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Introduction

It is classically known that many geometric properties of a smooth projective scheme Z can be recovered
from the study of its derived category of bounded complexes of coherent sheaves DbpZq. For example,
a famous result by Bondal and Orlov states that smooth projective varieties with ample (anti)canonical
bundle and equivalent bounded derived categories are isomorphic. The category DbpZq is in general
a difficult object to directly investigate; however, in some situations, it is possible to divide it into
subcategories which are easier to describe. More precisely, a semiorthogonal decomposition for DbpZq
is a collection of full admissible subcategories generating the bounded derived category and satisfying
certain orthogonality conditions.

In this thesis, we focus on the case of cubic fourfolds and Gushel-Mukai fourfolds, which are
two classes of smooth Fano varieties of dimension four (defined over the complex numbers). By the
mentioned result of Bondal and Orlov, we know that the isomophism class of such a fourfold is deter-
mined by its derived category. On the other hand, by the work of Kuznetsov for cubic fourfolds, and
Kuznetsov-Perry for Gushel-Mukai fourfolds, there is an admissible subcategory of K3 type arising as
a non trivial component of a semiorthogonal decomposition of their derived categories.

The aim of this work is to investigate certain aspects of the geometry of these fourfolds which are
encoded by their K3 subcategory.

Historical motivations. A cubic fourfold Y is a smooth cubic hypersurface in P5, while a Gushel-
Mukai (GM) fourfold X is a smooth four-dimensional quadric section of a linear section of the cone
over the Grassmannian Grp2, 5q. Even if these fourfolds have been deeply studied in the last twenty
years, the problem of understanding their irrationality/rationality remains one of the most challenging
in this area. A folklore conjecture connects the rationality of a cubic fourfold Y to the property of
having a Hodge-associated K3 surface, in the sense of Hassett (see [39]). Similar definitions have been
stated in [27] by Debarre, Iliev and Manivel for a GM fourfold X.

In 2008, Kuznetsov proposed a new categorical approach in order to deal with this question. In
particular, he proved in [57] that the derived category of a cubic fourfold Y has a semiorthogonal
decomposition of the form

DbpY q “ xKupY q,OY ,OY p1q,OY p2qy.

Here OY ,OY p1q,OY p2q are line bundles on Y and KupY q is the right orthogonal to this exceptional
collection. It turns out that KupY q is a K3 category, in the sense that it has the same Serre functor
and the same Hochschild homology of that of the derived category of a K3 surface. He conjectured
that Y is rational if and only if KupY q is equivalent to the derived category of a K3 surface.

More recently, Kuznetsov and Perry found a semiorthogonal decomposition for the derived category
of a GM fourfold X, of the form

DbpXq “ xKupXq,OX ,U˚X ,OXp1q,U˚Xp1qy.

Again KupXq :“ xOX ,U˚X ,OXp1q,U˚Xp1qyK is an admissible K3 subcategory of DbpXq (see [61]).
The noncommutative K3 surfaces KupY q and KupXq are known as the Kuznetsov components of

Y and X, respectively. Notice that the known examples of rational cubic fourfolds and GM fourfolds
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are consistent with Kuznetsov’s conjecture, but in general this remains an open problem. A better
understanding of the Kuznetsov component and its relation with the geometry of the fourfold could
be a step toward a possible strategy to address the rationality question.

Cubic fourfolds. The first problem we deal with in this thesis is whether the Kuznetsov component
determines the isomorphism class of a cubic fourfold Y . As expected in relation to what happens in
the case of K3 surfaces, we provide a negative answer to this question. This is the content of [87].

More precisely, a cubic fourfold Y 1 is a Fourier-Mukai partner of Y if there is an exact equivalence
KupY q „ÝÑ KupY 1q which is of Fourier-Mukai type, i.e. such that the composition with the inclusion of
KupY q in DbpY q and the left adjoint of the inclusion is a Fourier-Mukai functor. In [47], Huybrechts
proved that the number of isomorphism classes of Fourier-Mukai partners of Y is finite; moreover, if
Y is very general (i.e. the rank of H2,2pY,Zq is one), then every Fourier-Mukai partner is isomorphic
to Y .

It is natural to ask whether a special cubic fourfold Y , i.e. such that rkpH2,2pY,Zqq ě 2, admits
Fourier-Mukai partners which are not isomorphic to Y . The first result of this work is a counting
formula for the number of isomorphism classes of Fourier-Mukai partners for very general special cubic
fourfolds admitting an associated K3 surface. In particular, we deduce that there exist cubic fourfolds
with discriminant d, admitting an arbitrary number of Fourier-Mukai partners, depending on the
number of distinct odd primes in the prime factorization of d.

Secondly, we obtain a similar formula for very general cubic fourfolds Y of discriminant d admitting
an associated twisted K3 surface pX,αq, if 9 does not divide the discriminant d. Indeed, we find a lower
bound for the number of Fourier-Mukai partners of Y , which is controlled by the number of distinct
primes in the prime factorization of d{2 divided by the square of the order of the Brauer class α and
by the Euler function evaluated in ordpαq.

These results complete the expected analogy between cubic fourfolds and K3 surfaces, stated in
[47]. They also represent a first step in order to understand whether cubic fourfolds with equivalent
Kuznetsov components are birational.

The second problem we discuss is the study of moduli spaces of rational curves of low degree
on a cubic fourfold Y . In particular, we give a description of the Fano variety of lines and of the
hyperkähler eightfold associated to twisted cubic curves in Y as moduli spaces of Bridgeland stable
objects in KupY q. This is the content of [65], which is a joint work with Chunyi Li and Xiaolei Zhao.

The general feeling is that, in order to have a better understanding of the category KupY q and its
relation with the geometry of the cubic fourfold, we should know more about moduli spaces parametriz-
ing stable objects in the Kuznetsov component. This is now possible by one of the main results of [7],
where they construct Bridgeland stability conditions for KupY q. Since KupY q is a K3 category, these
moduli spaces come naturally equipped with a holomorphic nondegenerate two-form; thus, they are
good candidates to provide examples of complete families of hyperkähler manifolds.

On the other hand, there are two well-known hyperkähler varieties naturally associated to Y . In
1982 Beauville and Donagi proved that the Fano variety parametrizing lines in Y is a smooth irreducible
homolorphic symplectic variety of dimension four, deformation equivalent to the Hilbert square on a K3
surface. More recently, Lehn, Lehn, Sorger and van Straten constructed a smooth hyperkähler eightfold
MY of K3r4s-type, from the irreducible component of the Hilbert scheme parametrizing twisted cubic
curves in Y .

Our strategy is to consider the projection in KupY q of a certain twist of the ideal sheaf of a line
and of a twisted cubic curve in Y , and to prove that it is stable with respect to the Bridgeland stability
conditions constructed in [7]. In the case of twisted cubic curves, this approach simplifies a lot the
description of the construction of LLSvS eightfold, because, involving only homological computations,
it does not require a detailed analysis of the singularities of the cubic surface containing the curve. For
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example, we interpret the contraction of the divisor of non CM twisted curves, performed in order to
get MY , via wall-crossing in stability. As a consequence, we get that all birational models of MY are
obtained by crossing a wall in Bridgeland stability.

As an application of these results, we give an alternative proof of the categorical Torelli Theorem
for cubic fourfolds and we obtain the identification of the period point of LLSvS eightfold with that of
the Fano variety. Finally, we suggest a possible stategy to treat the derived Torelli Theorem for cubic
fourfolds and we prove it in a simple case.

Gushel-Mukai fourfolds. In the second part of this thesis, we study the formulation of some results
proved in [4], [2] and [47] for cubic fourfolds, in the case of GM fourfolds. In particular, we discuss
the conditions under which the double cover ỸA of the EPW sextic hypersurface associated to a GM
fourfold X is birationally equivalent to a moduli space of (twisted) stable sheaves on a K3 surface.
Then, we characterize when ỸA is birational to the Hilbert square on a K3 surface. This is the content
of [88].

As already observed, cubic fourfolds and GM fourfolds share a lot of similarities from the Hodge
theoretical and the derived categorical point of view. The interest in understanding these analogies has
increased after the recent work [29], where Debarre and Kuznetsov prove that the period point of X is
identified to that of a double EPW sextic ỸA, which is a hyperkähler fourfold deformation equivalent
to the Hilbert square on a K3 surface constructed from X. This is analogous to Beauville and Donagi’s
result for the Fano variety of a cubic fourfold.

In order to study ỸA, we define the Mukai lattice KpKupXqqtop for KupXq, as done by Addington
and Thomas in [4] for the Kuznetsov component of a cubic fourfold. In particular, we find two classes
in KpKupXqqtop such that the orthogonal complement to the lattice they generate is Hodge isometric
to the degree four vanishing cohomology of X. As a first consequence, we prove that X has a twisted
associated K3 surface if and only if the discriminant of the GM fourfold satisfies a certain numerical
condition (this was done in [47] for cubic fourfolds).

Using [2], we prove that the property of having ỸA birational to the Hilbert square on a K3 surface
is a divisorial condition; however, this is not true if we require that ỸA is birational to a moduli space
of stable sheaves on a K3 surface. In particular, we construct examples of GM fourfolds having a
hyperbolic plane embedded in the algebraic part of KpKupXqqtop, but without a Hodge-associated K3
surface. This shows a different behavior with respect to the case of cubic fourfolds.

As a byproduct, we get that if a very general GM fourfold has the Kuznetsov component equivalent
to the derived category of a K3 surface, then it has a Hodge-associated K3 surface. In contrast to what
proved in [4] for cubic fourfolds, it is not guaranteed whether this holds for every GM fourfold.

In the last part of this work, we describe a conic fibration associated to an ordinary GM fourfold.
This construction has been used in the work [84] joint with Mattia Ornaghi, to prove Voevodsky’s
conjecture for general GM fourfolds. In a joint work in progress with Alex Perry and Xiaolei Zhao, we
are trying to use this geometric picture in order to induce Bridgeland stability conditions on KupXq, in
the same spirit of [7]. This technique would allow to study moduli spaces of stable objects in KupXq,
as in the case of cubic fourfolds, leading to many interesting applications.
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Chapter 0

General preliminaries

In this chapter we introduce the basic material in order to understand Part I and Part II of this
thesis. In particular, we discuss semiorthogonal decompositions of derived categories, lattice theory,
hyperkähler varieties and stability conditions.

0.1 Categorical setting in the geometric context

In this section, we firstly recall the abstract notions of abelian category, triangulated category, derived
category of an abelian category and derived functor. Then, passing to the geometric setting, we deal
with the bounded derived category of a smooth projective scheme and the notion of semiorthogonal
decomposition. Finally, we provide some known examples of semiorthogonal decompositions, dealing
with the case of cubic fourfolds and GM fourfolds, which are required in the next chapters. Our main
reference for the first three sections is [44], while we follow [59] for the last two sections.

0.1.1 Triangulated categories

The aim of this part is to encode the framework in which we work from the categorical point of view.
Since we will consider smooth projective schemes over a field k, our categories will be k-linear. Let us
firstly recall this notion.

Definition 0.1.1. A categoryA is additive if for every couple of objects A, B P A the set HomApA,Bq
is endowed with the structure of an abelian group and the following conditions hold:

1. The compositions HomApA1, A2q ˆ HomApA2, A3q Ñ HomApA1, A3q sending pf, gq to g ˝ f are
bilinear.

2. There exists a zero object 0 P A.

3. For any two objects A1, A2 P A there exists an object B P A with morphisms ji : Ai Ñ B and
pi : B Ñ Ai for i “ 1, 2, which make B the direct sum and the direct product of A1 and A2.

A functor F : AÑ A1 between additive categories is additive if the induced maps

HomApA,Bq Ñ HomA1pF pAq, F pBqq

are group homomorphisms.

Definition 0.1.2. A k-linear category is an additive category A such that the groups HomApA,Bq
are k-vector spaces and all compositions are k-bilinear.
An additive functor F between k-linear categories is k-linear if for every pair of objects A and B in
A the natural map HomApA,Bq Ñ HomA1pF pAq, F pBqq is k-linear.
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We also recall the definition of a functor which takes a key role in the geometric context.

Definition 0.1.3. LetA be a k-linear category. A Serre functor is a k-linear equivalence SA : AÑ A
such that for every pair of objects A and B in A there is a functorial isomorphism of k-vector spaces

HomApA,Bq – HomApB,SApAqq
_.

We end this section explaining the notions of abelian categories and triangulated categories.

Definition 0.1.4. An abelian category is an additive category such that every morphism admits
kernel and cokernel, and the natural map between coimage and image is an isomorphism.

Example 0.1.5. In the geometric context, there are three abelian categories naturally associated to
a scheme X over k: the category OX -Mod of OX -modules, the category QCohpXq of quasi-coherent
sheaves, and the category CohpXq of coherent sheaves on X. We recall that they are related by the
following inclusions:

OX -Mod Ą QCohpXq Ą CohpXq.

Definition 0.1.6. Let T be an additive category. The structure of triangulated category for T is
the data of an additive autoequivalence r1s : T Ñ T called shift functor, and a set of sequences of the
form

AÑ B Ñ C Ñ Ar1s

called distinguished triangles, satisfying the following axioms.

TR1 • A id
ÝÑ AÑ 0 Ñ Ar1s is a distinguished triangle.

• Any triangle isomorphic to a distinguished triangle is distinguished.

• Any morphism f : AÑ B sits inside a distinguished triangle AÑ B Ñ C Ñ Ar1s.

TR2 A triangle AÑ B Ñ C Ñ Ar1s is distinguished if and only if B Ñ C Ñ Ar1s Ñ Br1s is.

TR3 Suppose we have a commutative diagram of distinguished triangles

A1
//

f

��

B1
//

g

��

C1
//

h
��

A1r1s

f r1s

��

A2
// B2

// C2
// A2r1s.

Then there is a (non-unique) morphism h : C1 Ñ C2 completing the diagram.

TR4 Given two morphisms f : AÑ B and g : B Ñ C, there is a distinguished triangle D1 Ñ D3 Ñ

D2 Ñ D1r1s, where D1, D2 and D3 are given by A f
ÝÑ B Ñ D1 Ñ Ar1s, B g

ÝÑ C Ñ D2 Ñ Br1s

and A g˝f
ÝÝÑ C Ñ D3 Ñ Ar1s, which sits in the following commutative diagram

A
f
//

id
��

B //

g

��

D1
//

��

Ar1s

��

A
g˝f
//

��

C //

��

D3
//

��

Ar1s

��

B
g
// C // D2

// Br1s.
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A functor between triangulated categories is exact if it commutes with the shift functors and it respects
distinguished triangles.

We point out that the left (resp. right) adjoint of an exact functor is exact (see [44], Proposition
1.41).

Definition 0.1.7. A subcategory T 1 of a triangulated category T is a triangulated subcategory of
T if T 1 has a structure of triangulated category such that the (faithful) inclusion functor i : T 1 ãÑ T
is exact.

A triangulated subcategory T 1 is full if i is a full functor. We say that a full triangulated sub-
category T 1 is left admissible (resp. right admissible) if i has a left (resp. right) adjoint functor
i˚ : T Ñ T 1 (resp. i! : T Ñ T 1). Moreover, T 1 is admissible if it is left and right admissible.

In the next section, we will describe two important examples of triangulated categories: the homo-
topy category and the derived category of an abelian category.

0.1.2 Derived categories

Given an abelian category A, we can associate two triangulated categories to the category of complexes
of objects in A in the following way. We recall that a complex in A is the data of a sequence

A‚ : ¨ ¨ ¨ Ñ Ai´1 di´1

ÝÝÝÑ Ai
di
ÝÑ Ai`1 di`1

ÝÝÝÑ ¨ ¨ ¨

where Ai is an object of A and di is a morphism in A such that di`1 ˝di “ 0 for every i P Z. Moreover,
a morphism f between two complexes A‚ and B‚ is the data of a collection of morphisms f i : Ai Ñ Bi

for i P Z such that f i`1 ˝ diA “ diB ˝ f
i. We denote by CpAq the category of complexes in A, whose

objects are complexes in A and whose morphisms are morphisms of complexes. We recall that the
cohomology of a complex A‚ in A is

H ipA‚q :“
ker diA
Imdi´1

A

P A

and given f in HomCpAqpA
‚, B‚q we have an induced map H ipfq : H ipA‚q Ñ H ipB‚q for every i P Z.

Definition 0.1.8. Two morphisms f and g in CpAq are homotopy equivalent if there is a collection
of morphisms hi : Ai Ñ Bi´1 such that f i ´ gi “ hi`1 ˝ diA ` d

i´1
B ˝ hi. In this case, we write f „ g.

We denote by KpAq the homotopy category of CpAq whose objects are complexes in A and whose
set of morphisms for every pair A‚, B‚ in KpAq is given by

HomKpAqpA
‚, B‚q “ HomCpAqpA

‚, B‚q{ „ .

Definition 0.1.9. A morphism f : A‚ Ñ B‚ in CpAq is a quasi-isomorphism if H ipfq is an
isomorphism for every i P Z.

Notice that if f is homotopy equivalent to g, then H ipfq “ H ipgq for every index i. Thus, the
condition of being a quasi-isomorphism is well-defined in KpAq.

Definition 0.1.10. Given an abelian category A, the derived category DpAq is the category whose
objects are complexes in A and whose sets of morphisms HomDpAqpA

‚, B‚q are formed by equivalence
classes of diagrams of the form

C‚

qiso

}} !!

A‚ B‚

13



where C‚ Ñ A‚ is a quasi-isomorphism. Two such diagrams are equivalent if there exists a commutative
diagram in KpAq of the form

C‚

}} !!

qiso

��

C‚1

~~
**

C‚2

!!
tt

A‚ B‚

.

Given two morphisms

C‚1
qiso

~~ !!

A‚ B‚

and C‚2
qiso

}} !!

B‚ C‚

in DpAq, the composition is defined by the equivalence class of a commutative diagram

C‚0
qiso

~~   

C‚1
qiso

~~ !!

C‚1
qiso

}} !!

A‚ B‚ C‚

in KpAq. In [44], Proposition 2.17 and Corollary 2.18, it is proved that this diagram exists and it is
unique up to equivalence (the proof relies on the definition of the cone of a morphism which is explained
below).

The idea behind the definition is that quasi-isomorphisms are isomorphisms in the derived category.
More precisely, the derived category of A is obtained by localization of KpAq with respect to the class
of quasi-isomorphisms (see [34] for a precise definition). In particular, we have a natural functor
QA : KpAq Ñ DpAq.

The homotopy category and the derived category of A carry a triangulated structure. In particular,
the shift functor is the equivalence which acts on complexes by shifting by one the degree, i.e. given
a complex A‚ in A, then A‚r1s is the complex with Ar1si :“ Ai`1 and diAr1s :“ di`1

A . In order to
define distiguished triangles, we need to introduce the mapping cone construction. Given a morphism
f : A‚ Ñ B‚, the mapping cone of f is the complex Cpfq‚ defined by Cpfqi :“ Ai`1 ‘Bi and

diCpfq‚ “

ˆ

´di`1
A 0

´f i`1 diB

˙

.

Notice that A‚, B‚ and Cpfq‚ sit in the sequence

A‚
f
ÝÑ B‚ Ñ Cpfq‚ Ñ A‚r1s,

where the second map is the inclusion Bi ãÑ Ai`1‘Bi and the third map is the projection Ai`1‘Bi �
Ai`1. The set of isomorphism classes of sequences of this form defines the set of distinguished triangles.
Moreover, the localization functor QA is exact. We refer to [34], Chapter IV.2 for the proof.

We point out that we can consider the categories C`pAq, C´pAq and CbpAq defined respectively
as the categories of bounded below complexes, bounded above complexes and bounded complexes. We
can then construct the homotopy categories K`pAq, K´pAq, KbpAq and the derived categories D`pAq,
D´pAq and DbpAq with the same procedure used before.

14



Remark 0.1.11. Notice that there is a fully faithful functor i : A ãÑ DbpAq sending an object A P A
to the bounded complex ¨ ¨ ¨ Ñ 0 Ñ AÑ 0 Ñ . . . , where the only non zero factor is A sitted in degree
0.

Definition 0.1.12. (Example) Let X be a noetherian scheme over k. Then the derived category
of X is the derived category of boundend complexes of coherent sheaves DbpXq :“ DbpCohpXqq
constructed from the abelian category CohpXq.

Remark 0.1.13. As seen in Example 0.1.5, we have other abelian categories associated to X. In
particular, we can consider also the derived categories DbpQCohpXqq and DbpOX -Modq. If X is a
noetherian scheme, we have that DbpQCohpXqq is identified with the full triangulated subcategory of
DbpOX -Modq of bounded complexes with coherent cohomology (see [44], Proposition 3.3). Moreover,
the derived category DbpCohpXqq is equivalent via the natural inclusion in DbpQCohpXqq to the full
triaungulated subcategory of bounded complexes of quasi-coherent sheaves with coherent cohomology
(see [44], Proposition 3.5).

0.1.3 Derived functors

We are now interested to study functors between abelian categories which induce a functor between
the derived categories. It is not difficult to check that an exact functor between abelian categories
defines a functor between the associated derived categories which preserves the triangulated structure.
However, there are many non exact functors which are interesting in the geometrical setting, for
example pullback, pushforward, tensor product and many others. In any case, there is a general
construction which allows to associate an exact functor between the derived categories under weaker
hypotheses than exactness. A functor obtained in this way is a derived functor. Firstly, we need to
assume that the additive functor F : AÑ B is left or right exact. In particular, if F is left exact (resp.
right exact), we will obtain the right derived functor RF : D`pAq Ñ D`pBq (resp. the left derived
functor LF : D´pAq Ñ D´pBq).

Let us recall the construction of RF in the case that F is left exact. Assume that the category
A has enough injectives. Explicitely, this means that for every object A P A there is an injective
morphism AÑ I, where I is injective. Notice that if A has enough injective objects, then every A P A
has an injective resolution, i.e. an exact sequence of the form

0 Ñ AÑ I0 Ñ I1 Ñ . . . ,

where Ii is an injective object in A for every index i. We denote by I the full additive subcategory of
A of injective objects. The key result for the construction of derived functor is the following property.

Proposition 0.1.14 ([44], Proposition 2.40). Let A be an abelian category with enough injectives.
Then the exact functor i : K`pIq Ñ D`pAq given by the composition of the functor induced by the
natural inclusion I Ă A with the localization functor K`pAq Ñ D`pAq is an equivalence.

We are now ready to define the right derived functor RF .

Definition 0.1.15. The right derived functor of F : AÑ B is given by the composition

RF :“ QB ˝KF ˝ i´1 : D`pAq Ñ D`pBq.

Here KF : K`pAq Ñ K`pBq is the (well-defined) natural functor sending a complex ¨ ¨ ¨ Ñ Ai´1 Ñ

Ai Ñ Ai`1 Ñ . . . in K`pAq to ¨ ¨ ¨ Ñ F pAi´1q Ñ F pAiq Ñ F pAi`1q Ñ . . . , and a morphism
tf i : Ai Ñ Biu in K`pAq to tFf i : F pAiq Ñ F pBiqu.

In the following, we will often write F instead of RF or LF to denote the derived functor between
the derived categories to simplify the notation.
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Remark 0.1.16. Assume that A is an abelian category with enough injective objects. Then for every
A,B P A ãÑ DbpAq, we have

HomDbpAqpA,Brksq – ExtkApA,Bq

(see [44], Proposition 2.56). This property is very useful in order to compute Hom groups.

In the geometric setting, an important class of functors between the derived categories of smooth
projective varieties is given by Fourier-Mukai functors.

Definition 0.1.17. An exact functor F : DbpXq Ñ DbpX 1q is of Fourier-Mukai type if there exists
an object K in the derived category DbpX ˆX 1q of the product and an isomorphism of exact functors

F p´q – ΦKp´q :“ RpX 1˚pK
L
b Lp˚Xp´qq,

where pX : X ˆX 1 Ñ X and pX 1 : X ˆX 1 Ñ X 1 are the natural projections. The object K is called
Fourier-Mukai kernel.

By definition, a Fourier-Mukai functor ΦK is exact and it is possible to check that the composition
of Fourier-Mukai functors is again of Fourier-Mukai type (see [44], Proposition 5.10).

Remark 0.1.18. A famous result by Orlov states that every fully and faithful exact functor between
the derived category of two smooth projective varieties is of Fourier-Mukai type and the kernel is unique
up to isomorphism (see [44], Theorem 5.14). However, in [90], they construct an example of an exact
functor between the derived categories of two smooth projective schemes which is not of Fourier-Mukai
type, relaxing the hypothesis of fully faithfulness. For a complete survey about related questions, we
recommend [22].

Example 0.1.19. Let X be a smooth projective variety with canonical sheaf ωX . By Serre duality
for coherent sheaves, it follows that the exact autoequivalence of DbpXq defined by

SXp´q :“ p´q b ωXrdimpXqs,

is a Serre functor for DbpXq. Notice also that SX is a Fourier-Mukai functor with kernel p∆Xq˚ωXrdimpXqs,
where ∆X : X Ñ XˆX denotes the diagonal embedding. Indeed, for every E in DbpXq, by projection
formula we have that

Φp∆Xq˚ωX rdimpXqspEq “ p2˚pp
˚
1E b p∆Xq˚ωXrdimpXqsq

“ p2˚p∆Xq˚pp∆Xq
˚p˚1E b ωXqqrdimpXqs

“ pp2 ˝ p∆Xqq˚ppp1 ˝ p∆Xqq
˚E b ωXqrdimpXqs – E b ωXrdimpXqs,

where for the last identification we have used that pi ˝ p∆Xq “ id.

0.1.4 Semiorthogonal decompositions of Db
pXq

The derived category DbpXq of a smooth projective scheme X over a field k is in general difficult to
describe. The following definition provides a tool in order to decompose DbpXq into “easier” subcate-
gories.

Definition 0.1.20. A semiorthogonal decomposition of DbpXq is the data of a sequence T 1, . . . , T n
of full triangulated subcategories of DbpXq satisfying the folllowing conditions:

1. HomDbpXqpAi, Ajq “ 0 for every Ai P T i, Aj P Tj and n ě i ą j ě 0;
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2. For any non trivial object E in DbpXq, there is a chain of morphisms

0 “ En
fn
ÝÑ En´1

fn´1
ÝÝÝÑ En´2 . . . E1

f1
ÝÑ E0 “ E

such that the cone Cpfiq is in T i for every 1 ď i ď n.

We use the notation DbpXq “ xT 1, . . . , T ny for such a semiorthogonal decomposition.

Notice that the semiorthogonality condition of item 1 implies that the filtration of item 2 is unique
up to isomorphism. The second requirement means that DbpXq is generated by the subcategories
T 1, . . . , T n.

Remark 0.1.21. 1) If DbpXq “ xA,By, then A is left admissible and B is right admissible. In-
deed, notice that by Definition 0.1.20, for every C P DbpXq, there is a unique (up to isomorphism)
distinguished triangle

CB Ñ C Ñ CA Ñ CBr1s (1)

with CB P B and CA P A. Furthermore, let f : C Ñ C 1 be a morphism in DbpXq and consider the
triangle

C 1B Ñ C 1 Ñ C 1A Ñ C 1Br1s. (2)

Applying HomDbpXqpCB,´q to (2) and using the semiorthogonality condition, we get

HomDbpXqpCB, C
1q – HomDbpXqpCB, C

1
Bq.

Thus, there is a morphism fB sitting in the commutative diagram

CB //

fB
��

C //

f
��

CA

C 1B
// C 1 // C 1A.

The uniqueness of the filtration allows to define a functor i!B : DbpXq Ñ B such that i!BpCq “ CB
and i!Bpfq “ fB. We prove that i!B is right adjoint to the inclusion iB : B Ñ DbpXq. Indeed, for
every B P B, applying HomDbpXqpiBpBq,´q to (1) and using the semiorthogonality condition, we get
HomDbpXqpiBpBq, Cq – HomDbpXqpiBpBq, CBq – HomBpB,CBq. This proves that B is right admissible.
Analogously, we deduce the left admissibility of A.
2) Since DbpXq has Serre functor, we have also the semiorthogonal decompositions

DbpXq “ xSXpBq,Ay “ xB, S´1
X pAqy.

In particular, by item 1), it follows that A and B are admissible subcategories.

It may happen that some factors of a semiorthogonal decomposition are subcategories generated
by a single object. This special situation is explained by the following definition.

Definition 0.1.22. An exceptional object is an element E P DbpXq such that

HomDbpXqpE,Erlsq “

#

k if l “ 0

0 otherwise.

An exceptional collection is a sequence E1, . . . En of exceptional objects such that

HomDbpXqpEi, Ejrlsq “ 0 if i ą j and for all l.

An exceptional collection E1, . . . , En is full if any full triangulated subcategory containing E1, . . . , En
is equivalent to DbpXq.

17



Given an exceptional object E, we denote by xEy the full triangulated subcategory of DbpXq,
whose objects are elements of the form ‘Eris‘ji . Notice that we can identify the subcategory xEy
with the derived category of k-vector spaces. More precisely, the functor i : Dbpkq Ñ DbpXq, defined
over objects by ipV ‚q “ V ‚ bk E and in the natural way over morphisms, is full and faithful.

We claim that the subcategory xEy is admissible. Indeed, an easy computation shows that the
functors i˚, i! : DbpXq Ñ Dbpkq defined over objects by

i˚pF q “ HomDbpXqpF,Eq
_ and i!pF q “ HomDbpXqpE,F q

are, respectively, left and right adjoint to i.
We consider the left and right orthogonal categories

EK :“ tF P DbpXq : HomDbpXqpE,F rlsq “ 0 for every lu

and
KE :“ tF P DbpXq : HomDbpXqpF,Erlsq “ 0 for every lu.

Then there are semiorthogonal decompositions of the form

DbpXq “ xEK, Ey and DbpXq “ xE,KEy,

where E stands for the subcategory xEy. Let us verify this claim for the first decomposition (the proof
in the other case is analogous). It is enough to verify the second condition of Definition 0.1.20, since
the first one holds by definition. Let F be in DbpXq and we set G :“ i!pF q P xEy. Recall that by
adjunction we have

HomxEypG,Gq – HomDbpXqpG,F q.

Thus the identity morphism in HomxEypG,Gq corresponds to a morphism G Ñ F . We denote by G1

the cone of this morphism and we consider the exact triangle

GÑ F Ñ G1 Ñ Gr1s.

Now notice that
HomDbpXqpE,F q – HomxEypE, i

!pF qq – HomDbpXqpE,Gq.

Thus, applying the functor HomDbpXqpE,´q to the above triangle, we deduce that HomDbpXqpE,G
1q “

0. We conclude that G1 is an object in xEyK as desired.
The argument above generalizes to any exceptional collection. In particular, we have the following

well-known fact.

Proposition 0.1.23. If E1, . . . , En is an exceptional collection in DbpXq, then there are semiorthog-
onal decompositions of the form

DbpXq “ xC, E1, . . . , Eny and DbpXq “ xE1, . . . , En,Dy

where C :“ xE1, . . . , Eny
K “ EK1 X ¨ ¨ ¨ X E

K
n and D :“ KxE1, . . . , Eny “

KE1 X ¨ ¨ ¨ X
KEn.

Remark 0.1.24. We point out that C and D are admissible subcategories by Remark 0.1.21.

Notice that semiorthogonal decompositions are not unique, as seen for example in item 2 of Remark
0.1.21. In fact, given an exceptional object E P DbpXq, we define the left and right mutation
functors LE ,RE : DbpXq Ñ DbpXq by

LEpGq “ conep‘p HomDbpXqpE,Grpsqr´ps b E Ñ Gq
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and
REpGq “ conepGÑ ‘p HomDbpXqpG,Erpsqr´ps

_ b Eqr´1s.

Thus, if we have a semiorthogonal decomposition of the form

DbpXq “ xT1, . . . , Tk, E, Tk`1, . . . , Tmy,

then we also have

DbpXq “ xT1, . . . , Tk,LEpTk`1q, E, Tk`2, . . . , Tmy and DbpXq “ xT1, . . . , Tk´1, E,REpTkq, Tk`1, . . . , Tmy.

0.1.5 Examples of semiorthogonal decompositions

Interesting examples of semiorthogonal decompositions come from Fano varieties, as we recall in the
following.

Example 0.1.25 (Projective space). The n-dimensional projective space Pn over a field k admits a
semiorthogonal decomposition of the form

DbpPnq “ xOpaq,Op1` aq, . . . ,Opn` aqy

for every a P Z. Indeed, by Remark 0.1.16, we have that

HomDbpPnqpOpiq,Opjqrlsq – ExtlpOpiq,Opjqq – H lpPn,Opj´iqq “

#

0 if i ą j, l P Z or i “ j, l P Z´t0u
k if i “ j, l “ 0.

This proves that the sequence of line bundles we considered forms an exceptional collection. The fact
that these objects generate DbpPnq is a consequence of the Beilinson spectral sequence, as explained
in [44], Corollary 8.29.

Example 0.1.26 (Quadric hypersurfaces). Assume that k is a field with charpkq ‰ 2. Let Q be a
quadric hypersurface in Pn`1. By [53], Section 4, there is a semiorthogonal decomposition of the form

DbpQq “

#

xΣ´p´nq,Σ`p´nqOQp´n` 1q, . . . ,OQy if n is even
xΣp´nq,OQp´n` 1q, . . . ,OQy if n is odd.

Here Σ`,Σ´,Σ are spinor bundles, which are vector bundles over Q constructed from the associated
Clifford algebra (see also [1]).

Example 0.1.27 (Projective hypersurfaces). Let Y be a smooth complex hypersurface of degree d in
Pn`1 such that d ă n` 2. By adjunction formula, we have that ωY “ OY pd´ n´ 2q. Then there is a
semiorthogonal decomposition

DbpY q “ xKupY q,OY ,OY p1q, . . . ,OY pn´ d` 1qy,

where OY piq is the restriction of the line bundle Opiq on Pn`1 and

KupY q :“ xOY ,OY p1q, . . . ,OY pn` 1´ dqyK

is known as the Kuznetsov component of Y . Indeed, for n` 1´ d ě i ą j ě 0, we have 0 ă i´ j ă
n` 2´ d. We set h :“ n` 2´ d´ pi´ jq ą 0; by Kodaira vanishing Theorem, for l ‰ 0 we have that

HomDbpY qpOY piq,OY pjqrlsq – ExtlpOY piq,OY pjqq – H lpY,OY pj ´ iqq “ H lpY,OY phq b ωY q “ 0.
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Since OY p1q is an ample line bundle on Y , we deduce that H0pY,OY pj ´ iqq “ 0; using the sequence

0 Ñ Op´dq Ñ O Ñ OY Ñ 0

we get

HomDbpY qpOY piq,OY piqrlsq “

#

C if l “ 0

0 otherwise
.

Thus tOY ,OY p1q, . . . ,OY pn ´ d ` 1qu is an exceptional collection. By Proposition 0.1.23, we deduce
the desired semiorthogonal decomposition. As seen in the previous example, if d “ 2, there is an
explicit description of KupY q in terms of the spinor bundles. For a more intrinsic discussion working
over an algebraic closed field k of charpkq ‰ 2, 3, we suggest [69], Section 3.1.

Example 0.1.28 (Prime Fano varieties). The examples considered above belong to the class of prime
Fano varieties. We recall that a prime Fano varietyX is a smooth complex projective variety with ample
anticanonical bundle and Picard number one. The index of X is the integer r such that ωX “ OXp´rq,
where OXp1q is an ample line bundle. By the same argument explained in the case of projective
hypersurfaces, it is possible to prove that there is a semiorthogonal decomposition of the form

DbpXq “ xKupXq,OX , . . . ,OXpr ´ 1qy,

where KupXq :“ xOX , . . . ,OXpr ´ 1qyK. The three examples above are prime Fano varieties of index
n` 1, n and n` 2´ d respectively.

Example 0.1.29 (Grassmannians). Assume that k is a field of characteristic zero. Let Grpk, nq be the
Grassmannian of k-dimensional subvector spaces in a n-dimensional k-vector space. It is known that
Grpk, nq provides an other example of prime Fano variety with ωGrpk,nq “ OGrpk,nqp´nq. However, it
is proved in [53] that there is an other full exceptional collection involving the tautological subbundle
U on Grpk, nq. More precisely, there is a semiorthogonal decomposition of the form

DbpGrpk, nqq “ xΣαU_yαPYk,n´k ,

where Yk,n´k is the set of Young diagrams inscribed in a k ˆ pn ´ kq-rectangle and Σα is the Schur
functor associated to the Young diagram α. We point out that in [33], examples of minimal Lefschetz
decompositions for DbpGrpk, nqq, which are semiorthogonal decompositions of a particular form, are
provided.

Example 0.1.30 (GM varieties). Gushel-Mukai varieties are an interesting class of prime Fano va-
rieties obtained as quadric sections of linear sections of the cone over Grassmannian Grp2, 5q (see
Definition 0.1.20). In [61], using the result recalled in Example 0.1.29, they prove that a Gushel-Mukai
variety of dimension 3 ď n ď 6 has a semiorthogonal decomposition of the form

DbpXq “ xKupXq,OX ,U_X , . . . ,OXpn´ 3q,U_Xpn´ 3qy,

where UX is the pullback of the tautological bundle over the Grassmannian via the projection X Ñ

Grp2, 5q from the vertex of the cone. In this case, we refer to KupXq as the Kuznetsov component
of X. We will give more details on this example in the second part of this thesis.

Finally, we consider the more general situations of the blow-up of a smooth projective subvariety
and of a flat quadric fibration, respectively, recalling the semiorthogonal decompositions arising in this
context.
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Example 0.1.31 (Blow-up). Let X be a smooth projective scheme and let Y be a locally complete
intersection subscheme of X of codimension r ě 2. We denote by X̃ :“ BlY pXq

σ
ÝÑ X the blow up of

X in Y . Let i : E ãÑ X̃ be the exceptional divisor. A classical result by Orlov (see [82]) states that
there is a semiorthogonal decomposition of the form

DbpX̃q “ xΦOEp1´rqpD
bpY qq, . . . ,ΦOEp´1qpDbpY qq, σ˚pDbpXqqy.

Here OEpEq – OE{Y p´1q is the Grothendieck line bundle on the projectivization E – PpNY |Xq, and
for every k P Z, the Fourier-Mukai functor ΦOEpkq : DbpY q Ñ DbpX̃q defined by

ΦOEpkqp´q “ i˚ppσ|Eq
˚p´q bOE{Y pkqq

is fully faithful.

Example 0.1.32 (Quadric fibrations). In [55], Kuznetsov constructed a semiorthogonal decomposition
for the derived category of a flat quadric fibration, which we recall in the following.

Given a smooth algebraic variety S, let F be a rank n vector bundle on S. We denote by π :
PSpFq Ñ S the projectivization of F in S and let OPSpFqp1q be the Grothendieck line bundle on
it. Notice that H0pS, S2F b L˚q – H0pPSpFq,OPSpFqp2q b L

˚q, where L is a line bundle on S. We
denote by X Ă PSpFq the zero locus of a non trivial section σ of OPSpFqp2qbL

˚. Then the restriction
p : X Ñ S of π defines a flat quadric fibration, whose fibers have dimension n´ 2.

As every quadratic form carries a natural Clifford algebra, we consider the sheaf of Clifford algebras
associated to the quadric fibration p and let B0 be its even part. We denote by CohpS,B0q the abelian
category of coherent sheaves with the structure of B0-modules over S and we set

DbpS,B0q :“ DbpCohpS,B0qq.

Then by [55], Theorem 4.2, there is a fullly faithful functor Φ : DbpS,B0q Ñ DbpXq and a semiorthog-
onal decomposition of the form

DbpXq “ xΦpDbpS,B0qq, p
˚DbpSq bOX{Sp1q, . . . , p˚DbpSq bOX{Spn´ 2qy.

We do not recall the precise definition of Φ as it is not important for the following, but in Chapter 4
we will describe its left adjoint in the particular case of the conic fibration obtained by projecting from
a line in a cubic fourfold.

0.2 Basics on lattice theory

The aim of this section is to give a summary of some well-known definitions and properties involving
lattices, and to fix the notation we will use in the following. Our main reference is [76].

Definition 0.2.1. A lattice is a free abelian group L of finite rank with a nondegenerate symmetric
bilinear form p , q : Lˆ LÑ Z.

Let us recall some terminology related to a lattice pL, p , qq.

• An isometry of L is an automorphism of L preserving p , q. We denote by OpLq the group of
isometries of L.

• We say that a lattice L is even if pl, lq is even for every l P L, and L is odd otherwise.

• We consider the matrix representing the bilinear form p , q in a fixed basis for L. The discrim-
inant of L is the determinant of this matrix and we denote it by discrpLq. We say that L is
unimodular if discrpLq “ ˘1.

21



• A lattice L is positive definite (resp. negative definite) is l2 :“ pl, lq ą 0 (resp. ă 0) for every
non zero l P L. Otherwise, we say that L is indefinite.

• The dual of a lattice L is L_ :“ HomZpL,Zq – tl1 P L b Q : pl1, lq P Z for every l P Lu. Notice
that there is a natural inclusion of L in its dual sending l P L to pl,´q P L_, and the bilinear
form p , q extends to a symmetric bilinear form over L_ with values in Q. Given a basis l1, . . . , lr
for L, the dual basis l_1 , . . . , l_r of L_ such that l_i pljq “ δij is a Z-basis for L_. In particular,
the dual of a lattice is a lattice.

• The discriminant group of L is the finite group dpLq :“ L_{L. The bilinear form on L_

induces a symmetric bilinear form on dpLq and we denote by qL : dpLq Ñ Q {Z the associated
quadratic form. The form qL is known as the discriminant form.

Notice that if L is even, then qL takes values in Q {2Z. Finally, we observe that the order of
dpLq is equal to |discrpLq|. Indeed, assume that these lattices have rank r, fix a basis for L and
its dual on L_. We denote by A the representative matrix of the inclusion j : L ãÑ L_ in these
bases. By definition, we have that discrpLq “ detA. Passing to the Smith normal form, we write
A “ PDQ, where P and Q are invertible matrices with entries in Z, and D is diagonal with
entries λ1, . . . , λr P Z such that λi | λi`1 for 1 ď i ă r. Then the image of j is generated by
vectors λivi where the vi’s form a basis for L_. It follows that L_{L – Z{λ1Z ˆ ¨ ¨ ¨ ˆ Z{λrZ,
whose order is equal to | detA|, as we wanted. We denote by lpdpLqq the minimal number of
generators of dpLq.

• The genus of L is the set GpLq of all isometry classes of lattices L1 with the same signature of
L and dpL1q – dpLq.

• Let OpdpLqq be the group of automorphisms of dpLq preserving qL. Using the inclusion L ãÑ L_,
we obtain a homomorphism rL : OpLq Ñ OpdpLqq. We use the notation f̄ :“ rLpfq for f P OpLq.

Example 0.2.2. (1) The hyperbolic lattice, denoted by U , is the free group Z‘2 with the bilinear

form represented by the matrix
ˆ

0 1
1 0

˙

. It is an even unimodular lattice of signature p1, 1q.

(2) We denote by E8 the unique even, unimodular lattice of signature p8, 0q. More explicitely, E8 is
the abelian group Z‘8 with the bilinear form represented by the matrix

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 ´1 0 0 0 0 0 0
´1 2 ´1 0 0 0 0 0
0 ´1 2 ´1 ´1 0 0 0
0 0 ´1 2 0 0 0 0
0 0 ´1 0 2 ´1 0 0
0 0 0 0 ´1 2 ´1 0
0 0 0 0 0 ´1 2 ´1
0 0 0 0 0 0 ´1 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

(3) Given a lattice pL, p , qq and a non-zero integer m, we denote by Lpmq the lattice pL,mp , qq.

(4) We set Ir,s :“ Ir1 ‘ I1p´1qs, where I1 is the lattice Z with bilinear form p1q.

(5) We denote by A2 the free group Z‘2 with the bilinear form represented by the matrix
ˆ

2 ´1
´1 2

˙

.

It is an even lattice of discriminant 3 and signature p2, 0q. The lattice A2 has a key role in the definition
of the Mukai lattice of a cubic fourfold as recalled in Part I of this thesis.
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The first four examples we recalled above actually describe all possible lattices in the unimodular
case, as explained in the following result.

Theorem 0.2.3 ([72], Theorem 1.3). Let L be an indefinite unimodular lattice. If L is odd, then
L – Im,n for some m and n. If L is even, then L – U‘m ‘ E8p˘1q‘n for some m and n. In
particular, the signature and the parity of L determine the lattice up to isometry.

Example 0.2.4. In the geometric context, unimodular lattices arise in the studying of torsion free
higher degree cohomology groups of Kähler varieties.

For example, let Y be a cubic fourfold, i.e. a smooth hypersurface of degree three in P5
C. We recall

that the degree four integral cohomology group L :“ H4pY,Zq is a torsion free abelian group; the
intersection form p , q on L is a symmetric nondegenerate bilinear form, whose signature is determined
by the Riemann bilinear relations. Moreover, by Poincaré duality we have an isomorphism of L with
its dual. We conclude that pL, p , qq is a unimodular lattice of signature p21, 2q. We denote by H2 the
class in L of a cubic surface. Since pH2, H2q “ H4 “ degpY q “ 3, we deduce that L is an odd lattice.
By Theorem 0.2.3, we conclude that L – I21,2 as a lattice.

Relaxing the unimodularity condition, we have the following classification result for even lattices.

Theorem 0.2.5 ([76], Corollary 1.14.2). Let L be an even indefinite lattice satisfying rkpLq ě lpdpLqq`
2. Then the genus of L contains only one class and the map rL : OpLq Ñ OpdpLqq is surjective.

We are now interested in studying embeddings of even lattices. Firstly, we deal with non primitive
embeddings; then, we state some results for primitive sublattices of unimodular lattices which will be
useful in the next.

An overlattice of a given lattice L is the data of a lattice L1 and an embedding L ãÑ L1 such that
L1{L is a finite abelian group. We denote by HL1 this quotient. Since L ãÑ L1 ãÑ L1_ ãÑ L_, we have
that HL1 Ă L1_{L Ă dpLq. In particular, we point out that

discpLq “ i2discrpL1q,

where i :“ rL1 : Ls is the index of L in L1 (by the same argument used above to compute the order of
the discriminant group). Two overlattices L ãÑ L1 and L ãÑ L2 are isomorphic if there is an isometry
of L extending to an isomorphism between L1 and L2.

Proposition 0.2.6 ([76], Proposition 1.4.2). Two even overlattices L ãÑ L1 and L ãÑ L2 are isomor-
phic if and only if the isotropy subgroups HL1 and HL2 are conjugate under some isometry of L.

On the other hand, an embedding i : M ãÑ L of a lattice M in L is primitive if L{ipMq is a free
abelian group. The orthogonal complement of M in L is

MK :“ tl P L : pl,mq “ 0 for every m PMu.

We recall the following results for primitive embeddings in unimodular lattices.

Proposition 0.2.7 ([76], Proposition 1.6.1). A primitive embedding of an even lattice M into an even
unimodular lattice L determines an isometry γ : pdpMq, qM q – pdpM

Kq,´qMKq.

Notice that the isometry γ defines an isomorphism ψM : OpdpMqq – OpdpMKqq. Recall the notation
f̄ :“ rLpfq introduced in the list at the beginning of this section.

Proposition 0.2.8 ([76], Proposition 1.6.1, Corollary 1.5.2). Let M be an even primitive sublattice
M of an even unimodular lattice L. An isometry f of M lifts to an isometry of L if and only if there
is an isometry g of MK such that ψM pf̄q “ ḡ.

Theorem 0.2.9 ([76], Proposition 1.14.4). Let M be an even lattice with invariants pt`, t´, qM q and
L be an even unimodular lattice of signature ps`, s´q. Suppose that

t` ă s`, t´ ă s´, and rkpLq ´ rkpMq ě lpdpMqq ` 2.

Then there exists a unique primitive embedding of M in L.
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0.3 Irreducible holomorphic symplectic manifolds

In Section 0.3.1 we briefly recall the definition and some basic properties of hyperkähler manifolds. Our
main references are [13] and [35]. In Section 0.3.2 we introduce the irreducible holomorphic symplectic
manifolds which will play an important role in the results presented in Part I and Part II: the Fano
variety of lines in a cubic fourfold, the LLSvS eightfold and double EPW sextics.

0.3.1 Introductory definitions and properties

Let X be a complex variety and we denote by TX and ΩX the holomorphic tangent and cotangent
bundle over X, respectively. We recall that a holomorphic symplectic structure on X is a holomorphic
closed two form on X which is non degenerate in every point of X.

Definition 0.3.1. An irreducible holomophic symplectic manifold (or a hyperkähler mani-
fold) X is a compact complex simply connected Kähler manifold such that

H0pX,Ω2
Xq :“ H0pX,

2
ľ

ΩXq “ C η,

where η is a symplectic structure on X.

Let us list some immediate consequences of the definition.

1. The existence of a symplectic structure implies that the dimension of the complex manifold X
is even; we denote it by 2n.

2. Notice that the canonical bundle ωX is trivial, because the p2n, 0q-form ηn is a generator for it.

3. Since η is nondegenerate, it follows that the antisymmetric morphism η : TX Ñ ΩX , induced by
η, is bijective, i.e. TX – ΩX .

4. Since X is a compact Kähler manifold, its cohomology carries a Hodge structure: for every
0 ď k ď 4n, we have

HkpX,Cq “
à

p`q“k

Hp,qpXq,

where Hp,qpXq “ HqpX,Ωp
Xq and H

q,ppXq “ Hp,qpXq. Moreover, since X is simply connected,
we deduce that

H0pX,ΩXq “ H1pX,OXq “ 0.

On the other hand, in degree 2 we have

H2pX,Cq “ H2,0pXq ‘H1,1pXq ‘H0,2pXq

“ C η ‘H1,1pXq ‘ C η̄.

A key property in the hyperkähler setting is that the group H2pX,Zq can be equipped with
a primitive quadratic form q, known as the Beauville-Bogomolov-Fujiki form, which gives to
H2pX,Zq the structure of a lattice. Explicitely, assuming the normalization

ş

X η
nη̄n “ 1, we consider

q : H2pX,Cq ˆH2pX,Cq Ñ C defined by

qpαq :“ ab`
n

2

ż

X
β2ηn´1η̄n´1

for every α “ aη ` β ` bη̄ P H2pX,Cq with a, b P C and β P H1,1pXq. Then, the following properties
hold.
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1. By [13], Théorème 5, we have that q comes from an integral quadratic form defined over H2pX,Zq
(which we denote again q) with signature p3, b2pXq ´ 3q, where b2pXq :“ dimH2pX,Cq. In
particular, we have that q is positive over the Kähler class ω and over pH2,0 ‘H0,2qpXq, while
q is negative over the primitive p1, 1q-part of the cohomology. Up to a scalar multiplication, the
form q is primitive.

2. (Local Torelli Theorem) We set

Ω :“
 

rαs P PpH2pX,Cqq : qpαq “ 0, qpα` ᾱq ą 0
(

.

The local period map p : DefpXq Ñ PpH2pX,Zqq defined by X ÞÑ rC ηs has image in Ω and p is
a local isomorphism (see [13], Théoréme 5 for more details).

Let us recall some examples of irreducible holomorphic symplectic manifolds which will appear in
the next. We start with the two dimensional case.

Example 0.3.2 (K3 surfaces). Hyperkähler manifolds of dimension two are K3 surfaces. In fact, a
K3 surface S is a compact complex surface with H1pS,OSq “ 0 and ωS – OS . Notice that a section
η trivializing the canonical bundle defines a nondegenerate holomorphic 2-form over S, which is unique
up to scalar multiplication. Moreover, Siu proved that every K3 surface is a Kähler manifold (see [92],
exposé XII), and it admits a deformation into a simply connected K3 surface as explained in [92],
exposé VI. Thus, K3 surfaces are irreducible holomorphic symplectic.

In this case, the form q is given by the intersection form and H2pS,Zq – E8p´1q‘2 ‘ U‘3 as a
lattice. Moreover, up to isomorphism, a K3 surface can be recovered from the lattice structure and
the Hodge structure on H2pS,Zq, as explained below.

Theorem 0.3.3 (Global Torelli Theorem, [86], [21]). Two K3 surfaces S1 and S2 are isomorphic if
and only of there is an isometry of Hodge structure H2pS1,Zq – H2pS2,Zq.

For a detailed survey on results about K3 surfaces and for references we recommend [46].

Remark 0.3.4. It is natural to ask whether Torelli Theorem holds in higher dimension. The answer
is no if we keep the same formulation used for K3 surfaces, but Verbitsky proved a weaker form stating
the generically injectivity of the period map restricted to a connected component of the moduli space
(see [93] for the original proof or [45], for details and references).

Examples in dimension greater than two are difficult to construct. In the following, we recall the
known examples, which are not deformation equivalent to each others.

Example 0.3.5 (Hilbert schemes on a K3 surface). Let S be a K3 surface and we fix a positive integer
r ą 1. Assume for simplicity that S is projective (for the aims of this thesis, it is enough to consider
this case, anyway the same construction works in the analytic case). We denote by η the symplectic
form on S. Notice that the product Sr :“ Sˆ¨ ¨ ¨ˆS carries many symplectic forms obtained by pulling
back η via the projections pi : Sr Ñ S over the ith-factor. In order to get unicity, we consider the
quotient Sprq :“ Sr{Sr with respect to the symmetric group Sr. Since the form

řr
i“1 p

˚
i η is invariant

with respect to the action of Sr, it comes from a form over Sprq. We observe that Sprq is singular
along the preimage of the diagonal in Sr via the quotient map. A resolution of Sprq is given by the
map ε : Srrs Ñ Sprq, where Srrs is the Hilbert scheme of zero dimensional, length r subschemes in S,
which sends rZs P Srrs to the 0-cycle

ÿ

pPSupppZq

lengthpOZ,pq rps .
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Notice that the Hilbert scheme Srrs is projective. By [13], Théoréme 3, we have that Srrs is an
irreducible holomorphic symplectic manifold of dimension 2r. Moreover, there is an injective morphism
of Hodge structures i : H2pS,Cq Ñ H2pSrrs,Cq, such that

H2pSrrs,Zq “ ipH2pS,Cqq ‘ Z δ,

where δ is a class in H2pSrrs,Zq of square 2 ´ 2r associated to the exceptional divisor of ε (see [13],
Proposition 6).

Remark 0.3.6. Consider X “ Srrs. Via the morphism i defined above, we have that

NSpXq :“ H1,1pXq XH2pX,Zq “ ipNSpSqq ‘ Z δ.

In particular, the rank of the Néron-Severi lattice of X is greater than 1. As a consequence, we deduce
that a generic projective deformation of X cannot be of the form S1rrs for a K3 surface S1. In particular,
Hilbert schemes over a K3 surface form a 19-dimensional family in the 20-dimensional moduli space of
polarized projective hyperkähler manifolds (see [13], Proposition 11).

Remark 0.3.7. By [13], Proposition 6, if X is deformation equivalent to Srrs for a K3 surface S, then
H2pX,Zq – E8p´1q‘2 ‘ U‘3 ‘ I1p2´ 2rq, as a lattice.

Example 0.3.8 (Moduli spaces of stable sheaves on a K3 surface). In [74], Mukai considered more
generally moduli spaces of stable sheaves on a K3 surface and he proved that they provide examples
of smooth hyperkähler manifolds deformation equivalent to those in Example 0.3.5. The key point is
that if F is a simple sheaf on a K3 surface S (i.e. HompF, F q – C), then the tangent space at the point
rF s to the moduli space of simple sheaves on S, is isomorphic to Ext1pF, F q and by Serre duality the
natural pairing

Ext1pF, F q ˆ Ext1pF, F q Ñ Ext2pF, F q – HompF, F q – C

is non degenerate. As before, this construction describe codimension one loci in the polarized moduli
space. See also [9], Theorem 1.3 for the generalization to Bridgeland stability.

In a similar fashion, starting from a complex torus of dimension two, it is possible to construct
a hyperkähler manifold known as generalized Kummer variety of dimension 2r for every r ą 1 (see
[13], Section 7). Finally, O’Grady constructed two examples of dimension 10 and 6 respectively, as
desingularizations of moduli spaces of semistable sheaves on a K3 surface and on an abelian surface.
These four classes of examples are not equivalent by deformation, because they have different Betti
numbers (see [35], Section 21.2 for a list). On the other hand, all the other constructions of hyperkähler
manifolds known till now are deformation equivalent to one of those we described.

0.3.2 Examples of hyperkähler manifolds of K3 type

An irreducible holomorphic symplectic manifold X is of K3 type if it is deformation equivalent to Srrs

for a K3 surface S and an integer r ą 1. In the last part of this section, we describe three examples
of hyperkähler varieties, which are of K3 type. We remark that the first two are associated to a cubic
fourfold, while the third one is related to a Gushel-Mukai fourfold, as recalled in the second part of
this thesis.

Example 0.3.9 (Fano variety of lines on a cubic fourfold). Let Y be a cubic fourfold. We denote by
FY the Fano variety parametrizing lines ` contained in Y . In [14], Beauville and Donagi proved that
FY is a smooth projective hyperkähler fourfold of K3 type. The idea of their strategy is to consider a
special class of cubic fourfolds, called Pfaffian cubic fourfolds. For such a general Y , there is a degree
14 associated K3 surface S and they prove that FY – Sr2s. Then, they use a deformation argument
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in order to extend the result to every Y . We point out that in [60], Section 5, they provide a way
to construct directly a symplectic form over FY . It is important to observe that in [14], Proposition
6, they show that there is a Hodge isometry between the primitive cohomologies H4pY,Zqprim and
H2pFY ,Zqprim. In particular, the period point of Y and FY are identified.

Example 0.3.10 (LLSvS eightfold). In [64], Lehn, Lehn, Sorger and van Straten construct a hyper-
käher eightfold MY from the irreducible component of the Hilbert scheme parametrizing twisted cubic
curves on a cubic fourfold Y non containing a plane. Here we summarize their results.

We recall that a smooth rational curve C of degree 3 is projectively equivalent to the image of
P1 via the Veronese embedding P1 Ñ P3 defined by rs : ts ÞÑ rs3 : s2t : st2 : t3s. The space H0

parametrizing these curves is then identified with automorphisms of P3 modulo automorphisms of P1;
thus, it is smooth and irreducible of dimension 12. On the other hand, by Riemann-Roch, we have
that the Hilbert polynomial of C is χpOCpmqq “ 3m ` 1. Let Hilb3m`1pP3q be the Hilbert scheme
parametrizing curves in P3 with Hilbert polynomial 3m ` 1. Since H0 is contained in Hilb3m`1pP3q,
we denote by HilbgtcpP3q the closure of H0 in Hilb3m`1pP3q. We refer to the objects in HilbgtcpP3q as
(generalized) twisted cubic curves.

In [85], they proved that HilbgtcpP3q is a smooth 12-dimensional irreducible component of the
Hilbert scheme Hilb3m`1pP3q. Moreover, the Hilbert scheme Hilb3m`1pP3q is the union of HilbgtcpP3q

and an other component, which intersect HilbgtcpP3q transversely in a smooth divisor J of HilbgtcpP3q.
According to their result, we can distinguish two classes of curves in HilbgtcpP3q.

1. A curve C giving a point in HilbgtcpP3qzJ is arithmetically Cohen-Macaulay (aCM), i.e. its
affine cone in C4 is Cohen-Macaulay at the origin. The homogeneous ideal of C is generated by
a net of quadrics pq0, q1, q2q given by the minors of a 3ˆ 2-matrix with linear entries.

2. A curve C in J is not Cohen-Macaulay (non CM). In appropriate coordinates on P3, the
homogeneous ideal of C is px2

0, x0x1, x0x2, qpx1, x2, x3qq, where q is a cubic polynomial, defining
a cubic curve in the plane tx0 “ 0u which is singular at the point r0 : 0 : 0 : 1s. In particular, we
have that C is a plane singular cubic curve with an embedded point giving a direction emerging
from the plane.

Now, consider the Hilbert scheme Hilb3m`1pP5q and the irreducible component HilbgtcpP5q, defined
analogously. If Y is a cubic fourfold in P5, then we consider the Hilbert scheme Hilb3m`1pY q and we
set

M3 :“ HilbgtcpP5q XHilb3m`1pY q,

which is the irreducible component of the Hilbert scheme parametrizing twisted cubic curves on Y .
There is a natural map

M3 Ñ GrpP3,P5q, rCs Ñ xCy – P3,

sending a twisted cubic curve C to its linear span. Furthermore, if we fix a 3-plane PpW q in P5, then
the fiber over the point rPpW qs is the Hilbert scheme of twisted cubic curves in the cubic surface
S :“ Y X PpW q. Notice that if Y does not contain a plane, then S is reduced and irreducible. Under
the assumption that Y does not contain a plane, we have the following results.

1. The component M3 is a smooth and irreducible projective variety of dimension 10 (see [64],
Theorem A).

2. There exist a holomorphic symplectic projective variety MY of dimension 8 and a morphism
u : M3 ÑMY , such that the following diagram

M3
u //

a
��

MY

M 1
Y

σ

AA
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where a : M3 Ñ M 1
Y is a P2-fiber bundle and σ : M 1

Y Ñ MY is the contraction of the Cartier
divisor of non CM twisted curves, commutes (see [64], Theorem B). Moreover, the cubic fourfold
Y embeds in MY as a Lagrangian submanifold (with respect to the symplectic structure) and σ
is the blow-up of MY in Y .

3. By [3], the variety MY is deformation equivalent to the Hilbert scheme of points of length 4 on
a K3 surface.

Remark 0.3.11. We point out that these examples provide complete families of hyperkähler manifolds.
Indeed, cubic fourfolds are defined as the zero locus of a degree 3 homogeneous polynomial in 6 variables;
thus, their moduli space is described as an open subset of the (GIT) quotient

|Op3q|{{PGLpV6q,

which has dimension 56´ 1´ p36´ 1q “ 20.

Example 0.3.12 (Double EPW sextic). In [79], O’Grady proved that the smooth double cover of a
sextic hypersurface in P5 is a hyperkähler fourfold of K3 type. Let us briefly recall the construction.

Let V6 be a six dimensional C-vector space. We observe that the wedge product ^ :
Ź3 V6 ˆ

Ź3 V6 Ñ
Ź6 V6 – C defines a symplectic form on

Ź3 V6 which we denote by η. We recall that a
subspace A of

Ź3 V6 is Lagrangian with respect to η if η|AˆA “ 0 and A has dimension 10. We define
the Lagrangian subbundle F Ă

Ź3 V6 b OPpV6q, whose fiber over v P V6 is the Lagrangian subspace
Fv :“ v ^

Ź2 V6 of
Ź3 V6.

Fix a Lagrangian subspace A of
Ź3 V6 and consider the composition

λA : F ãÑ

3
ľ

V6 bOPpV6q Ñ

Ź3 V6

A
bOPpV6q.

Then the hypersurface YA is the zero locus in PpV6q of detλA (when it is not PpV6q). Explicitely, we
have that points of YA are classes of vectors v in PpV6q where λA has rank ă 10, i.e.

YA “ trU1s P PpV6q : AX pU1 ^
ľ2

V6q ‰ 0u.

Notice that YA is a sextic hypersurface. Indeed, since λA is a section of HompF,
Ź3 V6{AbOPpV6qq –

F_ b
Ź3 V6{A b OPpV6q, we have that detλA is a section of detpF_q – OPpV6qp6q, where the last

isomorphism follows from the fact that c1pF q “ ´6h (see [32], Section 2.1.2).
Moreover, we can consider the closed subschemes

Y ělA :“ trU1s P PpV6q : dimpAX pU1 ^
ľ2

V6qq ě lu for l ě 0,

giving a stratification of PpV6q such that Y ělA Ă Y ěl´1
A for l ą 0 and YA “ Y ě1

A . The results are the
following.

• Assume that A has not decomposable vectors, i.e. AXGrp3, V6q “ 0. Then, we have that YA is a
normal sextic hypersurface, known as Eisenbud-Popescu-Walter (EPW) sextic, which is singular
along the integral surface Y ě2

A ([79], Proposition 2.8).

• Let ỸA be the double cover of the EPW sextic YA branched over Y ě2
A . If Y ě3

A is empty, (e.g. for
generic A), then the double EPW sextic ỸA is a smooth hyperkähler fourfold of K3 type (see
[79], Theorem 1.1).

In the second part of this thesis, we will explain how a double EPW sextic is associated to a GM
fourfold, as observed by Debarre and Kuznetsov. This construction provides a complete family of
4-dimensional hyperkähler manifolds of K3 type.
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0.4 (Weak) Stability conditions on triangulated categories

In this section we recall the definition of (weak) stability condition for a C-linear triangulated category
T , following the summary in [7], Section 2 (see also [69]). In particular, we review the tilting procedure
and we explain how it is used to produce examples of weak stability conditions on DbpXq.

0.4.1 Definition and examples

Essentially, a (weak) stability condition is the data of the heart of a bounded t-structure and of a
(weak) stability function, satisfying certain conditions.

Definition 0.4.1. The heart of a bounded t-structure is a full subcategory A of T such that

1. for E, F in A and n ă 0, we have HompE,F rnsq “ 0;

2. for every E in T , there exists a sequence of morphisms

0 “ E0
φ1
ÝÑ E1

φ2
ÝÑ . . .

φm´1
ÝÝÝÑ Em´1

φm
ÝÝÑ Em “ E

such that the cone of φi is of the form Airkis, for some sequence k1 ą k2 ą ¨ ¨ ¨ ą km of integers
and Ai in A. The object Ai is the i-th cohomology object of E with respect to A and it is
denoted by Ai :“ H´kiA pEq.

Remark 0.4.2. Recall that the heart of a bounded t-structure is an abelian category by [15].

Remark 0.4.3. We do not recall the definition of a bounded t-structure, which can be found in [15].
The reason is that by [18], Lemma 3.2, the heart uniquely determines the bounded t-structure.

Example 0.4.4. If T “ DbpXq for a smooth projective variety X, then CohpXq is the heart of a
bounded t-structure. Indeed, condition 1 of the definition follows from the fact that coherent sheaves
have no Ext groups in negative degree. In order to prove item 2, we take a complex E P T and we
consider its cohomology sheaves Ai :“ H´kipEq P CohpXq. Then the desired filtration is constructed
by iterative projections over the first non trivial cohomology with an appropriate shift.

Definition 0.4.5. Let A be an abelian category. A group homomorphism Z : KpAq Ñ C is a weak
stability function (resp. a stability function) on A if, for E P A, we have =ZpEq ě 0, and in the
case that =ZpEq “ 0, we have <ZpEq ď 0 (resp. <ZpEq ă 0 when E ‰ 0).

Recall that the Grothendieck group KpT q of a triangulated category T is the free abelian group
generated by isomorphism classes rF s of objects F P T with respect to the relation rEs´rF s`rGs “ 0
if there is a triangle E Ñ F Ñ G Ñ Er1s in T . Let Λ be a finite rank lattice with a surjective
homomorphism v : KpT q� Λ.

Definition 0.4.6. A weak stability condition on T is the data of a pair σ “ pA, Zq, where A is
the heart of a bounded t-structure on T and Z : Λ Ñ C is a group morphism called central charge,
satisfying the following properties:

1. The composition KpAq “ KpT q v
ÝÑ Λ

Z
ÝÑ C is a weak stability function on A. We will write

Zp´q instead of Zpvp´qq for simplicity.

For any E P A, the slope with respect to Z is given by

µσpEq “

#

´
<ZpEq
=ZpEq if =ZpEq ą 0

`8 otherwise.
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A non zero object E P A is σ-semistable (resp. σ-stable) if for every proper subobject F of
E, we have µσpF q ď µσpEq (resp. µσpF q ă µσpEqq. We say that E is strictly semistable with
respect to σ if E is σ-semistable, but not stable. An object F P T is σ-semistable if F “ Erns,
where E is σ-semistable in A and n P Z.

2. (HN-filtration) Any object of A has a Harder-Narasimhan filtration with σ-semistable factors.
Explicitly, for every E P A, there is a filtration

0 “ E0 ãÑ E1 ãÑ ¨ ¨ ¨ ãÑ Em´1 ãÑ Em “ E

where Ai :“ Ei{Ei´1 is σ-semistable for i “ 1, . . . ,m and

µσpA1q ą ¨ ¨ ¨ ą µσpAmq.

The object Ai is a Harder-Narasimhan (HN) factor of E. We set φ`pEq :“ φpA1q and
φ´pEq :“ φpAmq.

3. (Support property) There exists a quadratic form Q on Λb R such that the restriction of Q to
kerZ is negative definite and QpEq ě 0 for all σ-semistable objects E in A.

In addition, if Z ˝ v is a stability function, then σ is a Bridgeland stability condition.

The main difference between weak stability and Bridgeland stability is that in the first case there
could be non-zero objects E P A with ZpEq “ 0, whose slope is `8 by definition.

Remark 0.4.7. Using item 1 in Definition 0.4.1, it is possible to prove that the HN-filtration is
unique. Moreover, item 2 of Definition 0.4.1 and of Definition 0.4.6 imply that every object in T has
a HN-filtration.

Remark 0.4.8. The original formulation of the support property is due to Kontsevich and Soibelman
and it is different from that we gave. In [11], Appendix A, it is proved that these definitions are in
fact equivalent.

We need to introduce some terminology we will use in the following. Let σ be a (weak) stability
condition for T .

Definition 0.4.9. The phase of a σ-semistable object E P A is

φpEq :“
1

π
argpZpEqq P p0, 1s

and for F “ Erns, we set
φpErnsq :“ φpEq ` n.

A slicing P of T is a collection of full additive subcategories Ppφq Ă T for φ P R, such that:

• for φ P p0, 1s, the subcategory Ppφq is given by the zero object and all σ-semistable objects with
phase φ;

• for φ` n with φ P p0, 1s and n P Z, we set Ppφ` nq :“ Ppφqrns.

Remark 0.4.10. There is an other definition of Bridgeland stability condition involving a general
notion of slicing and phase, which is equivalent to ours in Definition 0.4.6. As this is not relevant in
the thesis, we do not recall it here, and we suggest [68], Section 5 for a detailed comparison between
the two approaches. Essentially, in that case a slicing gives a way to list all the semistable objects in
T , while Definition 0.4.6 provides a function detecting them.
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Let us recall the following properties of a (weak) stability condition σ “ pA, Zq.

1. (See-saw principle) Let 0 Ñ E Ñ F Ñ G Ñ 0 be an exact sequence in the heart A. Then we
have

µσpEq ď µσpF q if and only if µσpF q ď µσpGq

and
µσpEq ě µσpF q if and only if µσpF q ě µσpGq.

Indeed, notice that ZpF q “ ZpEq ` ZpGq and these are complex numbers with non negative
imaginary part or non positive real numbers (it can be helpful to draw a picture as suggested by
the name of the property).

2. Let E and F be two σ-semistable objects in A. If µσpEq ą µσpF q, then

HompE,F q “ 0. (3)

Indeed, consider a morphism f : E Ñ F . Notice that f cannot be injective, because otherwise E
would be a subobject of F with greater slope, contradicting the semistability of F . Analogously,
f is not surjective.

Since the kernel of f is a subobject of E which is semistable, we have µσpker fq ď µσpEq. By the
see-saw property, it follows that µσpEq ď µσpImfq. Again, since the image of f is a subobject of
F which is semistable, we get µσpImfq ď µσpF q. We deduce that µσpEq ď µσpF q in contradiction
with our assumption. We conclude that f “ 0, as claimed.

3. (Jordan-Hölder filtration) Assume that σ is a stability condition. Every σ-semistable object
E P Ppφq admits a (non unique) finite filtration 0 “ E0 Ă E1 Ă ¨ ¨ ¨ Ă En´1 Ă En “ E, where
the quotients Ei{Ei´1 are stable with the same phase φ. This follows from the fact that Ppφq is
an abelian category of finite length.

Proof. Firstly, we show that Ppφq is abelian. Notice that it is enough to consider the case
φ P p0, 1s, because every Ppφq is obtained by shift of the subcategories of semistable objects with
such a phase. So given a morphism f : E Ñ F in Ppφq for φ P p0, 1s, we prove that K :“ ker f
and I :“ Imf are in Ppφq. Assume for simplicity that K and I are semistable. Since E and F
are semistable, we get φpKq ď φpEq and φpIq ď φpF q. By the see-saw principle, we deduce that
φpEq ď φpIq ď φpF q, i.e. φpIq “ φ. As ZpEq “ ZpKq ` ZpIq, we also get φpKq “ φ. In the
case that K and I are not semistable, we argue in the same way considering their HN-factors.
In particular, we have φ`pIq ď φpF q and φpEq ď φ´pIq, because the HN-factors of I with phase
φ`pIq and φ´pIq are a subobject and a quotient of F and E, respectively. Thus, they must
have the same slope φ, which implies that I is semistable with phase φ. Similarly, we have
φ`pKq ď φ; thus, every HN-factor of K has phase ď φ. As ZpKq “

ř

ZpAiq, where the Ai’s are
its HN-factors, the only possibility is that there is only one factor, i.e. K is in Ppφq.
Secondly, we prove that for every descending sequence ¨ ¨ ¨ Ă Ei Ă Ei´1 Ă ¨ ¨ ¨ Ă E1 in Ppφq,
there is an index j such that Ei “ Ej for every i ě j. Indeed, as ZpEiq “ ZpEi`1q`ZpEi{Ei`1q,
we have that the sequence of the ZpEi{Ei`1q converges to 0. On the other hand, the support
property implies that Z has discrete image in C over the set of semistable objects. Thus there
is an index j such that ZpEi{Ei`1q “ 0 for i ě j. As Z is a stability function, we deduce the
statement.

4. If E is σ-stable, then HompE,Eq – C, i.e. stable objects with phase φ are simple objects in Ppφq.
Indeed, by the see-saw principle, every morphism f P HompE,Eq is an isomorphism.
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We denote by StabwpT q (resp. StabpT q) the set of weak stability conditions (resp. of stability
conditions) on T . These sets comes with a natural topology which is the coarsest topology such
that the maps pA, Zq ÞÑ Z, pA, Zq ÞÑ φ`pEq, pA, Zq ÞÑ φ´pEq are continuous for every E P T . In
particular, the sets StabwpT q and StabpT q are topological spaces. A very deep result of Bridgeland is
that StabpT q is actually a complex manifold, as stated below.

Theorem 0.4.11 (Bridgeland Deformation Theorem, [18]). The continuous map Z : StabpT q Ñ
HompΛ,Cq defined by pA, Zq ÞÑ Z, is a local homeomorphism. In particular, the topological space
StabpT q has the structure of a complex manifold of dimension rkpΛq.

Example 0.4.12 (Slope stability). Let X be a smooth projective variety of dimension n and let H
be a hyperplane class on X. We consider the triangulated category DbpXq with Grothendieck group
KpXq :“ KpDbpXqq “ KpCohpXqq. We denote by ch : KpXq Ñ H˚pX,Qq the Chern character,
which is defined by

chpEq “

ˆ

ch0pEq :“ rkpEq, ch1pEq :“ c1pEq, ch2pEq :“
1

2
c1pEq

2 ´ c2pEq, . . .

˙

in terms of the Chern classes cipEq (see [37], Appendix A for details). We fix the rank two lattice Λ1
H ,

whose generators are vectors of the form

pHn ch0pEq, H
n´1 ch1pEqq P Q2 for E P CohpXq.

The Chern character induces a natural surjection v : KpXq Ñ Λ1
H . Then, the pair σH “ pCohpXq, ZHq,

where ZH : Λ1
H Ñ C is given by

ZHpEq “ ´H
n´1 ch1pEq `

?
´1Hn ch0pEq,

is a weak stability condition. Indeed, since the degree Hn´1 ch1pEq of a torsion sheaf E is non negative,
we have that ZH ˝ v is a weak stability function. By [18], Lemma 2.4, the HN property holds (see
also [68], Proposition 4.10). In [7], Remark 2.6, it is observed that if we have a rank two lattice Λ
and Z : Λ Ñ C is injective, then any non negative quadratic form Q on Λ b R satisfies the support
property. Thus, considering the trivial form Q “ 0, we deduce our claim.

Notice that if X is one-dimensional, then σH is a stability condition. Indeed, in this case if
rkpEq “ 0, then degpEq ą 0. This is not true in higher dimension, as ZH vanishes on torsion objects
supported in codimension ě 2.

Actually, the slope defined by ZH coincides with the classical notion of slope stability for sheaves
and we denote it by µH . We point out that the classical Bogomolov-Gieseker inequality implies

∆HpEq :“ pHn´1 ch1pEqq
2 ´ 2pHn ch0pEqqpH

n´2 ch2pEqq ě 0

for every σH -semistable E P CohpXq. We refer to ∆HpEq as the discriminant of E.

The construction of Bridgeland stability conditions is in general a difficult task. However, starting
from a weak stability condition σ “ pA, Zq on T , it is possible to produce a new heart of a bounded
t-structure, by tilting A. Let us recall this method. Let µ P R; we define the following subcategories
of A:

T µσ :“ tE P A : all HN factors F of E have slope µσpF q ą µu

“ xE P A : E is σ-semistable with µσpEq ą µy

and

Fµσ :“ tE P A : all HN factors F of E have slope µσpF q ď µu

“ xE P A : E is σ-semistable with µσpEq ď µy.

Here, the symbol x´y means the extension closure, i.e. the smallest full additive subcategory of A
containing the objects in the brackets which is closed with respect to extensions.
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Proposition 0.4.13 ([36]). The category

Aµσ :“ xT µσ ,Fµσ r1sy “ tE P T : H0
ApEq P T µσ ,H´1

A pEq P F
µ
σ ,HiApEq “ 0 for i ‰ 0,´1u

is the heart of a bounded t-structure on T .

We say that the heart Aµσ is obtained by tilting A with respect to the weak stability condition σ at
the slope µ. In the next section, we will explain how to construct weak stability conditions on DbpXq
by tilting CohpXq with respect to slope stability.

0.4.2 Tilt stability on Db
pXq

Let us consider the case T “ DbpXq, where X is a smooth projective variety of dimension n. We fix
β P R. By Example 0.4.12 and Proposition 0.4.13, we can consider the heart

CohβpXq :“ CohpXqβσH

obtained by tilting CohpXq with respect to the weak stability condition σH at slope β.
It is possible to to define weak stability conditions having CohβpXq as heart. Indeed, for E P DbpXq,

we set
chβpEq :“ e´β chpEq.

Explicitly, the first three terms are

chβ0 pEq :“ ch0pEq “ rkpEq, chβ1 pEq :“ ch1pEq ´ βH ch0pEq

and

chβ2 pEq :“ ch2pEq ´ βH ch1pEq `
β2H2

2
ch0pEq.

We consider the rank two lattice Λ2
H generated by the vectors

pHn ch0pEq, H
n´1 ch1pEq, H

n´2 ch2pEqq P Q3

for E P CohpXq and we denote by chď2pEq P Λ2
H the truncated Chern character till degree 2. The

classical Bogomolov inequality recalled in Example 0.4.12 implies that ∆H satisfies the second part of
the support property. Thus, we have the following key result.

Proposition 0.4.14 ([7], Proposition 2.11). Given α ą 0, β P R, the pair σα,β “ pCohβpXq, Zα,βq,
where

Zα,βpEq :“ ´

ˆ

Hn´2 chβ2 pEq ´
1

2
α2Hn chβ0 pEq

˙

`
?
´1Hn´1 chβ1 pEq,

defines a weak stability condition on DbpXq with respect to Λ2
H . Moreover, these stability conditions

vary continuosly as pα, βq P Rą0ˆR varies, with a locally-finite wall and chamber structure.

Let us explain the meaning of the last sentence of the proposition, whose proof is given in [11],
Appendix B. We can visualize these weak stability conditions in the upper half plane

tpα, βq P RˆR : α ą 0u.

Definition 0.4.15. Let v be a vector in Λ2
H .

1. A numerical wall for v is the set of pairs pα, βq P Rą0ˆR such that there is a vector w P Λ2
H

verifying the numerical relation
µα,βpvq “ µα,βpwq.
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2. A wall for F P CohβpXq is a numerical wall for v :“ chď2pF q such that for every pα, βq on the
wall there is an exact sequence of semistable objects 0 Ñ E Ñ F Ñ G Ñ 0 in CohβpXq such
that µα,βpF q “ µα,βpEq “ µα,βpGq gives rise to the numerical wall.

3. A chamber is a connected component in the complement of the union of walls in the upper half
plane.

The key point is that tilt stability conditions satisfy well-behaved wall-crossing:

• The function Rą0ˆRÑ StabwpXq defined by

pα, βq ÞÑ pCohβpXq, Zα,βq

is continuous ([11], Proposition B.2).

• Walls with respect to a class v P Λ2
H in the image of this map are locally finite. In particular, if

v “ chď2pF q with F P CohβpXq, then the stability of F remains unchanged as pα, βq varies in a
chamber ([11], Proposition B.5).

Remark 0.4.16. Conjecturally, tilt stability is the starting point to produce Bridgeland stability
conditions. Here we summarize what is known till now.

• If X is a surface, then σα,β is a Bridgeland stability condition (see [18] for the case of K3 surfaces,
[5] for its generalization to smooth projective surfaces, or [68], Section 6 for a survey).

• If X has dimension ą 2, then Zα,β vanishes on objects with support in codimension ě 3.

• Assume that X has dimension 3. In [12], Section 3, the authors consider a new heart obtained by
tilting CohβpXq with respect to the weak stability condition σα,β , and they defined an appropriate
central charge involving the third Chern character. By [11], Theorem 4.2, this construction
defines a Bridgeland stability condition if and only if a generalized form of Bogomolov-Gieseker
inequality holds. We recommend [68], Section 9 for details and references.

0.4.3 The t1, ch1

ch0
, ch2

ch0
u-plane

The aim of this paragraph is to present an alternative way to the usual pα, βq-upper half plane in order
to visualize tilt stability conditions. This method was introduced by Li and Zhao in [66], Section 1 in
the case of stability conditions on P2.

Keeping the notation of the previous section, we consider the projective plane PpΛ2
Hq with homo-

geneous coordinates rHn ch0 : Hn´1 ch1 : Hn´2 ch2s. We fix the line tHn ch0 “ 0u and we define the
affine plane

A2
H :“ PpΛ2

HqztH
n ch0 “ 0u.

We will refer to A2
H as the t1, ch1

ch0
, ch2

ch0
u-plane and to PpΛ2

Hq as the projective t1, ch1
ch0
, ch2

ch0
u-plane. We

fix the affine coordinates
ˆ

Hn´1 ch1

Hn ch0
,
Hn´2 ch2

Hn ch0

˙

on A2
H .

A complex E P DbpXq such that chď2pEq ‰ p0, 0, 0q is represented by a point in the projective
t1, ch1

ch0
, ch2

ch0
u-plane. Moreover, if ch0pEq ‰ 0, then E gives rise to a point in the t1, ch1

ch0
, ch2

ch0
u-plane.

In A2
H , we consider the parabola ∆H described by the equation

1

2

ˆ

Hn´1 ch1

Hn ch0

˙2

´
Hn´2 ch2

Hn ch0
“ 0
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and the area above the parabola ∆̄H given by

1

2

ˆ

Hn´1 ch1

Hn ch0

˙2

´
Hn´2 ch2

Hn ch0
ă 0.

It is not difficult to see that a point above the parabola corresponds to a weak stability condition on
DbpXq, as we explain in the following lemma.

Lemma 0.4.17. For every point ps, tq P A2
H such that t ą 1{2s2, the pair σ1s,t “ pCoh

spXq, Z 1s,tq, where

Z 1s,tpEq :“ ´
`

Hn´2 ch2pEq ´ tH
n ch0pEq

˘

`
?
´1

`

Hn´1 ch1pEq ´ sH
n ch0pEq

˘

,

is a weak stability condition on DbpXq with respect to Λ2
H . Moreover, these stability conditions vary

continuosly as ps, tq P ∆̄H varies, with a locally-finite wall and chamber structure.

Proof. It is enough to notice that given pα, βq P Rą0ˆR, the tilt stability σα,β is the same as σ1
β,β

2`α2

2

,

up to the action of an element in G̃L
`
p2,Rq. Indeed, we have that

ˆ

1 ´β
0 1

˙ˆ

<Zα,β
=Zα,β

˙

“

¨

˝

<Z 1
β,β

2`α2

2

=Z 1
β,β

2`α2

2

˛

‚.

We point out that the morphism Z 1
β,β

2`α2

2

defines a weak stability function for CohβpXq, because

=Z 1
β,β

2`α2

2

“ =Zα,β and, when the imaginary part vanishes, the real part does not change. In particular,

for an object E P CohβpXq, we have ZpEq “ 0 if and only if Z 1pEq “ 0. Moreover, notice that

µα,β “ µ1
β,β

2`α2

2

´ β,

where µ1 is the slope with respect to Z 1 (and an object with infinite slope remains with infinite slope).
It follows that a σα,β-stable object is σ1

β,β
2`α2

2

-stable. In particular, the HN-filtration exists and this

action respects the order of the HN-factors’slopes, because we are just shifting by a constant. Finally,
the quadratic form given by the equation of the parabola ∆H satisfies the support property. Indeed,
notice that the kernel of Z 1s,t is given by the point ps, tq P ∆̄H . As pβ, β

2`α2

2 q is a point above the
parabola and stable objects give points below the parabola by Bogomolov-Gieseker inequality, we
conclude that σ1

β,β
2`α2

2

is a weak stability condition. It is easy to see that every point ps, tq P ∆̄H

comes from a point in the pα, βq-upper half plane. Thus, the claim follows from Proposition 0.4.14.

It is interesting to remark the following properties of the t1, ch1
ch0
, ch2

ch0
u-plane representation.

1. As already observed in proof of Lemma 0.4.17, the weak stability condition σ1s,t is identified with
kerZ 1s,t, which is the point ps, tq P A2

H over the parabola ∆H .

2. Let P “ ps, tq be a point in ∆̄H and let E be a slope semistable vector bundle in CohpXq. Then,
we have that E is in the heart CohspXq if and only if it determines a point in the right-half plane

"ˆ

Hn´1 ch1

Hn ch0
,
Hn´2 ch2

Hn ch0

˙

P A2
H :

Hn´1 ch1

Hn ch0
ą s

*

,

while Er1s is in CohspXq if and only the character of E defines a point in
"ˆ

Hn´1 ch1

Hn ch0
,
Hn´2 ch2

Hn ch0

˙

P A2
H :

Hn´1 ch1

Hn ch0
ď s

*

.
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3. Fix a point P “ ps, tq P ∆̄H and an object E P CohspXq such that ch0pEq ‰ 0. We still denote by
E the point in A2

H defined by the Chern character of E. Then, the slope of E can be represented
on the plane A2

H in the following way. We draw a vertical line passing through P and we consider
the semiline l´ from P to ´8. We denote by lEP the semiline in the right half plane

"ˆ

Hn´1 ch1

Hn ch0
,
Hn´2 ch2

Hn ch0

˙

P A2
H :

Hn´1 ch1

Hn ch0
ą s, or

Hn´1 ch1

Hn ch0
“ s and

Hn´2 ch2

Hn ch0
ą t

*

lying on the line joining E and P . An easy computation shows that the phase with respect to
Z 1s,t of E is equal to the angle between the semilines lEP and l´ divided by π. As a consequence,
two objects E and F in CohspXq with non zero rank satisfy

µ1s,tpEq ą µ1s,tpF q (4)

if and only if the ray lEP is above lFP (see [66], Lemma 1.17).

4. It is possible to represent the potential walls in the projective t1, ch1
ch0
, ch2

ch0
u-plane. Indeed, let

P “ ps, tq be a point in ∆̄H and let E and F be two objects in CohspXq having chď2 ‰ p0, 0, 0q.
Then Z 1s,tpEq and Z 1s,tpF q are on the same ray if and only if E, F and P are collinear in PpΛ2

Hq.
Indeed, we observe that Z 1s,tpEq and Z 1s,tpF q are on the same ray if and only if Z 1s,tpaE´ bF q “ 0
for some a, b P Rą0.This is equivalent to have E, F and P “ kerZ 1s,t on the same line in the
projective t1, ch1

ch0
, ch2

ch0
u-plane (see [66], Lemma 1.16).

This kind of representation does not prove any new result about these tilt stability conditions, but
it simplifies a lot the computations. First of all, the plane A2

H is more complete with respect to the
classical pα, βq-plane, because it allows to represent the characters of the objects and the weak stability
conditions on the same plane. Moreover, the potential walls are essentialy described as straight lines
on A2

H . Finally, we can compare the slope of two objects with different Chern character till degree
2 looking at their position on the t1, ch1

ch0
, ch2

ch0
u-plane. This allows to compare the slope with respect

to different weak stability conditions and characters simultaneously. We will use this description in
Chapter 4 to explain the computations.
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Part I

Cubic fourfolds
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Chapter 1

Introduction to Part I

The aim of this part is to present a detailed proof of some results about Fourier-Mukai partners of
cubic fourfolds (see [87]), and concerning the Fano variety of lines and the LLSvS eightfold of a cubic
fourfold, coming from a joint work with Chunyi Li and Xiaolei Zhao (see [65]).

A cubic fourfold Y is a smooth hypersurface of degree 3 in P5
C. In [57], Kuznetsov studied the

derived category DbpY q of bounded complexes of coherent sheaves on Y to address the problem of
the (non)rationality of the cubic fourfold. As recalled in Example 0.1.27, the derived category DbpY q
admits a semiorthogonal decomposition of the form

DbpY q “ xKupY q,OY ,OY p1q,OY p2qy,

where KupY q is the right orthogonal of the subcategory of DbpY q generated by tOY ,OY p1q,OY p2qu.
It turns out that the Kuznetsov component KupY q has certain similarities with the bounded derived
category of a K3 surface, e.g. the Serre functor on KupY q is the homological shift r2s (see [54], Corollary
4.3).

The Kuznetsov component should carry the information about the birational type of the cubic
hypersurface. Infact, it has been conjectured that Y is rational if and only if KupY q is equivalent
to the derived category of a K3 surface (see [57], Conjecture 1.1). To support this guess, Kuznetsov
proved in [57] that the cubic fourfolds which were known to be rational satisfy this condition (see also
[73]).

On the level of the Hodge theory, the existence of an associated K3 surface as an indicator of ra-
tionality was deeply studied (see [40], for a complete survey). Actually, Kuznetsov’s conjecture would
imply that a cubic fourfold with a Hodge associated K3 surface is rational, by results of Addington,
Thomas and Bayer, Lahoz, Macrì, Nuer, Perry and Stellari, relating the categorical and the Hodge
theoretical setting (see [4], Theorem 1.1 and [8] or [69], Theorem 3.7). Nevertheless, these conjectures
have not been proved yet.

In [47], Huybrechts studied the category KupY q, in order to develop a theory for cubic fourfolds
which parallels that of the derived category of a (twisted) K3 surface. In particular, he proved the
analogous version for KupY q of some results concerning Fourier-Mukai partners of a K3 surface. A
cubic fourfold Y 1 is a Fourier-Mukai partner of Y if there exists an equivalence of categories

KupY q „ÝÑ KupY 1q

which is of Fourier-Mukai type, i.e. such that the composition

DbpY q
i˚
ÝÑ KupY q „ÝÑ KupY 1q ãÑ DbpY 1q
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is a Fourier-Mukai functor; here, i˚ denotes the left adjoint functor of the full inclusion i : KupY q ãÑ

DbpY q. Usually in the literature this denomination is used to identify smooth projective varieties with
equivalent derived categories. However, cubic fourfolds satisfying this condition are isomorphic by a
result of Bondal and Orlov (see [17], Theorem 3.1). Thus, it becomes interesting to address the same
problem by considering the Kuznetsov components.

Huybrechts showed that the number of (isomorphism classes of) Fourier-Mukai partners for a cubic
fourfold Y is finite (see [47], Theorem 1.1), as in the case of Fourier-Mukai partners for a K3 surface
(see [20], Proposition 5.3). Moreover, he proved that the very general cubic fourfold Y , i.e. such that
rkpH2,2pY,Zqq “ 1, has no non-trivial Fourier-Mukai partners (see [47], Corollary 3.6).

It is natural to ask whether a special cubic fourfold Y , i.e. such that rkpH2,2pY,Zqq ě 2, admits
Fourier-Mukai partners which are not isomorphic to Y . In particular, we may wonder if for special
cubic fourfolds it is possible to prove a version of Theorem 1.7 and Corollary 1.8 of [81], which state
that there are examples of K3 surfaces having a prescribed number of non-isomorphic Fourier-Mukai
partners.

The first result is that the answer is positive in the case that the rank of H2,2pY,Zq is exactly two
and the cubic fourfold Y admits an associated K3 surface X with “enough” non-trivial Fourier-Mukai
partners. More precisely, given a positive integer d, we denote by Cd the divisor parametrizing special
cubic fourfolds with discriminant d (see Section 2.1). We recall that:

• (see [39], Theorem 1.0.1) the divisor Cd is non empty if and only if

d ą 6 and d ” 0, 2pmod 6q; (0)

• (see [39], Theorem 1.0.2 or Section 2.1) a cubic fourfold Y P Cd has an associated K3 surface if
and only if

4 - d, 9 - d, p - d for any odd prime p such that p ” 2pmod 3q. (a)

The first result is a counting formula for the number of Fourier-Mukai partners for very general
special cubic fourfolds admitting an associated K3 surface.

Theorem 1.0.1. Let d be a positive integer satisfying (0) and (a). Let Y be a very general cubic
fourfold in Cd and let m be the number of non-isomorphic Fourier-Mukai partners of an associated K3
surface to Y . Then, the cubic fourfold Y has exactly m non-isomorphic Fourier-Mukai partners, when
d ” 2pmod 6q; otherwise, if d ” 0pmod 6q, the number of non-isomorphic Fourier-Mukai partners of Y
is equal to rm{2s.

As a consequence of Theorem 1.0.1, we deduce that there exist cubic fourfolds admitting an arbi-
trary number of Fourier-Mukai partners, depending on the number of distinct odd primes in the prime
factorization of the discriminant (see Proposition 3.1.4).

More generally, we recall that a cubic fourfold Y P Cd has an associated twisted K3 surface (see
[47], Section 2.4 or Section 2.4) if and only if

ni ” 0pmod 2q for all primes pi ” 2pmod 3q in 2d “
ź

pnii . (a’)

A weaker formulation of Theorem 1.0.1 holds for very general cubic fourfolds Y in Cd, admitting an
associated twisted K3 surface pX,αq, if 9 does not divide the discriminant d. Indeed, in Section 3.2,
we show that the number of non-isomorphic twisted Fourier-Mukai partners of pX,αq with the Brauer
class of the same order as α, gives a lower bound for the number of Fourier-Mukai partners of the cubic
fourfold.

Theorem 1.0.2. Let d be a positive integer satisfying (0) and (a’). Assume that 9 does not divide
d. Let Y be a very general cubic fourfold in Cd with associated twisted K3 surface pX,αq, where α has
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order κ; let m1 be the number of non-isomorphic Fourier-Mukai partners of pX,αq with Brauer class of
order κ. Then the cubic fourfold Y admits at least m1 non-isomorphic Fourier-Mukai partners, when
d ” 2pmod 6q; otherwise, if d ” 0pmod 6q, the number of non-isomorphic Fourier-Mukai partners of Y
is at least rm1{2s.

In particular, under the hypotheses of Theorem 1.0.2, we have that m1 is controlled by the number
of distinct primes in the prime factorization of d{2 divided by the square of the order of the Brauer
class α and by the Euler function evaluated in ordpαq, as we show in Proposition 3.2.8.

Notice that our construction represents the first example of non-trivial Fourier-Mukai partners for
a cubic fourfold. Actually, these results complete the expected analogy between cubic fourfolds and K3
surfaces, stated in [47]. They also represent a first step in order to understand whether cubic fourfolds
which are Fourier-Mukai partners are birational.

An other approach in order to better understand the Kuznetsov component and its relation with the
geometry of Y is by looking at moduli spaces of stable objects in KupY q. This is now possible thanks
to the result in [7], where Bayer, Lahoz, Macrì and Stellari provide a construction of Bridgeland
stability conditions on KupY q (see Section 4.1.1 for a summary of this construction). Notice that,
since the component KupY q is a K3 subcategory, moduli spaces of Bridgeland stable objects in KupY q
are naturally endowed with a symplectic 2-form, by the same argument explained in Example 0.3.8.
Actually, in the forthcoming paper [8], the authors prove that under mild assumptions these moduli
spaces are smooth projective irreducible holomorphic symplectic manifolds of K3 type (see Section 0.3.2
for the meaning). This gives a systematic way to produce complete families of (polarized) projective
hyperkähler manifolds.

On the other hand, using classical techniques in algebraic geometry, two examples of K3 type
hyperkähler minifolds are constructed out of lines and twisted cubic curves in a cubic fourfold. In
particular, Beauville and Donagi showed in [14] that the Fano variety FY of lines on Y is a smooth
projective hyperkähler fourfold, deformation equivalent to the Hilbert square of a K3 surface (see
Example 0.3.9). More recently, in [64] Lehn, Lehn, Sorger and van Straten construted a hyperkähler
eightfold MY from the irreducible component of the Hilbert scheme of twisted cubic curves on a cubic
fourfold Y non containing a plane (see Example 0.3.10). An interesting question is then to understand
the relation between the classical and the homological setting.

The main results in Chapter 4 give a description of FY and MY in terms of moduli spaces of stable
objects in the Kuznetsov component, with respect to the Bridgeland stability conditions defined in [7].

In particular, recall that the algebraic Mukai lattice of KupY q always contains an A2 lattice spanned
by two classes λ1 and λ2 (see Section 2.3). We denote by Mσpvq the moduli space of σ-stable objects
in KupY q with Mukai vector v, where σ is a stability condition as in [7]. To each line ` on Y , we can
associate an object P` P KupY q, of Mukai vector λ1 ` λ2 (see Section 4.3). The following result gives
a reconstruction of FY as follows.

Theorem 1.0.3. For any line ` in a cubic fourfold Y , the object P` is σ-stable and the moduli space
Mσpλ1 ` λ2q is isomorphic to the Fano variety FY .

The case of twisted cubics on Y is even more interesting from many perspectives. Assume that Y
does not contain a plane. Every twisted cubic curve C in Y has an associated object F 1C in KupY q
with Mukai vector 2λ1 ` λ2 (see Section 4.2.1). Then, we prove the following result.

Theorem 1.0.4 (Theorem 4.2.7 and Theorem 4.2.8). Let Y be a smooth cubic fourfold not containing a
plane. If C is a twisted cubic on Y , then the object F 1C is σ-stable. Moreover, the projective hyperkähler
eightfold Mσp2λ1 ` λ2q parametrizes only objects of the form F 1C , and it is isomorphic to the LLSvS
eightfold MY .
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The first advantage of our approach is that it only involves homological properties of twisted cubic
curves, without requiring the detailed analysis of the singularities and the determinantal representations
of the twisted cubics and the cubic surfaces in Y used in [64]. In particular, we interpret the contraction
of the locus of non CM twisted cubic curves in LLSvS picture via wall-crossing in weak stability.
Furthermore, our result provide a description of the birational models of MY , which are obtained by
crossing a wall of Bridgeland stability. Finally, this description gives a more conceptual explanation
of the existence of the holomorphic symplectic structure on FY and MY , as moduli spaces of stable
complexes in a K3 category.

An other feature is that Theorem 1.0.3 and Theorem 1.0.4 can be used to address Torelli type
questions. Indeed, by Theorem 1.0.1, we know that the Kuznetsov component does not determine the
cubic fourfold. More generally, in [48] Huybrechts and Rennemo proved a categorical version of Torelli
Theorem, which essentially states that two cubic fourfolds are isomorphic if and only if there is an
equivalence between their Kuznetsov components which satisfies an additional property (see Section
4.4.1). As explained in the Appendix of [7], where they treated the case of very general cubic fourfolds,
the interpretation of the Fano variety FY as a moduli space of stable objects in KupY q can be used to
give a different proof of the categorical version of Torelli Theorem for cubic fourfolds. Thus, Theorem
1.0.3 allows to apply this argument without assumptions on Y (Corollary 4.4.1).

On the other hand, a direct consequence of Theorem 1.0.4 is the identification of the period point
of MY with that of FY and Y .

Proposition 1.0.5 (Proposition 4.4.2). For a cubic fourfold Y not containing a plane, the period point
of MY is identified with the period point of the Fano variety FY .

Finally, a still open question is the Derived Torelli Theorem, which essentially states, in analogy
to the case of K3 surfaces, that two cubic fourfolds are Fourier-Mukai partners if and only if they
have Hodge isometric Mukai lattices. An evidence of this conjecture is that it has been proved by
Huybrechts in [47] under genericity assumptions (see Remark 2.4.2). Section 4.4.3 is an attempt to
extend this result for every cubic fourfold. In particular, we show that our strategy works in the simple
case of the identity on KupY q, as explained below.

Proposition 1.0.6 (Proposition 4.4.3). Let Y be a cubic fourfold not containing a plane. Then the
composition of the projection functor on the Kuznetsov component of Y with the embedding KupY q ãÑ

DbpY q is a Fourier-Mukai functor with kernel given by the restriction of the (quasi-)universal family
on Mσp2λ1 ` λ2q ˆ Y to Y ˆ Y .

Related works. The problem of finding Fourier-Mukai partners has already been studied in [16], in
the case of cubic fourfolds containing a plane. In particular, they proved that the very general cubic
fourfold in C8 has only one isomorphism class of Fourier-Mukai partners (see [16], Proposition 6.3).

In [62] the authors gave an interpretation of LLSvS geometric picture in the categorical setting. In
particular, they described M 1

Y and MY as components of moduli spaces of Gieseker stable sheaves on
Y . For very general cubic fourfolds, they also realized the contraction fromM 1

Y toMY via wall-crossing
in tilt-stability.

We point out that Theorem 1.0.3 and Theorem 1.0.4 were proved for very general cubic fourfolds
in the Appendix of [7] and [62], respectively. In this situation, the algebraic Mukai lattice of KupY q
is exactly the A2 lattice. This property rules out most of the potential walls, allowing to prove the
theorems without going through the construction of the stability conditions. It was made clear in [3]
and [62] that for each twisted cubic C, the object F 1C is the correct one to consider.

Notation. We use the following terminology: a cubic fourfold Y is very general if rkpH2,2pY,Zqq “ 1,
while a very general special cubic fourfold Y (i.e. a very general Y in a divisor Cd) has rkpH2,2pY,Zqq “
2.
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Chapter 2

Recollection of results

In this chapter we review some known aspects about Hodge theory for cubic fourfolds following [39],
the definition of Mukai lattice for the Kuznetsov component given in [4] and the statement of the
Derived Torelli Theorem for very general special cubic fourfolds as in [47]. Finally, we recall some
results concerning Fourier-Mukai partners of (twisted) K3 surfaces stated in [81] and [67], which we
will use in the next.

2.1 Special cubic fourfolds and associated K3 surface

Let Y be a cubic fourfold; the Hodge diamond of Y is

1
0 0

0 1 0
0 0 0 0

0 1 21 1 0

.

Indeed, the cohomology in degree ď 3 is the same as that of P5 by Lefschetz Hyperplane Theorem.
Moreover, since ωY “ OY p´3q is antiample, we have that H0pY, ωY q “ 0. The other Hodge numbers
for H4pY,Qq were computed by Hirzebruch in [42], Chapter 22.

By classical results of Hodge theory and classification of quadratic forms, we have that the lattice
given by the degree four integral cohomology group H4pY,Zq, endowed with the intersection form
p , q with reversed sign, is isometric to the odd unimodular lattice L :“ I2,21 “ Z‘2‘Zp´1q‘21 (see
Example 0.2.4). It contains an element h such that ph, hq “ ´3, corresponding to the square of the
class of a hyperplane in Y . For reasons which will be clear later, we prefer to consider the group
H4pY,Zqp1q, where p1q denotes the Tate twist, which carries a weight-two Hodge structure. By [39],
Proposition 2.1.2, the twisted primitive lattice H4pY,Zq0p1q with intersection form of reversed sign is
isometric to

L0 :“ A2p´1q ‘ U‘2 ‘ E8p´1q‘2.

We set
Q :“ ty P PpL0 b Cq : py, yq “ 0, py, ȳq ą 0u. (2.1)

The choice of a connected component D1 of Q determines the local period domain for cubic fourfolds.
Let Γ` be the subgroup of the group of automorphism of L, preserving the class h and the component
D1. The global period domain of cubic fourfolds is the quotient D :“ Γ`zD1. We denote by C the
moduli space of cubic fourfolds and let

τ : C Ñ D
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be the period map. Voisin proved that τ is an open immersion, i.e. Torelli Theorem holds for cubic
fourfolds (see [94]).

A cubic fourfold Y is special if there exists a rank-two (negative definite) primitive sublattice
pK, p , qq of H4pY,Zq X H2,2pY q, containing the class h. This lattice K is a labelling for Y . We
will write Kd to underline the fact that the labelling has discriminant d. By Hassett’s work, special
Hodge structures with a labelling of discriminant d form a divisor D1d in the local period domain. If
Dd “ Γ`zD1d, then Cd “ C X Dd (via τ) is the irreducible divisor in C of special cubic fourfolds of
discriminant d. By [39], Theorem 1.0.1, the divisor Cd is non empty if and only if

d ą 6 and d ” 0, 2pmod 6q. (0)

It turns out that there are numerical conditions on d which ensure the existence of an associated K3
surface, as we explain in the following proposition.

Theorem 2.1.1 ([39], Theorem 1.0.2). Let Y be a cubic fourfold in Cd with labelling Kd. There exist
a K3 surface X with polarization class of degree d and an isometry of Hodge structures

KK
d – H2pX,Zq0

between the orthogonal sublattice to Kd in H4pY,Zqp1q and the degree two primitive cohomology of the
K3 surface, if and only if d satisfies the following condition:

4 - d, 9 - d, p - d for any odd prime p such that p ” 2pmod 3q. (a)

We point out the following property concerning the discriminant group dpKK
d q of K

K
d , endowed

with the discriminant form qKKd
induced by the intersection form.

Proposition 2.1.2 ([39], Proposition 3.2.6). If d ” 0pmod 6q, then dpKK
d q – Z {d3Z‘ Z {3Z, which is

cyclic unless nine divides d. Furthermore, we may choose this isomorphism so that

qKKd
pp0, 1qq ” ´

2

3
pmod 2Zq and qKKd

pp1, 0qq ”
3

d
pmod 2Zq.

If d ” 2pmod 6q, then dpKK
d q – Z {dZ. Furthermore, we may choose a generator g so that

qKKd
pgq ”

1´ 2d

3d
pmod 2Zq.

2.2 Immersion into the moduli spaces of K3 surfaces

In [39], Section 5.3, Hassett proved that the existence of an isometry of Hodge structures as in Theorem
2.1.1 allows an identification between the moduli space of marked special cubic fourfolds of discriminant
d and the moduli space of degree d polarized K3 surfaces. Let us explain this observation. We fix
a rank-two, negative definite, primitive sublattice Kd Ă L of discriminant d, containing h. We write
Γ`d to denote the subgroup of the group of automorphisms of L fixing the class h and preserving the
labelling Kd. Let Dlab

d be the global period domain which parametrizes Hodge structures x P D1 with
Kd Ă H2,2pxq X L, modulo the action of Γ`d , i.e.

Dlab
d :“ Γ`d zD

1
d.

We say that Dlab
d is the global period domain of labelled special Hodge structures with discriminant d.

Notice that Dlab
d is birational to Dd via the morphism Dlab

d Ñ D. Actually, a very general point in Dd
has a unique labelling. In particular, Dlab

d is the normalization of Dd (see [39], Section 3.1)
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Let, now, G`d be the subgroup of Γ`d of automorphisms acting trivially on Kd. Then, the global
period domain of marked special Hodge structures of discriminant d is the quotient

Dmar
d :“ G`d zD

1
d.

In this new space, two cubic fourfolds having the same labellingKd which comes from different primitive
embeddings in H2,2p´qXL are not identified. The relation between Dmar

d and Dlab
d is explained in the

following proposition.

Proposition 2.2.1 ([39], Proposition 5.3.1). The group G`d is equal to Γ`d (resp. the group G`d is an
index-two subgroup of Γ`d ), if d ” 2pmod 6q (resp. if d ” 0pmod 6q).

The forgetful map ρ : Dmar
d Ñ Dlab

d is an isomorphism (resp. a double cover), if d ” 2pmod 6q (resp.
if d ” 0pmod 6q).

Remark 2.2.2. If d ” 0pmod 6q, then the Hodge structures on L0 represented by elements in the
same fiber of ρ are exchanged by the automorphism γ of Γ` such that γ R G`d (see [39], the proof of
Proposition 5.3.1).

On the other hand, let N 1d and Nd be respectively the local and the global period domains for K3
surfaces with polarization class of degree d. We have the following result.

Theorem 2.2.3 ([39], Theorem 5.3.2, 5.3.3). Let d be a positive integer satisfying conditions (0) and
(a). Then, there exists an isomorphism

jd : Dmar
d Ñ Nd,

which is unique up to the choice of an element in IsopdpKK
d q, dpΛ

0
dqq{p˘1q, which is the quotient of the

set of all such isomorphisms of discriminant groups by the action of the group tn P Z {dZ : n2 “ 1u.

2.3 Mukai lattice for KupY q

Let us now consider the categorical framework. We have already mentioned in the introduction that
the subcategory KupY q of a cubic fourfold Y behaves in a certain way as the derived category of a K3
surface. In [57], Kuznetsov proved that for certain special cubic fourfolds Y , there exist a K3 surface
X and an equivalence of categories KupY q „ÝÑ DbpXq. In general, if this condition is satisfied, we say
that KupY q is geometric. In [4], Addington and Thomas explained the relation between Kuznetsov’s
K3 surface and Hassett’s Hodge theoretic associated K3 surface. Let us recall the construction.

We denote by KpY qtop the topological K-theory of Y , which in this case is just the Grothendieck
group of topological complex vector bundles over Y . Recall that the Euler pairing on KpY qtop is given
by χpE,F q “

ř

ip´1qidimHompE,F risq. Let

v : KpY qtop bQ –
ÝÑ

4
à

p“0

H2ppY,Qqppq,

be the isomorphism induced by the Mukai vector, which is defined by vp´q “ chp´q.
a

tdpXq (see [44],
Definition 5.28). Then v induces a weight-zero Hodge structure on

KpKupY qqtop :“ tκ P KpY qtop : χprOY piqs, κq “ 0, for all i “ 0, 1, 2u.

More precisely, we have that

KpKupY qqtop b C “
à

p`q“2

H̃p,qpKupY qq,
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where
H̃2,0pKupY qq “ v´1pH3,1pY qq

and
H̃1,1pKupY qq “ v´1pH0pY,Cq ‘H1,1pY q ‘H2,2pY q ‘H3,3pY q ‘H8pY,Cqq.

We denote by H̃pKupY q,Zq the latticeKpKupY qqtopp´1q with the induced weight-two Hodge structure:
it is isomorphic to the lattice Λ̃ :“ E8p´1q‘2 ‘ U‘4 and it is called the Mukai lattice of Y (see [4],
Section 2.3). Let

NpKupY qq :“ H̃1,1pKupY q,Zq “ H̃1,1pKupY qq X H̃pKupY q,Zq

be the generalized Néron-Severi lattice of KupY q and we denote by T pKupY qq its orthogonal comple-
ment in H̃pKupY q,Zq, which is the generalized trascendental lattice of KupY q. Then, there exist two
elements λ1, λ2 in NpKupY qq, corresponding to the projections in KupY q of the structure sheaf of a
line in Y twisted by 1 and 2 respectively, spanning a rank two sublattice with intersection matrix

A2 :“

ˆ

2 ´1
´1 2

˙

.

Proposition 2.3.1 ([4], Proposition 2.3). The Mukai vector induces an isometry between the orthogonal
complement AK2 of A2 in H̃pKupY q,Zq and the primitive lattice xhyK “ H4pY,Zq0p1q. Moreover, if
κ1, . . . , κn are elements of H̃pKupY q,Zq, then v induces an isometry

xλ1, λ2, κ1, . . . , κny
K – xh, c2pκ1q, . . . , c2pκnqy

K.

Remark 2.3.2. Since, by definition, the lattice A2 is contained in NpKupY qq, the orthogonality
condition implies that T pKupY qq is in AK2 . In particular, as observed in [47], Section 3.3, the orthogonal
complement to the trascendental lattice in AK2 is NpKupY qq XAK2 .

Theorem 2.3.3 ([4], Theorem 1.1). If KupY q is geometric, then Y belongs to Cd for some d satisfying
condition (a) of Theorem 2.1.1. Conversely, for each d satisfying (a), the set of cubic fourfolds Y in
Cd for which KupY q is geometric forms a Zariski open dense subset.

Remark 2.3.4. In [8], the authors prove that every Y P Cd for d satisfying (a) is geometric, extending
Addington and Thomas’ result to the whole divisor (see [69], Theorem 3.7).

In [47], Proposition 3.4, Huybrechts proved that, given two cubic fourfolds Y and Y 1, the existence
of a Fourier-Mukai equivalence KupY q „

ÝÑ KupY 1q implies the existence of a Hodge isometry of the
corresponding Mukai lattices. The surprising fact is that, under some assumptions, the category
KupY q is completely determined by the Hodge structure on H̃pKupY q,Zq, as we recall in the next
section.

2.4 Associated twisted K3 surface

In [47], Huybrechts generalized Theorem 2.1.1 and Theorem 2.3.3 to the case of cubic fourfolds admit-
ting an associated twisted K3 surface. We recall that a twisted K3 surface is the data of a K3 surface
X and a class in the Brauer group H2pX,O˚Xqtors of X. Following [49], Section 2, let B be a rational
class of H2pX,Qq, which is sent to α through the composition

H2pX,Qq Ñ H2pX,OXq
exp
ÝÝÑ H2pX,O˚Xq.
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We say that B is a B-field lift of α. We denote by H̃pX,α,Zq the cohomology ring H˚pX,Zq with the
Mukai pairing and the weight two Hodge structure defined by

H̃2,0pX,αq :“ exppBqH2,0pXq and H̃1,1pX,αq :“ exppBqH1,1pXq.

We see that H̃pX,α,Zq is isomorphic as a lattice to Λ̃ and we call it the Mukai lattice of pX,αq. We
can consider the algebraic part

NpX,αq “ H̃1,1pX,α,Zq :“ H̃1,1pX,αq X H̃pX,α,Zq

and we define the generalized twisted trascendental lattice T pX,αq as the orthogonal complement of
NpX,αq with respect to the Mukai pairing. On the other hand, using the intersection product with
B, we can identify the class α with a surjective morphism α : TX Ñ Z {ordpαqZ. Then, the kernel
of α is isomorphic via exppBq to T pX,αq (see [43], Proposition 4.7). For this reason, we will use the
same notation for T pX,αq and kerpαq (resp. for NpX,αq and the orthogonal complement of kerpαq in
H̃pX,α,Zq), even if the first one is primitively embedded in H̃pX,α,Zq, while the second one is not.

As in the untwisted case, the condition of having an associated twisted K3 surface on the level of
Hodge structures on the Mukai lattices depends only on the value of the discriminant d.

Theorem 2.4.1 ([47], Theorem 1.3). Let Y be a cubic fourfold. There exist a twisted K3 surface
pX,αq and a Hodge isometry H̃pKupY q,Zq – H̃pX,α,Zq if and only if Y belongs to Cd for d such that

ni ” 0pmod 2q for all primes pi ” 2pmod 3q in 2d “
ź

pnii . (a’)

Moreover, Theorem 2.3.3 and Remark 2.3.4 have the following analogous in the twisted setting.

• If there exists a twisted K3 surface pX,αq such that the category KupY q is equivalent to the
derived category DbpX,αq of bounded complexes of α-twisted coherent sheaves on X, then the
cubic fourfold Y belongs to Cd for d satisfying condition (a’) of Theorem 2.4.1 (see [47], Theorem
1.4(i)).

• In [47], Theorem 1.4(ii), Huybrechts proved that if d satisfies (a’), then a Zariski open subset
of cubic fourfolds Y in the divisor Cd have KupY q „

ÝÑ DbpX,αq. In [8], the authors extend this
result to all cubic fourfolds in Cd.

Remark 2.4.2 (Derived Torelli Theorem). In [47], Theorem 1.5(ii), Huybrechts proved that for d
satisfying (a’) and a Zariski dense open set of cubics Y P Cd, there exists a Fourier-Mukai equivalence
KupY q „

ÝÑ KupY 1q if and only if there exists a Hodge isometry H̃pKupY q,Zq – H̃pKupY 1q,Zq. Now,
using that every Y in such a divisor has KupY q „

ÝÑ DbpX,αq by [8], we can extend this result to all
the divisor Cd following the same proof of [47] (see [69], Theorem 3.27).

Remark 2.4.3. Set
Q̃ :“ tϕ P PpΛ̃b Cq : pϕ,ϕq “ 0, pϕ, ϕ̄q ą 0u.

A point ϕ P Q̃ is of K3 type (resp. of twisted K3 type) if there is a K3 surface X (resp. a twisted K3
surface pX,αq) such that the Hodge structure defined by ϕ on Λ̃ is Hodge isometric to H̃pX,Zq (resp.
H̃pX,α,Zq) (see [47], Definition 2.5). We denote by QK3 (resp. QK31) the set of points of K3 type
(resp. of twisted K3 type) in Q̃.

Notice that D1 Ă Q Ă Q̃, as L0 – AK2 . Thus, we can consider the sets

DK3 :“ QK3 XD1 and DK31 :“ QK31 XD1,

containing period points in D1 of (twisted) K3 type (see [47], Section 2.5).
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2.5 Counting formulas for Fourier-Mukai partners of a K3 surface

The aim of this section is to recollect some known formulas which count the number of isomorphism
classes of (twisted) Fourier-Mukai partners of a given (twisted) K3 surface. We recall that a twisted
Fourier-Mukai partner of a K3 surface X (resp. of a twisted K3 surface pX,αq) is a twisted K3 surface
pX 1, α1q such that there exists an equivalence of categories DbpXq

„
ÝÑ DbpX 1, α1q (resp. DbpX,αq

„
ÝÑ

DbpX 1, α1q); if the Brauer class α1 is trivial, we say that the Fourier-Mukai partner is untwisted.
The first result concerns the number of isomorphism classes of untwisted Fourier-Mukai partners

of a very general polarized K3 surface, which is determined by the number of distinct primes in the
factorization of the degree of the polarization class.

Theorem 2.5.1 ([81], Proposition 1.10). Let X be a K3 surface with Néron-Severi lattice NSpXq of
rank one generated by a polarization class lX such that l2X “ 2n. Let m be the number of (isomorphism
classes of) Fourier-Mukai partners of X; then we have:

• m “ 1, if l2X “ 2 or l2X “ 2a,

• m “ 2h´1, if l2X “ 2pe11 ¨ . . . p
eh
h ,

• m “ 2h, if l2X “ 2ape11 ¨ . . . p
eh
h ,

where a, h and the ei’s are natural numbers with a ě 2, the pi’s are different primes such that pi ě 3.

More generally, Ma proved in [67] a counting formula for isomorphism classes of twisted Fourier-
Mukai partners of a twisted K3 surface pX,αq which admits an untwisted Fourier-Mukai partner (see
[67], Theorem 1.1). Moreover, relaxing this hypothesis, he obtained an upper bound to the number of
twisted Fourier-Mukai partners of pX,αq. We conclude this paragraph by resuming Ma’s construction,
which will be useful in the next chapter.

Let pX,αq be a twisted K3 surface with ordpαq “ κ. We recall that a twisted K3 surface pX 1, α1q
is isomorphic to pX,αq if there exists an isomorphism F : X – X 1 such that F ˚α1 “ α. We denote
by FMrpX,αq the set of isomorphism classes of Fourier-Mukai partners pX 1, α1q of pX,αq, having α1

of order r. We say that pX1, α1q and pX2, α2q in FMrpX,αq are „-equivalent if there exists a Hodge
isometry g : TX1 – TX2 such that g˚α2 “ α1. We define the quotient

FMrpX,αq :“ FMrpX,αq{ „

and we denote by π : FMrpX,αq � FMrpX,αq the quotient map. Let IrpdpT pX,αqqq be the set of
all isotropic subgroups of order r of the discriminant group pdpT pX,αq, qT pX,αqq of T pX,αq, i.e.

IrpdpT pX,αqqq :“
 

x P dpT pX,αqq : qT pX,αqpxq “ 0 P Q {2Z, ordpxq “ r
(

.

We define the map
µ : FMrpX,αq Ñ OHdgpT pX,αqqzI

rpdpT pX,αqqq, (2.2)

where OHdgpT pX,αqq is the group of Hodge isometries of the generalized trascendental lattice, in the
following way. For every pX1, α1q in FMrpX,αq, there exists a Hodge isometry g1 : T pX1, α1q –

T pX,αq. Then
g_1 pTX1q

T pX,αq
–

TX1

T pX1, α1q
–

Z
rZ

is an isotropic, cyclic subgroup of dpT pX,αqq of order r. Thus, for every class rpX1, α1qs in FMrpX,αq,
we set

µprpX1, α1qsq “ x :“ rg1pα
´1
1 p1̄qqs P OHdgpT pX,αqqzI

rpdpT pX,αqqq.

We have that:
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1. The map µ is well-defined and injective (see [67], Lemma 3.2);

2. The image of µ is contained in OHdgpT pX,αqqzJ
rpdpT pX,αqqq, where

JrpdpT pX,αqqq “ tx P IrpdpT pX,αqqq : there exists an embedding U ãÑ xNpX,αq, λpxqyu ,

for λ : dpT pX,αqq – dpNpX,αqq (see [67], Proposition 3.4).

On the other hand, for every pX1, α1q in FMrpX,αq, we can define a map

ν : π´1pπpX1, α1qq Ñ ΓpX1, α1q
`zEmbpU,NpX1qq, (2.3)

where EmbpU,NpX1qq is the set of the embeddings of U in NpX1q “ H0pX1,Zq‘NSpX1q‘H
4pX1,Zq

and ΓpX1, α1q
` is the set of orientation-preserving isometries of NpX1q, 1 which come from isometries

of TX1 fixing α1 (see [67], Section 3.2). We have that:

1. The map ν is injective (see [67], Lemma 3.5);

2. The map ν is surjective if and only if the Cǎldǎraru’s Conjecture holds (see [67], Remark 3.7).

We recall the statement of Cǎldǎraru’s Conjecture, which was proposed for the first time in [23],
Conjecture 5.5.5.

Conjecture 2.5.2 ([67], Question 3.8). Let pX,αq be a twisted K3 surface. For each untwisted Fourier-
Mukai partner X 1 of X and each Hodge isometry g : TX 1 – TX , the twisted K3 surface pX 1, g˚αq is a
Fourier-Mukai partner of pX,αq.

Remark 2.5.3. We point out that Conjecture 2.5.2 is related to an other conjecture due to Cǎldǎraru,
which asks whether two twisted K3 surfaces having Hodge isometric twisted trascendental lattices are
Fourier-Mukai partners. This conjecture is known to be false in general by [49], Example 4.11.

To state Ma’s formula, we need to introduce some notation. For every x in IrpdpT pX,αqqq, we
define the overlattice

Tx :“ xx, T pX,αqy

of T pX,αq and the morphism

αx : Tx �
Tx

T pX,αq
– xxy –

Z
rZ
.

For a pair px,Mq such that
xλpxq, NpX,αqy – U ‘M,

we define the number
τpx,Mq :“ #pOHdgpTx, αxqzOpdpMqq{OpMqq,

where OHdgpTx, αxq is the set of Hodge isometries g of Tx, such that g˚αx “ αx. For a natural number
r, we define

εprq “

#

1, if r “ 1, 2

2, if r ě 3.

Finally, if GpLq is the genus of a lattice L, OpLq0 is the kernel of the map rL : OpLq Ñ OpdpLqq and
OpLq`0 is the subgroup of OpLq0 of orientation-preserving isometries, we define the subsets

G1pLq :“ tL1 P GpLq : OpL1q`0 ‰ OpL1q0u, G2pLq :“ tL1 P GpLq : OpL1q`0 “ OpL1q0u.

Using the previous observations, Ma proved that the following inequality holds.
1In general, given a lattice L of signature pl`, l´q with l` ą 0, we can consider the set of oriented positive definite

l`-planes in L b R. An orientation for L is the choice of an orientation for such a positive definite l`-plane. For a
subgroup Γ of OpLq, we denote by Γ` the subgroup of isometries of Γ which preserve the given orientation (see [67],
Section 2.1).
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Theorem 2.5.4 ([67], Proposition 4.3). We have the inequality

#FMrpX,αq ď
ÿ

x

#

ÿ

M

τpx,Mq ` εprq
ÿ

M 1

τpx,M 1q

+

. (2.4)

Here:

• x runs over the set OHdgpT pX,αqqzJ
rpdpT pX,αqqq;

• the lattices M and M 1 run over the sets G1pMϕq, G2pMϕq respectively, where Mϕ is a lattice
satisfying xλpxq, NpX,αqy – U ‘Mϕ.
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Chapter 3

Fourier-Mukai partners of cubic fourfolds

In this chapter we present the proof of Theorem 1.0.1 and Theorem 1.0.2, which are the main results
of [87].

3.1 Construction of the examples (untwisted case)

The aim of this section is to prove Theorem 1.0.1, whose statement is the following.

Theorem 3.1.1. Let d be a positive integer satisfying (0) and (a). Let Y be a very general cubic
fourfold in Cd and let m be the number of non-isomorphic Fourier-Mukai partners of an associated K3
surface to Y . Then, the cubic fourfold Y has exactly m non-isomorphic Fourier-Mukai partners, when
d ” 2pmod 6q; otherwise, if d ” 0pmod 6q, the number of non-isomorphic Fourier-Mukai partners of Y
is equal to rm{2s.

In the first paragraph we exhibit some preliminary computations on the level of the period domain
of (marked) cubic fourfolds, while in the last section we provide the proof of the theorem.

3.1.1 Some preliminary computations

Let Y be a very general special cubic fourfold in Cd with d satisfying condition (a) of Theorem 2.1.1; let
us choose a K3 surface X of degree d associated to Y . In this section we study the number of distinct
points in the period domain Dd determined by the non-isomorphic representatives of the isomorphism
classes of untwisted Fourier-Mukai partners of X.

We recall that NpKupY qq has rank 3, because Y is very general in Cd (see [47], Lemma 2.2).
Let υY be a generator of the rank one lattice NpKupY qq X AK2 . Let m (possibly equal to 1) be the
number of isomorphism classes of Fourier-Mukai partners of X. We fix a representative for each class
of isomorphism and we denote them by X1, . . . , Xm, choosing X1 :“ X. By [83], Theorem 3.3, this is
equivalent to ask that, for every index 2 ď k ď m, there exists a Hodge isometry H̃pX,Zq – H̃pXk,Zq.
In particular, the Néron-Severi lattice of Xk has rank one with the polarization class of degree d. We
denote by xk the point in the local period domain N 1d, which is determined by the Hodge structure on
the trascendental lattices of the K3 surface Xk. These points also descend to different points in the
global period domain Nd, since they come from non-isomorphic polarized K3 surfaces.

Composing the isometries of Proposition 2.3.1 and of Theorem 2.1.1, we get the isometry of Hodge
structures

ϕ : T pKupY qq “ xλ1, λ2, υY y
K – H2pX,Zq0 “ TX ,

where the trascendental lattice T pKupY qq is defined in Section 2.3. This induces an isomorphism

j1 : D1d Ñ N 1d

51



between the local period domains. For every 1 ď k ď m, we denote by yk the preimage of xk with
respect to j1. By definition, the point yk parametrizes a special Hodge structure with labelling of
discriminant d on AK2 . In particular, there exists a class υk in AK2 with pυk, υkq “ pυY , υY q, such that
if Tk “ pZ υkqK in AK2 , then there is an isometry of Hodge structures ϕk : TXk – Tk.

As verified in the proof of Theorem 5.3.2 of [39], the isomorphism j1 descends to an isomorphism

j : Dmar
d Ñ Nd.

Thus, the points y1, . . . , ym descends to distinct points, which we denote in the same way, in the period
domain Dmar

d .
Let us consider their images in the global period domain Dlab

d ; here, these points could be identified.
By the way, we observe that, if some of them are not identified in Dlab

d , then they correspond to distinct
points in the global period domain Dd. Indeed, the map sending Dlab

d in Dd, which forgets the labelling,
is an isomorphism on very general points of Dd.

In particular, it is enough to study the behavior of the forgetful map ρ : Dmar
d Ñ Dlab

d over the
points y1, . . . , ym, to understand how many of them define different very general special Hodge struc-
tures of discriminant d. According to Proposition 2.2.1, we have to distinguish two cases depending
on the value of the discriminant.

Case d ” 2pmod 6q: by Theorem 2.2.3, we have that the map ρ is an isomorphism. Hence, y1, . . . , ym
are not identified by the action of Γ`d and they determine m distinct very general special Hodge struc-
tures of discriminant d.

Case d ” 0pmod 6q: by Theorem 2.2.3, the map ρ is a double cover. Thus, it is possible that there
exist two indexes 1 ď k1 ‰ k2 ď m such that yk1 and yk2 belong to the same fiber of ρ. As recalled in
Remark 2.2.2, this is equivalent to asking that the diagram

Tk1 ÝÝÝÝÑ AK2

–

§

§

đ

§

§

đ

γ

Tk2 ÝÝÝÝÑ AK2

(3.1)

commutes. Moreover, we have that γ induces an isometry of Hodge structures between TXk1 and TXk2 ,
which we denote by γ1, via ϕk1 and ϕk2 . The isometry γ1 does not extend to an automorphism of
Λ :“ E8p´1q‘2 ‘ U‘3, as we prove in the next lemma.

Lemma 3.1.2. The K3 surfaces Xk1 and Xk2 are not isomorphic.

Proof. Keeping the notation used above, we have that the lattices Tk1 , Tk2 sit in the diagram (3.1), by
hypothesis.

First of all, we prove that the isometry γ1 does not extend to an automorphism of Λ. Indeed, let
γ̄1 be the isomorphism over the discriminant groups induced by γ1, which respects the discriminant
quadratic forms. By construction, we have γ1 :“ pϕk2q

´1 ˝ γ ˝ ϕk1 ; thus, passing to the discriminant
groups, we have the following commutative diagram:

dpTXk1 q
ϕ̄k1
ÝÝÝÝÑ dpTk1q

γ̄1
§

§

đ

§

§

đ

γ̄

dpTXk2 q
ϕ̄k2
ÝÝÝÝÑ dpTk2q

. (3.2)

By Proposition 0.2.7 ([76], Proposition 1.6.1), we have that dpTXki q is isomorphic to the discriminant
group of the Néron-Severi lattice dpNSpXkiqq for every i “ 1, 2. As a consequence, there exists an
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induced isomorphism
γ̄1N : dpNSpXk1qq Ñ dpNSpXk2q.q

Now, by Proposition 0.2.8 ([76], Proposition 1.5.2), we have that the isometry γ1 extends to the whole
Λ if and only if the isomorphism γ̄1N comes from an isometry of the form NSpXk1q – NSpXk2q. But, we
recall that NSpXkiq “ Z lki for every i “ 1, 2. Hence, there exist only two isometries between NSpXk1q

and NSpXk2q, defined by sending the polarization class lk1 to lk2 (resp. to ´lk2).
Let us suppose that the isomorphism of discriminant groups γ̄1N comes from one of these two

isometries. Then, it has to act as the multiplication by 1 or ´1 on the generators of the discriminant
groups. By diagram (3.2), we deduce that the same property holds for the isomorphism γ̄ : dpTk1q –
dpTk2q. We recall that, for every i “ 1, 2, the lattice Tki is isometric to the orthogonal complement in L
of the labelling Kki

d . Thus, the induced isomorphism between the discriminant groups dpKkiK
d q’s acts

as the multiplication by ˘1 on the generators, in contradiction with the definition of γ (see Remark
2.2.2). Thus, we deduce that the isomorphism γ̄1N does not arise from an isometry NSpXk1q – NSpXk2q

and, hence, the isometry γ1 does not extend to an isometry of Λ, as we stated.
Finally, we observe that there cannot exist an isometry between the cohomology groups H2pXk1 ,Zq

and H2pXk2 ,Zq, because it should be an extension of γ1. Hence, by Torelli Theorem for K3 surfaces,
we deduce that the K3 surfaces Xk1 and Xk2 are not isomorphic, as we wanted.

Anyway, the fibers of the map ρ contain two points. Hence, we deduce that our points y1, . . . , ym
descend to at least rm{2s different Hodge structures in Dd.

On the other hand, we observe that if T is a sublattice of Λ which is Hodge isometric to TX ,
then the lattice γpT q, with the Hodge structure induced by that one on T through γC, satisfies the
same property. As a consequence, we obtain that the K3 surface XγpT q with trascendental lattice γpT q
is a Fourier-Mukai partner of X. Since by Lemma 3.1.2 they are non-isomorphic K3 surfaces, their
corresponding period points in Nd define two distinct period points in Dmar

d , which belong to the same
fiber of ρ. It follows that the m points y1, . . . , ym determine exactly rm{2s different special Hodge
structures of discriminant d.

3.1.2 Proof of Theorem 1.0.1

Keeping the notation introduced in Section 3.1, we set

p :“

#

m if d ” 2pmod 6q

rm{2s if d ” 0pmod 6q.

Firstly, we prove that p is an upper bound to the number of Fourier-Mukai partners of Y . Actually, this
represents an alternative way to prove the finiteness result of [47], Corollary 3.5, under the previous
hypotheses.

Proposition 3.1.3. Let Y be a very general cubic fourfold in Cd with d satisfying condition (a)
of Theorem 2.1.1. If the associated K3 surface X admits m (possibly equal to one) non-isomorphic
Fourier-Mukai partners, then the cubic fourfold Y cannot have more than m (resp. rm{2s) Fourier-
Mukai partners if d ” 2pmod 6q (resp. if d ” 0pmod 6q).

Proof. Consider the p distinct points y1, . . . , yp P Dd defined in Section 3.1.1. We claim that yk belongs
to the image of the period map of cubic fourfolds for every 1 ď k ď p. Indeed, we observe that d is
not 2 or 6, because d satisfies condition (0), as Cd is not empty. Moreover, the point yk is very general
in Dd, thus it has a unique labelling, as recalled in Section 2.2. It follows that yk is a period point in
the complement of D2 Y D6. By [63], Theorem 1.1, there exists a cubic fourfold Yk in Cd such that
τpYkq “ yk, as we wanted.
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Now, let Y 1 be a Fourier-Mukai partner of Y , i.e. such that there exists an equivalence KupY q „ÝÑ
KupY 1q of Fourier-Mukai type. By [47], Proposition 3.4, this induces a Hodge isometry H̃pKupY q,Zq –
H̃pKupY 1q,Zq. Notice that Y 1 is a very general element in Cd, as Y is. Thus its period point τpY 1q P Dd
corresponds to a point in Dlab

d which we denote in the same way. Let y1 P Dmar
d be a point in the fiber

ρ´1pτpY 1qq. We set x1 :“ jpy1q P Nd. The point x1 corresponds to a very general K3 surface X 1 with
unique primitive polarization lX 1 of degree d. In particular, since H̃pKupY 1q,Zq is Hodge isometric to
the Mukai lattice H̃pX 1,Zq, it follows from [83], Theorem 3.3 that X 1 is a Fourier-Mukai partner of X.
Thus, there exists an index k P t1, . . . ,mu such that, if lXk denotes the unique primitive polarization
on Xk, then pX 1, lX 1q – pXk, lXkq as polarized K3 surfaces. Equivalently, we have that the points x1

and xk are identified in Nd. Since j is an isomorphism, it follows that yk “ y1 in Dmar
d . In particular,

they represent the same point in Dd: by the Torelli Theorem for cubic fourfolds, we conclude that Y 1

is isomorphic to Yk. This implies the desired statement.

We are ready to prove Theorem 1.0.1, which is formulated in a more precise way using Theorem
2.5.1.

Proposition 3.1.4 (Theorem 1.0.1). Let d be a positive integer satisfying conditions (0) and (a).
Then, the number of isomorphism classes of Fourier-Mukai partners for a very general cubic fourfold
in Cd is

• p “ 2h´1, if d ” 2pmod 6q and the prime factorization of d has h ą 1 distinct odd primes;

• p “ 2h´2, if d ” 0pmod 6q and the prime factorization of d has h ą 2 distinct odd primes;

• p “ 1, otherwise.

Proof. Let Y be a very general cubic fourfold in Cd as in the statement. We consider the p distinct
points y1, . . . , yp in Dd defined in Section 3.1.1. Arguing as in the proof of Proposition 3.1.3, by [63],
Theorem 1.1, there exist p very general special cubic fourfolds Y1, . . . , Yp P Cd such that τpYkq “ yk for
k “ 1, . . . , p. Notice that Y1 – Y and the cubic fourfolds Y1, . . . , Yp are not isomorphic to each other
by Torelli Theorem for cubic fourfolds.

By construction, for every 2 ď k ď p, there is an isometry of Hodge structures

H̃pKupY q,Zq – H̃pX,Zq – H̃pXk,Zq – H̃pKupYkq,Zq.

By Remark 2.4.2, the existence of such an isometry of Hodge structures implies the existence of a
Fourier-Mukai equivalence between KupY q and KupYkq. On the other hand, by Proposition 3.1.3 every
other Fourier-Mukai partner of Y is isomorphic to one of those we constructed. Finally, the counting
formula of Theorem 2.5.1 implies the statement.

Example 3.1.5. Using Proposition 3.1.4, it is easy to find the divisors in C whose very general
element has non trivial Fourier-Mukai partners. For example, take d “ 182, which is ” 2pmod 6q. By
Proposition 3.1.4 the very general cubic fourfold in C182 has one non-isomorphic Fourier-Mukai partner.
If d “ 546 ” 0pmod 6q, then the very general element in C546 has one non-isomorphic Fourier-Mukai
partner.

Remark 3.1.6. Notice that, to prove these results, we have fixed an associated K3 surface to Y and,
consequently, an isomorphism between the period domains Dmar

d and Nd. Actually, we could choose
a Fourier-Mukai partner of X as fixed associated K3 surface to Y : this would have given a different
isomorphism j̃ on the level of period domains and a different identification of Fourier-Mukai partners
of Y with Fourier-Mukai partners of X (see [40], Remark 27). Anyway, the considerations about the
number of Fourier-Mukai partners hold in the same way.
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3.2 Construction of the examples (twisted case)

This section is devoted to the proof of Theorem 1.0.2, whose statement is the following.

Theorem 3.2.1. Let d be a positive integer satisfying (0) and (a’). Assume that 9 does not divide
d. Let Y be a very general cubic fourfold in Cd with associated twisted K3 surface pX,αq, where α has
order κ; let m1 be the number of non-isomorphic Fourier-Mukai partners of pX,αq with Brauer class of
order κ. Then the cubic fourfold Y admits at least m1 non-isomorphic Fourier-Mukai partners, when
d ” 2pmod 6q; otherwise, if d ” 0pmod 6q, the number of non-isomorphic Fourier-Mukai partners of Y
is at least rm1{2s.

In particular, in Section 3.2.2 and 3.2.3 we explicit the lower bound to the number of Fourier-Mukai
partners of a cubic fourfold Y as in Theorem 1.0.2, in terms of the number of primes in the prime
factorization of the discriminant of Y and the Euler function evaluated in the order of the Brauer class
of the associated twisted K3 surface.

3.2.1 Proof of Theorem 1.0.2

Let Y be a very general special cubic fourfold in Cd such that condition (a’) of Theorem 2.4.1 holds. If d
satisfies in addition (a), then we fix an associated untwisted K3 surface and the following construction
provides the same period points constructed in Section 3. In the general case, the cubic fourfold Y has
a twisted associated K3 surface, which we denote by pX,αq with α of order κ, and there is an isometry
of Hodge structures

φ : H̃pKupY q,Zq – H̃pX,α,Zq.

Notice that φ induces a Hodge isometry φT : T pKupY qq – T pX,αq. Recall that T pKupY qq is isometric
to the orthogonal complement KK

d Ă L0 Ă L of a labelling Kd Ă L, as Y is very general in Cd. On the
other hand, we identify T pX,αq with an abstract sublattice T of Λ̃ such that T pX,αq – T . In other
words, the lattice T sits in the commutative diagram

T pX,αq �
�

//

–

��

H̃pX,α,Zq

–
��

T �
�

// Λ̃.

We have that φT induces an isometry

j : KK
d – T.

Assume in addition that

9 does not divide the discriminant d. (b)

Notice that condition (b) implies that the discriminant group of T pKupY qq and, consequently, also
that of T pX,αq, are cyclic, by Proposition 2.3.1 and Proposition 2.1.2. As a consequence, by [76],
Theorem 1.14.4, the natural embedding

T pX,αq ãÑ H̃pX,α,Zq – Λ̃ (3.3)

is unique up to isometry of Λ̃, because rkpNpX,αqq ě lpdpT pX,αqqq ` 2 “ 3.
Now, let pX 1, α1q be a twisted Fourier-Mukai partner of pX,αq of order κ. By [49], Proposition 4.3,

there is an isometry of Hodge structures H̃pX,α,Zq – H̃pX 1, α1,Zq. This induces the Hodge isometry
T pX,αq – T pX 1, α1q. Since the embedding of (3.3) is unique in the above sense, we have that T pX,αq
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and T pX 1, α1q are identified with the same sublattice T of Λ̃ and the weight two Hodge structures
determined by H̃2,0pX,αq and H̃2,0pX 1, α1q induce two Hodge structures on T , which are exchanged
by an isometry fT P OpT q. The situation is summarized by the following commutative diagram:

T pX,αq

–

��

– // T

fT

��

� � // Λ̃

��

T pX 1, α1q
– // T �

�
// Λ̃

.

Via j, the lattice T pX 1, α1q – T with the Hodge structure induced by H̃2,0pX 1, α1q determines a
Hodge structure on KK

d . We have then an induced Hodge structure on L0 having the generator of
T pX 1, α1qK Ă L0 in its p1, 1q part. This corresponds to a period point y1 in the quadric Q defined
in (2.1). Up to exchanging H̃2,0pX 1, α1q with H̃0,2pX 1, α1q, we can assume that y1 is in D1d. This is
a generalization of the argument used in [39], Section 5.3, to construct the isomorphism of period
domains D1d and N 1d.

The image of y1 in Dd (which we still denote by y1) is equal to the period point y :“ τpY q if and
only if there is an isometry of KK

d induced by T pX,αq – T pX 1, α1q which extends to an isometry of
L0, i.e. which sits in a commutative diagram of the form

T pX,αq – T
j
– KK

d

–
��

� � // L0

��

T pX 1, α1q – T
j
– KK

d
� � // L0

.

In this case, we would have that the two Hodge structures on KK
d given by those on T pX,αq and

T pX 1, α1q, respectively, induce the same Hodge structure on L0.
As in the untwisted case, it is convenient to consider firstly the period domain Dmar

d . Here, the
points y and y1 are identified if and only if they are in the same orbit by the action of G`d . We recall
that elements in G`d are isometries of KK

d acting trivially on the discriminant group dpKK
d q.

Assume that pX 1, α1q is not isomorphic to pX,αq. In the next lemma, we prove that y and y1 are
distinct in the period domain Dmar

d under this assumption.

Lemma 3.2.2. The period points y and y1 are distinct in Dmar
d .

Proof. We will actually prove that if y “ y1 in Dmar
d , then the twisted K3 surfaces pX,αq and pX 1, α1q

are isomorphic, in contradiction with our assumption.
If y and y1 are the same point in the period domain Dmar

d , then there exists an isometry of Hodge
structures

η : T pX,αq – T pX 1, α1q,

such that the induced isomorphism η̄ between the discriminant groups dpT pX,αqq and dpT pX 1, α1qq is
trivial. More precisely, there exists a lattice T , which is Hodge isometric to T pX,αq and T pX 1, α1q,
such that the map ηT , which sits in the diagram

T pX,αq

–

��

η
// T pX 1, α1q

–

��

T
ηT // T

acts as the identity on the discriminant group dpT q.
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First of all, we prove that the Hodge isometry η extends to a Hodge isometry of the trascendental
lattices TX and TX 1 . Indeed, we set

H “
TX
T

and H 1 “
TX 1

T
,

which are cyclic subgroups of dpT q of order κ. Thus, H and H 1 are the same subgroup, because they
have the same order. Moreover, if η̄T denotes the automorphism of dpT q induced by ηT , then

η̄T pHq “ iddpT qpHq “ H.

By [76], Proposition 1.4.2, we conclude that the isometry ηT extends to an isometry g : TX – TX 1 .
By construction, the isometry g preserves the Hodge structures on TX and TX 1 . If we define the
embeddings i : T – T pX,αq Ñ TX – S and i1 : T – T pX 1, α1q Ñ TX 1 – S, we have a commutative
diagram

T

ηT
��

i // S

gS
��

T
i1 // S

where gS is the isometry induced by g via the identification of TX and TX 1 with a lattice S.
Secondly, we prove that, if the isomorphism η̄T acts as the identity on dpT q, then also ḡS , induced

by gS , is the identity on dpSq. Indeed, let us denote by g_S (resp. η_T ) the extension of gS to S_ (resp. of
ηT ) to T_. We recall that g_S and η_T are defined by the precomposition with gS and ηT , respectively,
and they make the diagram

T

ηT
��

i // S

gS
��

// S_

g_S
��

// T_

η_T
��

T
i1 // S // S_ // T_

to commute. Next, we observe that we have the isomorphisms of groups

r :
S_{ipT q

H
–
S_

S
and r1 :

S_{i1pT q

H 1
–
S_

S
,

where H “ S{ipT q and H 1 “ S{i1pT q. We claim that the isomorphism

¯̃g :
S_{ipT q

H
–
S_{i1pT q

H 1
,

induced by g_S , is identified with ḡS via the isomorphisms r and r1. Indeed, we have that g_S “ η_T |S_

induces the isomorphism

g̃ :
S_

ipT q
Ñ

S_

i1pT q
,

which is actually the restriction of η̄T to S_{T . Now, we denote by π and π1 the quotient maps

π :
S_

ipT q
Ñ

S_{ipT q

H
, π1 :

S_

i1pT q
Ñ

S_{i1pT q

H 1
.

The isomorphism ¯̃g, defined by g̃ passing to the quotient, is well defined, because

π1pg̃pHqq “ π1pη̄T pHqq “ π1pH 1q “ 0.
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Thus the diagram
S_{ipT q

H

r

��

¯̃g
// S
_{i1pT q
H 1

r1

��
S_

S

ḡS // S
_

S

(3.4)

commutes. Now, we observe that ¯̃g acts as the identity, since it is induced by η̄T |pS_{T q which is the
identity map by our hypothesis. Since the diagram (3.4) commutes, we conclude that also ḡS acts as
the identity map, as we stated.

Finally, we denote by Z l the rank one lattice which is the orthogonal complement of S in Λ. Since
dpSq – dpZ lq, by Proposition 0.2.8, we conclude that the isometry gS extends to an isometry fΛ of Λ
and, therefore, the isometry g extends to f : H2pX,Zq – H2pX 1,Zq. Furthermore, the restriction of
fΛ to Z l is the identity, because by construction it induces the identity on the discriminant group of
Z l. In particular, we deduce that the isometry f preserves the ample cones of X and X 1. By Torelli
Theorem, we have that there exists an isomorphism F between the K3 surfaces X 1 and X such that
F ˚ “ f . Since, by definition, the isometry f sends the class α to α1, we conclude that pX,αq and
pX 1, α1q are isomorphic as twisted K3 surfaces, in contradiction with our assumption. Therefore, we
conclude that y and y1 are not the same point in Dmar

d , as we wanted.

Proof of Theorem 1.0.2. The representatives of the m1 isomorphism classes of twisted Fourier-Mukai
partners of order κ of pX,αq determine m1 distinct period points yk P Dmar

d by Lemma 3.2.2. Arguing
as in the untwisted case, the proof follows from Proposition 2.2.1, Theorem 1.1 of [63] and Remark
2.4.2.

Remark 3.2.3. In analogy to the untwisted case, the identification between Hodge structures on the
generalized trascendental lattice of twisted Fourier-Mukai partners of pX,αq with fixed order of the
Brauer class and certain Hodge structures in D1d depends on the choice of the isometry j, or equivalently
of a Fourier-Mukai partner of pX,αq. However, the number of Fourier-Mukai partners constructed in
Theorem 1.0.2 does not depend on this choice.

Remark 3.2.4. Notice that it is necessary to assume that ordpαq “ ordpα1q, in order to extend the
isometry η to the trascendental lattices. Indeed, if this condition is not satisfied, then the discriminant
groups of TX and TX 1 could not be isomorphic. Actually, we can prove that Lemma 3.2.2 does not
hold in general without this assumption, by giving a counterexample in the untwisted case.

We set d “ 2 ¨ 132, which is congruent to 2 modulo 6 and let Y be a very general cubic fourfold
in Cd. Since d satisfies condition (a), there exists a K3 surface X, which is associated to Y . By the
counting formula of Theorem 2.5.1, the K3 surfaceX admits 20 “ 1 isomorphism class of Fourier-Mukai
partners. On the other hand, by [67], Proposition 5.1, there exist ϕp13q ¨ 2´1 “ 6 isomorphism classes
of Fourier-Mukai partners of order 13 of X. We denote by pX 1, α1q one of them. Assume that there is
a cubic fourfold Y 1 P Cd such that H̃pKupY 1q,Zq – H̃pX 1, α1,Zq. By Remark 2.4.2, we have that Y 1 is
a Fourier-Mukai partner of Y . On the other hand, by the counting formula of Theorem 3.1.4, every
Fourier-Mukai partner of Y is isomorphic to Y ; it follows that Y – Y 1. On the other hand, the K3
surfaces X and pX 1, α1q cannot clearly be isomorphic.

This prevents us to have a well-defined map between Dmar
d and the period space of generalized

Calabi-Yau structures of hyperkähler type (see [43] for the definition), and to generalize Theorem 5.3.2
and 5.3.3 of [39] to the twisted case.

3.2.2 Ma’s formula in our setting

The aim of this paragraph is to prove that if we consider a very general cubic fourfold Y in Cd satisfying
condition (a’) and (b), then formula (2.4) gives precisely the number of elements in the set FMrpX,αq,
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where pX,αq is a twisted K3 surface associated to Y . The key point of the proof is the fact that the
Caldǎrǎru Conjecture 2.5.2 holds in this particular case.

Proposition 3.2.5. Let pX,αq be a twisted K3 surface such that there exist a special cubic fourfold
Y of discriminant d and a Hodge isometry H̃pX,α,Zq – H̃pKupY q,Zq. If X has rkpNSpXqq “ 1, and
9 - d, then the number of (isomorphism classes of) Fourier-Mukai partners of pX,αq of order r is given
by formula (2.4).

Proof. Firstly, we observe that the Cǎldǎraru’s Conjecture 2.5.2 holds under our assumptions for every
Fourier-Mukai partner pX1, α1q of pX,αq. More precisely, we prove that if a K3 surface X 11 has the
trascendental lattice TX 11 Hodge isometric to TX1 via g1, then the twisted K3 surface pX 11, α11 :“ g˚1α1q

is a Fourier-Mukai partner of pX1, α1q. Indeed, the isometry g1 restricts to the isometry of Hodge
structures

f :“ pg1q|T pX 11,α
1
1q

: T pX 11, α
1
1q – T pX1, α1q.

Notice that there exists a Hodge isometry T pX,αq – T pX1, α1q; therefore, the discriminant group
dpT pX1, α1qq is cyclic. Thus, by Theorem 0.2.9 ([76], Theorem 1.14.1), the isometry f extends to an
isometry of Hodge structures

φ1 : H̃pX 11, α
1
1,Zq – H̃pX1, α1,Zq.

By [47], Lemma 2.3, we know that every Hodge structure on Λ̃ determined by a point in D1 admits a
Hodge isometry that reverses any given orientation of the four positive directions. As a consequence,
up to composing with this isometry, we can assume that φ1 is orientation-preserving: by [50], Theorem
0.1, we conclude that there exists an equivalence of categories DbpX 11, α

1
1q

„
ÝÑ DbpX1, α1q. In particular,

we obtain that the map ν of (2.3) is bijective.
To conclude the proof, we show that the map µ of (2.2) has image OHdgpT pX,αqqzJ

rpdpT pX,αqqq;
in particular, this implies that we have an equality in formula (2.4).

Let x be in JrpdpT pX,αqqq; by definition, x is an element of IrpdpT pX,αqqq such that there exists
an embedding

ϕ : U Ñ M̃x,

where
M̃x :“ xλpxq, NpX,αqy Ă NpX,αq_

is an overlattice of NpX,αq. By [76], Proposition 1.4.1, we have that

dpM̃xq – xλpxqy
K{xλpxqy – xxyK{xxy – dpTxq.

Thus, by [76], Proposition 1.6.1, we have an embedding M̃x‘Tx ãÑ Λ̃, with M̃x and Tx both embedded
primitively. We define the lattice

Λϕ :“ ϕpUqK X Λ̃,

which is isometric to the K3 lattice Λ, with the Hodge structure induced from Tx. By the surjectivity
of the period map, there exist a K3 surface Xϕ and a Hodge isometry

h : H2pXϕ,Zq – Λϕ.

We denote by αϕ the composition αx ˝ h|TXϕ ; then, we obtain a twisted K3 surface pXϕ, αϕq.
Now, we observe that the map h induces the isometry

f : T pXϕ, αϕq “ kerαϕ – kerαx “ T pX,αq.

Moreover, since dpT pX,αqq is a cyclic group, applying [76], Theorem 1.14.4, we conclude that f extends
to a Hodge isometry

f̃ : H̃pXϕ, αϕ,Zq – H̃pX,α,Zq.
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By [47], Lemma 2.3, we can assume that f̃ is orientation-preserving. By [50], Theorem 0.1, we conclude
that pXϕ, αϕq belongs to FMrpX,αq. By construction, we have that µprpXϕ, αϕqsq “ rxs.

Finally, we observe that if x and x1 in JrpdpT pX,αqqq are in the same orbit for the action of
OHdgpT pX,αqq, then the twisted K3 surfaces pXϕ, αϕq and pX 1ϕ, α1ϕq, such that µprpXϕ, αϕqsq “ rxs
and µprpX 1ϕ, α1ϕqsq “ rx1s, are „-equivalent. Indeed, by hypothesis, there exists a Hodge isometry η of
T pX,αq which induces an isomorphism η̄ on dpT pX,αqq such that η̄pxq “ x1. Then, by Proposition 0.2.6
([76], Proposition 1.4.2), the overlattices xx, T pX,αqy – TXϕ and xx1, T pX,αqy – TX 1ϕ are isomorphic.
Moreover, this isomorphism sends αϕ to α1ϕ, because it is an extension of η; this observation completes
the proof of the proposition.

3.2.3 Application of Proposition 3.2.5

Let Y be a very general special cubic fourfold of discriminant d satisfying conditions (a’) and (b). By
Proposition 3.2.5, we have that the number of isomorphism classes of Fourier-Mukai partners of order
κ of pX,αq is

m1 “
ÿ

x

#

ÿ

M

τpx,Mq ` εprq
ÿ

M 1

τpx,M 1q

+

.

Let us write m1 in a more explicit way, in order to find numerical conditions on d and κ, which
guarantee the existence of non-isomorphic Fourier-Mukai partners for Y . We consider only the case
κ ě 2, because we have already treated the untwisted case in Section 4.1. Let c be the degree of the
polarization class on X. Notice that d “ κ2c (see [47], Lemma 2.13).

Lemma 3.2.6. Let g be a generator of the cyclic group dpT pX,αqq of order d. Then

IκpdpT pX,αqqq “ tpaκcqg : a P pZ {κZqˆu.

Proof. We observe that every element of the form x “ paκcqg with a P pZ {κZqˆ belongs to the
set IκpdpT pX,αqqq. Indeed, let g be a generator of dpT pX,αqq as in Proposition 2.1.2. An easy
computation shows that qT pX,αqppaκcqgq P 2Z and that paκcqg has order κ. On the other hand,
the elements of IκpdpT pX,αqqq are all the possible generators of the unique subgroup of order κ of
dpT pX,αqq – Z {dZ.

For every x “ paκcqg in IκpdpT pX,αqqq, we set

M̃x :“ xλpxq, NpX,αqy and Hx :“
M̃x

NpX,αq
.

We point out that

JκpdpT pX,αqqq “ tx P IκpdpT pX,αqqq : M̃x – U ‘ Z l with l2 “ cu.

Indeed, given x P JκpdpT pX,αqqq, let pXx, αxq be the twisted K3 surface such that µprpXx, αxqsq “ rxs
(which exists because µ is surjective as showed in the proof of Proposition 3.2.5). Then, by definition,
we have that

NpXxq – xλpxq, NpX,αqy and TXx – xx, T pX,αqy.

Since T pXx, αxq – T pX,αq, we have that

d “ |dpT pXx, αxqq| “ ordpαxq2|dpTXxq| “ κ2|dpTXxq|,

which implies that
dpM̃xq – dpTXxq – Z {cZ.

On the other hand, the opposite inclusion follows from the definition of JκpdpT pX,αqqq.
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Lemma 3.2.7. Every element x in IκpdpT pX,αqqq belongs to JκpdpT pX,αqqq.

Proof. Let x̄ “ pāκcqg be the image via µ of the isomorphism class of the K3 surface pX,αq, with ā in
pZ {κZqˆ. By definition, we have that

U ‘ Z l – NpXq – xλpx̄q, NpX,αqy,

with l2 “ c; in particular, the lattice U‘Z l is an overlattice of NpX,αq. Let x “ paκcqg be an element
in IκpdpT pX,αqqq. Since the groups Hx and Hx̄ are cyclic subgroups of dpNpX,αqq of the same order,
they are the same subgroup. By [76], Theorem 1.4.1, we conclude that the overlattices U ‘Z l and M̃x

are isomorphic. In particular, the element x is in JκpdpT pX,αqqq.

Proposition 3.2.8. We have that

m1 :“ #FMκpX,αq “

#

ϕpκq2h´2 if κ ą 2 and c “ 2

ϕpκq2h´1 if κ “ 2 or c ą 2,

where h is the number of distinct prime factors in the prime factorization of c{2 if c ą 2, and h “ 1 if
c “ 2.

Proof. We observe that the lemmas of this subsection and the fact that OHdgpT pX,αqq “ t˘idu imply
that

#pOHdgpT pX,αqqqzJ
κpdpT pX,αqqq “

#

1 if κ “ 2,
1
2ϕpκq if κ ą 2

where ϕ denotes the Euler function. On the other hand, as we have already observed, the only lattice
Mϕ such that M̃x – U ‘Mϕ is Z l with l2 “ c. Thus, our computation is actually the same used in
[67], to prove Proposition 5.1. Indeed, we have that

GpZ lq “ tZ lu “

#

G1pZ lq if c “ 2,

G2pZ lq if c ą 2.

Moreover, we notice that

OpZ lq “ t˘idu and OpdpZ lqq “

#

tidu if c “ 2,
` Z

2Z
˘h if c ą 2.

In particular, the order of the set OpdpZ lqq is 2h if c ą 2. Finally, we observe that

OHdgpTx, αxq “

#

t˘idu if κ “ 2,

tidu if κ ą 2.

So, if κ ą 2, then

m1 “

#

1
2ϕpκq if c “ 2,
1
2ϕpκq2

h “ ϕpκq2h´1 if c ą 2.

Otherwise, if κ “ 2, then

m1 “

#

1 if c “ 2,

2h´1 if c ą 2,

as we claimed.
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By Proposition 3.2.5 and Proposition 3.2.8, we have that the lower bound given by Theorem
1.0.2 is explicitely determined. In particular, it is easy to construct examples of very general twisted
K3 surfaces and, consequently, of very general cubic fourfolds with an arbitrary big number of non-
isomorphic Fourier-Mukai partners.

Example 3.2.9. Let us take d “ 50, which satisfies condition (a’) and (b). A cubic fourfold in
C50 has a twisted associated K3 surface with Brauer class of order κ “ 5. By Theorem 1.0.2 and
Proposition 3.2.8, the very general element in C50 admits at least ϕp5q{2 “ 4{2 “ 2 (isomorphim
classes of) Fourier-Mukai partners.

Remark 3.2.10. A natural question is whether it is possible to count Fourier-Mukai partners for a
very general special cubic fourfold Y P Cd without associated (twisted) K3 surface. Following the proof
in [81] for the case of K3 surfaces, one could reduce the problem to counting the number of overlattices
A – AK2 of S ‘ T , where S “ Z υY and T “ T pKupY qq are primitively embedded in A. However, to
argue in this way, we need that an isometry between the generalized trascendental lattices lifts to an
isometry of the Mukai lattices. This holds if 9 - d, as we have already explained in Section 3.2.1. The
second issue is that AK2 is not unimodular; for this reason, the computation performed in [81], Lemma
4.5 cannot be performed in the same way.
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Chapter 4

Rational curves of low degree on cubic
fourfolds

The aim of this chapter is to prove Theorem 1.0.3, Theorem 1.0.4 and to discuss some applications.
This is the content of [65] which is a joint work with Chunyi Li and Xiaolei Zhao.

4.1 Stability conditions on KupY q

In this section we review the construction of stability conditions on KupY q following [7]. The new
contribution is given by Proposition 4.1.5, where we prove that this construction does not depend on
the line fixed at the very beginning, and Lemma 4.1.6, which is useful to characterize weak semistable
objects with discriminant zero and negative rank by their Chern character.

4.1.1 Summary of the construction and line-change trick

Let us firstly recall the construction of Bridgeland stability conditions on KupY q introduced in [7] by
Bayer, Lahoz, Macrì and Stellari. The key idea of their strategy is to embed the Kuznetsov component
into a “three dimensional” category, where it is easier to define weak stability conditions by tilting, as
explained in Section 0.4.2. More concretely, let us fix a line L Ă Y which is not contained in a plane
in Y , and we denote by

σ : Ỹ Ñ Y

the blow-up of L in Y . The projection from L to a disjoint P3 equips Ỹ with a natural conic fibration
structure

π : Ỹ Ñ P3.

In particular, we have an associated sheaf of Clifford algebras over P3, whose even part (resp. odd part)
is denoted by B0 (resp. B1). Let h be the hyperplane class on P3 and we use the same notation for its
pullback to Ỹ . We consider the B0-bimodules

B2j :“ B0 bOP3pjhq and B2j`1 :“ B1 bOP3pjhq for j P Z .

As recalled in Example 0.1.32, by Kuznetsov’s work, we have a semiorthogonal decomposition of DbpỸ q
with a component given by the essential image of DbpP3,B0q via a fully faithful functor Φ. On the other
hand, we can apply Orlov’s blow-up formula reviewed in Example 0.1.31, in order to get a semiorthg-
onal decomposition of DbpỸ q with a copy of the DbpY q and three copies of the exceptional divisor.
Starting from these decompositions, in [7], Proposition 7.7, they proved that there is a semiorthogonal
decomposition of the form

DbpP3,B0q “ xΨpσ
˚KupY qq,B1,B2,B3y, (4.1)
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where Ψ : DbpỸ q Ñ DbpP3,B0q is a fully faithful functor defined by

Ψp´q “ π˚p´ bOỸ phq b Er1sq.

Here E is a sheaf of right π˚B0-modules on Ỹ , constructed in Section 7 of [7]. Denote by

Forg : DbpP3,B0q Ñ DbpP3q

the forgetful functor; it is known that ForgpEq is a vector bundle of rank 2.
Now the first step is to construct weak stability conditions on the derived category DbpP3,B0q :“

DbpCohpP3,B0qq, where CohpP3,B0q is the category of coherent sheaves on P3 with a right B0-modules
structure. It turns out that, in order to obtain a suitable Bogomolov inequality for DbpP3,B0q, it is
necessary to modify the usual Chern character. More precisely, for F P DbpP3,B0q, the modified Chern
character is defined as

chB0pFq “ chpForgpFqqp1´ 11

32
lq,

where l denotes the class of a line in P3. Notice that it differs from the usual Chern character from
degree ě 2. Moreover, the twisted Chern character is given by

chβB0
“ e´βh chB0 “ prk, chB0,1´ rkβh, chB0,2´βh ¨ chB0,1` rk

β2

2
h2, . . . q.

In the next, we will identify the Chern characters on P3 with rational numbers.
One useful property of chB0 is that its image lattice is spanned by the modified Chern characters

of λ1, λ2 and chB0,ď2pBiq for i “ 1, 2, 3. See the proof of Proposition 9.10 of [7] for details.
We denote by CohβpP3,B0q the heart of a bounded t-structure obtained by tilting CohpP3,B0q with

respect to the slope stability at slope β. We consider the rank three lattice Λ2
B0

defined as in Section
0.4.2 just using the Mdified Chern character. Furthermore, the discriminant can be defined as

∆B0pFq “ pchB0,1pFqq2 ´ 2 rkpFq chB0,2pFq “ pch
β
B0,1
pFqq2 ´ 2 rkpFq chβB0,2

pFq.

Having this notation, we can state the following result, which is the analogous of Proposition 0.4.14 in
our noncommutative setting.

Proposition 4.1.1 ([7], Proposition 9.3). Given α ą 0 and β P R, the pair σα,β “ pCohβpP3,B0q, Zα,βq
with

Zα,βpFq “ i chβB0,1
pFq ` 1

2
α2 chβB0,0

pFq ´ chβB0,2
pFq

defines a weak stability condition on DbpP3,B0q. The quadratic form can be given by the discriminant
∆B0. In particular, for a σα,β-semistable object F , we have

∆B0pFq ě 0.

Remark 4.1.2. We observe that the last part of Proposition 4.1.1 follows easily from [7], Theorem
8.3 arguing as in [11], Section 3.

We recall that when chβB0,1
pFq ‰ 0, the slope of F associated to σα,β is defined as

µα,βpFq “
´<pZα,βpFqq
=pZα,βpFqq

“
chβB0,2

pFq ´ 1
2α

2 chβB0,0
pFq

chβB0,1
pFq

.
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Remark 4.1.3. We can represent these weak stability conditions as explained in Section 0.4.3. The
difference is that in this case we prefer to work with the homogeneous coordinates rch´1

B0,0
: ch´1

B0,1
:

ch´1
B0,2
s on PpΛ2

B0
q and the corresponding affine coordinates on A2

B0
:“ PpΛ2

B0
qztch0 “ 0u. Thus, a

weak stability condition defined by the point pα, βq P Rą0ˆR is identified with the weak stability
condition corresponding to the point pβ ` 1, α

2`pβ`1q2

2 q above the parabola ∆B0 in A2
B0
. We will use

this description in the next sections.

The second step is to induce stability conditions on KupY q from the weak stability conditions on
DbpP3,B0q. We only sketch this part as details will not be used. We fix α ă 1

4 and β “ ´1, and
we consider the tilting of Coh´1pP3,B0q with respect to µα,β “ 0. This new heart is denoted by
Coh0

α,´1pP3,B0q. Note that KupY q embeds into DbpP3,B0q. As shown in [7], Section 9, the pair

σα “ pCoh0
α,´1pP3,B0q XKupY q,´iZα,´1q (4.2)

defines a Bridgeland stability condition on KupY q.

Remark 4.1.4. Notice that these stability conditions are constructed with respect to the Néron-Severi
lattice NpKupY qq by [7], Proposition 9.10. More precisely, consider the factorization H̃pKupY q,Zq�
NpKupY qq

u
� Λ2

B0
. We define the element ηpσq P NpKupY qq such that Zpup´qq “ pηpσq,´q. We

denote by P Ă NpKupY qqC the open subset consisting of those vectors whose real and imaginary parts
span positive-definite two-planes in NpKupY qqR. Then ηpσq is in pA2qC X P.

One subtle issue is that the Clifford structure and the embedding of KupY q in DbpP3,B0q depend
on the choice of the line L to blow up. However, for the induced stability conditions on the Kuznetsov
component, we are able to prove the following result.

Proposition 4.1.5. For a fixed α ą 0, the induced stability condition σα defined in (4.2) is independent
of the choice of L.

Proof. For simplicity, we denote the stability condition by the pair

σL “ pAL, ZLq.

The central charge ZL factors via chβB0
, which is independent of the choice of L. We need to show that

the heart AL is constant.
Let FY be the Fano variety of lines on Y . If Y contains a plane, then we remove the set of lines

over this plane from the Fano variety and we denote it by FY to simplify the notation. It is shown
in [8] that σL is a family of stability conditions over FY , satisfying the openness of heart property. In
particular, if an object F is σL0-semistable for a line L0 P FY , then there exists an open set U0 Ă FY ,
such that F is σL-semistable for any line L P U0.

Now we show that in our case, this implies that F is σL-semistable for any L P FY . If not, assume
that there exists a line L1 such that F is not σL1-semistable. Then we consider the Harder-Narasimhan
filtration of F with respect to the slicing of σL1 :

F1 Ă F2 Ă ¨ ¨ ¨ Ă Fn “ F .

By our assumption, F1 is σL1-semistable, and its phase satisfies φpF1q ą φpFq.
Using the openness of heart property again, we know that there exists an open set U1 Ă FY , such

that for any L P U1, F1 is σL-semistable. In particular, if we take a line L P U0 X U1, then F and F1

are both σL-semistable. Since the central charge is independent of L, we still have φpF1q ą φpFq. On
the other hand, by our construction there is a non-trivial morphism F1 Ñ F , giving a contradiction
(see (3) in Section 0.4.1). This concludes the proof of the statement.
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4.1.2 Stable objects of discriminant zero

The following general lemma will be crucial in order to study the destabilizing objects by their Chern
characters. The basic idea is that a stable object E of zero discriminant and negative rank has to be
stable with respect to any weak stability condition σα,β . Then, comparing the slopes of E and Bi with
respect to different stability conditions, we get strong restrictions on HompBi, Erjsq, which can be used
to show that E “ B‘ni r1s. We suggest to keep in mind the representation of weak stability conditions
explained in Remark 4.1.3.

Lemma 4.1.6. Let E be a σα0,β0-semistable object in Cohβ0pP3,B0q for some α0 ą 0 and β0 P R.
Assume that ∆B0pEq “ 0 and rkpEq ă 0. Then

E “ B‘ni r1s for some i P Z and n P N .

Proof. In order to simplify the notation, we set

µE “
ch´1

B0,1
pEq

rkpEq
.

As we will compare the slopes of E with Bi, it is helpful to keep in mind that

ch´1
B0,1
pBiq

rkpBiq
“
i

2
´

1

4
.

Without loss of generality, by considering E bB0 Bk for suitable k P Z, we may assume that

µE P r´
1

4
,
1

4
q.

By choosing a stable factor of E, we may first assume that E is actually σα0,β0-stable. By [11],
Lemma 3.9, when β ą µE ´ 1, the object E is in CohβpP3,B0q and can become strictly semistable
only when each stable factor Ei satisfies ∆B0pEiq ă ∆B0pEq “ 0, which is not possible. Therefore, we
deduce that E is σα,β-stable for β ą µE ´ 1. In particular, we have that E is σ0`,β1 stable for

µE ă β1 ` 1 ă
1

4
.

Since rkpEq ă 0, we have

µ0`,β1pB´2r1sq ă µ0`,β1pEq ă µ0`,β1pB1q.

Here and in the following, the notation µ0`,βi means that it is possible to find suitable values
of α ą 0, realizing the relations between the slopes (use the property in (4) in Section 0.4.1). By
comparing the slope using (3) in Section 0.4.1 and applying Serre duality, it follows that

HompB1, Erjsq “ 0

for j ‰ 1. Therefore, χpB1, Eq ď 0.

Now we study the vertical wall. Suppose that E is strictly semistable when β2 “ µE ´ 1. Then
each stable factor Ei satisfies one of the two conditions:

rkpEiq ă 0 or ch´1
B0,ď2pEiq “ p0, 0, 0q.
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We study these two cases separately. Given a stable factor Ei with negative rank, by [11], Lemma
3.9, we have that Eir´1s is in the heart CohβpP3,B0q and it is σα,β-stable for any β ` 1 ă µE . In
particular, Eir´1s is σ0`,β3-stable for

´
3

4
ă β3 ` 1 ă µE .

Since rkpEiq ă 0, we have

µ0`,β3pB´2r1sq ă µ0`,β3pEir´1sq ă µ0`,β3pB1q.

As a consequence, we get

HompB1, Eir1sq “ HompEir´1s,B´2r1sq
˚ “ 0.

Since Ei is also σα,β-stable for β ą µE ´ 1 (by the same argument used for E), we deduce that
HompB1, Eirjsq “ 0 for any j P Z, i.e. Ei P BK1 . In particular, χpB1, Eiq “ 0.

In the second case, we show that such a torsion stable factor cannot exist. Assume that Ei is a
stable factor with ch´1

B0,ď2pEiq “ p0, 0, 0q; note that

HomB0pB1, Eirjsq “ HomOX pOX ,ForgpEi bB0 B´1qrjsq “ 0

if and only if j ‰ 0. This implies that χpB1, Eiq ą 0. Since χpB1, Eiq is also non positive by the
previous computation, we conclude that Ei has to be zero. Hence, we may assume that each stable
factor Ei satisfies rkpEiq ă 0.

Now we want to show that ch´1
B0,ď2pEir´1sq “ c ch´1

B0,ď2pB0q for some positive integer c. It suffices

to show that
ch´1

B0,1
pEiq

rkpEiq
“ ´1

4 . Assume not, we may consider the tilt stability condition σ0`,β11
for some

ch´1
B0,1
pB0q

rkpB0q
ă β11 ` 1 ă

ch´1
B0,1
pEiq

rkpEiq
.

In this case, we have

µ0`,β11
pB´1r1sq ă µ0`,β11

pB0r1sq ă µ0`,β11
pEir´1sq ă µ0`,β11

pB2q ă µ0`,β11
pB3q

and

µ0`,β1pB´1r1sq ă µ0`,β1pB0r1sq ă µ0`,β1pEiq ă µ0`,β1pB2q ă µ0`,β1pB3q.

Hence
HompB2, Eirjsq “ HompB3, Eirjsq “ 0

for any j P Z. This shows that Ei belongs to Ψpσ˚KupY qq. In particular, the twisted Chern character
of Ei satisfies

ch´1
B0,ď2pEiq “ aλ1 ` bλ2

for some pa, bq ‰ p0, 0q. Note that any Ei with such truncated twisted Chern character satisfies
∆B0pEiq ě 7. This leads to a contradiction with the assumption that E has zero discriminant.

We may now assume that ch´1
B0,ď2pEir´1sq “ c ch´1

B0,ď2pB0q for some positive integer c. Since

µ0`,β3pB´3r1sq ă µ0`,β3pB´1r1sq ă µ0`,β3pEir´1sq ă µ0`,β3pB2q
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and

µ0`,β1pB´1r1sq ă µ0`,β1pEiq ă µ0`,β1pB2q,

we have the vanishing HompB2, Eirjsq “ 0 for any j P Z, and HompB0, Eirjsq “ 0 for any j ‰ 0 or ´1.
Therefore, we have that

0 “ χpB2, Eiq “ χOP3
pOP3 ,ForgpEiqp´hqq

“ ch3pForgpEiqp´hqq ` 2 ch2pForgpEiqp´hqq `
11

6
ch1pForgpEiqp´hqq ` rkpEiq

“ χOP3
pOP3 ,ForgpEiqq ´ ch2pForgpEiqq ´

3

2
ch1pForgpEiqq ´ rkpEiq

“ χOP3
pOP3 ,ForgpEiqq ´ ch´1

B0,2
pEiq ´

1

2
ch´1

B0,1
pEiq ´

11

32
rkpEiq

“ χOP3
pOP3 ,ForgpEiqq ´

1

32
rkpEiq `

1

8
rkpEiq ´

11

32
rkpEiq

ą χOP3
pOP3 ,ForgpEiqq “ ´hompB0, Eir´1sq ` hompB0, Eiq.

In particular, it follows that HompB0, Eir´1sq ‰ 0. As both B0 and Eir´1s are σ0`,β3-stable with
the same slope, we must have Ei “ B0r1s. Since this condition holds for every stable factor and
Ext1pB0,B0q “ 0, we deduce that E “ B‘n0 r1s as desired.

4.2 LLSvS eightfold and stability

This section is devoted to the proof of Theorem 1.0.4. The strategy is the following. We consider
the object in DbpY q which can be associated to a twisted cubic curve and we prove that its image in
DbpP3,B0q is stable with respect the weak stability condition σα,´1 for α large. Then we compute the
walls where the stability can change. At the first wall the object of a non CM twisted cubic curve
becomes unstable, but its projection in KupY q is stable. Then we prove that this new object remains
stable and we relate the moduli space obtained in this way to the eightfold MY .

4.2.1 Twisted cubics and objects

Let Y be a smooth cubic fourfold not containing a plane. We will use the notation introduced in
Example 0.3.10. As in [62], given a twisted cubic curve C contained in a cubic surface S Ă Y , we
denote by FC the kernel of the evaluation map

H0pY, IC{Sp2Hqq bOY � IC{Sp2Hq,

where IC{S is the ideal sheaf of C in S and H is the class of a hyperplane in Y . Let F 1C be the
projection of FC in the Kuznetsov category KupY q. Explicitly, as the projection is the composition
of the mutations ROY p´Hq LOY LOY pHq (whose definition is recalled in Section 0.1.4), it is possible to
compute that

F 1C :“ ROY p´Hq FC .

Indeed, by [62], Lemma 2.3, if C is an aCM twisted cubic curve, then FC is in KupY q; in this case, FC
and F 1C are identified. If C is a non CM curve, by the definition of F 1C , we have the triangle

F 1C Ñ FC Ñ OY p´Hqr1s ‘OY p´Hqr2s.

Using the notation introduced in the previous section, we set

EC :“ Ψpσ˚FCq and E1C :“ Ψpσ˚F 1Cq;
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by (4.1) we have that E1C is in xB1,B2,B3y
K. Applying σ˚ and Ψ, for a non CM curve C, we get the

triangle
E1C Ñ EC Ñ B´1r1s ‘ B´1r2s; (4.3)

here we have used [7], Proposition 7.7. In particular, we note that

ch´1
B0,ď2pE

1
Cq “ ch´1

B0,ď2pECq “ ch´1
B0,ď2pΨσ

˚p2λ1 ` λ2qq “ p0, 6, 0q.

Now, we recall that, since Y does not contain a plane, the cubic surface S, which is cut out by
the P3 spanned by C, is irreducible. We will assume that the line L, which is blown up in the cubic
fourfold, is disjoint from this P3. For such a choice of L, the blow-up σ and the projection π map
S isomorphically to a cubic surface S1 in the base P3. In this section and in the next section, for a
fixed twisted cubic C, we will work with such a line L. By Proposition 4.1.5, this will not change the
stability condition induced on KupY q.

Let σα,β be the weak stability condition on DbpP3,B0q introduced in Proposition 4.1.1. In the next
proposition we prove that EC is σα,´1-stable for α large enough.

Proposition 4.2.1. The torsion sheaf EC on P3 is slope-stable. In particular, EC is σα,´1-stable for
α " 0.

Proof. We compute EC with respect to L. Recall that π˚σ˚OY “ 0; hence, by definition of FC and
EC , we have

EC “ π˚pσ
˚FC bOỸ phq b Er1sq “ π˚pσ

˚IC{Sp2Hq bOỸ phq b Eq,

where E is a vector bundle supported on Ỹ . As a consequence, the sheaf EC is torsion free, supported
over the irreducible cubic surface S1 in P3.

Note that ch´1
B0,ď2pECq “ p0, 6, 0q. Let F be a torsion sheaf destabilizing EC . Then we have that F

has the same support of EC and it has rank one as a sheaf over S1. It follows that ch´1
B0,ď1pF q “ p0, 3q.

However, such an object cannot exist in CohpP3,B0q, because this character is not in the lattice spanned
by the characters of λ1, λ2 and Bi for i “ 1, 2, 3. It follows that EC is slope-stable, in the sense that
any proper B0-subsheaf of EC has a smaller slope ch´1

B0,1
{ rk. Since for αÑ8, the weak stability σα,´1

converges to the slope stability, we deduce the desired statement.

4.2.2 Computation of the walls with respect to σα,´1

Having the stability of EC for α large from Proposition 4.2.1, we are now interested in computing
explicitly the walls where the object could potentially become strictly semistable. In this section, we
list the character ch´1

B0,ď2 of all possible destabilizing objects of EC and E1C with respect to the weak
stability conditions σα,´1.

We recall that by [7], Remark 8.4, the rank of B0-modules on P3 is always a multiple of 4. Thus,
we write the characters of the destabilizing subobjects and quotient objects as

p0, 6, 0q “ p4a, b,
c

8
q ` p´4a, 6´ b,´

c

8
q (4.4)

for a, b, c P Z. These characters have to satisfy several additional conditions:

1. The two characters have non-negative discriminant ∆B0 as recalled in Proposition 4.1.1.

2. There exists α ą 0 such that the two characters have the same slope with respect to σα,´1.

3. The two characters should be integral combinations of the characters of λ1 and λ2, and ch´1
B0,ď2pBiq

for i “ 1, 2, 3.
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4. The ordinary Chern character of objects in DbpP3q truncated to degree 2 is represented by a
triple pR,C,D{2q, where C and D are integers of the same parity. Thus, the two characters have
the form

pR,C,
D

2
qp1, 0,´

11

32
qp1, 1,

1

2
q “ pR,C `R,

D

2
` C ´

5

16
Rq.

Using these conditions, by a standard computation we obtain the following result.

Proposition 4.2.2. The possible solutions of (4.4) are:

1. for α “ 3{4, a “ 1, b “ 3, c “ 9;

2. for α “ 1{4,

(a) a “ ˘1, b “ 1, c “ ˘1;
(b) a “ ˘2, b “ 2, c “ ˘2;
(c) a “ ˘3, b “ 3, c “ ˘3;
(d) a “ 1, b “ 3, c “ 1;

3. a very small value ᾱ « 1{9.

Note that the stability condition σα is constructed from σα,´1 with α ă 1{4. In the rest of this
section, we will study the stability of EC . We will firstly prove that if C is an aCM curve, then EC
remains stable with respect to σα,´1 after the first wall. On the other hand, if C is non CM, then EC is
destabilized. In particular, we need to consider the mutation E1C of EC , which instead becomes stable.
Then we prove that the second wall can be crossed without changing the stability of E1C . The third
wall also does not change the stability of E1C ; this fact can be directly proved without using specific
information about the destabilizing objects.

4.2.3 First wall: α “ 3
4

By Proposition 4.2.1 and Proposition 4.2.2, we have that EC is σα,´1-stable for α ą 3{4. In this
section, we study the stability of EC after the first wall.

Proposition 4.2.3. For 1{4 ă α ă 3{4, we have that E1C is σα,´1-stable. More precisely:

• If C is an aCM twisted cubic curve in Y , then E1C “ EC is σα,´1-stable.

• If C is a non CM cubic curve, then EC becomes strictly σα,´1-semistable at the wall α “ 3{4.
Instead, for 1{4 ă α ă 3{4, the object E1C is σα,´1-stable.

Proof. Let us consider the destabilizing quotient object given by Proposition 4.2.2 with

ch´1
B0,ď2 “ p´4, 3,´9{8q.

By Lemma 4.1.6, we know that this object is B´1r1s. Since the Serre functor on DbpP3,B0q is

Sp´q “ p´q bB0 B´3r3s,

by (4.1) we have that
HomB0pE

1
C ,B´1r1sq “ HomB0pB2, E

1
Cr2sq

_ “ 0.

The first claim follows easily from the fact that EC – E1C in the aCM case.
Assume now that C is a non CM twisted cubic curve. Then using the sequence (4.3) and the fact

that
HomB0pB2,B´1r3sq “ HomB0pB´1,B´1q

_ – C,
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we get
HomB0pEC ,B´1r1sq – C .

In particular, for α “ 3{4, it follows that EC is strictly σα,´1-semistable and the Jordan-Hölder
filtration in Coh´1pP3,B0q is given by

0 ÑMC Ñ EC Ñ B´1r1s Ñ 0.

Finally, for 1{4 ă α ă 3{4, using again the sequence (4.3), it is easy to see that the new stable object
is E1C , which fits into the sequence

0 Ñ B´1r1s Ñ E1C ÑMC Ñ 0.

4.2.4 Second wall: α “ 1
4

The aim of this section is to prove the following result.

Proposition 4.2.4. Let 0 ă α ă 1{4. If C is a twisted cubic curve in Y , then E1C is σα,´1-stable.

This proposition is a consequence of Lemma 4.2.5 and Lemma 4.2.6 below.
We firstly consider the objects given by the second part of Proposition 4.2.2 and we show that

they cannot destabilize E1C . The key observation is that if E1C is destabilized, then a slope comparison
argument implies that its stable factors have to be in Ψpσ˚KupY qq. This will lead to a contradiction,
as such stable factors do not exist for the wall α “ 1{4.

Lemma 4.2.5. Let E be a σ 1
4
`ε,´1-stable object in Ψpσ˚KupY qq with ch´1

B0,ď2pEq “ p0, 6, 0q. Then E
is σ 1

4
´ε,´1-stable.

Proof. Suppose that E is not σ 1
4
´ε,´1-stable; we consider the Harder-Narasimham filtration of E with

respect to σ 1
4
´ε,´1:

0 Ñ E1 Ñ ¨ ¨ ¨ Ñ Ek “ E.

Here each factor Ei`1{Ei is σ 1
4
´ε,´1-semistable with strictly decreasing slopes.

Assume that HompEk{Ek´1,B0r1sq ‰ 0. Note that Ek{Ek´1 is a quotient object of E in the heart
Coh´1pP3,B0q. Since B0r1s is also an object in Coh´1pP3,B0q, the assumption above implies

HompE,B0r1sq ‰ 0.

By Serre duality, we obtain

HompB3, Er2sq “ pHompE,B0r1sqq
˚ ‰ 0,

which contradicts the condition that E P Ψpσ˚KupY qq. Therefore, it follows that

HompB3, Ek{Ek´1r2sq “ 0.

By a similar argument, we get
HompB1, Ek´1q “ 0.

Note that we have the following inequalities:

µ 1
4
,´1pB´2r1sq ă µ 1

4
,´1pB´1r1sq ă µ 1

4
,´1pEk{Ek´1q “

µ 1
4
,´1pEk´1q ă µ 1

4
,´1pB2q ă µ 1

4
,´1pB3q;

µ 1
4
´ε,´1pEk{Ek´1q ă µ 1

4
´ε,´1pB1q;

µ 1
4
´ε,´1pB0r1sq ă µ 1

4
´ε,´1pEi{Ei´1q for every 1 ď i ă k.
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We point out that both Ek´1 and Ek{Ek´1 are µ 1
4
,´1-semistable, and each Ei{Ei´1 is µ 1

4
´ε,´1-

semistable. By Serre duality, we have

HompBs, Ek{Ek´1rjsq “ HompBs, Ek´1rjsq “ 0,

for s “ 1, 2, 3 and every j ‰ 1. Since E P Ψpσ˚KupY qq,

χpBs, Ek{Ek´1q ` χpBs, Ek´1q “ χpBs, Eq “ 0

for s “ 1, 2, 3. Therefore,

HompBs, Ek{Ek´1r1sq “ HompBs, Ek´1r1sq “ 0,

for s “ 1, 2, 3. In particular, we deduce that Ek´1 and Ek{Ek´1 are in Ψpσ˚KupY qq. As a consequence,
the twisted Chern character of Ek´1 satisfies

ch´1
B0,ď2pEk´1q “ a ch´1

B0,ď2pB1q ` bp0, 6, 0q P tpx, y,
1

32
xqu

and ch´1
B0,ď2pEk´1q “ cλ1 ` dλ2 P tpx, y,´

7

32
xqu.

We conclude that ch´1
B0,ď2pEk´1q must be of the form p0, y, 0q. However, it would destabilize E with

respect to σ 1
4
`ε,´1, which is a contradiction. This proves the stability of E as in the statement.

Now we consider the third wall in Proposition 4.2.2. In this case, we obtain a slightly general result,
showing that for α ă 1{4, the only stable objects are in Ψpσ˚KupY qq and they cannot be destabilized.
The argument is similar to the proof of Lemma 4.2.5.

Lemma 4.2.6. For 0 ă α0 ă
1
4 , let E be a σα0,´1 stable object such that rEs “ rE1Cs in the numerical

Grothendieck group. Then E is in Ψpσ˚KupY qq and it is σα,´1 stable for any 0 ă α ď α0.

Proof. We set µ “ µα0,´1 for simplicity. As rEs “ rE1Cs in the numerical Grothendieck group, we
observe that

µpB´2r1sq ă µpB´1r1sq ă µpB0r1sq ă µpEq ă µpB1q ă µpB2q ă µpB3q.

By Serre duality we have that
HompBs, Erjsq “ 0

for any s “ 1, 2, 3 and j ‰ 1. Again, since rEs “ rE1Cs in the numerical Grothendieck group, we have

χpBs, Eq “ χpBs, E1Cq “ 0

for s “ 1, 2, 3. It follows that
HompBs, Er1sq “ 0

for any s “ 1, 2, 3, proving that E belongs to Ψpσ˚KupY qq.
Suppose that E becomes strictly σα,´1-semistable for some α ă α0 ă

1
4 . We may consider the

Harder-Narasimhan filtration of E with respect to σα´ε,´1:

0 Ă E1 Ă ¨ ¨ ¨ Ă Ek “ E.

By comparing µα´ε,´1 of Ek{Ek´1, Ek´1, B´2r1s, B´1r1s, B0r1s, B1, B2 and B3, using the same
argument applied in the proof of Lemma 4.2.5, we get the conclusion that both Ek{Ek´1 and Ek´1 are
in Ψpσ˚KupY qq. But this implies that

tpx, y,
1

2
α2xqu Q ch´1

B0,ď2pEk´1q “ aλ1 ` bλ2 P tpx, y,´
7

32
xqu.

Hence, we must have ch´1
B0,ď2pEk´1q “ p0, y, 0q, which leads to a contradiction. This proves the stability

of E as we wanted.
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4.2.5 Stability after the second tilt and the moduli space

This section is devoted to the proof of Theorem 1.0.4. Firstly, we show that E1C is σ0
α,´1-stable, where

σ0
α,´1 is the weak stability condition on DbpP3,B0q obtained by tilting σα,´1 (see [7], the proof of

Theorem 1.2). In particular, this implies the stability of F 1C with respect to the stability condition
σ :“ σα on KupY q, defined in (4.2) and constructed in [7].

Theorem 4.2.7. Let Y be a smooth cubic fourfold not containing a plane. If C is a twisted cubic
curve on Y , then the object F 1C is σ-stable, with respect to σ :“ σα given in (4.2).

Proof. Note that by definition the stability function for σ0
α,´1 is Zα,´1 multiplied by ´

?
´1. In par-

ticular, the new heart obtained through the second tilt is just the previous heart rotated by ninety
degrees. It follows that the walls would correspond to those we have computed for σα,´1 and the
previous argument proves that these can be crossed preserving the stability of E1C . This implies the
stability of E1C with respect to σ0

α,´1. As the stability conditions σ on KupY q are induced from σ0
α,´1

for α ă 1{4, and F 1C is in the Kuznetsov component, we get the desired statement.

Now we are able to describe the moduli space Mσp2λ1 ` λ2q of σ-stable objects with Mukai vector
2λ1 ` λ2 and, in particular, its identification with the LLSvS eightfold MY constructed in [64]. We
use a standard argument, which is very similar to [62], Section 5.3. We point out that the results in
[8] implies that Mσp2λ1 ` λ2q is a smooth, projective, irreducible hyperkähler eightfold.

Theorem 4.2.8. The moduli space Mσp2λ1`λ2q parametrizes only objects of the form F 1C . Moreover,
Mσp2λ1 ` λ2q is isomorphic to the LLSvS eightfold MY .

Proof. LetM3 be the irreducible component of the Hilbert scheme parameterizing twisted cubic curves
on Y . Then there exists a quasi-universal family F on Y ˆM3 parametrizing the sheaves IC{Y p2Hq.
By [58], Theorem 6.4, we have a semiorthogonal decomposition of the form

DbpY ˆM3q “ xKupY ˆM3q,OY b DbpM3q,OY pHqb DbpM3q,OY p2Hqb DbpM3qy.

Now consider the relative projection F 1 of F in KupY ˆM3q :“ KupY qbDbpM3q. As in [3], it is possible
to verify that the projection of IC{Y p2Hq in the Kuznetsov component is exactly F 1C (see Section 4.4.3
for the computation in the non CM case). So, Theorem 4.2.7 implies that F 1 is a quasi-universal family
of σ-stable objects F 1C in KupY q. Then there is an induced dominant morphism M3 ÑMσp2λ1 ` λ2q.
As M3 is projective, we know that this morphism is surjective. This concludes the first statement.

For the second statement, we just need to show that for two twisted cubic curves C1 and C2, we
have F 1C1

“ F 1C2
if and only if C1 and C2 are contained in the same fiber of the morphism M3 Ñ MY

constructed in [64]. This is exactly proved in [3], Proposition 2. Indeed, they consider the projection
in the K3 subcategory xOY p´Hq,OY ,OY pHqyK, which is equivalent to KupY q. This ends the proof of
the theorem.

4.3 Fano variety and stability

In this section, we use a similar argument to that applied in the case of twisted cubic curves in order to
describe the Fano variety FY parametrizing lines in a cubic fourfold Y as a moduli space of Bridgeland
stable objects.

Recall that given a line ` in Y , we can associate an object P` in KupY q, which sits in the distin-
guished triangle

OY p´Hqr1s Ñ P` Ñ I`,

where I` denotes the ideal sheaf of ` in Y (see [62], Section 6.3). It is easy to compute that the Mukai
vector of P` is λ1 ` λ2.
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By Proposition 4.1.5, we can assume that the line L used in the construction of stability conditions
is disjoint from `. 1 Let us compute explicitly the image M` “ Ψpσ˚P`q in DbpP3,B0q. By [7],
Proposition 7.7, we have that

ΨpOỸ p´Hqq “ B´1.

On the other hand, we consider the sequence

I` Ñ OY Ñ O`.

We recall that
ΨpOỸ q “ 0.

By our assumption, we know that ` maps isomorphically to a line in P3; hence we have that

Ψpσ˚I`q “ Ψpσ˚O`qr´1s “ π˚pEphq|σ´1p`qq

is a torsion sheaf supported over the image of ` in P3. We denote it by E`. So we have the distinguished
triangle

B´1r1s ÑM` Ñ E` (4.5)

in DbpP3,B0q.
Note that

ch´1
B0,ď2pM`q “ p´4, 3,

7

8
q.

The following lemma gives us the starting point of the wall crossing argument.

Lemma 4.3.1. The object M` is σα,´1-stable for α " 0.

Proof. Assume that M` is not stable with respect to σα,´1 for α " 0. Then there is a destabilizing
sequence

P ÑM` Ñ Q

in the heart Coh´1pP3,B0q, where P , Q are σα,´1-semistable for α " 0, and µα,´1pP q ą µα,´1pQq. We
have two possibilities for P : either it is torsion or it has rank equal to ´4. If we are in the first case,
then, for α going to infinity, the slope µα,´1pP q is a finite number, while µα,´1pQq “ `8. Thus such
a P cannot destabilize M`.

In the case rkpP q “ ´4, let us consider the cohomology sequence

0 Ñ H´1pP q Ñ H´1pM`q Ñ H´1pQq Ñ H0pP q Ñ H0pM`q Ñ H0pQq Ñ 0.

By (4.5) we have that H´1pM`q “ B´1 and H0pM`q “ E`. Also, we know that H´1pQq “ 0, because
Q is a torsion element in the heart. It follows that H´1pP q “ B´1 and we have the sequence

0 Ñ H0pP q Ñ E` Ñ H0pQq Ñ 0.

We recall that E` is a rank two torsion free sheaf over its support. Since H0pP q is a subsheaf of
E`, it has the same support. There are three cases. If H0pP q has the same rank of E` as a sheaf on its
support, then

ch´1
B0,ď2pP q “ ch´1

B0,ď2pM`q,

and µα,´1pQq “ `8, so it is not a destabilizing sequence. The second possibility is that H0pP q has
rank 1 and it is torsion free as a sheaf over a line. In this case, we have ch´1

B0,ď2pP q “ p´4, 3,´1{8q,
whose slope µα,´1 is less than that of M`. The third case when H0pP q “ 0 is similar. This proves the
stability of M` for α big enough.

1Notice that if Y contains a plane P , then it is possible to choose L such that L X ` “ H and L is not on P . For
example, we consider a P3 intersecting P in a point. We define the cubic surface S “ Y XP3. Choosing a general P3, we
have that S is smooth. Every line on S is not on P by definition. Then it is easy to find a line L on S with the desired
properties.
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Now an easy computation using the four conditions listed at the beginning of Section 4.2.2 shows
that the only potential wall for M` is given by α0 “

?
5

4 . In the following lemma, we prove that M`

remains stable after crossing this wall.

Lemma 4.3.2. Let α0 ě
?

5
4 . If E is a σα0,´1-stable object in Ψpσ˚KupY qq such that ch´1

B0,ď2pEq “

p´4, 3, 7
8q, then E is σα,´1-stable for any α ą 0.

Proof. A direct computation and [11], Lemma 3.9, imply that the object E can be strictly semistable
only with respect to σ?5

4
,´1

. If this happens, the Harder-Narasimham filtration of E with respect to
σ?5

4
´ε,´1

would be of the form

0 Ă E1 Ă E

with ch´1
B0,ď2pE1q “ p0, 2, 1q and ch´1

B0,ď2pE{E1q “ p´4, 1,´1
8q. By Lemma 4.1.6, we have that E{E1 »

B0r1s. In particular, we get
HompB3, Er3sq “ pHompE,B0qq

˚ ‰ 0,

which contradicts to the assumption that E is in Ψpσ˚KupY qq. This proves the stability of E as
claimed.

Proof of Theorem 1.0.3. The first part is a consequence of Lemma 4.3.1 and Lemma 4.3.2. The second
part follows from the same argument explained in Section 4.2.5 for twisted cubics. We point out
that by projecting the universal family, we get an isomorphism from FY to Mσpλ1 ` λ2q. Hence the
projectivity of Mσpλ1 ` λ2q follows from that of FY , without using the result in [8].

4.4 Applications

In this section we discuss some applications of Theorem 1.0.3 and Theorem 1.0.4, concerning the
categorical version of Torelli Theorem and the derived Torelli Theorem for cubic fourfolds. We also
explain the identification of the period point of MY with that of FY .

4.4.1 Torelli Theorem for cubic fourfolds

In the Appendix of [7] the authors gave a different proof of the categorical version of Torelli Theorem
for cubic fourfolds introduced in [48], in the case that the algebraic Mukai lattice does not contain
p´2q-classes, e.g. for very general cubic fourfolds. In particular, they deduce the classical version of
Torelli Theorem for cubic fourfolds. The key point of their proof is the interpretation of the Fano
variety of lines on a very general cubic fourfold as a moduli space of Bridgeland stable objects in the
Kuznetsov component.

As a direct consequence of Theorem 1.0.3, we are able to reprove the categorical formulation of
Torelli Theorem for cubic fourfolds without the generality assumption. We recall that the degree shift
functor of a cubic fourfold Y is the autoequivalence p1q of KupY q given by the composition of the
tensor product with the line bundle OY p1q and the projection to KupY q.

Corollary 4.4.1 (Categorical Torelli Theorem). Two cubic fourfolds Y and Y 1 are isomorphic if and
only if there is an equivalence between KupY q and KupY 1q, whose induced map on the algebraic Mukai
lattices commutes with the action of the degree shift functor p1q.

Proof. Notice that Theorem 1.0.3 implies that the object P` associated to a line ` in Y is stable with
respect to every stability condition σ such that ηpσq P pA2qC X P. Then we apply the same argument
of the proof of [7], Theorem A.1.
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4.4.2 Period point of MY

In this section we discuss the relation between the period point of the LLSvS eightfold MY associated
to a cubic fourfold Y and the period point of Y . 2

As observed in [30], Example 6.4, the period point of Y is identified with the period point of the
Fano variety FY . More precisely, let 2Mp2q

6 be the moduli space of smooth projective hyperkähler
fourfolds with a fixed polarization class of degree 6 and divisibility 2, deformation equivalent to the
Hilbert square of a K3 surface. The Fano variety FY with the Plücker polarization is an element in
2Mp2q

6 . Let
2p
p2q
6 : 2Mp2q

6 Ñ 2Pp2q6

be the period map which is an open embedding by Verbitsky’s Torelli Theorem (see [93]).
We recall that the embedding of Hodge structures

H2pFY ,Zq Ñ xλ1y
K Ă H̃pKupY q,Zq,

identifies the polarization class with λ1 ` 2λ2 and H2pFY ,Zq0 is Hodge isometric to xλ1, λ1 ` 2λ2y
K

(see [2], Proposition 7).
Let 4Mp2q

2 be the moduli space of smooth projective hyperkähler eightfolds with a fixed polarization
class of degree 2 and divisibility 2, deformation equivalent to the Hilbert scheme of points of length
four on a K3 surface. Let

4p
p2q
2 : 4Mp2q

2 Ñ 4Pp2q2

be the period map of these eightfolds.
By a direct computation it is possible to show that MY carries a natural polarization class of

degree 2 and divisibility 2. Actually, as observed in [62], Lemma 3.7, the eightfold MY admits a
natural antisymplectic involution τ whose fixed locus contains the cubic fourfold Y . Thus, MY with
the fixed polarization is an element of 4Mp2q

2 .

Proposition 4.4.2. Given a cubic fourfold Y , we have that

2p
p2q
6 pFY q “

4p
p2q
6 pMY q

and they coincide with the period point of Y .

Proof. In [8] the authors prove that if M is a moduli space of Bridgeland stable objects in KupY q with
Mukai vector v of dimension 2` v2 ě 0, then there is an embedding of Hodge structures

H2pM,Zq Ñ H̃pKupY q,Zq.

More precisely, the image of H2pM,Zq is identified with the orthogonal complement vK of v in the
Mukai lattice. Thus, by Theorem 1.0.4, we have the Hodge isometry

H2pMY ,Zq – xλ1 ` 2λ2y
K.

In particular, we can identify the polarization class on MY with λ1. Then, the primitive degree two
lattice H2pMY ,Zq0 is Hodge isometric to xλ1 ` 2λ2, λ1y

K. It follows that

H2pMY ,Zq0 – xλ1, λ2y
K – H2pFY ,Zq0,

which implies the statement.

As explained in [26], Section B.1, Proposition 4.4.2 can be used to reprove in a more direct way the
result by Laza and Loojenga (see [63]) about the image of the period map of cubic fourfolds, excluding
the divisor of cubic fourfolds containing a plane. This is a work in progress of Bayer and Mongardi.

2We point out that Franco Giovenzana is independently working on this problem.
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4.4.3 Approach to Derived Torelli Theorem for cubic fourfolds

In [47], Theorem 1.5, Huybrechts proved a version of the derived Torelli Theorem for cubic fourfolds,
which was extended by [8], as recalled in Remak 2.4.2

An interesting question would be to prove the theorem without assumptions on the cubic fourfold.
Here we suggest a possible strategy which makes use of the description of the eightfold MY given by
Theorem 4.2.7. For this reason, we need to assume that Y does not contain a plane (actually, in this
case the derived Torelli Theorem holds as recalled above).

Assume that there is a Hodge isometry φ : H̃pKupY q,Zq – H̃pKupY 1q,Zq. Let v :“ 2λ1 ` λ2

and we set v1 :“ φpvq. By [8], the moduli space Mσ1pv
1q for σ1 P StabpKupY 1qq is non empty and in

particular is a hyperkähler eightfold. By the Birational Torelli Theorem for hyperkähler varieties (see
for example [45], Corollary 6.1), we have that Mσpvq is birational to Mσ1pv

1q. Thus, by [9], Theorem
1.4 (which works in the same way in our setting), we can find a stability condition σ2 such that Mσpvq
is isomorphic to Mσ2pv

1q. By the construction in [64], the cubic fourfold Y is embedded in Mσpvq as
a Lagrangian submanifold. Thus, we can see Y inside Mσ2pv

1q. We denote by F the restriction of the
universal family E 1C on Mσ2pv

1q ˆ Y 1 to Y ˆ Y 1.
Here we deal only with the simple case Y “ Y 1 and φ P OpH̃pKupY q,Zqq. In the next result we

show that the Fourier-Mukai functor ΦF : DbpY q Ñ DbpY q, defined by ΦF p´q “ q˚pp
˚p´q b Fq,

commutes with the identity over KupY q. In this case, it is convenient to denote by i˚ the projection
functor into the Kuznetsov component, changing the notation of the previous sections.

Proposition 4.4.3. Let Y be a cubic fourfold which does not contain a plane. Let i be the inclusion
of KupY q in DbpY q and we denote by i˚ its left adjoint functor. Then we have that ΦF “ i ˝ i˚.

Proof. By [56], Theorem 3.7 and Proposition 3.8, we have that the composition i˝i˚ is a Fourier-Mukai
functor with kernel given by G :“ prpO∆q. Here O∆ denotes the structure sheaf of the diagonal in
Y ˆ Y and pr : DbpY ˆ Y q Ñ DbpY q b KupY q is the projection functor. Moreover, we have that G
belongs to KupY qp´2qb KupY q. Note that this is precisely the condition for a Fourier-Mukai functor
of DbpY q in itself in order to factorize to the Kuznetsov component (see [48], Corollary 1.6).

We claim that ΦGpOyq “ Gy is σ-stable for every y P Y . Indeed, given a point y on the cubic
fourfold, there is a non CM twisted cubic curve C on Y which has y as embedded point. In particular,
we have the sequence

0 Ñ IC{Y p2q Ñ IC0{Y p2q Ñ Oy Ñ 0, (4.6)

where C0 is the plane cubic curve, singular in y, defined by C. The ideal sheaf of C0 in Y has the
following resolution:

0 Ñ OY p´1q Ñ O‘3
Y Ñ OY p1q‘3 Ñ IC0{Y p2q Ñ 0. (4.7)

We recall that i˚ :“ ROY p´1q LOY LOY p1q. We observe that i˚pIC0{Y p2qq “ 0. Indeed, we split the
sequence (4.7) in two exact sequences

0 Ñ KÑ OY p1q‘3 Ñ IC0{Y p2q Ñ 0

and
0 Ñ OY p´1q Ñ O‘3

Y Ñ KÑ 0.

From the first sequence we get LOY p1qpIC0{Y p2qq – LOY p1qpKqr1s. On the other hand, LOY p1q has not
effect on the second sequence, because the objects are in xOY p1qyK. Applying LOY , we obtain

LOY LOY p1qpKq – LOY pOY p´1qq “ OY p´1qr1s.

It follows that
LOY LOY p1qpIC0{Y p2qq – OY p´1qr2s.
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Since ROY p´1qpOY p´1qq “ 0, we deduce that i˚pIC0{Y p2qq “ 0. Thus by the sequence (4.6), we deduce
that i˚pIC{Y p2qq – i˚pOyqr´1s.

Now, note that i˚pIC{Y p2qq – i˚pIC{Sp2qq, where S is the cubic surface containing C. Indeed, by
the resolution

0 Ñ OY Ñ OY p1q‘2 Ñ IS{Y p2q Ñ 0,

we see that IS{Y p2q is in xOY ,OY p1qy. Hence, i˚pIS{Y p2qq “ 0. Using the exact sequence

0 Ñ IS{Y p2q Ñ IC{Y p2q Ñ IC{Sp2q Ñ 0,

we get
i˚pIC{Y p2qq – i˚pIC{Sp2qq “ F 1C .

By the previous computation, we deduce that i˚pOyq – F 1Cr1s, which is σ-stable by Theorem 1.0.4.
It follows that G defines an inclusion of Y in the eightfold Mσpvq by

y ÞÑ ΦGpOyq.

Thus G has to be isomorphic to the restriction of the universal family E 1C of Mσpvq ˆ Y to Y ˆ Y . We
conclude that G – F , which gives the statement.

In the general case, it is expected that the Fourier-Mukai functor ΦF factorizes to an equivalence
on the level of the Kuznetsov categories.
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Part II

Gushel-Mukai fourfolds
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Chapter 5

Introduction to Part II

This part is devoted to the study of the double EPW sextic of a Gushel-Mukai fourfold as a moduli
space of (twisted) stable sheaves on a K3 surface (see [88]). Finally, we describe a conic fibration for
ordinary Gushel-Mukai fourfolds (firstly appeared in [84]), which could provide the geometrical setting
in order to construct Bridgeland stability conditions for their Kuznetsov component (this is a joint
work in progress with Alex Perry and Xiaolei Zhao).

The geometry of Gushel-Mukai (GM) varieties has been recently studied by Debarre and Kuznetsov
in [28], [29], and from a categorical point of view by Kuznetsov and Perry in [61]. Of particular interest
is the case of GM fourfolds, which are smooth intersections of dimension four of the cone over the
Grassmannian Grp2, 5q with a quadric hypersurface in a eight-dimensional linear space over C. Indeed,
these Fano fourfolds have a lot of similarities with cubic fourfolds; for instance, it is unknown if the
very general GM fourfold is irrational, even if there are rational examples (see [91], Section 4, [89],
Section 3, and [27], Section 7).

In [27] Debarre, Iliev and Manivel investigated the period map and the period domain of GM
fourfolds, in analogy to the work done by Hassett for cubic fourfolds. In particular, they proved that
period points of Hodge-special GM fourfolds (see Definition 6.2.2) form a countable union of irreducible
divisors in the period domain, depending on the discriminant of the possible labellings (see Section
2.3). It is not difficult to check that the discriminant of a Hodge-special GM fourfold is an integer
” 0, 2 or 4 pmod 8q (see [27], Lemma 6.1). Furthermore, the non-special cohomology of a Hodge-
special GM fourfold X is Hodge isometric (up to a Tate twist) to the degree two primitive cohomology
of a polarized K3 surface if and only if the discriminant d of X satisfies also the following numerical
condition:

8 - d and the only odd primes which divide d are ” 1 pmod 4q. (˚˚)

The first result of this part is a generalization of the previous property to the twisted case, as done
by Huybrechts for cubic fourfolds in [47].

Theorem 5.0.1. A GM fourfold X has an associated twisted K3 surface in the cohomological sense
(see Definition 7.1.11) if and only if the discriminant d of X satisfies

d “
ź

i

pnii with ni ” 0 pmod 2q for pi ” 3 pmod 4q. (˚˚1)

On the other hand, a general GM fourfold X has an associated hyperkähler variety, as cubic
fourfolds have their Fano variety of lines. Indeed, X determines a triple pV6, V5, Aq of Lagrangian
data, where V6 Ą V5 are six and five dimensional vector spaces, respectively, and A Ă

Ź3 V6 is a
Lagrangian subspace with respect to the symplectic structure induced by the wedge product, with no
decomposable vectors (see [28], Theorem 3.16). Conversely, it is possible to reconstruct an ordinary
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and a special GM variety from a Lagrangian data having A without decomposable vectors (see [28],
Theorem 3.10 and Proposition 3.13). The data of A determines a stratification in subschemes of the
form Y ě3

A Ă Y ě2
A Ă Y ě1

A Ă PpV6q, where Y ě1
A is a Eisenbud-Popescu-Walter (EPW) sextic hypersurface

(see Section 6.2). As recalled in Example 0.3.12, if Y ě3
A is empty, then the double cover ỸA of the EPW

sextic is a hyperkähler fourfold deformation equivalent to the Hilbert scheme of length-two subschemes
on a K3 surface. Actually, in order to guarantee the smoothness of ỸA, it is enough to avoid the divisor
D210 in the period domain by [29], Remark 5.29.

The second main result is the following theorem, whose analogue for cubic fourfolds was proven by
Addington in [2]. Let λ1 and λ2 be the classes in the topological K-theory of a GM fourfold defined in
(6.4).

Theorem 5.0.2. Let X be a Hodge-special GM fourfold such that Y ě3
A “ H. Consider the following

propositions:

paq X has discriminant d satisfying p˚˚q;

pbq TX is Hodge isometric to TSp´1q for some K3 surface S, or equivalently, there is a hyperbolic
plane U “ xκ1, κ2y primitively embedded in the algebraic part of the Mukai lattice;

pcq ỸA is birational to a moduli space of stable sheaves on S.

Then we have that paq implies pbq, and pbq is equivalent to pcq.
Moreover, pbq implies paq if either H2,2pX,Zq has rank 3, or there is an element τ in the hyperbolic

plane U such that xλ1, λ2, τy has discriminant ” 2 or 4 pmod 8q.

In Section 7.1.3 we discuss a counterexample showing that the inverse implication of the second part
of Theorem 5.0.2 does not hold in full generality. More precisely, we show that there are GM fourfolds
satisfying condition (b), but without a Hodge-associated K3 surface. In particular, we deduce that
property (b) is not always divisorial and that there are period points of K3 type corresponding to GM
fourfolds without a Hodge-associated K3 surface.

We also prove its natural extension to the twisted case, as in [47] for cubic fourfolds.

Theorem 5.0.3. Let X be a Hodge-special GM fourfold with discriminant d such that Y ě3
A “ H. Then

ỸA is birational to a moduli space of stable twisted sheaves on a K3 surface S if and only if d satisfies
p˚˚1q.

Finally, we determine the numerical condition on the discriminant d of a Hodge-special GM fourfold
in order to have ỸA birational to the Hilbert scheme Sr2s on a K3 surface S; this condition is stricter
than that of p˚˚q, as proved in [2] for cubic fourfolds (see Remark 7.2.7).

Theorem 5.0.4. Let X be a Hodge-special GM fourfold of discriminant d such that Y ě3
A “ H. Then

ỸA is birational to the Hilbert scheme Sr2s on a K3 surface S if and only if d satisfies the condition

a2d “ 2n2 ` 2 for a, n P Z . (˚˚˚)

The strategy to prove these results relies on the definition of the Mukai lattice for the Kuznetsov
component, which is the K3 subcategory arising from the semiorthogonal decomposition of the derived
category of a GM fourfold constructed in [61] (see also Example 0.1.30). The Mukai lattice is defined
as done in [4] by Addington and Thomas for cubic fourfolds; actually, we can prove the analogue of
their results, using the vanishing lattice of a GM fourfold instead of the primitive degree four lattice
of cubic fourfolds. In particular, following the work of Addington, this allows us to apply Propositions
4 and 5 of [2] and, then, to prove Theorems 5.0.2 and 5.0.4. On the other hand, we obtain that if
a very general GM fourfold has a homological associated K3 surface, then there is a Hodge-theoretic
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associated K3 surface (see Theorem 7.1.10 for a more precise statement).

It becomes evident that there are many information about the geometry of the GM fourfold which
can be recovered from its Kuznetsov component. In particular, Bridgeland stability conditions would
be a powerful tool for this kind of investigation. As an example, it would be possible to study moduli
spaces of stable objects in KupXq, as done in the case of cubic fourfolds. As explained in Section
4.1.1, Bayer, Lahoz, Macrì and Stellari develop a method to induce Bridgeland stability conditions
on semiorthogonal decompositions (see [7]). As a consequence, they prove that there are Bridgeland
stability conditions on the Kuznetsov component of many Fano threefolds and cubic fourfolds. In
this last case, the starting point in order to apply their general method is the construction of a conic
fibration induced by the blow up of a line in the cubic fourfold and the projection to P3.

The last result of this thesis is the construction of a flat conic fibration for ordinary GM fourfolds,
obtained by blowing up of a degree four del Pezzo surface in the GM fourfold and projecting to a
P3 (see Proposition 8.1.3). In particular, this geometric picture is obtained by the restriction to a
hyperplane of a fibration constructed by Debarre and Kuznetsov in [28], Proposition 4.5. We point
out that in [84], joint with Mattia Ornaghi, we used this fibration to prove Voevodsky’s conjecture for
general GM fourfolds.

In a joint work in progress with Alex Perry and Xiaolei Zhao, we are trying to use this result to
induce Bridgeland stability conditions on the GM category.

Related works. In [51], Proposition 2.1, Iliev and Madonna prove that if a smooth double EPW
sextic is birational to the Hilbert scheme Sr2s on a K3 surface S with polarization of the degree d, then
the negative Pell equation Pd{2p´1q : n2 ´ d

2a
2 “ ´1 is solvable. Thus Theorem 5.0.4 is consistent

with this necessary condition (see also Remark 7.2.8).
Finally, in [30], Corollary 7.6, Debarre and Macrì prove that the Hilbert square of a general polarized

K3 surface of degree d is isomorphic to a double EPW sextic if and only if the Pell equation Pd{2p´1q
is solvable and the equation P2dp5q : n2 ´ p2dqa2 “ 5 is not. By Theorem 5.0.4, we see that the
birationality to this Hilbert scheme is obtained by relaxing the second condition on P2dp5q.
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Chapter 6

Background material

The aim of this section is to recall some definitions and properties concerning Hodge-special GM
fourfolds and to fix the notation. Our main references are [27], [28] [29] and [61].

6.1 Geometry of GM varieties

Let V5 be a 5-dimensional complex vector space; we denote by Grp2, V5q the Grassmannian of 2-
dimensional subspaces of V5, viewed in Pp

Ź2 V5q – P9 via the Plücker embeddig. Let CGrp2, V5q Ă

PpC‘
Ź2 V5q – P10 be the cone over Grp2, V5q of vertex ν :“ PpCq.

Definition 6.1.1. A GM variety of dimension 2 ď n ď 6 is a smooth n-dimensional intersection

X “ CGrp2, V5q X PpW q XQ,

where W is a n ` 5-dimensional vector subspace of C‘
Ź2 V5 and Q is a quadric hypersurface in

PpW q – Pn`4.
A GM fourfold is a GM variety of dimension 4.

Notice that ν does not belong to X, because X is smooth. Thus, the linear projection from ν defines
a regular map

γX : X Ñ Grp2, V5q

called the Gushel map. We denote by UX the pullback via γX of the tautological rank-2 subbundle
of Grp2, V5q.

We can associate two hulls to X. The Grassmannian hull of X is the intersection

MX :“ CGrp2, V5q X PpW q;

it is a variety of dimension n ` 1, because X has dimension n, and, by definition, X “ MX X Q is a
quadric section of MX . Let W 1 “W {C be the projection of W to

Ź2 V5. The intersection

M 1
X :“ Grp2, V5q X PpW 1q

is called the projected Grassmannian hull of X. We can distinguish two cases:

• If the linear space PpW q does not contain the vertex ν, then the linear projection PpW q Ñ
Pp
Ź2 V5q from ν is well-defined: indeed, we have W – W 1. In particular, we have MX – M 1

X

via this map. Therefore, considering Q as a quadric hypersurface in PpW 1q, we have that

X –M 1
X XQ – Grp2, V5q X Pn`4XQ Ă P9,

i.e. X is a quadric section of a linear section of the Grassmannian Grp2, V5q. Gushel-Mukai
varieties of this form are called ordinary.
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• If the vertex ν is contained in PpW q, then the linear space PpW q is a cone over PpW 1q; in
particular, we have that MX “ CM 1

X . Since X is smooth by definition, the quadric Q does not
contain the vertex of the cone. Thus, the projection from the vertex defines a double cover

γX : X
2:1
ÝÝÑM 1

X .

In other words, the variety X is a double cover of a linear section of Grp2, V5q: Gushel-Mukai
varieties of this form are called special. Moreover, the branch divisor of the double cover γX is
X 1 :“M 1

X XQ
1, where Q1 “ QXPpW 1q. Since by [28], Proposition 2.20, the hull M 1

X is smooth,
we have that X 1 is a smooth ordinary Gushel-Mukai variety of dimension n´ 1.

We denote by σi,j P H2pi`jqpGrp2, V5q,Zq the Schubert cycles on Grp2, V5q for every 3 ě i ě j ě 0
and we set σi :“ σi,0. The restriction h :“ γ˚Xσ1 of the hyperplane class H :“ σ1 on PpC‘

Ź2 V5q

defines a natural polarization of degree 10 on X. Indeed, CGrp2, V5q has degree 5, the degree of Q is 2
and X is dimensionally trasverse. On the other hand, since the canonical class of CGrp2, V5q is ´6H,
by adjunction formula we get

KX “ p´6` p6´ nq ` 2qh “ ´pn´ 2qh.

Let pSch{Cq be the category of schemes over C. For 2 ď n ď 6, the moduli stack Mn of n-
dimensional Gushel-Mukai varieties is the fibered category over pSch{Cq whose fiber over S P pSch{Cq
is the groupoid of pairs pπ : χÑ S,Lq, where π : χÑ S is a smooth proper morphism of schemes and
L belongs to Picχ{SpSq, such that for every geometric point s̄ P S the pair pXs̄,Ls̄q is isomorphic to an
n-dimensional Gushel-Mukai variety with its natural polarization. A morphism from pπ1 : χ1 Ñ S1,L1q
to pπ : χÑ S,Lq is a fiber product diagram

χ1

π1

��

g1
// χ

π

��

S1
g
// S

such that pg1q˚pLq “ L1 P Picχ1{S1pS1q. By [61], Proposition 2.4, we have that Mn is a smooth and
irreducible Deligne-Mumford stack of finite type over C, of dimension 25´ p6´ nqp5´ nq{2.

6.2 Period map and Hodge-special GM fourfolds

From now on, we restrict our investigation to GM fourfolds. By the previous section, we have that a
GM fourfold X is a Fano fourfold with canonical class ´2h. We recall the Hodge numbers of X:

1
0 0

0 1 0
0 0 0 0

0 1 22 1 0

(see [51], Lemma 4.1). Notice that H‚pX,Zq is torsion free by [29], Proposition 3.3. The classes h2

and γ˚Xσ2 span the embedding of the rank-two lattice H4pGrp2, V5q,Zq in H4pX,Zq. The vanishing
lattice of X is the sublattice

H4pX,Zq00 :“
 

x P H4pX,Zq : x ¨ γ˚XpH
4pGrp2, V5q,Zqq “ 0

(

.
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By [27], Proposition 5.1, we have an isomorphism of lattices

H4pX,Zq00 – E2
8 ‘ U

2 ‘ I2,0p2q “: Λ.

Let e and f be two classes in I22,2 of square 2 and e ¨ f “ 0, which generate the orthogonal of
Λ in I22,2. The choice of an isometry φ : H4pX,Zq – I22,2 sending γ˚Xσ1,1 and γ˚Xpσ2 ´ σ1,1q to e
and f respectively, and such that φpH4pX,Zq00q “ Λ, determines a marking for X. Notice that the
Hodge structure on the vanishing lattice is of K3 type. Let ÕpΛq be the subgroup of automorphisms
of OpΛq acting trivially on the discriminant group dpΛq. The groups ÕpΛq and OpΛq act properly and
discontinuosly on the complex variety

Ω :“ tw P PpΛb Cq : w ¨ w “ 0, w ¨ w̄ ă 0u. (6.1)

The global period domain is the quotient D :“ ÕpΛqzΩ, which is an irreducible quasi-projective
variety of dimension 20. We observe that two markings differ by the action of an element in ÕpΛq. It
follows that the period map p :M4 Ñ D, which sends X to the class of the one dimensional subspace
H3,1pXq, is well-defined. As a map of stacks, p is dominant with 4-dimensional smooth fibers (see [27],
Theorem 4.4). The period point of X is the image ppXq in D.

As proved in [29], the period point of a general GM fourfold is determined by that of its associated
double EPW sextic. More precisely, let pV6, V5, Aq be the Lagrangian data of X, as defined in the
introduction. As recalled in Example 0.3.12, by the work of O’Grady, we can consider the closed
subschemes

Y ělA :“ trU1s P PpV6q : dimpAX pU1 ^
ľ2

V6qq ě lu for l ě 0.

Since A has no decomposable vectors, we have that YA :“ Y ě1
A is a normal sextic hypersurface, called

EPW sextic, which is singular along the integral surface Y ě2
A . Moreover, Y ě3

A is finite and it is the
singular locus of Y ě2

A , while Y ě4
A is empty (see [28], Proposition B.2). Let ỸA be the double cover of

the EPW sextic YA branched over Y ě2
A . If Y ě3

A is empty, (e.g. for generic A), then the double EPW
sextic ỸA is a smooth hyperkähler fourfold of K3 type (see [79], Theorem 1.1). In this case, the period
point of ỸA coincides with ppXq, as explained in the following result.

Theorem 6.2.1 ([29], Theorem 5.1). Let X be a GM fourfold with associated Lagrangian data pV6, V5, Aq.
Assume that the double EPW sextic ỸA is smooth (i.e. Y ě3

A “ H). Then, there is an isometry of Hodge
structures

H4pX,Zq00 – H2pỸA,Zq0p´1q,

where H2pỸA,Zq0 is the degree two primitive cohomology of ỸA equipped with the Beauville-Bogomolov-
Fujiki form q.

As in the case of special cubic fourfolds, it is possible to consider GM fourfolds such that the rank
of H4pX,Zq is not minimal. We call them Hodge-special in order to avoid confusion with special GM
fourfolds defined before.

Definition 6.2.2. A GM fourfold X is Hodge-special if H2,2pXq XH4pX,Qq00 ‰ 0.

Equivalently, X is Hodge-special if and only if H2,2pX,Zq contains a rank-three primitive sublattice
K containing γ˚XpH

4pGrp2, V5q,Zqq. Such a lattice K is a labelling for X and the discriminant of the
labelling is the determinant of the intersection matrix on K. We say that X has discriminant d if it
has a labelling of discriminant d.

We have that d is positive and d ” 0, 2 or 4pmod8q (see [27], Lemma 6.1). More precisely, the
period point of a Hodge-special GM fourfold with discriminant d belongs to an irreducible divisor Dd
in D if d ” 0pmod 4q, or to the union of two irreducible divisors D1d and D2d in D if d ” 2pmod 8q (see
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[27], Corollary 6.3). In particular, the hypersurfaces D1d and D2d are interchanged by the involution rD,
defined on D by exchanging e and f .

Let X be a Hodge-special GM fourfold with a labeling K of discriminant d. The orthogonal KK of
K in I22,2 is the non-special lattice of X; it is equipped with a Hodge structure induced by the Hodge
structure on H4pX,Zq. A pseudo-polarized K3 surface S of degree d is Hodge-associated to pX,Kq
if it exists an isometry of Hodge structures between the non-special cohomology KK and the primitive
cohomology lattice H2pS,Zq0 which reverses the sign. As already explained in the introduction, this
is equivalent to have d satisfying p˚˚q. Moreover, if ppXq is not in D8, then the pseudo-polarization is
a polarization (see [27], Proposition 6.5).

6.3 Kuznetsov component and K-theory

The analogy of GM fourfolds with cubic fourfold reflects also on their derived categories. Indeed, we
denote by DbpXq the derived category of bounded complexes of coherent sheaves on a GM fourfold X.
As recalled in Example 0.1.30, by [61], Proposition 4.2, there exists a semiorthogonal decomposition
of the form

DbpXq “ xKupXq,OX ,U˚X ,OXp1q,U˚Xp1qy,

where KupXq is the right orthogonal to the subcategory generated by the exceptional objects

OX ,U˚X ,OXp1q,U˚Xp1q, (6.2)

in DbpXq. We refer to KupXq as the Kuznetsov component of X. The Kuznetsov component has the
same Serre functor of the derived category of a K3 surface (see [61], Proposition 4.5). In particular,
the category KupXq is a non commutative K3 surface. Moreover, if X is an ordinary GM fourfold
containing a quintic del Pezzo surface, then there exists a K3 surface S realizing the equivalence
KupXq „ÝÑ DbpSq (see [61], Theorem 1.2).

We denote by K0pKupXqq the Grothendieck group of KupXq and let χ be the Euler pairing. The
numerical Grothendieck group of KupXq is given by the quotient K0pKupXqqnum :“ K0pKupXqq{ kerχ.
By the additivity with respect to semiorthogonal decompositions, we have the orthogonal direct sum

K0pXqnum “ K0pKupXqqnum ‘ xrOXs, rU˚Xs, rOXp1qs, rU˚Xp1qsynum – K0pKupXqqnum ‘ Z4

with respect to χ. In particular, since the Hodge conjecture holds for X over Q (see [24]), it follows
that

rankpK0pKupXqqnumq “
ÿ

k

hk,kpX,Qq ´ 4 “ 4` h2,2pX,Qq ´ 4 “ h2,2pX,Qq.

We recall the following lemma, which will be useful to study the relation between the Mukai lattice of
KupXq and the vanishing cohomology of X.

Lemma 6.3.1 ([61], Lemma 5.14 and Lemma 5.16). If X is a non Hodge-special GM fourfold, then

K0pKupXqqnum – Z2

and it admits a basis such that the Euler form with respect to this basis is given by
ˆ

´2 0
0 ´2

˙

.

We end this section with the explicit computation of the basis of Lemma 6.3.1. The Todd class of
a GM fourfold X is

tdpXq “ 1` h`

ˆ

2

3
h2 ´

1

12
γ˚Xσ2

˙

`
17

60
h3 `

1

10
h4. (6.3)
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Let P be a point in X, L be a line lying on X, Σ be the zero locus of a regular section of U˚X , S be the
complete intersection of two hyperplanes in X and H be a hyperplane section of X. Since X is not
Hodge-special, the structure sheaves of these subvarieties give a basis for the numerical Grothendieck
group. Thus, an element κ in K0pXqnum can be written as

κ “ arOXs ` brOHs ` crOSs ` drOΣs ` erOLs ` f rOP s,

for a, b, c, d, e, f P Z. A computation using Riemann-Roch gives that κ belongs to K0pKupXqq if and
only if it is a linear combination of the following classes:

λ1 :“ ´4rOXs ` 2rOHs ` rOSs ` 5rOLs ´ 5rOP s (6.4)
λ2 :“ ´2rOXs ` rOΣs ` 2rOLs ´ rOP s.

It is easy to verify that the matrix they define with respect to the Euler form is as in Lemma 6.3.1.

Remark 6.3.2. Let C be a generic conic in a GM fourfold X; we denote by OC its structure sheaf.
Notice that λ1 is the class in the K-theory of X of the projection of OCp1q in KupXq. Indeed, the
projection pr : DbpXq Ñ KupXq is given by the composition pr :“ LOXLU˚X

LOXp1qLU˚Xp1q
of the left

mutation functors with respect to the exceptional objects. Performing this computation, we get that

rprpOCp1qqs “ rOCp1qs ´ rOXp1qs ` rU˚Xs ` rOXs,

which has the same Chern character of λ1. The second element λ2 should be the class of an object in
KupXq obtained as the image of prpOCp1qq via an autoequivalence of KupXq.
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Chapter 7

Double EPW sextic of a Gushel-Mukai
fourfold

In this chapter, we prove Theorems 5.0.1, 5.0.2, 5.0.3, 5.0.4. These results appear in [88].

7.1 Mukai lattice for the Kuznetsov component

In this section we describe the Mukai lattice of the GM category. The main results of Section 7.1.1
are Proposition 7.1.1, where we prove that the vanishing lattice is Hodge isometric to the orthogonal
of the lattice generated by λ1 and λ2 in the Mukai lattice, and Corollary 7.1.5, where we determine
Hodge-special GM fourfolds by their Mukai lattice. In Section 7.1.2 we relate the condition of having
an associated K3 surface with the Mukai lattice (Theorem 7.1.6); as a consequence, we get Theorem
7.1.10, where we prove that the existence of a homological associated K3 surface implies that there is
a Hodge-theoretic associated K3 surface for very general Hodge-special GM fourfolds. Then we prove
Theorem 5.0.1. We follow the methods introduced in [4] and [47] for cubic fourfolds.

7.1.1 Mukai lattice and vanishing lattice

Let X be a GM fourfold. We denote by KpXqtop the topological K-theory of X which is endowed with
the Euler pairing χ. As recalled in Section 2.2, the group H‚pX,Zq is torsion-free; by [6], Section 2.5
(see also [4], Theorem 2.1), it follows that also KpXqtop is torsion-free.

Inspired by [4], we define the Mukai lattice of the Kuznetsov component KupXq as the abelian
group

KpKupXqqtop :“ tκ P KpXqtop : χprOXpiqs, κq “ χprU˚Xpiqs, κq “ 0 for i “ 0, 1u

with the Euler form χ. We point out that KpKupXqqtop is torsion-free, because KpXqtop is. We recall
that the Mukai vector of an element κ of KpXqtop is given by

vpκq “ chpκq.
a

tdpXq

and it induces an isomorphism of Q-vector spaces v : KpXqtop b Q – H‚pX,Qq. We define the
weight-zero Hodge structure on the Mukai lattice given by pulling back via the isomorphism

KpKupXqqtop b CÑ
4
à

p“0

H2ppX,Cqppq

induced by v. It is also convenient to consider the Mukai lattice KpKupXqqtopp´1q with weight-two
Hodge structure

À

p`q“2 H̃
p,qpKupXqq and Euler form with reversed sign. In the following, we will use
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both conventions according to the situation. The Néron-Severi lattice of KupXq is

NpKupXqq “ H̃1,1pKupXq,Zq :“ H̃1,1pKupXqq XKpKupXqqtop

and the trascendental lattice T pKupXqq is the orthogonal complement of the Néron-Severi lattice with
respect to χ.

We observe that by [61], Theorem 1.2, there exist GM fourfolds X such that the associated
Kuznetsov component KupXq is equivalent to the derived category of a K3 surface S. Moreover, any
equivalence KupXq „ÝÑ DbpSq induces an isometry of Hodge structures KpKupXqqtopp´1q – KpSqtop,
by the same argument used in [4], Section 2.3. We set Λ̃ :“ U4‘E8p´1q2 and we recall that KpSqtop is
isomorphic as a lattice to Λ̃. Since the definition of KpKupXqqtop does not depend on X (any two GM
fourfolds are deformation equivalent), we deduce that the Euler form is symmetric on KpKupXqqtop
and KpKupXqqtop is isomorphic as a lattice to Λ̃p´1q “ U4 ‘ E2

8 .
We denote by xλ1, λ2y

K the orthogonal complement with respect to the Euler pairing of the sub-
lattice of KpKupXqqtop generated by the objects λ1, λ2 determined in (6.4). In the next result, we
explain the relation of this lattice with the vanishing lattice H4pX,Zq00.

Proposition 7.1.1. Let X be a GM fourfold. Then the Mukai vector v induces an isometry of Hodge
structures

xλ1, λ2y
K – H4pX,Zq00p2q “ xh

2, γ˚Xσ2y
K.

Moreover, for every set of n objects ζ1, . . . , ζn in KpKupXqqtop, the Mukai vector induces the isometry

xλ1, λ2, ζ1, . . . , ζny
K – xh2, γ˚Xσ2, c2pζ1q, . . . , c2pζnqy

K.

Proof. By definition κ belongs to xλ1, λ2y
K Ă KpKupXqqtop if and only if

#

χpOX , κq “ χpOXp1q, κq “ χpU˚X , κq “ χpU˚Xp1q, κq “ 0

χpλ1, κq “ χpλ2, κq “ 0.
(7.1)

The Chern character of κ has the form

chpκq “ k0 ` k2h` k4 ` k6h
3 ` k8h

4 for k0, k2, k6, k8 P Q and k4 P H
4pX,Qq.

Thus, using Riemann-Roch, we can express the conditions (7.1) as a linear system in the variables
k0, k2, k4 ¨ h

2, k4 ¨ γ
˚
Xσ1,1, k6, k8. Since the equations are linearly independent, we obtain that the

system (7.1) has a unique solution, i.e.

k0 “ k2 “ k6 “ k8 “ 0 and k4 ¨ h
2 “ k4 ¨ γ

˚
Xσ1,1 “ 0.

In particular, chpκq belongs to x1, h, h2, γ˚Xσ2, h
3, h4yK “ xh2, γ˚Xσ2y

K in H4pX,Qq. Since k4 ¨ h “ 0,
vpκq “ k4, i.e. vpκq is in the sublattice xh2, γ˚Xσ2y

K of H4pX,Qq. Since the lowest-degree term of the
Mukai vector is integral (see [6], Section 2.5, and [29], Proposition 3.4), we conclude that κ belongs to
xλ1, λ2y

K if and only if vpκq is in H4pX,Zq00.
By [6], Section 2.5, we have that v : xλ1, λ2y

K Ñ H4pX,Zq00p2q is injective. It remains to prove
the surjectivity. It is possible to argue as in the proof of [4], Proposition 2.3, using [6], Section 2.5. We
propose an alternative way. We observe that the lattices xλ1, λ2y

K and H4pX,Zq00 have both rank 22.
Notice that xλ1, λ2y

K has signature p20, 2q. Moreover, the discriminant group of xλ1, λ2y
K is isomorphic

to pZ{2Zq2, because the Mukai lattice is unimodular. On the other hand, by Section 2.2 (see [27]),
Proposition 5.1, we deduce that H4pX,Zq00 and xλ1, λ2y

K have the same signature and isomorphic
discriminant groups. Since the genus of such a lattice contains only one element by [76], Theorem
1.14.2, we conclude that v is an isometry which preserves the Hodge structures, as we wanted.
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For the second part of the proposition, let vpζiq “ z0` z2h` z4` z6h
3` z8h

4 with z0, z2, z6, z8 P Q
and z4 P H

4pX,Qq. Using the previous computation, we have that

0 “ χpζi, κq “

ż

X
exp phq vpζiq

˚ ¨ k4 “ k4 ¨ z4

for every κ in xλ1, λ2, ζ1, . . . , ζny
K. Since z4 is by definition a linear combination of c2pζiq, h2 and γ˚Xσ2,

using again that k4 is in H4pX,Zq00, we deduce that k4 ¨ z4 “ 0 if and only if k4 ¨ c2pζiq “ 0. This
completes the proof of the statement.

We point out that the lattice xλ1, λ2y has a primitive embedding in KpKupXqqtop by [76], Corollary
1.12.3. By Proposition 7.1.1, we have the isomorphism of lattices

xλ1, λ2y
K – H4pX,Zq00 – E2

8 ‘ U
2 ‘ I2,0p2q.

On the other hand, the lattice xλ1, λ2y is isomorphic to I0,2p2q. Notice that by [76], Theorem 1.14.4,
there exists a unique (up to isomorphism) primitive embedding

i : I0,2p2q ãÑ Λ̃p´1q “ E2
8 ‘ U

4.

Let us denote by f1, f2 the standard generators of I0,2p2q and by u1, v1 (resp. u2, v2) the standard basis
of the first (resp. the second) hyperbolic plane U . Then, we define i setting

ipf1q “ u1 ´ v1 ipf2q “ u2 ´ v2.

The orthogonal complement of I0,2p2q via i is

I0,2p2q
K – E2

8 ‘ U
2 ‘ I2,0p2q.

In particular, we have an isometry φ : KpKupXqqtop – Λ̃p´1q such that

φpλ1q “ ipf1q, φpλ2q “ ipf2q, φpxλ1, λ2y
Kq – I0,2p2q

K – E2
8 ‘ U

2 ‘ I2,0p2q, (7.2)

which is equivalent to the data of a marking for X. Hence, we can write ppXq “ rφCpH̃2,0pKupXqqqs.
Now, we prove that the isomorphism of Proposition 7.1.1 extends to the quotientsKpKupXqqtop{xλ1, λ2y

and H4pX,Zq{xh2, γ˚Xσ2y. The proof is analogous to that of [4], Proposition 2.4.

Proposition 7.1.2. The second Chern class induces a group isomorphism

c̄2 :
KpKupXqqtop

xλ1, λ2y
Ñ

H4pX,Zq
xh2, γ˚Xσ2y

.

Proof. The composition of the projection p : H4pX,Zq � H4pX,Zq{xh2, γ˚Xσ2y with c2 is a group
homomorphism, because

c2pκ1 ` κ2q “ c2pκ1q ` c1pκ1qc1pκ2q ` c2pκ2q “ c2pκ1q `mh
2 ` c2pκ2q for m P Z .

Since the second Chern classes of λ1 and λ2 are respectively

c2pλ1q “ 2h2 and c2pλ2q “ ´γ
˚
Xσ1,1,

we have that xλ1, λ2y is in the kernel of p˝ c2. In particular, the induced morphism c̄2 of the statement
is well-defined.

Notice that c̄2 is injective. Indeed, let κ be an element in KpKupXqqtop such that c2pκq belongs
to the sublattice xh2, γ˚Xσ2y. In particular, κ is an element of KpXqtop such that chpκq belongs to
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H0pX,Zq‘H2pX,Zq‘Zxh2, γ˚Xσ2y‘H
6pX,Zq‘H8pX,Zq. Then we have that κ is a linear combination

of rOXs, rOHs, rOSs, rOΣs, rOLs, rOP s with the notation of Section 2.4, because X is AK-compatible
(see [61], Section 5). Since it belongs to KpKupXqqtop, by the same computation done in the end of
Section 2.4, we deduce that κ is a linear combination of λ1 and λ2, as we claimed.

Finally, we show that c̄2 is surjective. Let T be a class in H4pX,Zq. By [4], Theorem 2.1(3),
there exists τ in KpXqtop such that vpτq is the sum of ´T with highter degree terms. Then the
projection prpτq of τ in KpKupXqqtop is a linear combination of τ and the classes of the exceptional
objects in (6.2). Since the Chern classes of the exceptional objects are all multiples of hi and γ˚Xσ1,1,
it follows that c2pprpτqq differs form c2pτq by a linear combination of h2 and γ˚Xσ1,1. We conclude that
c̄2pprpτqq “ c2pτq “ T in H4pX,Zq{xh2, γ˚Xσ2y.

Remark 7.1.3. Notice that the image of the algebraic K-theory KpKupXqq in KpKupXqqtop is con-
tained in NpKupXqq. However, we do not know if the opposite inclusion holds, because it is not clear
if every Hodge class in H2,2pX,Zq comes from an algebraic cycle with integral coefficients. In the case
of cubic fourfolds the integral Hodge conjecture holds by the work of Voisin (see [94]); thus, in [4],
Proposition 2.4, they use this fact to prove that the p1, 1q part of the Hodge structure on the Mukai
lattice is identified with KpKupXqqnum.

Voisin’s argument should work also for GM fourfolds, but it requires to give a description of the
intermediate Jacobian of a GM threefold, as done in [71], Theorem 5.6, and [31], Theorem 1.4, in the
cubic threefolds case. An other approach could be firstly to construct Bridgeland stability conditions
for the Kuznetsov component (e.g. as in [7] for the Kuznetsov component of a cubic fourfold). Then,
to deduce the integral Hodge conjecture by an argument on moduli spaces of stable objects with given
Mukai vector, along the same lines as in [8] where they develop the argument for cubic fourfolds.

Finally, we need the following lemma, which is a consequence of Proposition 7.1.2; the proof is the
same as that of [4], Proposition 2.5, so we skip it.

Lemma 7.1.4. Let κ1, . . . , κn be in KpKupXqqtop; we define the sublattices

MK :“ xλ1, λ2, κ1, . . . , κny Ă KpKupXqqtop

and
MH :“ xh2, γ˚Xσ2, c2pκ1q, . . . , c2pκnqy Ă H4pX,Zq.

1. An element κ of KpKupXqqtop is in MK if and only if c2pκq is in MH .

2. MH is primitive if and only if MK is.

3. MH is non degenerate if and only if MK is.

4. If MK is in NpKupXqq, then MK and MH are non-degenerate.

5. If MK and MH are non-degenerate, then MH has signature pr, sq if and only if MK has signature
pr ´ 2, s` 2q and they have isomorphic discriminant groups.

Corollary 7.1.5. The period point of a Hodge-special GM fourfold X belongs to the divisor Dd (resp.
to the union of the divisors D1d and D2d) for d ” 0 pmod 4q (resp. for d ” 2 pmod 8q) if and only
if there exists a primitive sublattice MK of NpKupXqq of rank 3 and discriminant d which contains
xλ1, λ2y.

Proof. As recalled in Section 2.3, we have that the period point of X satisfies the condition of the
statement if and only if there is a labelling MH of H2,2pX,Zq with discriminant d. The claim follows
from Lemma 7.1.4.
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7.1.2 Associated (twisted) K3 surface and Mukai lattice

The first result of this section characterizes period points of very general Hodge-special GM fourfolds
by their Mukai lattice. It is analogous to [4], Theorem 3.1, for cubic fourfolds and the proof develops
in a similar fashion.

Theorem 7.1.6. Let X be a Hodge-special GM fourfold. If X admits a Hodge-associated K3 surface,
then NpKupXqq contains a copy of the hyperbolic plane. Moreover, the converse holds assuming one
of the following conditions:

1. X is very general (i.e. H2,2pX,Zq has rank 3);

2. There is an element τ in the hyperbolic plane such that xλ1, λ2, τy has discriminant d ” 2 or 4
pmod 8q.

Proof. Assume that X has a Hodge-associated K3 surface; as recalled in the introduction and in
Section 2.3, there exists a labelling MH whose discriminant d satisfies p˚˚q. Equivalently, by Corollary
7.1.5, there exists a primitive sublattice MK in NpKupXqq of rank 3 containing xλ1, λ2y, with same
discriminant d. Thus, there exists a rank one primitive sublattice Zw and a primitive embedding
j : Zw ãÑ U3 ‘ E2

8 with w2 “ ´d, such that MK
K in KpKupXqqtop is isomorphic to ZwK. Adding U

to both sides of j, we get the primitive embedding of U ‘ Zw in Λ̃p´1q. Since U ‘ Zw and MK Ă

KpKupXqqtop – Λ̃p´1q have isomorphic orthogonal complements, they have isomorphic discriminant
groups by [76], Corollary 1.6.2. Since one contains U , they are isomorphic by [76], Corollary 1.13.4. In
particular, we conclude that U is contained in MK Ă NpKupXqq, as we wanted.

Conversely, letX be as in the second part of the statement and let κ1, κ2 be two classes inNpKupXqq
spanning a copy of U . Notice that xλ1, λ2y is negative definite and U is indefinite; hence, the lattice
xλ1, λ2, κ1, κ2y has rank three or four. We distinguish these two cases.

Rank 3. Let MK be the saturation of xλ1, λ2, κ1, κ2y and we denote by d its discriminant. We have
the inclusions U Ă MK Ă KpKupXqqtop – Λ̃p´1q. Since U is unimodular, there exists a rank one
sublattice Zw with w2 “ ´d such that MK – U ‘ Zw. On the other hand, the orthogonal to U in
KpKupXqqtop is an even unimodular lattice of signature p19, 3q; thus it is isomorphic to U3‘E2

8 . As a
consequence, we have thatMK

K in KpKupXqqtop is isomorphic to ZwK in U3‘E2
8 . As observed before,

this is equivalent to the existence of a labelling MH for X of discriminant d satisfying condition p˚˚q.
This ends the proof in the rank three. In particular, this proves the statement for X very general.

Rank 4. Consider the rank three lattices of the form xλ1, λ2, xκ1 ` yκ2y, where x and y are intergers
not both zero. We define the quadratic form

Qpx, yq :“

#

discpxλ1, λ2, xκ1 ` yκ2yq if x ‰ 0 or y ‰ 0

0 if x “ y “ 0.

We observe that the second Chern class c2pxκ1 ` yκ2q is in H2,2pXq; hence, by the Hodge-Riemann
bilinear relations and Lemma 7.1.4, it follows that Qpx, yq is positive unless x “ y “ 0.

Let
¨

˚

˚

˝

´2 0 k m
0 ´2 l n
k l 0 1
m n 1 0

˛

‹

‹

‚
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be the matrix defined by the Euler pairing on the lattice xλ1, λ2, κ1, κ2y. We have that

Qpx, yq “

∣∣∣∣∣∣
´2 0 kx`my
0 ´2 lx` ny

kx`my lx` ny 2xy

∣∣∣∣∣∣
“ 8xy ` 2pkx`myq2 ` 2plx` nyq2

“ p2k2 ` 2l2qx2 ` p8` 4km` 4lnqxy ` p2m2 ` 2n2qy2.

We set
A :“ 2k2 ` 2l2, B :“ 8` 4km` 4ln, C :“ 2m2 ` 2n2.

We denote by h the highest common factor of A,B and C; notice that h is even. We set

a “ A{h, b “ B{h, c “ C{h

and we have that Qpx, yq “ hqpx, yq, where

qpx, yq “ ax2 ` bxy ` cy2.

In the next lemmas we prove that h satisfies p˚˚q and that there exist integers x and y such that qpx, yq
represents a prime p ” 1 pmod 4q .

Lemma 7.1.7. The only odd primes that divide the highest common factor h of the coefficients of Q
are ” 1 pmod 4q. Moreover, we have that 8 - h.

Proof. Let Zr
?
´1s be the domain of Gaussian integers with the Euclidean norm | |. We set

α :“ k ` l
?
´1 and γ :“ m` n

?
´1.

We rewrite the coefficients of Q as

A “ 2|α|2, B “ 4Repαγ̄q ` 8, C “ 2|γ|2.

Suppose that p is an odd prime which is not congruent to 1 modulo 4, i.e. p ” 3 pmod 4q. Then
p is prime in Zr

?
´1s (see [25], Proposition 4.18). Thus if p divides A “ 2αᾱ, then p divides α. In

particular, p divides Repαγ̄q; so p does not divide Repαγ̄q ` 2. It follows that p does not divide B and
we conclude that p - h.

For the second part, we observe that 8 | h if and only if k, l,m, n are even. In this case, we have
that 8 | Qpx, yq for every x, y P Z. However, the assumption we made in item 2 of the theorem exclude
this possibility.

Lemma 7.1.8. We have that a ı 3 pmod 4q, c ı 3 pmod 4q, and b is even.

Proof. By definition we have that

k2 ` l2 “
h

2
a and m2 ` n2 “

h

2
c.

Notice that if an odd prime ” 3 pmod 4q divides the sum of two squares, then it has to appear with
even exponent (see [77], Corollary 5.14). Since by Lemma 7.1.7 the only odd primes dividing h are ” 1
pmod 4q, we have that a prime ” 3 pmod 4q appears in the prime factorization of a and c only with
even exponent. This gives the first part of the claim.

Now, we prove that b is odd if and only if 8 | h. This implies the desired statement by the second
part of Lemma 7.1.7.
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Assume that b is odd. Since
B “ 4p2` Repαγ̄qq “ hb,

we have that 4 | h. Thus, 4 divides A “ 2|α|2 and C “ 2|γ|2. It follows that p1 `
?
´1q | α and

p1`
?
´1q | γ, which implies that 2 | αγ̄. We conclude that 8 | B and thus 8 | h.

Conversely, assume that 8 | h; arguing as above, we see that 8 | B. Notice that 2 - h{8, because
otherwise 2 | B{8, in contradiction with the fact that B “ 8p1` 2rq. Since

B

8
“ 1` 2r “

h

8
b,

we conclude that b is odd.

Lemma 7.1.9. There exist integers x and y such that qpx, yq is a prime p ” 1 pmod 4q.

Proof. We adapt part of the proof of [4], Proposition 3.3, to our case. Let us list all the possible forms
qpx, yq modulo 4, using the restrictions given by Lemma 7.1.8:

For b ” 0 pmod 4q:
a ” 0 pmod 4q 0, y2, 2y2

a ” 1 pmod 4q x2, x2 ` y2

a ” 2 pmod 4q 2x2, 2x2 ` 2y2

For b ” 2 pmod 4q:
a ” 0 pmod 4q 2xy, 2xy ` 2y2

a ” 1 pmod 4q x2 ` 2xy ` y2, x2 ` 2xy ` 2y2

a ” 2 pmod 4q 2x2 ` 2xy, 2x2 ` 2xy ` y2, 2x2 ` 2xy ` 2y2

Notice that we have excluded the cases

x2 ` 2y2, x2 ` 2xy, 2x2 ` y2, 2xy ` y2,

because by completing the square we get

x2 ` 2xy “ px` yq2 ´ y2 ” px` yq2 ` 3y2 pmod 4q

and
x2 ` 2y2 “ px` yq2 ´ 2xy ` y2 ” px` yq2 ` 2xy ` y2 ” 2px` yq2 ` 3x2 pmod 4q,

which is not possible by Lemma 7.1.8.
We exclude the cases corresponding to a non primitive form, i.e.

0, 2y2, 2x2, 2x2 ` 2y2, 2xy, 2xy ` 2y2, 2x2 ` 2xy, 2x2 ` 2xy ` 2y2.

In the other cases, we find that q can represent only numbers which are ” 0 or 1 pmod 4q (i.e.
y2, x2, px` yq2, x2` 2xy` 2y2, 2x2` 2xy` y2), or ” 0, 1 or 2 pmod 4q (i.e. x2` y2). Since a primitive
positive definite form represents infinitely many primes, it must represent a prime ” 1 pmod 4q.

We observe that h satisfies p˚˚q by Lemma 7.1.7. Thus, by Lemma 7.1.9 we conclude that there exist
some integers x and y not both zero such that the discriminant of the lattice xλ1, λ2, xκ1`yκ2y satisfies
p˚˚q. This observation implies the proof of the statement. Indeed, ifMK is the saturation of this lattice,
then its discriminant still satifies condition p˚˚q, because discrpxλ1, λ2, xκ1`yκ2yq “ i2discrpMKq, and
MK has rank three. By the same argument used at the end of the rank three case, we deduce that X
has a Hodge-associated K3 surface.
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In Section 3.3 we give examples of GM fourfolds having a primitively embedded hyperbolic plane
in the algebraic part of the Mukai lattice, but without a Hodge-associated K3 surface.

A consequence of Theorem 7.1.6 is that the condition of having a homological associated K3 surface
implies the existence of a Hodge-associated K3 surface for very general GM fourfolds. This is analogous
to the easy implication of [4], Theorem 1.1.

Theorem 7.1.10. Let X be a GM fourfold such that KupXq is equivalent to the derived category
of a K3 surface S. Under the hypothesis of the second part of Theorem 7.1.6, we have that X has
discriminant d with d satisfying p˚˚q.

Proof. Assume that there is an equivalence Φ : KupXq „
ÝÑ DbpSq where S is a K3 surface. We

observe that KpSqnum contains a copy of the hyperbolic plane spanned by the classes of the structure
sheaf of a point and the ideal sheaf of a point. Since Φ induces an isometry of Hodge structures
KpKupXqqtopp´1q – KpSqtop, it follows that U is contained in NpKupXqq. Applying Theorem 7.1.6,
we deduce the proof of the result.

In the last part of this section we show that period points of Hodge-special GM fourfolds with an
associated twisted K3 surface are organized in a countable union of divisors determined by the value
of the discriminant. The argument essentially follows [47], Section 2. To this end, given a GM fourfold
X, we consider the Mukai lattice KpKupXqqtopp´1q with the weight-two Hodge structure and Euler
pairing with reversed sign. Accordingly, the local period domain is given by

Ω :“ tw P PpI2,0p2q
K b Cq : w ¨ w “ 0, w ¨ w̄ ą 0u

changing the sign of the definition in (6.1) and identifying Λ “ I2,0p2q
K. We set Q “ tx P PpΛ̃b Cq :

x2 “ 0, px.x̄q ą 0u and we consider the canonical embedding of Ω in Q.
We recall that a point x of Q is of K3 type (resp. twisted K3 type) if there exists a K3 surface

S (resp. a twisted K3 surface pS, αq) such that Λ̃ with the Hodge structure defined by x is Hodge
isometric to H̃pS,Zq (resp. H̃pS, α,Zq) (see [47], Definition 2.5). By [47], Lemma 2.6, we have that a
point x P Q is of K3 type (resp. of twisted K3 type) if and only if there exists a primitive embedding
of U (resp. an embedding of Upnq) in the p1, 1q-part of the Hodge structure defined by x on Λ̃. We
denote by DK3 (resp. DK31) the set of points of Ω of K3 type (resp. of twisted K3 type).

Definition 7.1.11. A GM fourfold X has an associated twisted K3 surface if the period point ppXq
comes from a point in DK31 .

Remark 7.1.12. Notice that if X has a Hodge-associated K3 surface, then it corresponds to a point x
of K3 type. In fact, it follows from the first part of Theorem 7.1.6 and [47], Lemma 2.6. Moreover, the
converse holds for very general Hodge-special GM fourfolds and for GM fourfolds satisfying condition
2 in Theorem 7.1.6. On the other hand, in Section 3.3 we see that a GM fourfold with period point of
K3 type does not necessarily have a Hodge-associated K3 surface.

Proof of Theorem 5.0.1. The proof is analogous to that of [47], Proposition 2.10. As done in [47],
Proposition 2.8, we have that

DK31 “ ΩX
ď

0‰εPΛ̃
χpε,εq“0

εK.

Assume that x is a twisted K3 type point. By the previous observation, there exists an isotropic non
trivial element ε in Λ̃. We consider the lattice xλ1, λ2, εy in Λ̃, with Euler pairing given by

¨

˝

´2 0 x
0 ´2 y
x y 0

˛

‚.
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Notice that xλ1, λ2, εy has discriminant 2x2 ` 2y2, which satisfies condition p˚˚1q. Then, let MK be
the saturation of xλ1, λ2, εy in Λ̃. If d is the discriminant of MK and i is the index of xλ1, λ2, εy in its
saturation, then we have

2x2 ` 2y2 “ i2d.

It follows that also d verifies condition p˚˚1q, as we wanted.
The other implication of the statement is proved following the same argument in the opposite

direction.

7.1.3 Extending Theorem 7.1.6: a counterexample

In this section we show that there are examples of GM fourfolds having a primitively embedded
hyperbolic plane in the Néron-Severi lattice, but which cannot have a Hodge-associated K3 surface.
Consistently with Theorem 7.1.6, our examples have rankpNpKupXqqq “ 4 and their period points
belong only to divisors corresponding to discriminants ” 0 pmod 8q.

Assume that X is a GM fourfold such that NpKupXqq “ xλ1, λ2, τ1, τ2y with Euler form given by
¨

˚

˚

˝

2 0 0 0
0 2 0 0
0 0 ´2pk2 ` l2q 1´ 2km´ 2ln
0 0 1´ 2km´ 2ln ´2pm2 ` n2q

˛

‹

‹

‚

(7.3)

(here we consider the Mukai lattice KpKupXqqtopp´1q with weight-two Hodge structure and quadratic
form with reversed sign). Recall that by the Hodge Index Theorem and Lemma 7.1.4, the Néron-Severi
lattice of KupXq has signature p2, ˚q. Thus, we have to choose k, l,m, n P Z such that the form in (7.3)
has signature p2, 2q. This happens if and only if

4pkn´ lmq2 ` 4km` 4ln´ 1 ą 0,

or, equivalently, if and only if
pkn´ lmq2 ` km` ln ą 0.

It is not difficult to see that there are infinite many values for these integers satisfying this requirement,
e.g. if

km` ln ą 0. (7.4)

For the rest of this section, we will require this stronger condition to simplify the computation.
Notice that the classes

κ1 :“ kλ1 ` lλ2 ` τ1 and κ2 :“ mλ1 ` nλ2 ` τ2

span a copy of U in NpKupXqq.
However, it is easy to see that every labelling of X will have discriminant congruent to 0 modulo

8; hence, we cannot find a labelling with discriminant satisfying p˚˚q. It follows that X cannot have a
Hodge-associated K3 surface.

It remains to prove that such a GM fourfold exists. We recall that the image of the period map
is contained in the complement of the divisors D2, D4 and D8 (it is expected that they coincide). In
particular, the period point of a nodal GM fourfold lies in D8 (see [27], Section 7.5). We know that the
period points we are considering are not in D2 and D4. In the next lemma, we study the conditions
on k, l,m, n in order to avoid the divisor D8.

Lemma 7.1.13. The period point of a GM fourfold X with NpKupXqq as in (7.3) satisfying (7.4) is
not in D8 if and only if either k ‰ m or l ‰ n, and pk, lq ‰ p1, 0q, p0, 1q, pm,nq ‰ p1, 0q, p0, 1q.
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Proof. We actually prove that ppXq is in D8 if and only if either k “ m and l “ n, or pk, lq “ p1, 0q,
or pk, lq “ p0, 1q, or pm,nq “ p1, 0q, or pm,nq “ p0, 1q.

First of all, we observe that X has period point in D8 if and only if there is a class τ in NpKupXqq
of selfintersection ´2, which is orthogonal to λ1 and λ2. Indeed, by Corollary 7.1.5, we have that
ppXq P D8 if and only if there is a primitive sublattice xλ1, λ2, τy of NpKupXqq with discriminant ´8.
Since NpKupXqq is an even lattice, the matrix representing the Euler pairing in this basis is of the
form

¨

˝

2 0 a
0 2 b
a b 2c

˛

‚.

Since 8 divides the discriminant, we have that a and b are even. Diagonalizing the matrix, we obtain
a basis whose form is given by

¨

˝

2 0 0
0 2 0
0 0 2k

˛

‚.

Thus the discriminant is ´8 if and only if k “ ´1, as we claimed.
As τ is orthogonal to λ1 and λ2, we write τ “ γτ1 ` δτ2 and

χpτq “ ´2pk2 ` l2qγ2 ´ 2pm2 ` n2qδ2 ` 2γδp1´ 2km´ 2lnq.

We search the values of k, l,m, n such that χpτq “ ´2 has a solution in γ and δ. Equivalently, we
study the equation

pγk ` δmq2 ` pγl ` δnq2 ´ γδ “ 1. (7.5)

It is easy to see that pk, lq “ p1, 0q, or pk, lq “ p0, 1q, or pm,nq “ p1, 0q, or pm,nq “ p0, 1q if and
only if one between τ1 and τ2 has square ´2.

Assume we are not in the previous situation, i.e. γδ ‰ 0. We observe that if k “ m and l “ n, then
the possible solutions for the equation (7.5) are pγ, δq “ ˘p1,´1q. Indeed, if γ ‰ ´δ, we have

k2pγ ` δq2 ` l2pγ ` δq2 ´ γδ ě 2pγ ` δq2 ´ γδ ą 1.

So, the solutions of (7.5) have the form γ “ ´δ, i.e. pγ, δq “ ˘p1,´1q. Conversely, if pγ, δq “ ˘p1,´1q,
then k “ m and l “ n.

In the next, we prove that these are the only possibilities for k, l,m, n such that equation (7.5) has
solution in γ and δ. Indeed, assume that there are other values for k, l,m, n such that there exists a
solution pγ, δq for (7.5). Notice that either γδ ą 0 or γδ “ 0, or pγ, δq “ ˘p1,´1q; since the last two
cases are in the previous list, we assume γδ ą 0. Then we have

pk2 ` l2qγ2 ` pm2 ` n2qδ2 ` γδp2km` 2ln´ 1q ą 1,

because 2km ` 2ln ´ 1 ą 0 by condition (7.4). It follows that (7.5) is not satisfied, in contradiction
with our assumption. This ends the proof of the claim.

The aim of the following part is to prove that among all the Hodge structures on Λ̃ having algebraic
part given by the lattice defined in (7.3) and satisfying the condition in Lemma 7.1.13, there is at least
one which belongs to the image of the period map of GM fourfolds.

We denote by Sk,l,m,n the set of period points in D whose Hodge structure on Λ̃ with algebraic
part containing the lattice Nk,l,m,n defined in (7.3), for k, l,m, n satisfying (7.4) and the condition in
Lemma 7.1.13. This is the locus in D coming from PpNKk,l,m,n b Cq Ă PpΛ̃b Cq. We set

S :“
ď

k,l,m,n

Sk,l,m,n
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and we denote by S 1 Ă S the locus of period points with algebraic part of rank four. Thus, points in
S 1 are very general points of S and their algebraic part is equal to a lattice Nk,l,m,n.

Lemma 7.1.14. The intersection of S 1 with the image of the period map p is non empty.

Proof. The argument is inspired by [30], from which we take the notation. Let Mp1q
2 be the moduli

space of (smooth) hyperkähler fourfolds deformation equivalent to the Hilbert square of a K3 surface,
with polarization of degree 2 and divisibility 1, whose period domain is given by D. By [30], Theorem
6.1 and Example 6.3, we have that the image of the period map p

p1q
2 : Mp1q

2 Ñ D is equal to the
complement of the divisors D2, D8 and D210. Thus, by our assumption, it follows that S is contained
in the image of the period map pp1q2 .

We denote by U p1q2 the Zariski open set of Mp1q
2 parametrizing smooth double EPW sextics. By

[27], Theorem 8.1, we have that pp1q2 pU p1q2 q meets every component of Dd among the possible values of
d ą 8 (except D210). 1 As a consequence, if we set

D
p1q
2,d :“ Dd X p

p1q
2 pMp1q

2 q,

which is a hypersurface in pp1q2 pMp1q
2 q, then

U
p1q
2,d :“ D

p1q
2,d X p

p1q
2 pU p1q2 q ‰ H.

In particular, we have that U p1q2,d is a Zariski open set in Dp1q2,d.
Now, we fix k and l, and we set d :“ ´8pk2 ` l2q. We have that

U
p1q
2,d X

ď

m,n

Sk,l,m,n ‰ H,

where m,n vary in the countable range of values given by (7.4) and Lemma 7.1.13. Indeed, the union
Ť

m,n Sk,l,m,n is dense in D
p1q
2,d by [?], Section 5.3.4. As U p1q2,d is Zariski open in D

p1q
2,d, we deduce the

claim. Thus, there exist m and n such that

U
p1q
2,d X Sk,l,m,n ‰ H.

As the set above is Zariski open in Sk,l,m,n, it contains a very general point of Sk,l,m,n, which belongs
to S 1. It follows that

p
p1q
2 pU p1q2 q X S 1 ‰ H.

For every x P pp1q2 pU p1q2 qXS 1, we denote by ỸA a smooth double EPW sextic such that pp1q2 prỸAsq “ x.
Finally, we observe that there exists a GM fourfold X such that its associated double EPW sextic

is precisely ỸA. Indeed, ỸA determines a six dimensional C-vector space V6 and a Lagrangian subspace
A Ă

Ź3 V6 without decomposable vectors. The choice of a five dimensional subspace V5 Ă V6 with
AX

Ź3 V5 of the right dimension defines a Lagrangian data, which by [28], Theorem 3.10, Proposition
3.13, and Theorem 3.16 determines a GM fourfold X, as we wanted.

Applying Lemma 7.1.14 to a lattice as in (7.3) with the conditions given by (7.4) and Lemma
7.1.13, we deduce that there is a GM fourfold X having the desired properties. We point out that
this example includes all the possible GM fourfolds X with NpKupXqq of rank four, which do not
satisfy the assumption we made in item 2 of Theorem 7.1.6. It follows that the condition of having an
embedded U in NpKupXqq is not divisorial, in contrast to what happens for cubic fourfolds.

1We point out that [27], Theorem 8.1 does not cover the case of the divisor D218. Anyway, in the first version of [30],
Footnote 4, they argue as follows. Having a GM fourfold with an associated double EPW sextic whose period point is in
D

2

18, we consider its dual GM fourfold. By [28], Theorem 3.27, they have dual EPW sextics. Then, their period points
are dual by [29], Section 5.4, which means that one is in D118 and the other is in D218.
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7.2 Associated double EPW sextic

The aim of this section is to prove Theorems 5.0.2, 5.0.3 and 5.0.4 stated in the introduction. We follow
the argument of [2] and of [47] for the twisted case; in particular, we define a Markman embedding for
H2pỸA,Zq in Λ̃ and we apply Propositions 4 and 5 of [2].

7.2.1 Proof of Theorem 5.0.2 and 5.0.3

Assume that X is a GM fourfold with Lagrangian data pV6, V5, Aq such that ỸA is smooth. Before start-
ing with the proofs, we need the following lemma, which relates the sublattice xλ1y

K of KpKupXqqtop
(equipped with the induced Hodge structure) and H2pỸA,Zq.

Lemma 7.2.1. There exists an isometry of Hodge structures between the lattices xλ1y
K Ă KpKupXqqtop

and H2pỸA,Zqp1q.

Proof. Composing the isometry of Proposition 7.1.1 with that of Theorem 6.2.1, we obtain the Hodge
isometry

f : xλ1, λ2y
K – H2pỸA,Zq0p1q.

Notice that twisting by 1, we have shifted by two the weight of the Hodge structure on the primitive
cohomology and we have reversed the sign of q; in particular, f is an isometry of weight zero Hodge
structures.

Now, we observe that xλ1y
K is isomorphic to E2

8 ‘ U3 ‘ Zpu1 ` v1q via the marking φ defined in
(7.2). On the other hand, by [79], Theorem 1.1, we have the isometry

H2pỸA,Zq – H2pS,Zq ‘ Z δ – E8p´1q2 ‘ U3 ‘ I0,1p2q,

where S is a degree-four K3 surface and qpδq “ ´2. Twisting by 1, we get

H2pỸA,Zqp1q – E2
8 ‘ U

3 ‘ Z δ, with qpδq “ 2,

using that Up´1q – U . In particular, xλ1y
K and H2pỸA,Zqp1q are isomorphic lattices.

Let hA be the polarization class on ỸA with satisfies qphAq “ ´2 in H2pỸA,Zqp1q (see [79], eq.
(1.3)). We define an isometry g : xλ1, λ2y

K ‘ xλ2y – H2pỸA,Zq0p1q ‘ xhAy such that

gpλ2q “ hA and gpxλ1, λ2y
Kq “ fpxλ1, λ2y

Kq “ H2pỸA,Zq0p1q.

Notice that g preserves the Hodge structures, because f does and g sends the p0, 0q class λ2 to the
p0, 0q class hA. In particular, g defines an isomorphism of Hodge structures xλ1y

K – H2pỸA,Qqp1q
over Q.

We claim that g extends to an isometry xλ1y
K – H2pỸA,Zqp1q over Z. Indeed, we set S1 :“

H2pỸA,Zq0p1q, S2 :“ xλ1, λ2y
K and L :“ H2pỸA,Zqp1q. We denote by K1 and K2 the orthogonal

complements of S1 and S2 in L. By definition, we have K1 – xhAy and K2 – xλ2y. We set

H1 :“
L

S1 ‘K1
Ă dpS1q ‘ dpK1q and H2 :“

L

S2 ‘K2
Ă dpS2q ‘ dpK2q;

recall that
dpSiq –

Z
2Z
‘

Z
2Z

and dpKiq –
Z
2Z
.

Let Hi,S and Hi,K be the projections of Hi in dpSiq and dpKiq, respectively. Then, there is an
isomorphism γi : Hi,S – Hi,K , given by the composition of the inverse of the projection on the first
factor with the projection to the second factor. By definition Hi,K is a subgroup of dpKiq – Z {2Z.

102



We exclude the case Hi,K “ 0. Then we have Hi,K “ dpKiq. We list the generators of the subgroups
of dpSiq ‘ dpKiq mapping to Z {2Z via the two projections:

p1, 0, 1q, p0, 1, 1q and p1, 1, 1q.

Since Hi is isotropic with respect to q :“ qSi ‘ qKi , we exclude p1, 1, 1q, because

qpp1, 1, 1qq “
1

2
`

1

2
´

1

2
“ ´

1

2
‰ 0 mod Z.

Moreover, recall that by [76], Proposition 1.4.1(b), we have that

dpLq –
HKi
Hi

,

where HKi is the orthogonal to Hi in dpSiq‘dpKiq. This condition implies that Hi “ xp0, 1, 1qy. Indeed,
assume that Hi “ xp1, 0, 1qy. Writing explicitely the generators of the discriminant groups we have

dpKiq “ x
f2

2
y, dpSiq “ x

g1

2
,
g2

2
y, dpLq “ x

g1

2
y, Hi “ x

g1

2
`
f2

2
y.

However, we have
HKi
Hi

“
x
g1
2 `

f2
2 ,

g2
2 y

x
g1
2 `

f2
2 y

“ x
g2

2
y

giving a contradiction.
Now, recall that by [76], Corollary 1.5.2, the isometry f extends to an isometry of L if and only if

there exists an isometry f 1 : K1 Ñ K2 such that the diagram

dpS1q H1,S
Ąoo

f̄

��

γ1

–
// H1,K

f̄ 1

��

“ // dpK1q

dpS2q H2,S
Ąoo

γ2

–
// H2,K

“ // dpK2q.

commutes, where f̄ and f̄ 1 are induced by f and f 1 on the discriminant groups. So, we consider the
isometry f 1 : K1 Ñ K2 sending hA to λ2; we have that f 1 acts trivially on the discriminant group.
On the other hand, the isometry f acts either as the identity on Z{2ZˆZ{2Z or it exchanges the two
factors. Assume we are in the first case. Then, we have that f̄ 1 ˝ γ1pp0, 1qq “ γ2 ˝ f̄pp0, 1qq.

In the second case, we change the marking φ with the marking φ1 : KpKupXqqtop – Λ̃p´1q, such
that φ1pλ1q “ f2 and φ1pλ2q “ f1. By the same argument explained above, we have thatH2 “ xp1, 0, 1qy
and H2,S “ xp1, 0qy. It follows that

γ2 ˝ f̄pp0, 1qq “ γ2pp1, 0qq “ H2,K “ f̄ 1 ˝ γ1pp0, 1qq.

Then [76], Corollary 1.5.2 applies and we deduce that the isometry f extends to an isometry of L. It
follows that g is well defined over Z, which concludes the proof.

Remark 7.2.2. In the same way we can prove that there is a Hodge isometry xλ2y
K – H2pỸA,Zqp1q

which extends f and sending λ1 to hA.

By Lemma 7.2.1, it follows that there is a primitive embedding

H2pỸA,Zq ãÑ KpKupXqqtopp´1q.

By [70], Section 9, it is unique up to isometry of Λ̃. Thus it defines a Markman embedding as
discussed in [2], Section 1.
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Proof of Theorem 5.0.2. If d satisfies p˚˚q, then NpKupXqq contains a copy of the hyperbolic plane U
by Theorem 7.1.6. This proves that (a) implies (b). Recall that TX is Hodge isometric to TỸAp´1q by
Theorem 6.2.1. Then (b) is equivalent to (c) by Proposition 4 in [2].

Assume that X is as in the second part of the statement. Then by Theorem 7.1.6 we have that
d satisfies p˚˚q if and only if U Ă NpKupXqq. The statement follows applying [2], Proposition 4 as
before.

Remark 7.2.3. As observed in [2] for cubic fourfolds, under the hypothesis of Theorem 5.0.2, we have
that ỸA is birational to a moduli space of Bridgeland stable objects if and only if d satisfies p˚˚q, by
[10], Theorem 1.2(c).

Remark 7.2.4. As observed in [29], Remark 5.29, the image of the closure of the locus of smooth GM
fourfolds having singular associated double EPW sextic is precisely the divisor D210. We claim that
there exist Hodge-special GM fourfolds with smooth associated double EPW sextic. Indeed, by [27],
Section 7.2, this is clear for general GM fourfolds containing a τ -plane: their period points lie in the
divisor D12 and they do not belong to D210, because of generality assumption. Now, let d be a positive
integer ” 0, 2, 4 pmod 8q. Assume d ą 12 if d ” 0 pmod 4q, resp. d ě 10 if d ” 2 pmod 8q. By [27],
Theorem 8.1, the image of the period map meets all divisors Dd, D1d and D2d for the respective values of
the discriminant. More precisely, for every d as before, they construct a GM fourfold X0 whose period
point ppX0q belongs to the intersection of D210 with Dd (resp. D1d or D2d) if d ” 0 pmod 4q (resp. d ” 2
pmod 8q). Consider the case d ” 0 pmod 4q. Since the period map is dominant (see Section 2.2), there
exists an open dense subset U of D contaning ppX0q such that U Ď ppM4q. Notice that U X Dd is
open in Dd and it contains ppX0q. Moreover, it is not contained in Dd X D210, because the latter has
codimension 1 in Dd. It follows that pU XDdqzD210 ‰ H. The same argument applies to the case d ” 2
pmod 8q and it completes the proof of the claim.

Remark 7.2.5. Assume that X is a Hodge-special GM fourfold such that ỸA is smooth. Notice that
the period point defined by the Hodge structure on KpKupXqqtopp´1q is of K3 type if and only if ỸA
is birational to a moduli space of stable sheaves on a K3 surface.

As in [47], Proposition 4.1, in the case of cubic fourfolds, we can prove the twisted version of
Theorem 5.0.2.

Proof of Theorem 5.0.3. Assume that ỸA is birational to a moduli space Mpvq of α-twisted stable
sheaves on a K3 surface S, where v is primitive in H̃1,1pS, α,Zq and pv, vq “ 2. Using the embedding
H2pỸA,Zq ãÑ KpKupXqqtopp´1q and Torelli Theorem for hyperkähler manifolds, this is equivalent to
have an isometry of Hodge structures KpKupXqqtopp´1q – H̃pS, α,Zq, which restricts to

H2pỸA,Zq – H2pMpvq,Zq – vK ãÑ H̃pS, α,Zq.

Equivalently, by Theorem 5.0.1, we have that X is Hodge-special with a labelling of discriminant d
satisfying condition p˚˚1q. This proves one direction.

On the other hand, assume that ppXq belongs to a divisor with d satisfying p˚˚1q. Then the image
v of λ1 through H2pỸA,Zq ãÑ KpKupXqqtopp´1q – H̃pS, α,Zq is primitive. Since the induced moduli
space Mpvq is non-empty and the Hodge isometry H2pỸA,Zq – vK – H2pMpvq,Zq extends to Λ̃, we
conclude the desired statement.

7.2.2 Proof of Theorem 5.0.4

Firstly, we need the following lemma, which is analogous to [2], Lemma 9, and that we will use also in
Section 4.2.
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Lemma 7.2.6. Let X be a Hodge-special GM fourfold of discriminant d such that d ” 2 or 4 pmod 8q.
Then there exists an element τ̃ in NpKupXqq such that xλ1, λ2, τ̃y is a primitive sublattice of discrim-
inant d with Euler pairing given, respectively, by

¨

˝

´2 0 1
0 ´2 0
1 0 2k

˛

‚ or

¨

˝

´2 0 0
0 ´2 1
0 1 2k

˛

‚ with d “ 2` 8k,

¨

˝

´2 0 1
0 ´2 1
1 1 2k

˛

‚ with d “ 4` 8k.

Proof. By Corollary 7.1.5, there exists an element τ P NpKupXqq such that xλ1, λ2, τy is a primitive
sublattice of discriminant d with Euler paring given by

¨

˝

´2 0 a
0 ´2 b
a b c

˛

‚.

Notice that c is even, because NpKupXqq is an even lattice.
Assume that d ” 2 pmod 8q; then one of a and b is even and the other is odd. Assume that b is

even. Substituting τ with τ 1 “ τ ` b{2λ2, we get a new basis with Euler form
¨

˝

´2 0 a
0 ´2 0
a 0 c1

˛

‚.

We can write a “ 4d` e with e “ ´1, 1. Then, the basis λ1, λ2, τ̃ “ τ 1 ` 2dλ1 has Euler pairing
¨

˝

´2 0 e
0 ´2 0
e 0 2k

˛

‚.

If e “ ´1, we change τ̃ with ´τ̃ and we return to the case e “ 1. If a is even, by the same argument
we obtain a basis with the second matrix in the statement. This proves the claim in the case d ” 2
pmod 8q. The case d ” 4 pmod 8q works in the same way.

Proof of Theorem 5.0.4. Assume that there exist a K3 surface S and a birational equivalence ỸA 99K
Sr2s. By Lemma 7.2.1 and [2], Proposition 5, this is equivalent to the existence of an element w in
NpKupXqq such that the Euler pairing of K :“ xλ1, λ2, wy has the form

¨

˝

´2 0 1
0 ´2 n
1 n 0

˛

‚ for some n P Z .

In particular, the discriminant of K is 2n2 ` 2. Let MK be the saturation of K; if a is the index of K
in MK and d is the discriminant of MK , we have that discrpKq “ a2d, as we wanted.

Conversely, assume that d satisfies condition (˚˚˚). Then there exist integers n and a such that
a2d “ 2n2 ` 2. Firstly, we observe that 2n2 ` 2 satisfies p˚˚q. Indeed, every odd prime p dividing
n2 ` 1 is ” 1 pmod 4q, and 8 - 2n2 ` 2. It follows that a is the product of odd primes ” 1 pmod 4q; in
particular, a ” 1 pmod 4q.

Suppose firstly that d ” 2 pmod 8q; then n is even. Indeed, assume that n ” 1 pmod 4q (resp.
n ” 3 pmod 4q). It follows that n2 ` 1 ” 2 pmod 4q; then d ” 4 pmod 8q, which is impossible.
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Furthermore, by Lemma 7.2.6, there is an element τ P NpKupXqq such that the sublattice xλ1, λ2, τy
has Euler pairing of the form

¨

˝

´2 0 1
0 ´2 0
1 0 2k

˛

‚ or

¨

˝

´2 0 0
0 ´2 1
0 1 2k

˛

‚.

Assume that we are in the first case. We set

w :“
a´ 1

2
λ1 `

n

2
λ2 ` aτ P NpKupXqq,

where n{2 is an integer, because n is even. An easy computation shows that

χpλ1, wq “ 1 and χpwq “ 0.

By [2], Proposition 5, it follows that ỸA is birational to Sr2s for a K3 surface S.
If we are in the second case, we consider the Markman embedding H2pỸA,Zq Ă KpKupXqqtopp´1q

defined by the Hodge isometry xλ2y
K – H2pỸA,Zqp1q (see Remark 7.2.2). Setting

w :“
n

2
λ1 `

a´ 1

2
λ2 ` aτ P NpKupXqq,

the proof follows from [2], Proposition 5.
Now assume that d ” 4 pmod 8q; then n is odd. Indeed, if n ” 0 pmod 4q (resp. n ” 2 pmod 4q),

then n2 ` 1 ” 1 pmod 4q. Since a2d{2 “ n2 ` 1 and a ” 1 pmod 4q, we conclude that d{2 ” 1
pmod 4q, which is impossible. By Lemma 7.2.6, there is an element τ P NpKupXqq such that the
sublattice xλ1, λ2, τy has Euler pairing of the form

¨

˝

´2 0 1
0 ´2 1
1 1 2k

˛

‚ with d “ 4` 8k.

We set
w :“

a´ 1

2
λ1 `

a´ n

2
λ2 ` aτ P NpKupXqq.

Notice that pa ´ nq{2 is integral, because n is odd. Arguing as before, we conclude the proof of the
result.

Remark 7.2.7. As seen in the proof of Theorem 5.0.4, condition (˚˚˚) implies condition p˚˚q. On the
other hand, condition (˚˚˚) is stricter than condition p˚˚q. For example, d “ 50 satisfies p˚˚q, but not
(˚˚˚).

Remark 7.2.8. In [51], Proposition 2.1, they proved that if a smooth double EPW sextic is birational
to the Hilbert scheme Sr2s on a K3 surface S with polarization of the degree d, then the negative Pell
equation

Pd{2p´1q : n2 ´
d

2
a2 “ ´1

is solvable in Z. This condition is actually condition (˚˚˚) in the case of the double EPW associated to
a GM fourfold. Notice also that the K3 surface S, realizing the birational equivalence between ỸA and
Sr2s in Theorem 5.0.4, has a pseudo-polarization of degree d. Indeed, the hypothesis implies that there
is a rank-three sublattice MK of NpKupXqq. Moreover, it contains a copy of the hyperbolic plane and
H2pS,Zq – UK Ă NpKupXqq, as explained in the proof of [2], Proposition 5. Then, the generator of
UK XMK has degree d, as we wanted. Moreover, if ppXq R D8, then there are no classes of square 2
in H4pX,Zq00 XH

2,2pX,Zq. In this case, the pseudo-polarization is a polarization class on S.
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Chapter 8

Stability conditions on KupXq (work in
progress)

In this section we describe a conic fibration over a P3 associated to an ordinary GM fourfold. This
construction was firstly described in the joint work [84] with Mattia Ornaghi. This is also the starting
point of a joint work in progress with Alex Perry and Xiaolei Zhao, where we are trying to construct
stability conditions on the component KupXq.

8.1 Conic fibration over P3

Let X be an ordinary GM fourfold. We denote by π : PXpUXq Ñ X the projectivization of the bundle
UX . We can consider the map

ρ : PXpUXq Ñ PpV5q

induced by the embedding UX ãÑ V5 b OX . By [28], Proposition 4.5, we have that ρ is a fibration
in quadrics. More precisely, by [28], Remark 3.15 and Remark B.4, the fibers of ρ are all conics in
P2 except for the fiber over a point v0 in PpV5q, which is a 2-dimensional quadric in P3. Let us fix a
four-dimensional subvector space V4 of V5 such that the point v0 is not contained in PpV4q. We set

X̃ :“ PXpUXq ˆPpV5q PpV4q

and we denote by ρ̃ the restriction of ρ to X̃. Thus, we have the following commutative diagram

X̃

σ

}}

ρ̃

��

// PXpUXq

ρ

��

π

		

X PpV4qoo // PpV5qll

(8.1)

By the previous observations, we have that the restriction ρ̃ defines a flat conic fibration over PpV4q –

P3. In the following, we prove that X̃ is smooth for a general choice of the subspace V4.
Notice that for every x in X, the fiber of σ over x is equal to PpUX,x X V4q. In particular, we have

that σ´1pxq is a point (resp. a line) if the dimension of UX,x X V4 is equal to 1 (resp. if UX,x Ă V4). It
follows that the locus of non trivial fibers of σ is the intersection

S :“ Grp2, V4q XX Ă Pp
2
ľ

V5q – P9 . (8.2)

Since the Grassmannian Grp2, V4q has degree 2, we have that the degree of S is at most 4. Moreover,
the expected dimension of S is 2. On the other hand, by Lefschetz Theorem the fourfold X cannot
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contain a divisor with degree less than 10, because its class has to be cohomologous to the class of a
hyperplane in X. Thus, we conclude that dimpSq ď 2. In the next lemma, we show that S is smooth
if V4 is general and v0 is not contained in V4; in this case, S is a del Pezzo surface of degree 4.

Lemma 8.1.1. The locus S defined in (8.2) is smooth for a general subvector space V4 of V5 such that
v0 R V4.

Proof. Using the identification H0pGrp2, V5q,U˚q – V ˚5 , we observe that the zero locus of a regular sec-
tion of U˚ is an embedded Grassmannian Grp2, V4q Ă Grp2, V5q. Indeed, a section s P H0pGrp2, V5q,U˚q
corresponds to a linear form ηs P V

˚
5 , which determines V4 “ kerpηsq Ă V5. Thus, the zero locus Zpsq of

s contains points x “ rV2s of Grp2, V5q such that the restriction of ηs to V2 is trivial. This is equivalent
to have V2 Ă V4 as we claimed.

Moreover, the condition that v0 is not in V4 is equivalent to the fact that the hyperplane in V ˚5
defined by v0 does not contain ηs. This assumption determines an open subset U of V ˚5 . Since U˚ is
generated by its global sections, by [75], Theorem 1.10, we have that the zero locus of a general element
in H0pGrp2, V5q,U˚q is smooth of codimension 2. We point out that U contains a general element, i.e.
a section whose zero locus is smooth of the expected codimension.

Now let us consider the map

γ˚X : H0pGrp2, V5q,U˚q Ñ H0pX,U˚Xq,

defined by pulling back sections of U˚ via γX . Notice that γ˚X is injective. Indeed, for s ‰ 0 P
H0pGrp2, V5q,U˚q, the fact that γ˚Xpsq is the zero section is equivalent to having X Ă Zpsq “ Grp2, V4q,
in contradiction with the definition of X. We conclude that s “ 0.

We prove that γ˚X is actually bijective. To this end, it is enough to show that H0pX,U˚Xq has
dimension 5. The Todd class of X is computed in (6.3). By Riemann-Roch, we have that the Euler
characteristic χpX,U˚Xq “ 5. In Lemma 8.1.2 we prove that all the higher cohomology groups of U˚X
vanish; it follows that V ˚5 – H0pX,U˚Xq.

We conclude that the zero locus of a section s of U˚X is represented by an intersection as in (8.2)
and it is enough to choose s in the open subset U defined above, in order to guarantee the smoothness
of Zpsq.

Lemma 8.1.2. For i ą 0, we have that

hipU˚Xq :“ dimpH ipX,U˚Xqq “ 0.

Proof. We set G :“ Grp2, V5q and MX :“ G X PpW q; by definition we have that X “ MX X Q. To
simplify the notation, given a sheaf F on G, we denote in the same way its pullback to MX or to X
and the pushforward of the pullback of F on G. Actually, by adjuction of pullback and pushforward,
they have isomorphic cohomology groups.

Let us consider the exact sequences

0 Ñ OGp´1q Ñ OG Ñ OMX
Ñ 0

and
0 Ñ OMX

p´2q Ñ OMX
Ñ OX Ñ 0

of sheaves on G and on MX respectively. We denote by U˚MX
the restriction of U˚ to MX . Tensoring

the first sequence by U˚, the second by U˚MX
and applying projection formula on the third element of

the sequences, we get
0 Ñ U˚p´1q Ñ U˚ Ñ U˚MX

Ñ 0 (8.3)

and
0 Ñ U˚MX

p´2q Ñ U˚MX
Ñ U˚X Ñ 0. (8.4)
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In order to prove the claim, by (8.4) it is enough to show that

hipU˚MX
q “ hi`1pU˚MX

p´2qq “ 0 for i ą 0.

Since
hipU˚q “ 0 for i ą 0

and
hipU˚p´1qq “ hipU˚p´2qq “ hipU˚p´3qq “ 0 for every i

(see [33], Proposition 4.8), we deduce from (8.3) the desired vanishing.

As a consequence, we obtain the smoothness of the blow up X̃.

Proposition 8.1.3 ([84], Proposition 2.3). Let X be an ordinary GM fourfold. For a general vector
space V4 Ă V5 such that the non flat point v0 does not belong to PpV4q, we have that X̃ is the blow-up
of X in S. In particular, the map ρ̃ : X̃ Ñ PpV4q defined in (8.1) is a flat conic fibration, where X̃ is
smooth.

Proof. Choosing V4 as in Lemma 8.1.1, we have that the locus S defined by (8.2) is smooth of codi-
mension 2. Notice that σ´1pSq is by definition the projective bundle PSpUXq Ñ S. On the other hand,
the exceptional divisor of the blow-up of X in S is isomorphic to the projectivized conormal bundle
PSpN ˚S|Xq. Since S is the zero locus of a regular section of U˚X , the conormal bundle of S in X is
isomorphic to UX . Hence, we deduce that X̃ is the blow-up of X in S. It follows that X̃ is smooth, as
we claimed.

In conclusion, we have the following commutative diagram

D

p

��

i // X̃

σ

��
π

$$

α // PP3pFq

q

��

S // X PpV4q – P3

(8.5)

where F is a rank three vector bundle over P3. We denote by H (resp. by h) the hyperplane class
of X (resp. of P3) and we use the same notation for their pullback to X̃ and PP3pFq. The rest of
this section is devoted to prove that F is TP3p´hq, i.e. the tangent bundle over P3 twisted by the line
bundle OP3p´hq.

Let P5 “ Pp
Ź2 V4q be the five dimensional projective space containing Grp2, V4q. Then the blow up

of P9 “ Pp
Ź2 V5q in P5 is the projective bundle P̃ :“ PP3pO‘6

P3 ‘OP3p´hqq over P3 “ Pp
Ź2 V5{

Ź2 V4q.
We identify P3 with PpV4q. Indeed, if v1, . . . , v4 is a basis for V4 and we complete it to a basis of
V5 adding v5, then v1 ^ v5, . . . , v4 ^ v5 is a basis for the quotient

Ź2 V5{
Ź2 V4. Then the natural

identification gives the desired isomorphism.
Notice that the blow up of the Grassmannian Grp2, V5q in Grp2, V4q is contained in P̃ and maps

to P3. By the same argument used for X and its blow up in S, it can be described as the projective
bundle PGrp2,V5qpUq. In particular, if v is in V4, then the fiber over v is Ppv ^ V5q and we have the
natural exact sequence of vector spaces

0 Ñ v P V4 Ñ v P V5 Ñ V5{v – v ^ V5 Ñ 0.

This gives the exact sequence
0 Ñ OP3p´hq Ñ O‘5

P3 Ñ E Ñ 0,
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where PP3pEq is the blow up of Grp2, V5q in Grp2, V4q. Writing O‘5
P3 “ O‘4

P3 ‘OP3 , we have that OP3p´hq

maps into O‘4
P3 by definition. Recognizing the Euler sequence from this construction, we deduce that

E “ TP3p´hq ‘OP3 .
Now let us consider the intersection of Grp2, V5q with PpW q “ P8 and its blow up in Grp2, V4q X

PpW q. By the following commutative diagram

BlGrp2,V4qXPpW qpGrp2, V5q X PpW qq //

��

BlPpŹ2 V4qXPpW qpPpW qq

��

BlGrp2,V4qpGrp2, V5qq // BlPpŹ2 V4q
pPp

Ź2 V5qqq

(8.6)

we get
F //

��

O‘5
P3 ‘OP3p´hq

��

TP3p´hq ‘OP3 // O‘6
P3 ‘OP3p´hq

. (8.7)

This implies F “ TP3p´hq, as we wanted. Alternatively, we can consider the sequence

0 Ñ OPpEqp´1q Ñ OPpEq Ñ OPpFq Ñ 0,

since PpFq is a hyperplane section of PpEq. Then applying the push-forward to P3, we get

0 Ñ OP3 Ñ pTP3p´hq ‘OP3q
_ Ñ F_ Ñ 0,

as desired.
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