 1
Bðm;vÞ 1� tð Þm�1ðtÞv�1 ð1Þ

where, t¼ 2uL/p. The two parameters m and v are
calculated as

m ¼ 1� tð Þ s2
0

s2
t
� 1

� �
ð2Þ

v ¼ t
s2
0

s2
t
� 1

� �
ð3Þ

where t and s2
t are the mean and variance of t,

respectively. s2
0 is the maximum variance of t calculated

as s2
0 ¼ t 1� tÞ:ð f(t) can be used to calculate the G-

function, the most common function to describe the

leaf angle effect on radiation attenuation (Ross and

Nilson 1965). The other important parameter represent-

ing the degree of erectness of the leaf is Campbell’s

one-parameter x of the ellipsoidal leaf angle distribu-

tion. x is used for the calculation of extinction

coefficient (K), an important variable to correctly

estimate canopy LAI (see below).
Several authors defined K as the proportion of

shadow area by the canopy on the horizontal surface
divided by the total area of leaves, or the average
projection of leaves onto a horizontal surface

(Monsi and Saeki 1953; Monteith and Unsworth
1973; Campbell 1986). Assuming that the distribution
of LA follows the distribution of the surface on
spheres or cylinders, the K values can be approxi-
mated (Monteith and Unsworth 1975; Campbell and
Thomson 1977).

LAD and LAI are closely related and are among the
major determinants of canopy light absorption (Monsi
and Saeki. 1953; de Wit 1965; Duncan et al. 1967;
Anderson and Denmead 1969). A model to describe
light interception, by the plant canopy, can be described
as Beer’s law:

Sb LAIð Þ ¼ Sb 0ð Þ exp -K � LAIð Þ ð4Þ

In this model, Sb (0) denotes the photon flux density

(PFD) of light penetration above the canopy on a

horizontal surface, Sb (L) is the flux density below LAI, K

is the light extinction coefficient and depends on the

species composition of the canopy (Monsi and Saeki

1953; Hikosaka and Hirose 1997). Erect canopies with

predominantly vertical leaf angles have lower K values

and vice versa.

Many studies have shown that K is among the most

important traits that determine canopy photosynthesis.

Assuming the same LAI, in canopies with high K values,

leaves at the uppermost layer receive stronger PFD than

those in canopies with low K (Hikosaka and Hirose

1997). Thus, when the LAI is low, horizontal leaves are

preferred, as they would have higher light extinction,

resulting in higher light capture. LAI is a critical

parameter, along with the leaf angle, for manipulation

of light transmission and photosynthesis (de Wit 1965).

Manual measurement of leaf angle has a major

drawback because it is labour- and time-consuming or

even destructive, for example manual direct measure of

LAD using inclinometers in contact with the leaf surface

(Campbell and Norman 1998). In addition, traditional

methods (e.g., inclinometer or protractor) overesti-

mate the angle due to the tendency of the leaves to

curve, which affects the light interception in a 3D

distribution of leaves in the canopy (Tadrist et al. 2013;

Confalonieri et al. 2017).
Novel phenotyping methods are important in

order to gain a more complete understanding of
the genetic determinants of leaf architecture traits.
High-throughput phenotyping is becoming the pre-
ferred approach in capturing variability and precise
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phenotyping of various traits, such as stress responses,

root and shoot architecture, photosynthetic capacity,

and growth and developmental traits, especially in

breeding programs where hundreds, or even thousands

of genotypes must be evaluated under either green-

house or field conditions (Araus and Cairns 2014). The

concept of “phenomics”, introduced in plant science by

Finkel (2009), is an attempt to integrate different

technologies (high-resolution cameras, imaging sen-

sors, software and processing data tools, and computer

and mobile devices) to facilitate and accelerate plant

phenotyping. Novel approaches are largely based on

image-based phenotyping techniques, which have the

added benefit of allowing simultaneous extraction of

data for different traits, including leaf angle and size.

2D imaging
Visible light imaging: this process, also known as color

digital camera imaging, employs cost-effective digital

cameras, or red-green-blue / color-infrared cameras,

made up mostly from silicon sensors (charged-coupled

device or complementary metal-oxide semiconductor

arrays). These cameras are sensitive to light wavelength

ranges visible to the human eye (400–750 nm). These

sensors allow for detecting 2D images and present color

information of the object with similar wavelengths to

the human eye. These cameras can be used for

analyzing numerous characters of complex structures,

and different scales, such as leaf morphology, shoot

biomass, growth dynamics, imbibition and germination

rates, flowering, plant height, spike morphology, and

root architecture (Li et al. 2014).

The acquired images can be processed with

software that can extract several parameters, such as

counting pixels to determine percent canopy cover,

based on the ratio of the selected versus the total

number of pixels, per image. Regarding individual leaf

size traits, as an example, 2D image analysis was used

for accurate measurement of detached leaf blades to

characterize the blf1mutant in barley (J€ost et al. 2016). If

the images frommultiple viewing angles (left, right, and

top sides) are available, then some commercial systems

can be used to determine a mathematical relationship

between three images to extract shoot biomass and

total LA.
To derive leaf angle parameters, such as LIA, the

color images can be processed, based on a spatial

matrix, with values of photon fluxes in red, green, and

blue wavelengths. The skeleton of images is extracted

to obtain the structure of stem and leaves, and LIA are

obtained by calculating branched angles of the skele-

ton. This type of 2D imaging technique is well suited for

physiological parameters, but has some drawbacks; for

example measurement of the leaves with curved

features is difficult from such 2D images. Another

problem is that, in field canopies, leaves usually overlap

each other and, hence, it is difficult to abstract the

leaves or shoots, resulting in biased measurements of

biomass and LAI. Soil background also presents some

challenges for image processing and its segmentation

(Fiorani and Schurr 2013; Li et al. 2014; Rahaman et al.

2015).

3D imaging

To overcome biases associated with the 2D techniques,

3D-based imaging is recommended, as it can more

accurately address the above-mentioned problems.

These imaging techniques provide useful information

on plant architecture, the fundamental target of plant

breeders for high-yield breeding, biomass, and plant

shape or volume. In 3D imaging, electromagnetic

energy is projected onto an object and the reflected

energy is recorded in the active form (Sansoni et al.

2009). There are many 3D imaging techniques which

can be grouped into several categories and are

interesting for measurement of leaf angle and leaf

size, such as stereo imaging, time-of-flight (ToF), laser

sensors, and Kinect sensors (M€uller-Linow et al. 2015; Li

et al. 2017).
Stereo imaging or structure-from-motion (SFM):

This is an imaging techniquewhere images are collected
from two cameras that are mounted a few metres
above the canopy and then 3D point clouds of plants are
generated (Gibbs et al. 2017). These stereo images
are further processed, using computer pipelines, for the
segmentation of leaves and calculation of leaf orienta-
tion. This approach was further developed on different
sugar beet varieties to quantify leaf surface properties
within natural canopies, via polygon smoothing or
surface model fitting (M€uller-Linow et al. 2015). Based
on the resulting surface meshes, LAD are calculated at
the whole leaf level. This method was proven to be
useful to differentiate various genotypes under differ-
ent seasonal and fertilization conditions.
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Laser sensors: This system is based on light

detection and ranging (LiDAR), where laser beams

are projected onto plants. The projected laser beams

(scattered energy from the plant or the surface) can

then be measured using triangulation and a dense 3D

map of point clouds is constructed (Kjaer and Ottosen

2015; Li et al. 2017). This laser sensor approach can

measure the distance between sensor and the object,

based on the elapsed time between the emission and

return of laser pulse from the sensor (the ToF method),

or based on trigonometry (Omasa et al. 2007). Having

this information, LiDAR can record the 3D coordinates

(XYZ), 3D structure properties, and intensity informa-

tion of an object. The resultant surfaces can then be

constructed and multiple traits, such as LA, LAI, and LIA

can be extracted. A high-resolution portable version of

the LiDAR was developed for cereals, including barley,

in which the barley plants were scanned in multi-view

and their 3D was reconstructed (Paulus et al. 2014).

These authors were able to extract multiple characters,

including leaf angle and area and proposed the method

for high-throughput phenotyping of different barley

organs.

ToF cameras or range imaging techniques: These are
distance-based systems that can measure the speed, or
ToF from the camera to the plant. These cameras,
similar to laser techniques, provide suitable tools for
measuring biomass, plant volume, and traits that
require 3D information. ToF cameras are based on
active lighting and are therefore sensitive to environ-
mental conditions, such as sunlight, humidity, precipi-
tation, and dust. The sensor region must be shaded to
reduce the impact of environmental variations (e.g.,
sunlight or presence of persistant dust). Therefore,
cross-sensitivities must be considered when designing a
specific phenotyping platform.

Cell phone-based and other techniques: This ap-
proach provides low-cost, rapid, and reliable instru-
ments for field phenotyping. To date, few such
instruments have been developed and proposed as
reliable measurement tools for extracting multiple
parameters on canopy structure (Escribano-Rocafort
et al. 2014; Confalonieri et al. 2017). One example is
PocketPlant3D, a newly developed cell phone-based
phenotyping instrument that can extract both LI
(the first value at the proximal parts between the
stem and the leaf, Figure 2A) and LIA (Figure 2F)

(Confalonieri et al. 2017). In addition, the app provides
indirect measurements of several important canopy
parameters, such as parameters of ellipsoidal distribu-
tion and BI. Another advantage of the app is that it is
inexpensive, does not require specific skills, and data
are automatically geo-referenced and stored without
any further processing. The cell phone must be
positioned parallel to the leaf and pointed toward
the lamina joint without touching the leaf surface. The
device can then be moved along the leaf while keeping
it parallel to the lamina until reaching the leaf tip.

Unfortunately, the use of 3D imaging techniques is

expensive and resource-demanding, and formany crops

this information is still lacking (Zou et al. 2014). As an

alternative, Ryu et al. (2010) introduced a photographic

measurement of LADs based on a leveled digital

camera, by combining red-green-blue images with an

LAI-2000 plant canopy analyzer, allowing for rapid

and accurate measurement of LAD. The method

was extended to short canopies, such as field crops

including barley and wheat and successfully shown to

be applicable in such canopies (Zou et al. 2014). In

this method, MTA can be estimated from light

reflectance data in blue, red and near infrared wave-

bands (Zou et al. 2014).

Overall, innovative phenotyping methods provide

powerful means to perform large-scale screens of

mutagenized and germplasm collections to accelerate

discovery of barley genes involved in leaf growth and

angle by positional cloning and association mapping

approaches.

Genetics of barley tillering
Tillering is a highly complex trait and its genetic

determinants are best studied in rice, while knowledge

in barley is relatively limited (Hussien et al. 2014).

However, recent progress in cloning and characteriza-

tion of tillering mutants is beginning to unravel the

genetic regulation of tillering in barley (Table 1).

Barley tillering mutants
Barley geneticists have identified and characterized
numerous mutants that show either increased or
decreased tiller numbers, and many have been
introgressed into the genetic background of cv.
Bowman to produce NILs for accurate phenotypic
comparisons (Druka et al. 2011). These mutants can be
classified into four categories: (i) mutants which fail to
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develop axillary buds and, consequently, develop one
single culm without any tillers, for example uniculm2
(cul2; Babb and Muehlbauer 2003); (ii) mutants that
produce low tiller numbers due to weak axillary bud
outgrowth and suppressed formation of secondary
tillers, for example low number of tillers1 (lnt1; Dabbert
et al. 2010), absent lower laterals1 (als1; Dabbert et al.
2009), and uniculme4 (cul4; Tavakol et al. 2015); (iii)
mutants displaying modestly reduced tillering, for
example intermedium-b (int-b) and the already men-
tioned semibrachytic (uzu) mutant (Babb and
Muehlbauer 2003); and (iv) mutants presenting high
tiller numbers, including mutations at the genes
Granum-a (gra-a), Grassy tillers (Grassy), Intermedium-
c (Int-c), Many noded dwarf1 (Mnd1), and Many noded
dwarf6 (Mnd6) (Babb and Muehlbauer 2003; Druka
et al. 2011). However, the identification and classifica-
tion of mutants for tillering is challenging due to the
presence of genes that have pleiotropic effects on this
trait. For example, the barley Int-c gene, the homolog
of maize Teosinte Branched1 (TB1; Studer et al. 2011),
controls lateral spikelet development and also re-
presses tillering at early stages of barley development
(Ramsay et al. 2011). Morphological characterization of
barley tillering mutants demonstrated their effects on
multiple traits. For example, cul2 mutants exhibit
disarrangement in the distal end of the developing
inflorescence and altered timing of reproductive
developmental steps (Babb and Muehlbauer 2003).
In rice, the MONOCULM 1 (MOC1) gene which controls
tiller number is also involved in inflorescence architec-
ture (Li et al. 2003b). Both moc1 and cul2 mutants
show some similarities in their phenotypes, such as
lack of axillary bud development, reduction in plant
height, decreased branching of the inflorescence, and
epistatic effects to mutations in other loci. However,
AXMs are not initiated in moc1, whereas in cul2 AXMs
are present in leaf axils but do not produce axillary
buds, which indicates that cul2 acts at the stage of bud
development (Hussien et al. 2014). Presently, no
candidate gene has been identified for the cul2
mutant, but the locus was located near the centro-
meric region of chromosome 6H (Okagaki et al. 2013).

The als1, lnt1, and cul4 loci, which have been mapped
on chromosome 3H, develop only 1–3 tillers (Babb and
Muehlbauer 2003; Druka et al. 2011). Lnt1was proposed
to correspond to the JuBel2 gene, encoding a
homeodomain transcription factor of the Three Amino

acid Loop Extension (TALE) superfamily (M€uller et al.
2001; Dabbert et al. 2010). Cul4 was shown to encode a
BTB-ankyrin transcriptional co-activator related to
Arabidopsis BLADE-ON-PETIOLE1 (BOP1) and BOP2
(Tavakol et al. 2015). Morphological analyses demon-
strated that Cul4 affects multiple aspects of tiller
development, regulating the number of AXMs that form
in each axil and the formation of secondary buds on
primary tillers, as well as being required for proper tiller
outgrowth (Tavakol et al. 2015). Consistent with these
findings, the gene is expressed at the leaf axil boundary,
prior to AXM formation and later more diffusely in the
axillary bud (Tavakol et al. 2015). Interestingly,
cul4 mutants lack ligules and in wild-type plants the
Cul4 gene is expressed in developing ligules, suggesting
a shared genetic control of tiller and ligule development
(Tavakol et al. 2015). Intriguingly, another liguleless
mutant, eligulum-a (eli-a), was recently identified as a
suppressor of the cul2 mutant (Okagaki et al. 2018).
Plants carrying mutations in the Eli-a gene exhibit
reduced stature and fewer tillers, as well as abnormality
of the leaf blade-sheath boundary. The Eli-a gene
encodes a protein of unknown function containing an
RNaseH-like domain and is conserved in different plant
species: the transcript is expressed at the preligule
boundary and the developing ligule; however, in
contrast to Cul4, it is not expressed at the AXM
boundary in the leaf axil, so the role of Eli-a in tiller
development remains unclear (Okagaki et al. 2018).

By contrast to the previously mentioned mutants,
recessive mutations in genes like Mnd1 (7HL), Mnd6
(5HL) and Gra-a (3H) show excessive development of
tillers and semi-dwarf phenotypes (Druka et al. 2011). In
mnd6mutants, side branches develop from aerial nodes
(Babb and Muehlbauer 2003), whereas gra-a mutants
unveil increased numbers of AXMs and axillary buds,
with an infrequent appearance of two SAMs (Babb and
Muehlbauer 2003). The gene for themnd6 locus, named
HvMND, encodes a member of the CYP78A subfamily of
cytochrome P450 enzymes (Mascher et al. 2014).
Although the genes for mnd1 and gra-a mutations
have not been identified, their phenotypes are similar to
those of rice mutants defective in the biosynthesis or
signalling of strigolactones, a class of plant hormones
that repress shoot branching (Ishikawa et al. 2005; Zou
et al. 2006; Arite et al. 2007; Waters et al. 2017).
Characterization of these mutants may be useful for the
study of the strigolactone pathway in barley.
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Noteworthy is a recent study reporting the first
characterization of a strigolactone-related gene in
barley, HvD14, encoding an alpha/beta hydrolase highly
related to the rice strigolactone receptor (Marzec et al.
2016).

GWAS and QTL analyses of tillering in barley
Analysis of tiller number in barley revealed the presence
of significant genetic variation in both germplasm
collections and bi-parental populations (Abeledo et al.
2004; Borr�as et al. 2009; Alqudah and Schnurbusch 2013;
Alqudahet al. 2016). A considerable effect of row typeon
tiller number was demonstrated under various growth
conditions (Alqudah and Schnurbusch 2013). Consistent
with this finding, tiller number was shown to be affected
by the allelic status of the VRS1 gene (Liller et al. 2015).

Genetic variation in reproductive development may
also cause variation in tillering. Many studies, including
natural and biparental populations, have identifiedQTLs
or marker associations for tillering in close proximity to
genes responsible for flowering time and vernalization
(Karsai et al. 1999; Borr�as et al. 2009; Alqudah et al.
2016; Ogrodowicz et al. 2017). Increased tillering in
barley was commonly correlated to strong vernalization
requirement and reduced photoperiod sensitivity
(Karsai et al. 1999; Wang et al. 2010). The major
vernalization genes Vrn-H1 and Vrn-H2 and the photo-
period response gene Ppd-H1 were shown to be
significant in tiller production (Karsai et al. 1999; von
Korff et al. 2006; Wang et al. 2010). It is likely that Ppd-
H1, Vrn-H1, and Vrn-H2 regulate tillering via controlling
FT, the florigen gene acting in the apical meristem to
enhance the transition from vegetative to reproductive
growth (Corbesier et al. 2007; Tamaki et al. 2007).

A recent GWAS study using a 9 k gene-based SNP
chip (Comadran et al. 2012) has shown that grouping
accessions according to photoperiod sensitivity (Ppd-H1
vs ppd-H1) and row type (VRS1 vs vrs1) allows detection
of novel QTLs for tiller number (Alqudah et al. 2016).
Another GWAS study on 97 two-rowed spring barley
lines also detected several QTLs for tillering at different
developmental stages (Neumann et al. 2017).

Novel phenotyping approaches for tillering
Generally, tiller number is scored manually by counting
the shoots from a single plant, commonly at harvest
time as an end-of-life trait. However, this method is
time-consuming and laborious. There is strong interest

in developing automated plant phenotyping methods
allowing dynamic measurements throughout plant
development and in response to environmental con-
ditions. However, to the best of our knowledge, few
methods have been introduced for automated mea-
surement of tiller number.

Boyle et al. (2016) developed an estimator of tiller
number and applied it to wheat in experiments at the
UK National Plant Phenomics Centre (NPPC), a facility
that offers different types of imaging modalities under
controlled environments. This method uses ribbon
detection approaches to identify and count tillers,
based on visible light images, applying ad hoc filters to
distinguish them from leaves. Generally, multiple
images are taken every day for each plant and the
average of the approximate data obtained from each
view angle is the best-estimate of tiller count per plant,
for a specific day.

Another method proposed by Gła ̨b et al. (2015) to
count tiller number in grass species includes three main
steps: (i) bunches preparation for analysis; (ii) imaging;
and (iii) computer analysis of the image. At the initial
step, the bunches of grass need to be cut, keeping 5 cm
of aboveground straws. The observation area is next
cleaned by removing the shoots after cutting and
coloring the cut culms with white acrylic paint. The
resulting white coloring helps to obtain contrasted
images to separate the target features from the
background. In the second step, imagesof grass bunches
are taken froma 150 cmdistance. In the third step, digital
images are processed with Aphelion Dev 4.2.0 software
for analysis. Image analysis can be further divided into
the following four major steps/functions for filtering,
segmentation, measurements and object separation,
respectively (Wojnar andMajorek 1994; Głąb et al. 2015).

In the first step, the ImgColorToRGB function divides
the raw images into three visible color bands, that is, red
(R), green (G) and blue (B). Then this RGB image is
further converted to grey images, depending on the
blue band. Next, the ImgMaximumContrastThreshold
function operates by automatically selecting a thresh-
old tomaximize the average contrast of edges detected
in the image by the threshold value. In the segmenta-
tion step, the objects of interest (i.e., painted culm
cross-sections) turn red, keeping the background a
black color. The ImgOpen function is used to eliminate
smaller objects which are less than 200 pixels, so that
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the tiller number can be counted. Finally, the ObjCom-
pute function calculates measurements (including
shape parameters) for different spatial objects. A
limitation of this method is that it is destructive and
mostly applicable at the end of the plant life.

As grass species differ for their tillering behavior,
validation and optimization of these methods would
probably be required to apply them to barley.

IMPLICATIONS FOR BREEDING

Crop production is expected to increase in order tomeet

the food demands of the growing global population

(Hunter et al. 2017). Furthermore, climate changes, such

as strong winds, rising temperatures and heavy rainfall,

have potential negative effects on crop production and

food security (IPCC 2015; Ray et al. 2015). As amajor food

crop, barley has also experienced vulnerability to climate

change, such as temperature increment (Ray et al. 2015;

R€otter et al. 2015; Hunter et al. 2017). The Green

Revolution brought agronomic and genetic advance-

ments (Peng et al. 1999; Spielmeyer et al. 2002);

however, new genotypes capable of performing under

future climate changes and low agronomical inputs are

still required in order to reduce environmental impacts

(Dawson et al. 2015; Rockstr€om et al. 2017).

The concept of “ideotype breeding” is an alternative/

complementary breeding strategy to traditional selection

for crop yield (Donald 1968). With the knowledge of the

genetic and physiological mechanisms controlling plant

performance, this concept aims at designing crops best

adapted to target environments, through a combination

of predefined traits.With the term “ideotype”, literally “a

form denoting an idea”, breeders and scientists indicate a

biological model with a defined and predictable behavior

in a specificenvironment (Donald 1968;Martre et al. 2015).

Ideotype breeding has been successfully applied, for

example in rice (IRRI 1989; Peng et al. 2004), where it

benefited fromthe integrationof different approaches: (i)

investigation of plant trait interactions and trade-offs in

different agro-climatic conditions; (ii) high throughput

sequencing, genome annotation and dense marker

panels; (iii) availability of a congruous level of allelic

diversity from a range of genetic resources (including

mutants, landraces and crop wild relatives); and (iv)

advanced phenotyping methods for accurate phenotypic

evaluation (Donald 1968; Tao et al. 2017).

A plant ideotype is defined by model characters,

which can be either morphological, physiological,

agronomical or biochemical, contributing to crop yield

and performance in a given environment (Kawano et al.

1966; Thorne 1966). Ideotype breeding can also be

applied to develop dual-purpose crops, providing both

grains and biomass for bioethanol fermentation, nickel

from phyto-recovery and forage (Li et al. 2003a; Giunta

et al. 2015; Townsend et al. 2017).
Designing a single ideotype for a given crop for a

wide range of areas is restrictive since the fluctuations
and changes in temperature, precipitation and soil
composition will influence morphological and physio-
logical plant features to different extents. Thus,
development of an ideotype must take into account
the target environment and consider future climate
conditions based on simulation models (R€otter et al.
2015). Furthermore, crop modelling approaches are
useful to predict the performance of different pheno-
types for each crop/ecological area to support the
design of appropriate breeding programs and crop
management systems (Rasmusson 1991; Martre et al.
2015).

Choosing model characters for ideotype breeding
Many features can be taken as model characters that

can influence the overall performance of the plant

(Nadolska-Orczyk et al. 2017). In ideotype breeding,

it is necessary also to consider the correlations

among different traits, often resulting from pleiotropy,

epistasis or linkage of the underlying loci, and

compensatory physiological and developmental mech-

anisms (Chandler and Harding 2013; Rebolledo et al.

2013). As a successful example, Green Revolution

cultivars, with their reduced plant stature, showed an

increase in grain yield performance in intensive agricul-

ture compared with traditional cultivars, and this was

mainly due to the improved lodging resistance and

enhanced nitrogen use efficiency (Gooding et al. 2012;

Xu et al. 2017). In the following sections, we focus on the

target traits already discussed, overviewing how the

optimization of these traits can improve crop perfor-

mance and yield (Zhu et al. 2010; Mathan et al. 2016;

Wang et al. 2018).

Tillering
As each tiller has the potential to form a fertile
inflorescence, the number of tillers is a critical
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determinant of grain yield (Jia et al. 2011). However,
tillering potential should be carefully balanced, as a
reduced number of tillers will produce few panicles and
loss of yield, whereas excessive number of tillers will
result in unfertile tillers, diverting resources from
developing spikes (Peng et al. 1994; Kennedy et al.
2017). Furthermore, high tillering generally has negative
relationships with other traits related to biomass (e.g.,
plant height) and lodging resistance (e.g., stem
diameter) (Tripathi et al. 2003; Kuczy�nska et al. 2013).
Finally, a crowded canopy will result in a humid micro-
environment ideal for spreading of diseases (Mew
1991).

As a quantitative trait, tillering is very plastic and is
determined by various factors, such as environment and
local agronomic practices (del Moral and del Moral
1995; Zhong et al. 2003). However, several agronomic
and genetic studies have indicated that the complexity
of this trait can be dissected. For example, beside the
abovementioned genes (see section on Genetics of
barley tillering), the role of a vernalization requirement
and photoperiod sensitivity on tiller development has
been documented. These findings indicate that genes
that influence the vernalization requirement and
flowering can be manipulated by choosing appropriate
alleles to reduce the plasticity of tillering.

In barley, Karsai et al. (2006) showed that, upon
vernalization, winter-type varieties (Vrn-H2) produce, on
average, more fertile tillers compared with the spring
types, under long-photoperiod conditions. Moreover,
winter barleys produce more tillers under long com-
pared to short photoperiods (Karsai et al. 2006). Beside
growth habit, row type has also been demonstrated to
affect tillering. Two-rowed cultivars have, on average, a
higher number of fertile tillers compared to six-rowed
(Janoria Jabalpur 1989; del Moral and del Moral 1995).

Genetic studies inwheat indicate thatmutation in the
Tiller inhibition (Tin) gene results in lower numbers of
tillers but a higher ratio of productive tillers, to total tiller
number, aswell as larger spikes and grains (Moeller et al.
2014 and references therein; Hendriks et al. 2016).
Duggan et al. (2005) proposed tiller reduction with the
tin gene to improve production under terminal drought
conditions, taking advantage of the reduction in non-
productive tillers and a limited consumption of soil water
before anthesis. However, results on performance of tin
lines, under drought conditions, are somewhat contra-
dictory (Mitchell et al. 2013).

An interesting example of tillering manipulation in a

breeding program is represented by the rice New Plant

Type (NPT), developed at the International Rice

Research Institute (IRRI). Breeding of the NPT began

early in the 1990s, with an aim of developing a new rice

ideotypewith improved characteristics (Penget al. 2008;

Khush 2013). The aim was to reduce the number of

unproductive tillers, as theyounger tillersmake very little

contribution to yield, but compete for nutrients (Peng

et al. 2008). Due to the poor yield achieved in the first

trial, tiller number was increased in a second generation

of NPT rice lines; this was achieved by crossing the first

generation NPT lines with elite Indica varieties.
In a four-field experiment, conducted in 2002/2003 in

flooded fields, the second-generation NPT out-yielded
the first-generation NPT (Peng et al. 2004). This
yield increase was due to improved panicle number
and grain-filling capacity. In a similar vein, the aim of the
Chinese “super rice” breeding programwas to combine
alleles for establishment of rice lines with optimal
architecture and number of tillers; this program
resulted in a significant increase in grain yield (Qian
et al. 2016; Wenfu et al. 2007).

Erect leaves and canopy architecture
Position, size and metabolic features of leaves are
excellent targets for improving canopy architecture, to
achieve higher photosynthesis rate in CO2 rich environ-
ments that are expected in the coming decades (Horton
2000; Song et al. 2013; Ort et al. 2015). As an example,
the “smart canopy” ideotype considers leaf position
and morphology, proposing plants with erect leaves at
the top of the canopy as a means to increase
photosynthetic efficiency, in combination with bio-
chemical traits (Innes and Blackwell 1983; Araus et al.
1993; Richards and Lukacs 2002; Ort et al. 2015). Several
studies support the importance of leaf angle manipula-
tion in different cereal crops (e.g., Gardener 1966;
Zhang et al. 2017).

In barley, allelic variation in genes involved in the BR
pathway provides opportunities for manipulating leaf
angle. For example, uzu barleys are highly resistant to
lodging and are productive in dense planting conditions,
due to the short-culm trait and erect leaves (Dockter
et al. 2014); for this reason, uzu-type barley was
grown in 70% of Japanese barley fields in the 1930s.
As mentioned above, some uzu alleles exhibit
temperature-sensitivity, whereas others are more

Barley tiller and leaf development 247

www.jipb.net March 2019 | Volume 61 | Issue 3 | 226–256



stable (Dockter et al. 2014). In rice, Sakamotoet al. (2006)

also reported that mutations in another BR pathway

gene, OsDWARF4, affect canopy architecture, via leaf

inclination, with positive effects on grain production. A

rice canopy model elaborated by Long et al. (2006)

defines cultivars with narrow leaf angle at the top of the

canopy in order to reach elevated rates of CO2 uptake.

Among various morphological traits, the “super rice”

ideotype defined angles for the three apical leaves as 5°

for the flag leaf, 10° for the 2nd and 20° for the 3rd (Peng

et al. 2008). In China, 34 “super rice” hybrid varieties

were commercially released between 1998 and 2005 and

sown on an area of 13.5 million hectares, increasing rice

production by 6.7 million tons (Peng et al. 2008).

CONCLUSION AND PERSPECTIVES

Recently, crop modelling revealed its potential as a tool

to support ideotype design for crop breeding (Li et al.

2012; R€otter et al. 2015; Gouache et al. 2017). Simulation

testing within a series of environments through an

ensemble of models was proposed as a promising way

to investigate ideotype design and reduce uncertainties

in the simulations (Wallach et al. 2016; Tao et al. 2017).

It is important to understand that the selected traits

are not supposed to work individually, in agreement

with the Gestalt rationale that “the whole is more than

the sum of its parts” (Lim et al. 2007). In order to

optimize interactions among plant traits, symmetries,

contrasts and positive or negative correlations must be

investigated in detail. In this respect, high throughput

phenotyping technologies can play a major role to

evaluate complex and unexplored traits on a breeding

scale (Fiorani and Schurr 2013). At the same time,

identification and preservation of allelic diversity,

present in landraces, wild relatives and mutant

collections, is important for efficient exploitation of

genetic diversity (Tavakol et al. 2017; Szareski et al.

2018). This exploitation can be facilitated by state-of-

the-art genomic tools, which can be employed for

mapping of relevant genes (Figure 3) and systematic

exploration of germplasm collections. Such approaches

are being harnessed to better our understanding of the

complex mechanisms linking shoot architecture and

plant performance, with an objective to develop useful

information to establish new crop ideotypes.
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