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Introduction

It is classically known that many geometric properties of a smooth projective scheme Z can be recovered
from the study of its derived category of bounded complexes of coherent sheaves Db(Z ). For example,
a famous result by Bondal and Orlov states that smooth projective varieties with ample (anti)canonical
bundle and equivalent bounded derived categories are isomorphic. The category Db(Z) is in general
a difficult object to directly investigate; however, in some situations, it is possible to divide it into
subcategories which are easier to describe. More precisely, a semiorthogonal decomposition for Db(Z )
is a collection of full admissible subcategories generating the bounded derived category and satisfying
certain orthogonality conditions.

In this thesis, we focus on the case of cubic fourfolds and Gushel-Mukai fourfolds, which are
two classes of smooth Fano varieties of dimension four (defined over the complex numbers). By the
mentioned result of Bondal and Orlov, we know that the isomophism class of such a fourfold is deter-
mined by its derived category. On the other hand, by the work of Kuznetsov for cubic fourfolds, and
Kuznetsov-Perry for Gushel-Mukai fourfolds, there is an admissible subcategory of K3 type arising as
a non trivial component of a semiorthogonal decomposition of their derived categories.

The aim of this work is to investigate certain aspects of the geometry of these fourfolds which are
encoded by their K3 subcategory.

Historical motivations. A cubic fourfold Y is a smooth cubic hypersurface in P°, while a Gushel-
Mukai (GM) fourfold X is a smooth four-dimensional quadric section of a linear section of the cone
over the Grassmannian Gr(2,5). Even if these fourfolds have been deeply studied in the last twenty
years, the problem of understanding their irrationality /rationality remains one of the most challenging
in this area. A folklore conjecture connects the rationality of a cubic fourfold Y to the property of
having a Hodge-associated K3 surface, in the sense of Hassett (see [39]). Similar definitions have been
stated in [27] by Debarre, Iliev and Manivel for a GM fourfold X.

In 2008, Kuznetsov proposed a new categorical approach in order to deal with this question. In
particular, he proved in [57] that the derived category of a cubic fourfold Y has a semiorthogonal
decomposition of the form

DP(Y) = (Ku(Y), Oy, Oy (1), Oy (2)).

Here Oy, Oy (1),0y(2) are line bundles on Y and Ku(Y') is the right orthogonal to this exceptional
collection. It turns out that Ku(Y') is a K3 category, in the sense that it has the same Serre functor
and the same Hochschild homology of that of the derived category of a K3 surface. He conjectured
that Y is rational if and only if Ku(Y") is equivalent to the derived category of a K3 surface.

More recently, Kuznetsov and Perry found a semiorthogonal decomposition for the derived category
of a GM fourfold X, of the form

DP(X) = (Ku(X), Ox, U%, Ox (1), U%(1)).

Again Ku(X) := (Ox,U%, Ox(1),U%(1))" is an admissible K3 subcategory of DP(X) (see [61]).
The noncommutative K3 surfaces Ku(Y') and Ku(X) are known as the Kuznetsov components of
Y and X, respectively. Notice that the known examples of rational cubic fourfolds and GM fourfolds
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are consistent with Kuznetsov’s conjecture, but in general this remains an open problem. A better
understanding of the Kuznetsov component and its relation with the geometry of the fourfold could
be a step toward a possible strategy to address the rationality question.

Cubic fourfolds. The first problem we deal with in this thesis is whether the Kuznetsov component
determines the isomorphism class of a cubic fourfold Y. As expected in relation to what happens in
the case of K3 surfaces, we provide a negative answer to this question. This is the content of [87].

More precisely, a cubic fourfold Y is a Fourier-Mukai partner of Y if there is an exact equivalence
Ku(Y) = Ku(Y”’) which is of Fourier-Mukai type, i.e. such that the composition with the inclusion of
Ku(Y) in D°(Y) and the left adjoint of the inclusion is a Fourier-Mukai functor. In [47], Huybrechts
proved that the number of isomorphism classes of Fourier-Mukai partners of Y is finite; moreover, if
Y is very general (i.e. the rank of H>2(Y,Z) is one), then every Fourier-Mukai partner is isomorphic
to Y.

It is natural to ask whether a special cubic fourfold Y, i.e. such that tk(H*2(Y,Z)) > 2, admits
Fourier-Mukai partners which are not isomorphic to Y. The first result of this work is a counting
formula for the number of isomorphism classes of Fourier-Mukai partners for very general special cubic
fourfolds admitting an associated K3 surface. In particular, we deduce that there exist cubic fourfolds
with discriminant d, admitting an arbitrary number of Fourier-Mukai partners, depending on the
number of distinct odd primes in the prime factorization of d.

Secondly, we obtain a similar formula for very general cubic fourfolds Y of discriminant d admitting
an associated twisted K3 surface (X, ), if 9 does not divide the discriminant d. Indeed, we find a lower
bound for the number of Fourier-Mukai partners of Y, which is controlled by the number of distinct
primes in the prime factorization of d/2 divided by the square of the order of the Brauer class o and
by the Euler function evaluated in ord(a).

These results complete the expected analogy between cubic fourfolds and K3 surfaces, stated in
[47]. They also represent a first step in order to understand whether cubic fourfolds with equivalent
Kuznetsov components are birational.

The second problem we discuss is the study of moduli spaces of rational curves of low degree
on a cubic fourfold Y. In particular, we give a description of the Fano variety of lines and of the
hyperkahler eightfold associated to twisted cubic curves in Y as moduli spaces of Bridgeland stable
objects in Ku(Y'). This is the content of [65], which is a joint work with Chunyi Li and Xiaolei Zhao.

The general feeling is that, in order to have a better understanding of the category Ku(Y') and its
relation with the geometry of the cubic fourfold, we should know more about moduli spaces parametriz-
ing stable objects in the Kuznetsov component. This is now possible by one of the main results of |7],
where they construct Bridgeland stability conditions for Ku(Y"). Since Ku(Y') is a K3 category, these
moduli spaces come naturally equipped with a holomorphic nondegenerate two-form; thus, they are
good candidates to provide examples of complete families of hyperkahler manifolds.

On the other hand, there are two well-known hyperkéhler varieties naturally associated to Y. In
1982 Beauville and Donagi proved that the Fano variety parametrizing lines in Y is a smooth irreducible
homolorphic symplectic variety of dimension four, deformation equivalent to the Hilbert square on a K3
surface. More recently, Lehn, Lehn, Sorger and van Straten constructed a smooth hyperkéahler eightfold
My of K3[4]—type, from the irreducible component of the Hilbert scheme parametrizing twisted cubic
curves in Y.

Our strategy is to consider the projection in Ku(Y') of a certain twist of the ideal sheaf of a line
and of a twisted cubic curve in Y, and to prove that it is stable with respect to the Bridgeland stability
conditions constructed in [7]. In the case of twisted cubic curves, this approach simplifies a lot the
description of the construction of LLSvS eightfold, because, involving only homological computations,
it does not require a detailed analysis of the singularities of the cubic surface containing the curve. For
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example, we interpret the contraction of the divisor of non CM twisted curves, performed in order to
get My, via wall-crossing in stability. As a consequence, we get that all birational models of My are
obtained by crossing a wall in Bridgeland stability.

As an application of these results, we give an alternative proof of the categorical Torelli Theorem
for cubic fourfolds and we obtain the identification of the period point of LLSvS eightfold with that of
the Fano variety. Finally, we suggest a possible stategy to treat the derived Torelli Theorem for cubic
fourfolds and we prove it in a simple case.

Gushel-Mukai fourfolds. In the second part of this thesis, we study the formulation of some results
proved in [4], [2] and [47] for cubic fourfolds, in the case of GM fourfolds. In particular, we discuss
the conditions under which the double cover Y4 of the EPW sextic hypersurface associated to a GM
fourfold X is birationally equivalent to a moduli space of (twisted) stable sheaves on a K3 surface.
Then, we characterize when Yy is birational to the Hilbert square on a K3 surface. This is the content
of [88].

As already observed, cubic fourfolds and GM fourfolds share a lot of similarities from the Hodge
theoretical and the derived categorical point of view. The interest in understanding these analogies has
increased after the recent work [29], where Debarre and Kuznetsov prove that the period point of X is
identified to that of a double EPW sextic Yy, which is a hyperkéhler fourfold deformation equivalent
to the Hilbert square on a K3 surface constructed from X. This is analogous to Beauville and Donagi’s
result for the Fano variety of a cubic fourfold.

In order to study Ya, we define the Mukai lattice K (Ku(X))iop for Ku(X), as done by Addington
and Thomas in [4] for the Kuznetsov component of a cubic fourfold. In particular, we find two classes
in K (Ku(X))top such that the orthogonal complement to the lattice they generate is Hodge isometric
to the degree four vanishing cohomology of X. As a first consequence, we prove that X has a twisted
associated K3 surface if and only if the discriminant of the GM fourfold satisfies a certain numerical
condition (this was done in [47] for cubic fourfolds).

Using 2|, we prove that the property of having Y4 birational to the Hilbert square on a K3 surface
is a divisorial condition; however, this is not true if we require that Y is birational to a moduli space
of stable sheaves on a K3 surface. In particular, we construct examples of GM fourfolds having a
hyperbolic plane embedded in the algebraic part of K (Ku(X))iop, but without a Hodge-associated K3
surface. This shows a different behavior with respect to the case of cubic fourfolds.

As a byproduct, we get that if a very general GM fourfold has the Kuznetsov component equivalent
to the derived category of a K3 surface, then it has a Hodge-associated K3 surface. In contrast to what
proved in [4] for cubic fourfolds, it is not guaranteed whether this holds for every GM fourfold.

In the last part of this work, we describe a conic fibration associated to an ordinary GM fourfold.
This construction has been used in the work [84] joint with Mattia Ornaghi, to prove Voevodsky’s
conjecture for general GM fourfolds. In a joint work in progress with Alex Perry and Xiaolei Zhao, we
are trying to use this geometric picture in order to induce Bridgeland stability conditions on Ku(X), in
the same spirit of |7]. This technique would allow to study moduli spaces of stable objects in Ku(X),
as in the case of cubic fourfolds, leading to many interesting applications.
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Chapter 0

(General preliminaries

In this chapter we introduce the basic material in order to understand Part I and Part II of this
thesis. In particular, we discuss semiorthogonal decompositions of derived categories, lattice theory,
hyperkahler varieties and stability conditions.

0.1 Categorical setting in the geometric context

In this section, we firstly recall the abstract notions of abelian category, triangulated category, derived
category of an abelian category and derived functor. Then, passing to the geometric setting, we deal
with the bounded derived category of a smooth projective scheme and the notion of semiorthogonal
decomposition. Finally, we provide some known examples of semiorthogonal decompositions, dealing
with the case of cubic fourfolds and GM fourfolds, which are required in the next chapters. Our main
reference for the first three sections is [44], while we follow [59] for the last two sections.

0.1.1 Triangulated categories

The aim of this part is to encode the framework in which we work from the categorical point of view.
Since we will consider smooth projective schemes over a field k, our categories will be k-linear. Let us
firstly recall this notion.

Definition 0.1.1. A category A is additive if for every couple of objects A, B € A the set Hom 4(A, B)
is endowed with the structure of an abelian group and the following conditions hold:

1. The compositions Hom 4(A1, A2) x Hom 4 (A2, A3) — Hom (A1, As) sending (f,g) to go f are
bilinear.

2. There exists a zero object 0 € A.

3. For any two objects Ay, As € A there exists an object B € A with morphisms j; : A; — B and
p; : B — A; for i = 1,2, which make B the direct sum and the direct product of A; and As.

A functor F : A — A’ between additive categories is additive if the induced maps
Hom (A, B) — Hom ¢ (F(A), F(B))
are group homomorphisms.

Definition 0.1.2. A k-linear category is an additive category A such that the groups Hom 4 (A, B)
are k-vector spaces and all compositions are k-bilinear.

An additive functor F' between k-linear categories is k-linear if for every pair of objects A and B in
A the natural map Hom4(A, B) — Hom 4 (F(A), F(B)) is k-linear.
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We also recall the definition of a functor which takes a key role in the geometric context.

Definition 0.1.3. Let A be a k-linear category. A Serre functor is a k-linear equivalence S4 : A — A
such that for every pair of objects A and B in A there is a functorial isomorphism of k-vector spaces

Hom4(A, B) =~ Homu(B,S4(A))".
We end this section explaining the notions of abelian categories and triangulated categories.

Definition 0.1.4. An abelian category is an additive category such that every morphism admits
kernel and cokernel, and the natural map between coimage and image is an isomorphism.

Example 0.1.5. In the geometric context, there are three abelian categories naturally associated to
a scheme X over k: the category Ox-Mod of Ox-modules, the category QCoh(X) of quasi-coherent
sheaves, and the category Coh(X) of coherent sheaves on X. We recall that they are related by the
following inclusions:

Ox-Mod 2 QCoh(X) o Coh(X).

Definition 0.1.6. Let 7 be an additive category. The structure of triangulated category for T is
the data of an additive autoequivalence [1] : T — T called shift functor, and a set of sequences of the
form

A—B—C— Al

called distinguished triangles, satisfying the following axioms.

TR1I e A% A0 A[1] is a distinguished triangle.
e Any triangle isomorphic to a distinguished triangle is distinguished.

e Any morphism f: A — B sits inside a distinguished triangle A - B — C' — A[1].
TR2 A triangle A > B — C' — A[1] is distinguished if and only if B — C — A[1] — B[1] is.
TR3 Suppose we have a commutative diagram of distinguished triangles
Ay By Cy Aq[1]

RN

AQ Bg 02 Ag[l].

Then there is a (non-unique) morphism h : C; — Co completing the diagram.

TR4 Given two morphisms f: A — B and g : B — C, there is a distinguished triangle D; — D3 —
Dy — Dq[1], where Dy, Do and D3 are given by A ERy ;N Dy — A[1], B4 C — Dy — BJ[1]

and A 2L 0 - D3 — A[1], which sits in the following commutative diagram

f

A B Dy A[1]
bl
A C Ds A[1]
oLl
B C Dy B[1].
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A functor between triangulated categories is exact if it commutes with the shift functors and it respects
distinguished triangles.

We point out that the left (resp. right) adjoint of an exact functor is exact (see [44], Proposition
1.41).

Definition 0.1.7. A subcategory 7’ of a triangulated category 7T is a triangulated subcategory of
T if T' has a structure of triangulated category such that the (faithful) inclusion functor i : 7' < T
is exact.

A triangulated subcategory 7 is full if 7 is a full functor. We say that a full triangulated sub-
category T is left admissible (resp. right admissible) if i has a left (resp. right) adjoint functor
i* . T — T’ (vesp. i' : T — T'). Moreover, T’ is admissible if it is left and right admissible.

In the next section, we will describe two important examples of triangulated categories: the homo-
topy category and the derived category of an abelian category.

0.1.2 Derived categories

Given an abelian category A, we can associate two triangulated categories to the category of complexes
of objects in A in the following way. We recall that a complex in A is the data of a sequence
A® e AL AT g A i1 AT

where A’ is an object of A and d’ is a morphism in A such that d**! od’ = 0 for every i € Z. Moreover,
a morphism f between two complexes A® and B*® is the data of a collection of morphisms f?: A* — B°
for i € Z such that ™! od, = di o f'. We denote by C(A) the category of complexes in A, whose
objects are complexes in A and whose morphisms are morphisms of complexes. We recall that the
cohomology of a complex A® in A is

B ker diA

= — €A
Imd’y

HY(A®):

and given f in Homg4)(A®, B*) we have an induced map H'(f) : H'(A*) — H'(B*) for every i € Z.

Definition 0.1.8. Two morphisms f and g in C(A) are homotopy equivalent if there is a collection
of morphisms h* : A* — B! such that f* — ¢* = hitlo dy + d%_l o h'. In this case, we write f ~ g.
We denote by K(.A) the homotopy category of C(.A) whose objects are complexes in A and whose
set of morphisms for every pair A®, B® in K(A) is given by

Homy (4)(A®, B*) = Homg4) (A%, B®)/ ~ .

Definition 0.1.9. A morphism f : A* — B*® in C(A) is a quasi-isomorphism if H(f) is an
isomorphism for every ¢ € Z.

Notice that if f is homotopy equivalent to g, then H'(f) = H'(g) for every index i. Thus, the
condition of being a quasi-isomorphism is well-defined in K(.A).

Definition 0.1.10. Given an abelian category A, the derived category D(.A) is the category whose
objects are complexes in A and whose sets of morphisms Homp4)(A*, B®) are formed by equivalence
classes of diagrams of the form



where C* — A°® is a quasi-isomorphism. Two such diagrams are equivalent if there exists a commutative
diagram in K(A) of the form

Given two morphisms

1

cy and Cs
qy \ QV \
A. B. B. C.

in D(A), the composition is defined by the equivalence class of a commutative diagram

s
qy \
ay ay
qy \ qy \
A B* C*

in K(A). In [44], Proposition 2.17 and Corollary 2.18, it is proved that this diagram exists and it is
unique up to equivalence (the proof relies on the definition of the cone of a morphism which is explained
below).

The idea behind the definition is that quasi-isomorphisms are isomorphisms in the derived category.
More precisely, the derived category of A is obtained by localization of K(A) with respect to the class
of quasi-isomorphisms (see [34] for a precise definition). In particular, we have a natural functor
Qa : K(A) — D(A).

The homotopy category and the derived category of A carry a triangulated structure. In particular,
the shift functor is the equivalence which acts on complexes by shifting by one the degree, i.e. given
a complex A® in A, then A°*[1] is the complex with A[1]* := A""! and dfél[l] = d'{'. In order to
define distiguished triangles, we need to introduce the mapping cone construction. Given a morphism
f: A®* — B*, the mapping cone of f is the complex C(f)* defined by C(f)! := A" @ B? and

g (—dit 0
c(f)s — _fi+1 dz'B :
Notice that A®, B® and C(f)* sit in the sequence
AL o)t - A,

where the second map is the inclusion B? < A**1@ B* and the third map is the projection A**'@B? —
A1 The set of isomorphism classes of sequences of this form defines the set of distinguished triangles.
Moreover, the localization functor @ 4 is exact. We refer to [34], Chapter IV.2 for the proof.

We point out that we can consider the categories C*(A), C™(A) and CP(A) defined respectively
as the categories of bounded below complexes, bounded above complexes and bounded complexes. We
can then construct the homotopy categories K*(A), K~(A), KP(A) and the derived categories D (A),
D~ (A) and DP(A) with the same procedure used before.
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Remark 0.1.11. Notice that there is a fully faithful functor i : A < DP(A) sending an object A € A
to the bounded complex - -+ — 0 — A — 0 — ..., where the only non zero factor is A sitted in degree
0.

Definition 0.1.12. (Example) Let X be a noetherian scheme over k. Then the derived category
of X is the derived category of boundend complexes of coherent sheaves DP(X) := DP(Coh(X))
constructed from the abelian category Coh(X).

Remark 0.1.13. As seen in Example 0.1.5, we have other abelian categories associated to X. In
particular, we can consider also the derived categories D?(QCoh(X)) and DP(Ox-Mod). If X is a
noetherian scheme, we have that DP(QCoh(X)) is identified with the full triangulated subcategory of
DP(Ox-Mod) of bounded complexes with coherent cohomology (see [44], Proposition 3.3). Moreover,
the derived category DP(Coh(X)) is equivalent via the natural inclusion in D®(QCoh(X)) to the full
triaungulated subcategory of bounded complexes of quasi-coherent sheaves with coherent cohomology
(see [44], Proposition 3.5).

0.1.3 Derived functors

We are now interested to study functors between abelian categories which induce a functor between
the derived categories. It is not difficult to check that an exact functor between abelian categories
defines a functor between the associated derived categories which preserves the triangulated structure.
However, there are many non exact functors which are interesting in the geometrical setting, for
example pullback, pushforward, tensor product and many others. In any case, there is a general
construction which allows to associate an exact functor between the derived categories under weaker
hypotheses than exactness. A functor obtained in this way is a derived functor. Firstly, we need to
assume that the additive functor F': A — B is left or right exact. In particular, if F' is left exact (resp.
right exact), we will obtain the right derived functor RF : D*(A) — D™ (B) (resp. the left derived
functor LF : D™ (A) — D™ (B)).

Let us recall the construction of RF' in the case that F' is left exact. Assume that the category
A has enough injectives. Explicitely, this means that for every object A € A there is an injective
morphism A — I, where [ is injective. Notice that if A has enough injective objects, then every A € A
has an injective resolution, i.e. an exact sequence of the form

0>A—->T1" =71l - ..

)

where I' is an injective object in A for every index i. We denote by Z the full additive subcategory of
A of injective objects. The key result for the construction of derived functor is the following property.

Proposition 0.1.14 ([44], Proposition 2.40). Let A be an abelian category with enough injectives.
Then the exact functor i : KT (Z) — D (A) given by the composition of the functor induced by the
natural inclusion T < A with the localization functor K*(A) — D*(A) is an equivalence.

We are now ready to define the right derived functor RF.
Definition 0.1.15. The right derived functor of F': A — B is given by the composition
RF :=QpoKFoi!:D"(A4) - D™ (B).

Here KF : KT (A) — K (B) is the (well-defined) natural functor sending a complex --- — A1 —
At — AL in KT(A) to -+ — F(A™Y) - F(A4Y) — F(A") — ... and a morphism
{fi: A" - B} in KT(A) to {Ff': F(A") — F(B%)}.

In the following, we will often write F' instead of RF or LF' to denote the derived functor between
the derived categories to simplify the notation.
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Remark 0.1.16. Assume that A is an abelian category with enough injective objects. Then for every
A,Be A— DP(A), we have
Homyys ) (A, B[k]) = Exty(A, B)

(see [44], Proposition 2.56). This property is very useful in order to compute Hom groups.

In the geometric setting, an important class of functors between the derived categories of smooth
projective varieties is given by Fourier-Mukai functors.

Definition 0.1.17. An exact functor F : DP(X) — DP(X’) is of Fourier-Mukai type if there exists
an object K in the derived category Db(X x X') of the product and an isomorphism of exact functors

F(=) = ®(~) = Rpyra (K & Ly (),

where py : X x X’ — X and pxs : X x X’ — X’ are the natural projections. The object K is called
Fourier-Mukai kernel.

By definition, a Fourier-Mukai functor ® g is exact and it is possible to check that the composition
of Fourier-Mukai functors is again of Fourier-Mukai type (see [44], Proposition 5.10).

Remark 0.1.18. A famous result by Orlov states that every fully and faithful exact functor between
the derived category of two smooth projective varieties is of Fourier-Mukai type and the kernel is unique
up to isomorphism (see [44], Theorem 5.14). However, in [90], they construct an example of an exact
functor between the derived categories of two smooth projective schemes which is not of Fourier-Mukai
type, relaxing the hypothesis of fully faithfulness. For a complete survey about related questions, we
recommend |[22].

Example 0.1.19. Let X be a smooth projective variety with canonical sheaf wx. By Serre duality
for coherent sheaves, it follows that the exact autoequivalence of Db(X ) defined by

Sx(=) = (=) @wx[dim(X)],

is a Serre functor for DP(X). Notice also that S is a Fourier-Mukai functor with kernel (A y )swx [dim(X)],
where Ax : X — X x X denotes the diagonal embedding. Indeed, for every F in Db(X ), by projection
formula we have that

DA ) gy [dim(x)] (E) = P2« (pTE ® (Ax)swx[dim(X)])
= p2x(Ax)«((Ax)*PI E ®@wx))[dim(X)]
= (p2 0 (Ax))«((p1 0 (Ax))*E @ wx)[dim(X)] = F ® wx [dim(X)],

where for the last identification we have used that p; o (Ax) = id.

0.1.4 Semiorthogonal decompositions of D"(X)

The derived category Db(X ) of a smooth projective scheme X over a field k is in general difficult to
describe. The following definition provides a tool in order to decompose DP(X) into “easier” subcate-
gories.

Definition 0.1.20. A semiorthogonal decomposition of D?(X) is the data of a sequence 71, ..., Ty
of full triangulated subcategories of DP (X) satisfying the folllowing conditions:

1. Home(X)(Ai,Aj) =0 for every A; € T4, AjeTjandn>1>j > 0;

16



2. For any non trivial object E in DP (X), there is a chain of morphisms

0=E, B, IV E, o B ISE-F

such that the cone C(f;) is in T, for every 1 <i < n.
We use the notation DP(X) = (T1,...,T,) for such a semiorthogonal decomposition.

Notice that the semiorthogonality condition of item 1 implies that the filtration of item 2 is unique
up to isomorphism. The second requirement means that Db(X ) is generated by the subcategories

7-17'-')7-71~

Remark 0.1.21. 1) If D’(X) = (A, B), then A is left admissible and B is right admissible. In-
deed, notice that by Definition 0.1.20, for every C' € DP(X), there is a unique (up to isomorphism)
distinguished triangle

Cp — C — Cy — Cpl1] (1)

with Cz € B and C4 € A. Furthermore, let f : C' — C” be a morphism in D(X) and consider the
triangle
Cp— C' — Cy — Cp[1]. (2)

Applying Hompp X)(CB, —) to (2) and using the semiorthogonality condition, we get
Home(X) (CB, C,) = Home(X) (CB, Cl/g)
Thus, there is a morphism fg sitting in the commutative diagram

Cp——C—Cy
!
| /B !
<
Cy——C'—— ().
The uniqueness of the filtration allows to define a functor ij : D’(X) — B such that is(C) = Cp
and iz(f) = fs. We prove that iy is right adjoint to the inclusion iz : B — DP(X). Indeed, for
every B € B, applying Homyyp X)(iB(B), —) to (1) and using the semiorthogonality condition, we get
Hompy v (i5(B), C) = Hompp (ip(B), C) = Homp(B, Cp). This proves that B is right admissible.
Analogously, we deduce the left admissibility of A.
2) Since DP(X) has Serre functor, we have also the semiorthogonal decompositions

DP(X) = (Sx(B), A) = (B, 55" (A)).
In particular, by item 1), it follows that A and B are admissible subcategories.

It may happen that some factors of a semiorthogonal decomposition are subcategories generated
by a single object. This special situation is explained by the following definition.

Definition 0.1.22. An exceptional object is an element E € DP(X) such that

k iftl=0

0 otherwise.

An exceptional collection is a sequence Fy, ... E, of exceptional objects such that
Home(X)(Ei,Ej[l]) =0if ¢ > j and for all [.

An exceptional collection FE1, ..., E, is full if any full triangulated subcategory containing F1, ..., Ey,
is equivalent to DP(X).
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Given an exceptional object F, we denote by (E) the full triangulated subcategory of DP(X),
whose objects are elements of the form @E[i]%®i. Notice that we can identify the subcategory (E)
with the derived category of k-vector spaces. More precisely, the functor i : D?(k) — DP(X), defined
over objects by i(V*) = V* ®; E and in the natural way over morphisms, is full and faithful.

We claim that the subcategory (F) is admissible. Indeed, an easy computation shows that the
functors i*,4' : DP(X) — DP(k) defined over objects by

|

i*(F) = Hompy y(F, E)” and i'(F) = Hompp x)(E, F)

are, respectively, left and right adjoint to .
We consider the left and right orthogonal categories

Et .= {FeDP(X): Hompy vy (E, F[I]) = 0 for every I}

and
LE = {FeD"X): Home(X)(F,E[l]) = 0 for every l}.

Then there are semiorthogonal decompositions of the form
DP(X) = (BL, E) and  DV(X) = (B, “E),

where FE stands for the subcategory (E). Let us verify this claim for the first decomposition (the proof
in the other case is analogous). It is enough to verify the second condition of Definition 0.1.20, since
the first one holds by definition. Let F be in DP(X) and we set G := i'(F) € (E). Recall that by
adjunction we have

Hompy (G, G) = Hompy (G, F).

Thus the identity morphism in Hom gy (G, G) corresponds to a morphism G — F. We denote by G’
the cone of this morphism and we consider the exact triangle

G—F -G —G[1].

Now notice that
Hompp (B, F) = H0m<E>(E,i!(F)) =~ Hompp (v (E, G).

Thus, applying the functor Homp (X) (E, —) to the above triangle, we deduce that Homp ( X)(E ,G') =

0. We conclude that G’ is an object in (E)* as desired.
The argument above generalizes to any exceptional collection. In particular, we have the following
well-known fact.

Proposition 0.1.23. If E4, ..., E, is an exceptional collection in Db(X), then there are semiorthog-
onal decompositions of the form

DP(X)={(C,F\,...,E,) and DP(X)={(E,...,E,, D)
where C :={(Ey,...,E,))* =Bt n---nEX and D:=Fy,...,E,)="Eyn---n1E,.
Remark 0.1.24. We point out that C and D are admissible subcategories by Remark 0.1.21.

Notice that semiorthogonal decompositions are not unique, as seen for example in item 2 of Remark
0.1.21. In fact, given an exceptional object E € Db(X ), we define the left and right mutation
functors Lg, Rg : DP(X) — DP(X) by

Lg(G) = cone(®, Hompyb ) (E, Gp))[-p]® E — G)
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and

Rp(G) = cone(G — @, Hompp ) (G, E[p])[-p]” @ E)[-1].
Thus, if we have a semiorthogonal decomposition of the form
D*(X) =T, o, Tes By Tt -+ T

then we also have

DP(X) =(Ti,.. ., T, LE(Tis1), E, Trsos -, Ty and - DP(X) = (T1, .., Toet, B, RE(Th)s Tosts - - - Ton)-

0.1.5 Examples of semiorthogonal decompositions

Interesting examples of semiorthogonal decompositions come from Fano varieties, as we recall in the
following.

Example 0.1.25 (Projective space). The n-dimensional projective space P" over a field k admits a
semiorthogonal decomposition of the form

DP(P") = (O(a), O(1 +a),...,0(n + a))
for every a € Z. Indeed, by Remark 0.1.16, we have that

0 ifi>jleZ ori=jleZ—{0}

Hompyp ) (O(i), O()[1]) = Ext!(O(i), 0(5)) = H'(P", 0(j—i)) = {k if i = j,1=0.

This proves that the sequence of line bundles we considered forms an exceptional collection. The fact
that these objects generate Db(]P’") is a consequence of the Beilinson spectral sequence, as explained
in [44], Corollary 8.29.

Example 0.1.26 (Quadric hypersurfaces). Assume that k is a field with char(k) # 2. Let @ be a
quadric hypersurface in P"*!. By [53], Section 4, there is a semiorthogonal decomposition of the form

Db(Q) _ {<2—(_”)7 Y4 (=n)Og(—n +1),. .,(?Q> if n is even
(E(=n),0q¢(—n +1),...,0q) if nis odd.

Here X ,>_, ¥ are spinor bundles, which are vector bundles over @) constructed from the associated
Clifford algebra (see also [1]).

Example 0.1.27 (Projective hypersurfaces). Let Y be a smooth complex hypersurface of degree d in
P! such that d < n + 2. By adjunction formula, we have that wy = Oy (d —n — 2). Then there is a
semiorthogonal decomposition

Db<Y) = <K11(Y)7 OY7 OY(1)7 ceey OY(n —d+ 1)>7
where Oy (i) is the restriction of the line bundle O(i) on P! and
Ku(Y) := (Oy,0y(1),...,0y(n+1—d))*

is known as the Kuznetsov component of Y. Indeed, forn+1—-d>i> j >0, wehave 0 <i—j <
n+2—d Weset h:=n+2—d—(i—j) > 0; by Kodaira vanishing Theorem, for [ # 0 we have that

Hompyp y (Oy (i), Oy (§)[1]) = Ext!(Oy (i), Oy (j)) = H'(Y, Oy (j — i)) = H'(Y, Oy (h) @wy) = 0.
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Since Oy (1) is an ample line bundle on Y, we deduce that H°(Y, Oy (j — 1)) = 0; using the sequence
0> 0(—=d) >0 -0y —0

we get
C iftl=0

0 otherwise

Homyys -y (Oy (1), Oy (0)[1]) = {

Thus {Oy, Oy (1),...,0y(n —d+ 1)} is an exceptional collection. By Proposition 0.1.23, we deduce
the desired semiorthogonal decomposition. As seen in the previous example, if d = 2, there is an
explicit description of Ku(Y') in terms of the spinor bundles. For a more intrinsic discussion working
over an algebraic closed field k of char(k) # 2,3, we suggest [69], Section 3.1.

Example 0.1.28 (Prime Fano varieties). The examples considered above belong to the class of prime
Fano varieties. We recall that a prime Fano variety X is a smooth complex projective variety with ample
anticanonical bundle and Picard number one. The index of X is the integer r such that wx = Ox(—r),
where Ox (1) is an ample line bundle. By the same argument explained in the case of projective
hypersurfaces, it is possible to prove that there is a semiorthogonal decomposition of the form

DP(X) = (Ku(X),0x,...,0x(r — 1)),

where Ku(X) := (Ox,...,Ox(r — 1))*. The three examples above are prime Fano varieties of index
n+ 1, n and n + 2 — d respectively.

Example 0.1.29 (Grassmannians). Assume that k is a field of characteristic zero. Let Gr(k,n) be the
Grassmannian of k-dimensional subvector spaces in a n-dimensional k-vector space. It is known that
Gr(k,n) provides an other example of prime Fano variety with waykn) = Ocr(rn)(—n). However, it
is proved in [53| that there is an other full exceptional collection involving the tautological subbundle
U on Gr(k,n). More precisely, there is a semiorthogonal decomposition of the form

D”(Gr(k,n)) = (S°U Yaevyn i

where Y}, ,,—1 is the set of Young diagrams inscribed in a k x (n — k)-rectangle and X is the Schur
functor associated to the Young diagram a. We point out that in [33], examples of minimal Lefschetz
decompositions for Db(Gr(k,n)), which are semiorthogonal decompositions of a particular form, are
provided.

Example 0.1.30 (GM varieties). Gushel-Mukai varieties are an interesting class of prime Fano va-
rieties obtained as quadric sections of linear sections of the cone over Grassmannian Gr(2,5) (see
Definition 0.1.20). In [61], using the result recalled in Example 0.1.29, they prove that a Gushel-Mukai
variety of dimension 3 < n < 6 has a semiorthogonal decomposition of the form

DP(X) = (Ku(X),Ox,Ux,...,Ox(n —3),Us(n — 3)),

where Ux is the pullback of the tautological bundle over the Grassmannian via the projection X —
Gr(2,5) from the vertex of the cone. In this case, we refer to Ku(X) as the Kuznetsov component
of X. We will give more details on this example in the second part of this thesis.

Finally, we consider the more general situations of the blow-up of a smooth projective subvariety
and of a flat quadric fibration, respectively, recalling the semiorthogonal decompositions arising in this
context.
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Example 0.1.31 (Blow-up). Let X be a smooth projective scheme and let Y be a locally complete
intersection subscheme of X of codimension r > 2. We denote by X := Bly(X) % X the blow up of
X inY. Let i : E < X be the exceptional divisor. A classical result by Orlov (see [82]) states that
there is a semiorthogonal decomposition of the form

DP(X) = (@01 (D(Y)),- -, Pop(-1) (D (Y)), 0*(D*(X)))-

Here Op(E) = Og/y(—1) is the Grothendieck line bundle on the projectivization E = P(Ny x), and
for every k € Z, the Fourier-Mukai functor @, (1) : DP(Y) — DP(X) defined by

ok (=) = ix((0]e)* (=) @ Opy (k)
is fully faithful.

Example 0.1.32 (Quadric fibrations). In [55], Kuznetsov constructed a semiorthogonal decomposition
for the derived category of a flat quadric fibration, which we recall in the following.

Given a smooth algebraic variety S, let F be a rank n vector bundle on S. We denote by 7 :
Ps(F) — S the projectivization of F in S and let Opy(z)(1) be the Grothendieck line bundle on
it. Notice that HY(S, S®2F @ L*) =~ H(Ps(F), Opyr)(2) ® L*), where L is a line bundle on S. We
denote by X < Pg(F) the zero locus of a non trivial section o of Opy(#)(2) ® L*. Then the restriction
p: X — S of 7 defines a flat quadric fibration, whose fibers have dimension n — 2.

As every quadratic form carries a natural Clifford algebra, we consider the sheaf of Clifford algebras
associated to the quadric fibration p and let By be its even part. We denote by Coh(S, Bp) the abelian
category of coherent sheaves with the structure of By-modules over S and we set

D®(S, By) := D"(Coh(S, By)).

Then by [55], Theorem 4.2, there is a fullly faithful functor ® : D®(S, By) — DP(X) and a semiorthog-
onal decomposition of the form

DP(X) = (®(D(S, By)), p* D(S) ® Ox/s(1),- .., p* D*(S) ® Ox5(n — 2)).

We do not recall the precise definition of ® as it is not important for the following, but in Chapter 4
we will describe its left adjoint in the particular case of the conic fibration obtained by projecting from
a line in a cubic fourfold.

0.2 Basics on lattice theory

The aim of this section is to give a summary of some well-known definitions and properties involving
lattices, and to fix the notation we will use in the following. Our main reference is |76].

Definition 0.2.1. A lattice is a free abelian group L of finite rank with a nondegenerate symmetric
bilinear form (, ) : L x L — Z.

Let us recall some terminology related to a lattice (L, (, )).

e An isometry of L is an automorphism of L preserving (, ). We denote by O(L) the group of
isometries of L.

e We say that a lattice L is even if (,[) is even for every [ € L, and L is odd otherwise.

e We consider the matrix representing the bilinear form (, ) in a fixed basis for L. The discrim-
inant of L is the determinant of this matrix and we denote it by discr(L). We say that L is
unimodular if discr(L) = +1.
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e A lattice L is positive definite (resp. negative definite) is 2 := (I,1) > 0 (resp. < 0) for every
non zero [ € L. Otherwise, we say that L is indefinite.

e The dual of a lattice L is LY := Homy(L,Z) ~{I'e LRQQ: (I',l) € Z for every | € L}. Notice
that there is a natural inclusion of L in its dual sending [ € L to (I,—) € LY, and the bilinear
form (, ) extends to a symmetric bilinear form over L with values in Q. Given a basis I, ...,
for L, the dual basis {y,...,l) of LY such that [’ (l;) = d;; is a Z-basis for L. In particular,
the dual of a lattice is a lattice.

e The discriminant group of L is the finite group d(L) := LY /L. The bilinear form on LY
induces a symmetric bilinear form on d(L) and we denote by ¢z, : d(L) — Q /Z the associated
quadratic form. The form ¢y, is known as the discriminant form.

Notice that if L is even, then ¢, takes values in Q/2Z. Finally, we observe that the order of
d(L) is equal to |discr(L)|. Indeed, assume that these lattices have rank r, fix a basis for L and
its dual on LY. We denote by A the representative matrix of the inclusion j : L < LY in these
bases. By definition, we have that discr(L) = det A. Passing to the Smith normal form, we write
A = PDQ, where P and @) are invertible matrices with entries in Z, and D is diagonal with
entries A1,..., A\, € Z such that \; | A;41 for 1 < i < r. Then the image of j is generated by
vectors \;v; where the v;’s form a basis for LY. It follows that LY /L ~ Z/MZ x -+ x Z/\Z,
whose order is equal to |det A|, as we wanted. We denote by I(d(L)) the minimal number of
generators of d(L).

e The genus of L is the set G(L) of all isometry classes of lattices L’ with the same signature of
L and d(L') = d(L).

e Let O(d(L)) be the group of automorphisms of d(L) preserving qr,. Using the inclusion L — LY,
we obtain a homomorphism 77, : O(L) — O(d(L)). We use the notation f := rp(f) for f € O(L).

Example 0.2.2. (1) The hyperbolic lattice, denoted by U, is the free group Z®? with the bilinear

1
form represented by the matrix <§) 0> . It is an even unimodular lattice of signature (1,1).

(2) We denote by Eg the unique even, unimodular lattice of signature (8,0). More explicitely, Eg is
the abelian group Z®® with the bilinear form represented by the matrix

2 -1. 0o 0 0 0 0 O
-1 2 -1 0 0 0 0 O
o -1 2 -1 -1 0 0 O
o 0 -1 2 0 0 0 O
o o0 -1 0 2 -1 0 O
o o0 o0 o0 -1 2 -1 0
o o o0 o0 o -1 2 -1
o o0 o0 o0 o 0 -1 2

(3) Given a lattice (L, (, )) and a non-zero integer m, we denote by L(m) the lattice (L, m(, )).

(4) We set I, s := I] @ I;(—1)°, where I; is the lattice Z with bilinear form (1).

-1
(5) We denote by Ay the free group Z®? with the bilinear form represented by the matrix (21 5 > .
It is an even lattice of discriminant 3 and signature (2,0). The lattice Az has a key role in the definition

of the Mukai lattice of a cubic fourfold as recalled in Part I of this thesis.
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The first four examples we recalled above actually describe all possible lattices in the unimodular
case, as explained in the following result.

Theorem 0.2.3 ([72], Theorem 1.3). Let L be an indefinite unimodular lattice. If L is odd, then
L = I, for some m and n. If L is even, then L =~ U®™ @ Eg(£1)®" for some m and n. In
particular, the signature and the parity of L determine the lattice up to isometry.

Example 0.2.4. In the geometric context, unimodular lattices arise in the studying of torsion free
higher degree cohomology groups of Kéhler varieties.

For example, let Y be a cubic fourfold, i.e. a smooth hypersurface of degree three in ]P’(%. We recall
that the degree four integral cohomology group L := H*(Y,Z) is a torsion free abelian group; the
intersection form (, ) on L is a symmetric nondegenerate bilinear form, whose signature is determined
by the Riemann bilinear relations. Moreover, by Poincaré duality we have an isomorphism of L with
its dual. We conclude that (L, (,)) is a unimodular lattice of signature (21,2). We denote by H? the
class in L of a cubic surface. Since (H?, H?) = H* = deg(Y) = 3, we deduce that L is an odd lattice.
By Theorem 0.2.3, we conclude that L =~ I3 » as a lattice.

Relaxing the unimodularity condition, we have the following classification result for even lattices.

Theorem 0.2.5 (|76], Corollary 1.14.2). Let L be an even indefinite lattice satisfying rk(L) = I(d(L))+
2. Then the genus of L contains only one class and the map rr, : O(L) — O(d(L)) is surjective.

We are now interested in studying embeddings of even lattices. Firstly, we deal with non primitive
embeddings; then, we state some results for primitive sublattices of unimodular lattices which will be
useful in the next.

An overlattice of a given lattice L is the data of a lattice L' and an embedding L < L’ such that
L'/L is a finite abelian group. We denote by Hj, this quotient. Since L — L' < L'V — LV we have
that Hp, < L'V /L < d(L). In particular, we point out that

disc(L) = i*discr(L’),

where i := [L' : L] is the index of L in L' (by the same argument used above to compute the order of
the discriminant group). Two overlattices L < L’ and L < L” are isomorphic if there is an isometry
of L extending to an isomorphism between L’ and L”.

Proposition 0.2.6 ([76], Proposition 1.4.2). Two even overlattices L < L' and L — L" are isomor-
phic if and only if the isotropy subgroups Hy, and Hy» are conjugate under some isometry of L.

On the other hand, an embedding i : M — L of a lattice M in L is primitive if L/i(M) is a free
abelian group. The orthogonal complement of M in L is

Mt :={leL:(l,m)=0 for every me M}.
We recall the following results for primitive embeddings in unimodular lattices.

Proposition 0.2.7 (|76], Proposition 1.6.1). A primitive embedding of an even lattice M into an even
unimodular lattice L determines an isometry «y : (d(M), qur) = (d(M™*), —qpre).

~ Notice that the isometry v defines an isomorphism ¢5s : O(d(M)) = O(d(M™)). Recall the notation
f:=rr(f) introduced in the list at the beginning of this section.

Proposition 0.2.8 ([76], Proposition 1.6.1, Corollary 1.5.2). Let M be an even primitive sublattice
M of an even unimodular lattice L. An_isometry f of M lifts to an isometry of L if and only if there
is an isometry g of M* such that Yy (f) = g.

Theorem 0.2.9 (|76], Proposition 1.14.4). Let M be an even lattice with invariants (t4,t_,qn) and
L be an even unimodular lattice of signature (s4,s—). Suppose that

ty <sy, t-<s_, and rk(L)—1k(M)=I1d(M))+ 2.

Then there exists a unique primitive embedding of M in L.
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0.3 Irreducible holomorphic symplectic manifolds

In Section 0.3.1 we briefly recall the definition and some basic properties of hyperkdhler manifolds. Our
main references are [13] and [35]. In Section 0.3.2 we introduce the irreducible holomorphic symplectic
manifolds which will play an important role in the results presented in Part I and Part II: the Fano
variety of lines in a cubic fourfold, the LLSvS eightfold and double EPW sextics.

0.3.1 Introductory definitions and properties

Let X be a complex variety and we denote by Tx and x the holomorphic tangent and cotangent
bundle over X, respectively. We recall that a holomorphic symplectic structure on X is a holomorphic
closed two form on X which is non degenerate in every point of X.

Definition 0.3.1. An irreducible holomophic symplectic manifold (or a hyperkidhler mani-
fold) X is a compact complex simply connected Kahler manifold such that

2
HO(X,0%) == H'(X, /\ Qx) = Cn,
where 7 is a symplectic structure on X.
Let us list some immediate consequences of the definition.

1. The existence of a symplectic structure implies that the dimension of the complex manifold X
is even; we denote it by 2n.

2. Notice that the canonical bundle wx is trivial, because the (2n,0)-form 1" is a generator for it.

3. Since 7 is nondegenerate, it follows that the antisymmetric morphism 7 : Tx — Qx, induced by
7, is bijective, i.e. Tx = Qx.

4. Since X is a compact Kéahler manifold, its cohomology carries a Hodge structure: for every
0 < k < 4n, we have
HY(X,C)= @ H™(X),
p+ag=k

where HP9(X) = HI(X, Q%) and H??(X) = HP4(X). Moreover, since X is simply connected,
we deduce that
H°(X,Qx) = H'(X,0x) = 0.

On the other hand, in degree 2 we have
H*(X,C) = H**(X) @ H"'(X) @ H*(X)
=Cn@H"'(X)®CT.
A key property in the hyperkihler setting is that the group H?(X,Z) can be equipped with
a primitive quadratic form ¢, known as the Beauville-Bogomolov-Fujiki form, which gives to

H?(X,7) the structure of a lattice. Explicitely, assuming the normalization SX n"n" = 1, we consider
q: H*(X,C) x H?(X,C) — C defined by

n lene
q(@) = ab + 2j Byt
X

for every a = an + 8 + bij € H*(X,C) with a,b e C and 8 € H"'(X). Then, the following properties
hold.
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1. By [13], Théoréme 5, we have that g comes from an integral quadratic form defined over H?(X, Z)
(which we denote again ¢) with signature (3,b2(X) — 3), where by(X) := dimH?(X,C). In
particular, we have that ¢ is positive over the Kéhler class w and over (H*? @ H%?)(X), while
q is negative over the primitive (1, 1)-part of the cohomology. Up to a scalar multiplication, the
form ¢ is primitive.

2. (Local Torelli Theorem) We set
Q:= {[a] € P(H*(X,0)) : q(a) = 0,q(a +a) > 0} .

The local period map p : Def(X) — P(H?(X,Z)) defined by X — [C 7] has image in Q and p is
a local isomorphism (see [13], Théoréme 5 for more details).

Let us recall some examples of irreducible holomorphic symplectic manifolds which will appear in
the next. We start with the two dimensional case.

Example 0.3.2 (K3 surfaces). Hyperkidhler manifolds of dimension two are K3 surfaces. In fact, a
K3 surface S is a compact complex surface with H'(S,Og) = 0 and wgs = Og. Notice that a section
7 trivializing the canonical bundle defines a nondegenerate holomorphic 2-form over S, which is unique
up to scalar multiplication. Moreover, Siu proved that every K3 surface is a Kiahler manifold (see [92],
exposé XII), and it admits a deformation into a simply connected K3 surface as explained in [92],
exposé VI. Thus, K3 surfaces are irreducible holomorphic symplectic.

In this case, the form ¢ is given by the intersection form and H?(S,7Z) ~ Fg(—1)®2 @ U®3 as a
lattice. Moreover, up to isomorphism, a K3 surface can be recovered from the lattice structure and
the Hodge structure on H2(S,Z), as explained below.

Theorem 0.3.3 (Global Torelli Theorem, [86], [21]). Two K3 surfaces S1 and Sy are isomorphic if
and only of there is an isometry of Hodge structure H?(S1,7) =~ H?(Ss,7Z).

For a detailed survey on results about K3 surfaces and for references we recommend [46].

Remark 0.3.4. It is natural to ask whether Torelli Theorem holds in higher dimension. The answer
is no if we keep the same formulation used for K3 surfaces, but Verbitsky proved a weaker form stating
the generically injectivity of the period map restricted to a connected component of the moduli space
(see 93] for the original proof or [45], for details and references).

Examples in dimension greater than two are difficult to construct. In the following, we recall the
known examples, which are not deformation equivalent to each others.

Example 0.3.5 (Hilbert schemes on a K3 surface). Let S be a K3 surface and we fix a positive integer
r > 1. Assume for simplicity that S is projective (for the aims of this thesis, it is enough to consider
this case, anyway the same construction works in the analytic case). We denote by 1 the symplectic
form on S. Notice that the product S” := S x - -+ x § carries many symplectic forms obtained by pulling
back 1 via the projections p; : S — S over the ith-factor. In order to get unicity, we consider the
quotient S(") := S7 /&, with respect to the symmetric group &,. Since the form Yw_q pin is invariant
with respect to the action of &,, it comes from a form over S(. We observe that S(") is singular
along the preimage of the diagonal in S” via the quotient map. A resolution of S is given by the
map ¢ : SI'1 — S where Sl is the Hilbert scheme of zero dimensional, length r subschemes in S,
which sends [Z] € SI'l to the O-cycle

Z length(Oz,) [p] -

peSupp(Z)
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Notice that the Hilbert scheme Sl is projective. By [13], Théoréme 3, we have that Sl is an
irreducible holomorphic symplectic manifold of dimension 2r. Moreover, there is an injective morphism
of Hodge structures i : H(S,C) — H?(SI",C), such that

HA(SI".z) = i(H?*(S,C)) @ Z5,

where § is a class in H2(SU'] Z) of square 2 — 2r associated to the exceptional divisor of & (see [13],
Proposition 6).

Remark 0.3.6. Consider X = S["l. Via the morphism i defined above, we have that
NS(X) := HM(X) n H*(X,Z) = i(NS(S)) ® Z6.

In particular, the rank of the Néron-Severi lattice of X is greater than 1. As a consequence, we deduce
that a generic projective deformation of X cannot be of the form S’ ["] for a K3 surface S’. In particular,
Hilbert schemes over a K3 surface form a 19-dimensional family in the 20-dimensional moduli space of
polarized projective hyperkdhler manifolds (see [13|, Proposition 11).

Remark 0.3.7. By [13], Proposition 6, if X is deformation equivalent to SI"] for a K3 surface S, then
H?(X,Z) = Eg(—1)®2 @ U @ (2 — 2r), as a lattice.

Example 0.3.8 (Moduli spaces of stable sheaves on a K3 surface). In |74], Mukai considered more
generally moduli spaces of stable sheaves on a K3 surface and he proved that they provide examples
of smooth hyperkihler manifolds deformation equivalent to those in Example 0.3.5. The key point is
that if F is a simple sheaf on a K3 surface S (i.e. Hom(F, F') = C), then the tangent space at the point
[F] to the moduli space of simple sheaves on S, is isomorphic to Ext!(F, F) and by Serre duality the
natural pairing

Ext!(F, F) x Ext}(F, F) — Ext?(F, F) =~ Hom(F,F) = C

is non degenerate. As before, this construction describe codimension one loci in the polarized moduli
space. See also [9], Theorem 1.3 for the generalization to Bridgeland stability.

In a similar fashion, starting from a complex torus of dimension two, it is possible to construct
a hyperkihler manifold known as generalized Kummer variety of dimension 2r for every r > 1 (see
[13], Section 7). Finally, O’Grady constructed two examples of dimension 10 and 6 respectively, as
desingularizations of moduli spaces of semistable sheaves on a K3 surface and on an abelian surface.
These four classes of examples are not equivalent by deformation, because they have different Betti
numbers (see [35], Section 21.2 for a list). On the other hand, all the other constructions of hyperkéhler
manifolds known till now are deformation equivalent to one of those we described.

0.3.2 Examples of hyperkihler manifolds of K3 type

An irreducible holomorphic symplectic manifold X is of K3 type if it is deformation equivalent to S!"]
for a K3 surface S and an integer r > 1. In the last part of this section, we describe three examples
of hyperkéhler varieties, which are of K3 type. We remark that the first two are associated to a cubic
fourfold, while the third one is related to a Gushel-Mukai fourfold, as recalled in the second part of
this thesis.

Example 0.3.9 (Fano variety of lines on a cubic fourfold). Let Y be a cubic fourfold. We denote by
Fy the Fano variety parametrizing lines ¢ contained in Y. In [14], Beauville and Donagi proved that
Fy is a smooth projective hyperkihler fourfold of K3 type. The idea of their strategy is to consider a
special class of cubic fourfolds, called Pfaffian cubic fourfolds. For such a general Y, there is a degree
14 associated K3 surface S and they prove that Fy ~ S[2|. Then, they use a deformation argument
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in order to extend the result to every Y. We point out that in [60], Section 5, they provide a way
to construct directly a symplectic form over Fy. It is important to observe that in [14]|, Proposition
6, they show that there is a Hodge isometry between the primitive cohomologies H*(Y, Z)prim and
H?(Fy,Z)prim- In particular, the period point of Y and Fy are identified.

Example 0.3.10 (LLSvS eightfold). In [64], Lehn, Lehn, Sorger and van Straten construct a hyper-
kéher eightfold My from the irreducible component of the Hilbert scheme parametrizing twisted cubic
curves on a cubic fourfold Y non containing a plane. Here we summarize their results.

We recall that a smooth rational curve C' of degree 3 is projectively equivalent to the image of
P! via the Veronese embedding P! — P3 defined by [s : ] = [s® : s?t : st? : t3]. The space Hy
parametrizing these curves is then identified with automorphisms of P> modulo automorphisms of P';
thus, it is smooth and irreducible of dimension 12. On the other hand, by Riemann-Roch, we have
that the Hilbert polynomial of C is x(Oc(m)) = 3m + 1. Let Hilb3 ™" 1(P3) be the Hilbert scheme
parametrizing curves in P? with Hilbert polynomial 3m + 1. Since Hj is contained in Hilb3" "1 (P3),
we denote by Hilb&"(P3) the closure of Hy in Hilb>™T1(P3). We refer to the objects in Hilb8*(P3) as
(generalized) twisted cubic curves.

In [85], they proved that Hilb&"(P?3) is a smooth 12-dimensional irreducible component of the
Hilbert scheme Hilb3*1(P3). Moreover, the Hilbert scheme Hilb*”*!(P?) is the union of Hilbs"(P?)
and an other component, which intersect Hilb&"(P3) transversely in a smooth divisor J of Hilb&"(P3).
According to their result, we can distinguish two classes of curves in Hilb&'(P3).

1. A curve C giving a point in Hilb8¢(P3)\J is arithmetically Cohen-Macaulay (aCM), i.e. its
affine cone in C* is Cohen-Macaulay at the origin. The homogeneous ideal of C' is generated by
a net of quadrics (qo, q1, ¢2) given by the minors of a 3 x 2-matrix with linear entries.

2. A curve C in J is not Cohen-Macaulay (non CM). In appropriate coordinates on P3, the
homogeneous ideal of C' is (23, zoz1, ToT2, ¢(71, T2, 3)), where g is a cubic polynomial, defining
a cubic curve in the plane {z¢ = 0} which is singular at the point [0:0:0: 1]. In particular, we
have that C' is a plane singular cubic curve with an embedded point giving a direction emerging
from the plane.

Now, consider the Hilbert scheme Hilb®"*1(P®) and the irreducible component Hilb&"(P%), defined
analogously. If Y is a cubic fourfold in P°, then we consider the Hilbert scheme Hilb3™ (V) and we
set
M3 := Hilb&"*(P%) n Hilb3™ (Y,
which is the irreducible component of the Hilbert scheme parametrizing twisted cubic curves on Y.
There is a natural map
Mz — GI‘(]P)3,P5), [C] - <C> = ]P)gv
sending a twisted cubic curve C to its linear span. Furthermore, if we fix a 3-plane P(W) in P°, then
the fiber over the point [P(W)] is the Hilbert scheme of twisted cubic curves in the cubic surface
S :=Y nP(W). Notice that if Y does not contain a plane, then S is reduced and irreducible. Under
the assumption that Y does not contain a plane, we have the following results.

1. The component Mz is a smooth and irreducible projective variety of dimension 10 (see [64],
Theorem A).

2. There exist a holomorphic symplectic projective variety My of dimension 8 and a morphism
u : M3 — My, such that the following diagram

M34>My

NS
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where a : M3z — Mj, is a P2-fiber bundle and o : M;, — My is the contraction of the Cartier
divisor of non CM twisted curves, commutes (see [64], Theorem B). Moreover, the cubic fourfold
Y embeds in My as a Lagrangian submanifold (with respect to the symplectic structure) and o
is the blow-up of My in Y.

3. By [3], the variety My is deformation equivalent to the Hilbert scheme of points of length 4 on
a K3 surface.

Remark 0.3.11. We point out that these examples provide complete families of hyperk&hler manifolds.
Indeed, cubic fourfolds are defined as the zero locus of a degree 3 homogeneous polynomial in 6 variables;
thus, their moduli space is described as an open subset of the (GIT) quotient

|0(3)|//PGL(Vs),
which has dimension 56 — 1 — (36 — 1) = 20.

Example 0.3.12 (Double EPW sextic). In [79], O’Grady proved that the smooth double cover of a
sextic hypersurface in P° is a hyperkihler fourfold of K3 type. Let us briefly recall the construction.

Let Vg be a six dimensional C-vector space. We observe that the wedge product A : /\3 Ve X
N> Ve = A®Vs = C defines a symplectic form on A® Vg which we denote by 1. We recall that a
subspace A of /\3 Vs is Lagrangian with respect to 7 if n{4x4 = 0 and A has dimension 10. We define
the Lagrangian subbundle F' < /\3 Ve ® Op(v;;), whose fiber over v € V5 is the Lagrangian subspace
F,:=vn /\2V6 of/\SVG.

Fix a Lagrangian subspace A of /\3 Ve and consider the composition

N’ Ve

3
A F o A\ Ve®Opirgy =~ 5 @ Opqrgy-

Then the hypersurface Yy is the zero locus in P(Vg) of det A4 (when it is not P(Vg)). Explicitely, we
have that points of Y4 are classes of vectors v in P(Vs) where A4 has rank < 10, i.e.

Ya= {0 e P(Ve): An (U1 A N\ Vo) # 0}

Notice that Yy is a sextic hypersurface. Indeed, since A4 is a section of Hom(F, \* Vs/A® Op(vy)) =
FY @ N Vs/A® Op(vg), we have that det A4 is a section of det(FY) = Op(y;)(6), where the last
isomorphism follows from the fact that ¢;(F') = —6h (see [32], Section 2.1.2).

Moreover, we can consider the closed subschemes

Y7 = {[U)] e P(Ve) : dim(A (U & A\* Vo) = 1) for 10,

giving a stratification of P(Vg) such that Y7' < Y7'™! for I > 0 and Y4 = Y'. The results are the
following.

e Assume that A has not decomposable vectors, i.e. AnGr(3,Vs) = 0. Then, we have that Y4 is a
normal sextic hypersurface, known as Fisenbud-Popescu- Walter (EPW) sextic, which is singular
along the integral surface Y72 ([79], Proposition 2.8).

e Let Y4 be the double cover of the EPW sextic Y4 branched over YA2 2If YA2 3 is empty, (e.g. for
generic A), then the double EPW sextic Y4 is a smooth hyperkéhler fourfold of K3 type (see
[79], Theorem 1.1).

In the second part of this thesis, we will explain how a double EPW sextic is associated to a GM
fourfold, as observed by Debarre and Kuznetsov. This construction provides a complete family of
4-dimensional hyperkéhler manifolds of K3 type.

28



0.4 (Weak) Stability conditions on triangulated categories

In this section we recall the definition of (weak) stability condition for a C-linear triangulated category
T, following the summary in [7], Section 2 (see also [69]). In particular, we review the tilting procedure
and we explain how it is used to produce examples of weak stability conditions on DP(X).

0.4.1 Definition and examples

Essentially, a (weak) stability condition is the data of the heart of a bounded t-structure and of a
(weak) stability function, satisfying certain conditions.

Definition 0.4.1. The heart of a bounded t-structure is a full subcategory A of T such that
1. for E, F in A and n < 0, we have Hom(E, F[n]) = 0;
2. for every F in T, there exists a sequence of morphisms

2 Byt 2 By = E

0=FEy 2 B 2
such that the cone of ¢; is of the form A;[k;], for some sequence k1 > kg > --- > k,, of integers
and A; in A. The object A; is the i-th cohomology object of E with respect to A and it is
denoted by A; := H;\ki (E).

Remark 0.4.2. Recall that the heart of a bounded t-structure is an abelian category by [15].

Remark 0.4.3. We do not recall the definition of a bounded t-structure, which can be found in [15].
The reason is that by [18], Lemma 3.2, the heart uniquely determines the bounded t-structure.

Example 0.4.4. If 7 = DP(X) for a smooth projective variety X, then Coh(X) is the heart of a
bounded t-structure. Indeed, condition 1 of the definition follows from the fact that coherent sheaves
have no Ext groups in negative degree. In order to prove item 2, we take a complex F € T and we
consider its cohomology sheaves A; := H % (E) € Coh(X). Then the desired filtration is constructed
by iterative projections over the first non trivial cohomology with an appropriate shift.

Definition 0.4.5. Let A be an abelian category. A group homomorphism Z : K(A) — C is a weak
stability function (resp. a stability function) on A if, for £ € A, we have SZ(E) > 0, and in the
case that SZ(F) = 0, we have RZ(E) < 0 (resp. RZ(F) < 0 when E # 0).

Recall that the Grothendieck group K(7) of a triangulated category T is the free abelian group
generated by isomorphism classes [F'] of objects F' € T with respect to the relation [E]—[F]+ [G] = 0
if there is a triangle £ — F' — G — EJ[1] in 7. Let A be a finite rank lattice with a surjective
homomorphism v : K(7) — A.

Definition 0.4.6. A weak stability condition on 7 is the data of a pair ¢ = (A, Z), where A is
the heart of a bounded t-structure on 7 and Z : A — C is a group morphism called central charge,
satisfying the following properties:

1. The composition K(A) = K(T) % A 2 C is a weak stability function on A. We will write
Z(—) instead of Z(v(—)) for simplicity.

For any E € A, the slope with respect to Z is given by

RZ(FE .
yo(E) = —SAE iSZ(E) >0
400 otherwise.
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A non zero object E € A is o-semistable (resp. o-stable) if for every proper subobject F' of
E, we have p,(F) < py(E) (resp. uo(F) < po(F)). We say that E is strictly semistable with
respect to o if E is o-semistable, but not stable. An object F' € T is o-semistable if F' = E[n],
where F is o-semistable in A and n € Z.

2. (HN-filtration) Any object of A has a Harder-Narasimhan filtration with o-semistable factors.
Explicitly, for every E € A, there is a filtration

O:EOC—>E16—>...C_) m—lHEm:E
where A; := E;/E;_; is o-semistable for i = 1,...,m and

MU(Al) > > ,UU(Am)'
The object A; is a Harder-Narasimhan (HN) factor of E. We set ¢ (F) := ¢(4;) and
¢~ (E) := ¢(Am).

3. (Support property) There exists a quadratic form @ on A ® R such that the restriction of @ to
ker Z is negative definite and Q(FE) = 0 for all o-semistable objects F in A.

In addition, if Z o v is a stability function, then ¢ is a Bridgeland stability condition.

The main difference between weak stability and Bridgeland stability is that in the first case there
could be non-zero objects E € A with Z(FE) = 0, whose slope is +00 by definition.

Remark 0.4.7. Using item 1 in Definition 0.4.1, it is possible to prove that the HN-filtration is
unique. Moreover, item 2 of Definition 0.4.1 and of Definition 0.4.6 imply that every object in T has
a HN-filtration.

Remark 0.4.8. The original formulation of the support property is due to Kontsevich and Soibelman
and it is different from that we gave. In [11], Appendix A, it is proved that these definitions are in
fact equivalent.

We need to introduce some terminology we will use in the following. Let o be a (weak) stability
condition for 7.

Definition 0.4.9. The phase of a o-semistable object E € A is
1
¢(B) = —arg(Z(E)) € (0,1]
and for F' = E[n], we set
S(E[n]) := 6(E) +n.
A slicing P of T is a collection of full additive subcategories P(¢) < T for ¢ € R, such that:

e for ¢ € (0, 1], the subcategory P(¢) is given by the zero object and all o-semistable objects with
phase ¢;

e for ¢ + n with ¢ € (0,1] and n € Z, we set P(¢ + n) := P(¢)[n].

Remark 0.4.10. There is an other definition of Bridgeland stability condition involving a general
notion of slicing and phase, which is equivalent to ours in Definition 0.4.6. As this is not relevant in
the thesis, we do not recall it here, and we suggest [68], Section 5 for a detailed comparison between
the two approaches. Essentially, in that case a slicing gives a way to list all the semistable objects in
T, while Definition 0.4.6 provides a function detecting them.
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Let us recall the following properties of a (weak) stability condition o = (A, Z).

1. (See-saw principle) Let 0 - E — F' — G — 0 be an exact sequence in the heart 4. Then we
have
to(E) < po(F) if and only if yio(F) < p16(G)

and
to(E) = po(F) if and only if po(F) = 1o (G).

Indeed, notice that Z(F) = Z(E) + Z(G) and these are complex numbers with non negative
imaginary part or non positive real numbers (it can be helpful to draw a picture as suggested by
the name of the property).

2. Let E and F be two o-semistable objects in A. If py(E) > py(F), then
Hom(E, F) = 0. (3)

Indeed, consider a morphism f : £ — F. Notice that f cannot be injective, because otherwise F
would be a subobject of F' with greater slope, contradicting the semistability of F'. Analogously,
f is not surjective.

Since the kernel of f is a subobject of E which is semistable, we have p,(ker f) < us(E). By the
see-saw property, it follows that u,(FE) < po(Imf). Again, since the image of f is a subobject of
F which is semistable, we get i, (Imf) < po(F). We deduce that p,(E) < py(F') in contradiction
with our assumption. We conclude that f = 0, as claimed.

3. (Jordan-Holder filtration) Assume that o is a stability condition. Every o-semistable object
E € P(¢) admits a (non unique) finite filtration 0 = Fy < Ey < --- < E,_1 ¢ E, = E, where
the quotients E;/E;_1 are stable with the same phase ¢. This follows from the fact that P(¢) is
an abelian category of finite length.

Proof. Firstly, we show that P(¢) is abelian. Notice that it is enough to consider the case
¢ € (0, 1], because every P(¢) is obtained by shift of the subcategories of semistable objects with
such a phase. So given a morphism f: E — F in P(¢) for ¢ € (0, 1], we prove that K := ker f
and I :=Imf are in P(¢). Assume for simplicity that K and I are semistable. Since E and F
are semistable, we get ¢(K) < ¢(E) and ¢(I) < ¢(F'). By the see-saw principle, we deduce that
O(E) < ¢o(I) < ¢(F), ie. o(I) = ¢. As Z(E) = Z(K) + Z(I), we also get ¢(K) = ¢. In the
case that K and I are not semistable, we argue in the same way considering their HN-factors.
In particular, we have ¢ (I) < ¢(F) and ¢(F) < ¢~ (I), because the HN-factors of I with phase
¢ (I) and ¢ (I) are a subobject and a quotient of F and E, respectively. Thus, they must
have the same slope ¢, which implies that I is semistable with phase ¢. Similarly, we have
¢T(K) < ¢; thus, every HN-factor of K has phase < ¢. As Z(K) = Y. Z(A4;), where the A;’s are
its HN-factors, the only possibility is that there is only one factor, i.e. K is in P(¢).

Secondly, we prove that for every descending sequence --- ¢ E; ¢ E;—1 < --- < E; in P(¢),
there is an index j such that E; = E; for every i > j. Indeed, as Z(E;) = Z(Ej+1) + Z(E;/Eit1),
we have that the sequence of the Z(E;/E;+1) converges to 0. On the other hand, the support
property implies that Z has discrete image in C over the set of semistable objects. Thus there
is an index j such that Z(FE;/F;11) = 0 for i > j. As Z is a stability function, we deduce the
statement. O

4. If E is o-stable, then Hom(FE, E) =~ C, i.e. stable objects with phase ¢ are simple objects in P(¢).
Indeed, by the see-saw principle, every morphism f € Hom(F, F) is an isomorphism.
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We denote by Stab™(7) (resp. Stab(7)) the set of weak stability conditions (resp. of stability
conditions) on 7. These sets comes with a natural topology which is the coarsest topology such
that the maps (A, Z) — Z, (A, Z) — ¢T(E), (A, Z) — ¢~ (FE) are continuous for every F € 7. In
particular, the sets Stab™ (7)) and Stab(7) are topological spaces. A very deep result of Bridgeland is
that Stab(7) is actually a complex manifold, as stated below.

Theorem 0.4.11 (Bridgeland Deformation Theorem, [18]). The continuous map Z : Stab(7T) —
Hom(A,C) defined by (A,Z) — Z, is a local homeomorphism. In particular, the topological space
Stab(T) has the structure of a complex manifold of dimension rk(A).

Example 0.4.12 (Slope stability). Let X be a smooth projective variety of dimension n and let H
be a hyperplane class on X. We consider the triangulated category DP (X)) with Grothendieck group
K(X) := K(D"(X)) = K(Coh(X)). We denote by ch : K(X) — H*(X,Q) the Chern character,
which is defined by

ch(E) = (cho(E) :=1k(F),chi(E) := c1(F),chy(F) := %cl(E)2 —c(E),.. )

in terms of the Chern classes ¢;(E) (see [37], Appendix A for details). We fix the rank two lattice AL,
whose generators are vectors of the form

(H™ cho(E), H" ' chi(E)) € Q% for E € Coh(X).
The Chern character induces a natural surjection v : K(X) — AL, Then, the pair oy = (Coh(X), Zg),
where Zy : A} — C is given by
Zg(E) = —H" ' chy(E) + vV—1H" cho(E),

is a weak stability condition. Indeed, since the degree H" ! ch;(E) of a torsion sheaf E is non negative,
we have that Zpy o v is a weak stability function. By [18], Lemma 2.4, the HN property holds (see
also [68], Proposition 4.10). In [7], Remark 2.6, it is observed that if we have a rank two lattice A
and Z : A — C is injective, then any non negative quadratic form @ on A ® R satisfies the support
property. Thus, considering the trivial form @ = 0, we deduce our claim.

Notice that if X is one-dimensional, then o is a stability condition. Indeed, in this case if
rk(E) = 0, then deg(E) > 0. This is not true in higher dimension, as Zy vanishes on torsion objects
supported in codimension > 2.

Actually, the slope defined by Zp coincides with the classical notion of slope stability for sheaves
and we denote it by pz. We point out that the classical Bogomolov-Gieseker inequality implies

Ay (E) := (H" ' chy(E))? = 2(H" cho(E))(H" 2 chy(E)) = 0
for every op-semistable E € Coh(X). We refer to Ay (E) as the discriminant of E.

The construction of Bridgeland stability conditions is in general a difficult task. However, starting
from a weak stability condition o = (A, Z) on T, it is possible to produce a new heart of a bounded
t-structure, by tilting A. Let us recall this method. Let u € R; we define the following subcategories
of A:

TF :={E e A:all HN factors F' of E have slope s (F) > u}
=(F € A: E is o-semistable with pu,(E) > u)

and

Fl:={FE e A:all HN factors F of E have slope pu,(F) < u}
=(F € A: FE is o-semistable with u,(E) < p).
Here, the symbol (—) means the extension closure, i.e. the smallest full additive subcategory of A

containing the objects in the brackets which is closed with respect to extensions.
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Proposition 0.4.13 ([36]). The category
AL = (TH FRA) = {E e T : HU(E) e T H (E) € FY HU(E) = 0 for i # 0,1}
1s the heart of a bounded t-structure on T .

We say that the heart A% is obtained by tilting A with respect to the weak stability condition o at
the slope p. In the next section, we will explain how to construct weak stability conditions on Db(X )
by tilting Coh(X) with respect to slope stability.

0.4.2 Tilt stability on D"(X)

Let us consider the case 7 = DP(X), where X is a smooth projective variety of dimension n. We fix
B € R. By Example 0.4.12 and Proposition 0.4.13, we can consider the heart

Coh”(X) := Coh(X)?

obtained by tilting Coh(X) with respect to the weak stability condition of at slope 3.
It is possible to to define weak stability conditions having Coh®(X) as heart. Indeed, for E € DP(X),
we set

chP(E) := e P ch(E).
Explicitly, the first three terms are
ch?(E) := cho(E) = 1k(E), ch?(E) := chy(E) — BH chy(E)

and
2H2

ch?(E) := chy(E) — BH chy(E) + 5 cho(E).

We consider the rank two lattice A% generated by the vectors
(H" cho(E), H" ' chy(E), H" % chy(E)) € Q?

for E € Coh(X) and we denote by ch<o(F) € A% the truncated Chern character till degree 2. The
classical Bogomolov inequality recalled in Example 0.4.12 implies that Ay satisfies the second part of
the support property. Thus, we have the following key result.

Proposition 0.4.14 ([7], Proposition 2.11). Given a > 0, 8 € R, the pair 045 = (Coh’(X), Zs 5),
where

1
Zop(BE) = — <H"—2 ch?(E) — 5oﬂH" ch§(E)> +V—1H" ' b’ (E),
defines a weak stability condition on Db(X) with respect to A%I. Moreover, these stability conditions

vary continuosly as (o, B) € R-g x R wvaries, with a locally-finite wall and chamber structure.

Let us explain the meaning of the last sentence of the proposition, whose proof is given in [11],
Appendix B. We can visualize these weak stability conditions in the upper half plane

{(a, B) e RxR: > 0}.

Definition 0.4.15. Let v be a vector in A%I.

1. A numerical wall for v is the set of pairs («, 8) € R~o x R such that there is a vector w € A%{
verifying the numerical relation

Ha,p (’U) = Ha,p (’LU)
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2. A wall for F € Coh?(X) is a numerical wall for v := cheo(F) such that for every (a, 8) on the
wall there is an exact sequence of semistable objects 0 — E — F — G — 0 in Coh”’(X) such
that o g(F) = pa,g(E) = ta,3(G) gives rise to the numerical wall.

3. A chamber is a connected component in the complement of the union of walls in the upper half
plane.

The key point is that tilt stability conditions satisfy well-behaved wall-crossing;:
e The function R-g x R — Stab™(X) defined by

(a, B) = (Coh?(X), Za,5)
is continuous (|11], Proposition B.2).

e Walls with respect to a class v € A%{ in the image of this map are locally finite. In particular, if
v = cheo(F) with F € Coh®(X), then the stability of F remains unchanged as («, 3) varies in a
chamber ([11], Proposition B.5).

Remark 0.4.16. Conjecturally, tilt stability is the starting point to produce Bridgeland stability
conditions. Here we summarize what is known till now.

o If X is a surface, then o, g is a Bridgeland stability condition (see [18] for the case of K3 surfaces,
[5] for its generalization to smooth projective surfaces, or [68], Section 6 for a survey).

e If X has dimension > 2, then Z, g vanishes on objects with support in codimension > 3.

e Assume that X has dimension 3. In [12], Section 3, the authors consider a new heart obtained by
tilting Coh? (X) with respect to the weak stability condition o, 3, and they defined an appropriate
central charge involving the third Chern character. By [11], Theorem 4.2, this construction
defines a Bridgeland stability condition if and only if a generalized form of Bogomolov-Gieseker
inequality holds. We recommend [68], Section 9 for details and references.

0.4.3 The {1, %23 _plane

chg’ chg
The aim of this paragraph is to present an alternative way to the usual («, 8)-upper half plane in order
to visualize tilt stability conditions. This method was introduced by Li and Zhao in [66], Section 1 in
the case of stability conditions on P?.
Keeping the notation of the previous section, we consider the projective plane ]P’(Alzq) with homo-
geneous coordinates [H" chg : H" "1 ch; : H" 2 chy]. We fix the line {H" chg = 0} and we define the
affine plane

A%, = P(A%)\{H" chy = 0}.

We will refer to A2 as the {1, 90 D23 plane and to P(A%) as the projective {1, 1 D21 plane. We

9 chg? chg ) %’ chg
fix the affine coordinates
(H”‘l ch; H" 2 Chg)

Hnchy ° Hmchy

on A%{.

A complex E € D(X) such that cheo(FE) # (0,0,0) is represented by a point in the projective
{1, ﬁﬁ—é, gﬁ—i}—plane. Moreover, if chg(F) # 0, then E gives rise to a point in the {1, gﬁ—é, %}—plane.

In A%{, we consider the parabola Ay described by the equation

1 <H"1ch1>2 H'?chy _

2 \ H7 chy H" chy
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and the area above the parabola Ay given by

< 0.

1 /H" ' ch;\? H"2chy
2 H" Cho H” Cho

It is not difficult to see that a point above the parabola corresponds to a weak stability condition on
DP(X), as we explain in the following lemma.

Lemma 0.4.17. For every point (s,t) € A% such that t > 1/2s, the pair oy = (Coh™(X), Z; ), where
ZL(E) = — (H" % chg(E) — tH" cho(E)) + v—1 (H" ' chy(E) — sH" cho(E)) ,

18 a weak stability condition on Db(X) with respect to A%I, Moreover, these stability conditions vary
continuosly as (s,t) € Ay varies, with a locally-finite wall and chamber structure.

Proof. It is enough to notice that given (o, §) € R-g x R, the tilt stability o, g is the same as O'/B

B2+a2>
’ 2

up to the action of an element in G:L+(2, R). Indeed, we have that

!
1 B\ (RZap\ [ 522502
0 1)\sz.5) " |3z

2142
B’BTO‘

52,,2 defines a weak stability function for Coh”(X), because
2

= 3Z,, and, when the imaginary part vanishes, the real part does not change. In particular,

We point out that the morphism Z;;

7!
\S‘Z B2+a2
2

)

for an object E € Coh”(X), we have Z(E) = 0 if and only if Z'(E) = 0. Moreover, notice that

!/

Ha,p = M,B,

B2+a2 T /87
2
where p’ is the slope with respect to Z’ (and an object with infinite slope remains with infinite slope).

It follows that a o, g-stable object is 0’[’8 52,2 -Stable. In particular, the HN-filtration exists and this
7T
action respects the order of the HN-factors’slopes, because we are just shifting by a constant. Finally,
the quadratic form given by the equation of the parabola Ay satisfies the support property. Indeed,
— 2 2
notice that the kernel of Z, is given by the point (s,t) € Ag. As (5, B ;O‘ ) is a point above the

parabola and stable objects give points below the parabola by Bogomolov-Gieseker inequality, we

52,42 18 @ weak stability condition. It is easy to see that every point (s,t) € Ag

)

conclude that 0;}
2
comes from a point in the (a, #)-upper half plane. Thus, the claim follows from Proposition 0.4.14. [

ch; chy
’ chg? chg

It is interesting to remark the following properties of the {1 }-plane representation.

1. As already observed in proof of Lemma 0.4.17, the weak stability condition o7 , is identified with
ker Z ;, which is the point (s,t) € A2, over the parabola Ay.

2. Let P = (s,t) be a point in Ay and let E be a slope semistable vector bundle in Coh(X). Then,
we have that E is in the heart Coh®(X) if and only if it determines a point in the right-half plane

H 1 ch; H" 2 chsy 9 H 1 ch;
, EAY  ——— >s¢,
H™ chg H™ chg H™ chg

while E[1] is in Coh*(X) if and only the character of E defines a point in

H"1chy H"2chy o H" lchy
, e A ML
H™ chg H™ chg H™ chy
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3. Fix a point P = (s,t) € Ay and an object E € Coh®(X) such that chy(E) # 0. We still denote by
E the point in A%{ defined by the Chern character of E/. Then, the slope of E can be represented
on the plane A%I in the following way. We draw a vertical line passing through P and we consider
the semiline I_ from P to —oo. We denote by lgp the semiline in the right half plane

d H" " chy >t
—— =Sand —/————
H”Cho HnChO

H" 'chy H" 2chy o2 H™" 'chy - H" 'chy
P — S, Or
H"chy ° H"chy H* " Hnchy ’

lying on the line joining F and P. An easy computation shows that the phase with respect to
Z;’t of F is equal to the angle between the semilines [gp and [_ divided by 7. As a consequence,
two objects E and F' in Coh®(X) with non zero rank satisfy

M;,t(E> > ﬂls,t(F) (4)
if and only if the ray lgp is above lpp (see [66], Lemma 1.17).

4. Tt is possible to represent the potential walls in the projective {1, gﬁ—;, ﬁhﬁ}-plane. Indeed, let

P = (s,t) be a point in Ay and let E and F be two objects in Coh®(X) having ch<s # (0,0,0).
Then Z,,(E) and Z, ,(F) are on the same ray if and only if E, F and P are collinear in P(A%).
Indeed, we observe that Z; ,(E) and Z ,(F) are on the same ray if and only if Z{ ,(aE —bF) = 0
for some a,b € R~o.This is equivalent to have £, F and P = ker Z{, on the same line in the
projective {1, 2} plane (see [66], Lemma 1.16).

’ chg? chg

This kind of representation does not prove any new result about these tilt stability conditions, but
it simplifies a lot the computations. First of all, the plane A%{ is more complete with respect to the
classical (a, §)-plane, because it allows to represent the characters of the objects and the weak stability
conditions on the same plane. Moreover, the potential walls are essentialy described as straight lines
on A%{. Finally, we can compare the slope of two objects with different Chern character till degree
2 looking at their position on the {1, gﬁ—é, g}ﬁi }-plane. This allows to compare the slope with respect
to different weak stability conditions and characters simultaneously. We will use this description in
Chapter 4 to explain the computations.
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Part I

Cubic fourfolds
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Chapter 1

Introduction to Part 1

The aim of this part is to present a detailed proof of some results about Fourier-Mukai partners of
cubic fourfolds (see [87]), and concerning the Fano variety of lines and the LLSvS eightfold of a cubic
fourfold, coming from a joint work with Chunyi Li and Xiaolei Zhao (see [65]).

A cubic fourfold Y is a smooth hypersurface of degree 3 in ]P’g:. In [57]|, Kuznetsov studied the
derived category DP(Y) of bounded complexes of coherent sheaves on Y to address the problem of
the (non)rationality of the cubic fourfold. As recalled in Example 0.1.27, the derived category D"(Y)
admits a semiorthogonal decomposition of the form

DP(Y) = (Ku(Y), Oy, Oy (1), Oy (2)),

where Ku(Y) is the right orthogonal of the subcategory of DP(Y") generated by {Oy, Oy (1), Oy (2)}.
It turns out that the Kuznetsov component Ku(Y') has certain similarities with the bounded derived
category of a K3 surface, e.g. the Serre functor on Ku(Y') is the homological shift [2] (see |54], Corollary
4.3).

The Kuznetsov component should carry the information about the birational type of the cubic
hypersurface. Infact, it has been conjectured that Y is rational if and only if Ku(Y') is equivalent
to the derived category of a K3 surface (see [57], Conjecture 1.1). To support this guess, Kuznetsov
proved in [57] that the cubic fourfolds which were known to be rational satisfy this condition (see also
[73])-

On the level of the Hodge theory, the existence of an associated K3 surface as an indicator of ra-
tionality was deeply studied (see [40], for a complete survey). Actually, Kuznetsov’s conjecture would
imply that a cubic fourfold with a Hodge associated K3 surface is rational, by results of Addington,
Thomas and Bayer, Lahoz, Macri, Nuer, Perry and Stellari, relating the categorical and the Hodge
theoretical setting (see [4], Theorem 1.1 and [8] or [69], Theorem 3.7). Nevertheless, these conjectures
have not been proved yet.

In [47], Huybrechts studied the category Ku(Y'), in order to develop a theory for cubic fourfolds
which parallels that of the derived category of a (twisted) K3 surface. In particular, he proved the
analogous version for Ku(Y') of some results concerning Fourier-Mukai partners of a K3 surface. A
cubic fourfold Y’ is a Fourier-Mukai partner of Y if there exists an equivalence of categories

Ku(Y) = Ku(Y”’)
which is of Fourier-Mukai type, i.e. such that the composition
b i* ~ / by
D*(Y) — Ku(Y) — Ku(Y"') — D*(Y")
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is a Fourier-Mukai functor; here, ¢* denotes the left adjoint functor of the full inclusion i : Ku(Y) —
Db(Y). Usually in the literature this denomination is used to identify smooth projective varieties with
equivalent derived categories. However, cubic fourfolds satisfying this condition are isomorphic by a
result of Bondal and Orlov (see [17], Theorem 3.1). Thus, it becomes interesting to address the same
problem by considering the Kuznetsov components.

Huybrechts showed that the number of (isomorphism classes of) Fourier-Mukai partners for a cubic
fourfold Y is finite (see [47], Theorem 1.1), as in the case of Fourier-Mukai partners for a K3 surface
(see [20], Proposition 5.3). Moreover, he proved that the very general cubic fourfold Y, i.e. such that
rk(H?2%(Y,Z)) = 1, has no non-trivial Fourier-Mukai partners (see [47], Corollary 3.6).

It is natural to ask whether a special cubic fourfold Y, i.e. such that rk(H>2(Y,Z)) > 2, admits
Fourier-Mukai partners which are not isomorphic to Y. In particular, we may wonder if for special
cubic fourfolds it is possible to prove a version of Theorem 1.7 and Corollary 1.8 of [81], which state
that there are examples of K3 surfaces having a prescribed number of non-isomorphic Fourier-Mukai
partners.

The first result is that the answer is positive in the case that the rank of H?2(Y,Z) is exactly two
and the cubic fourfold Y admits an associated K3 surface X with “enough” non-trivial Fourier-Mukai
partners. More precisely, given a positive integer d, we denote by Cy the divisor parametrizing special
cubic fourfolds with discriminant d (see Section 2.1). We recall that:

e (see [39], Theorem 1.0.1) the divisor C4 is non empty if and only if

d> 6 and d =0,2(mod6); (0)

e (see [39], Theorem 1.0.2 or Section 2.1) a cubic fourfold Y € C; has an associated K3 surface if
and only if
44d,91d, ptd for any odd prime p such that p = 2(mod 3). (a)

The first result is a counting formula for the number of Fourier-Mukai partners for very general
special cubic fourfolds admitting an associated K3 surface.

Theorem 1.0.1. Let d be a positive integer satisfying (0) and (a). Let Y be a very general cubic
fourfold in Cq and let m be the number of non-isomorphic Fourier-Mukai partners of an associated K3
surface to Y. Then, the cubic fourfold Y has exactly m non-isomorphic Fourier-Mukai partners, when
d = 2(mod 6); otherwise, if d = 0(mod6), the number of non-isomorphic Fourier-Mukai partners of Y
is equal to [m/2].

As a consequence of Theorem 1.0.1, we deduce that there exist cubic fourfolds admitting an arbi-
trary number of Fourier-Mukai partners, depending on the number of distinct odd primes in the prime
factorization of the discriminant (see Proposition 3.1.4).

More generally, we recall that a cubic fourfold Y € C; has an associated twisted K3 surface (see
[47], Section 2.4 or Section 2.4) if and only if

n; = 0(mod 2) for all primes p; = 2(mod 3) in 2d = Hp;“ (a’)

A weaker formulation of Theorem 1.0.1 holds for very general cubic fourfolds Y in Cy, admitting an
associated twisted K3 surface (X, a), if 9 does not divide the discriminant d. Indeed, in Section 3.2,
we show that the number of non-isomorphic twisted Fourier-Mukai partners of (X, o) with the Brauer
class of the same order as «, gives a lower bound for the number of Fourier-Mukai partners of the cubic
fourfold.

Theorem 1.0.2. Let d be a positive integer satisfying (0) and (a°). Assume that 9 does not divide
d. Let'Y be a very general cubic fourfold in Cq with associated twisted K3 surface (X, a), where a has
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order k; let m’ be the number of non-isomorphic Fourier-Mukai partners of (X, «) with Brauer class of
order k. Then the cubic fourfold Y admits at least m’' non-isomorphic Fourier-Mukai partners, when
d = 2(mod 6); otherwise, if d = 0(mod6), the number of non-isomorphic Fourier-Mukai partners of Y
is at least [m'/2].

In particular, under the hypotheses of Theorem 1.0.2, we have that m’ is controlled by the number
of distinct primes in the prime factorization of d/2 divided by the square of the order of the Brauer
class @ and by the Euler function evaluated in ord(«), as we show in Proposition 3.2.8.

Notice that our construction represents the first example of non-trivial Fourier-Mukai partners for
a cubic fourfold. Actually, these results complete the expected analogy between cubic fourfolds and K3
surfaces, stated in [47]. They also represent a first step in order to understand whether cubic fourfolds
which are Fourier-Mukai partners are birational.

An other approach in order to better understand the Kuznetsov component and its relation with the
geometry of Y is by looking at moduli spaces of stable objects in Ku(Y"). This is now possible thanks
to the result in |7], where Bayer, Lahoz, Macrl and Stellari provide a construction of Bridgeland
stability conditions on Ku(Y') (see Section 4.1.1 for a summary of this construction). Notice that,
since the component Ku(Y) is a K3 subcategory, moduli spaces of Bridgeland stable objects in Ku(Y")
are naturally endowed with a symplectic 2-form, by the same argument explained in Example 0.3.8.
Actually, in the forthcoming paper [8], the authors prove that under mild assumptions these moduli
spaces are smooth projective irreducible holomorphic symplectic manifolds of K3 type (see Section 0.3.2
for the meaning). This gives a systematic way to produce complete families of (polarized) projective
hyperkéhler manifolds.

On the other hand, using classical techniques in algebraic geometry, two examples of K3 type
hyperkéhler minifolds are constructed out of lines and twisted cubic curves in a cubic fourfold. In
particular, Beauville and Donagi showed in [14] that the Fano variety Fy of lines on Y is a smooth
projective hyperkihler fourfold, deformation equivalent to the Hilbert square of a K3 surface (see
Example 0.3.9). More recently, in [64] Lehn, Lehn, Sorger and van Straten construted a hyperkéahler
eightfold My from the irreducible component of the Hilbert scheme of twisted cubic curves on a cubic
fourfold Y non containing a plane (see Example 0.3.10). An interesting question is then to understand
the relation between the classical and the homological setting.

The main results in Chapter 4 give a description of Fy and My in terms of moduli spaces of stable
objects in the Kuznetsov component, with respect to the Bridgeland stability conditions defined in |7].

In particular, recall that the algebraic Mukai lattice of Ku(Y') always contains an As lattice spanned
by two classes A; and Ay (see Section 2.3). We denote by M, (v) the moduli space of o-stable objects
in Ku(Y') with Mukai vector v, where o is a stability condition as in |7]. To each line £ on Y, we can
associate an object Py € Ku(Y'), of Mukai vector A; + A2 (see Section 4.3). The following result gives
a reconstruction of Iy as follows.

Theorem 1.0.3. For any line £ in a cubic fourfold Y, the object Py is o-stable and the moduli space
My (A1 + A2) is isomorphic to the Fano variety Fy .

The case of twisted cubics on Y is even more interesting from many perspectives. Assume that Y
does not contain a plane. Every twisted cubic curve C in Y has an associated object F¢. in Ku(Y)
with Mukai vector 2A; + A2 (see Section 4.2.1). Then, we prove the following result.

Theorem 1.0.4 (Theorem 4.2.7 and Theorem 4.2.8). LetY be a smooth cubic fourfold not containing a
plane. If C is a twisted cubic on'Y', then the object F(, is o-stable. Moreover, the projective hyperkdhler
eightfold My(2X\1 + A\2) parametrizes only objects of the form F[,, and it is isomorphic to the LLSvS
eightfold My .
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The first advantage of our approach is that it only involves homological properties of twisted cubic
curves, without requiring the detailed analysis of the singularities and the determinantal representations
of the twisted cubics and the cubic surfaces in Y used in [64]. In particular, we interpret the contraction
of the locus of non CM twisted cubic curves in LLSvS picture via wall-crossing in weak stability.
Furthermore, our result provide a description of the birational models of My, which are obtained by
crossing a wall of Bridgeland stability. Finally, this description gives a more conceptual explanation
of the existence of the holomorphic symplectic structure on Fy and My, as moduli spaces of stable
complexes in a K3 category.

An other feature is that Theorem 1.0.3 and Theorem 1.0.4 can be used to address Torelli type
questions. Indeed, by Theorem 1.0.1, we know that the Kuznetsov component does not determine the
cubic fourfold. More generally, in [48] Huybrechts and Rennemo proved a categorical version of Torelli
Theorem, which essentially states that two cubic fourfolds are isomorphic if and only if there is an
equivalence between their Kuznetsov components which satisfies an additional property (see Section
4.4.1). As explained in the Appendix of [7]|, where they treated the case of very general cubic fourfolds,
the interpretation of the Fano variety Fy as a moduli space of stable objects in Ku(Y") can be used to
give a different proof of the categorical version of Torelli Theorem for cubic fourfolds. Thus, Theorem
1.0.3 allows to apply this argument without assumptions on Y (Corollary 4.4.1).

On the other hand, a direct consequence of Theorem 1.0.4 is the identification of the period point
of My with that of Fy and Y.

Proposition 1.0.5 (Proposition 4.4.2). For a cubic fourfoldY not containing a plane, the period point
of My is identified with the period point of the Fano variety Fy .

Finally, a still open question is the Derived Torelli Theorem, which essentially states, in analogy
to the case of K3 surfaces, that two cubic fourfolds are Fourier-Mukai partners if and only if they
have Hodge isometric Mukai lattices. An evidence of this conjecture is that it has been proved by
Huybrechts in [47] under genericity assumptions (see Remark 2.4.2). Section 4.4.3 is an attempt to
extend this result for every cubic fourfold. In particular, we show that our strategy works in the simple
case of the identity on Ku(Y'), as explained below.

Proposition 1.0.6 (Proposition 4.4.3). Let Y be a cubic fourfold not containing a plane. Then the
composition of the projection functor on the Kuznetsov component of Y with the embedding Ku(Y') —
D®(Y) is a Fourier-Mukai functor with kernel given by the restriction of the (quasi-Juniversal family
on My(2\1 + X)) xY toY xY.

Related works. The problem of finding Fourier-Mukai partners has already been studied in [16], in
the case of cubic fourfolds containing a plane. In particular, they proved that the very general cubic
fourfold in Cg has only one isomorphism class of Fourier-Mukai partners (see [16], Proposition 6.3).

In [62] the authors gave an interpretation of LLSvS geometric picture in the categorical setting. In
particular, they described My, and My as components of moduli spaces of Gieseker stable sheaves on
Y. For very general cubic fourfolds, they also realized the contraction from My, to My via wall-crossing
in tilt-stability.

We point out that Theorem 1.0.3 and Theorem 1.0.4 were proved for very general cubic fourfolds
in the Appendix of [7] and [62], respectively. In this situation, the algebraic Mukai lattice of Ku(Y)
is exactly the A, lattice. This property rules out most of the potential walls, allowing to prove the
theorems without going through the construction of the stability conditions. It was made clear in [3]
and [62] that for each twisted cubic C, the object F{, is the correct one to consider.

Notation. We use the following terminology: a cubic fourfold Y is very general if rk(H?2(Y,Z)) =

)
while a very general special cubic fourfold Y (i.e. a very general Y in a divisor Cy) has rk(H*?(Y’ Z)
2.
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Chapter 2

Recollection of results

In this chapter we review some known aspects about Hodge theory for cubic fourfolds following [39],
the definition of Mukai lattice for the Kuznetsov component given in [4] and the statement of the
Derived Torelli Theorem for very general special cubic fourfolds as in [47]. Finally, we recall some
results concerning Fourier-Mukai partners of (twisted) K3 surfaces stated in [81] and [67], which we
will use in the next.

2.1 Special cubic fourfolds and associated K3 surface

Let Y be a cubic fourfold; the Hodge diamond of Y is

1
0 0
0 1 0
0 0 0 0
0 1 21 1 0

Indeed, the cohomology in degree < 3 is the same as that of P5 by Lefschetz Hyperplane Theorem.
Moreover, since wy = Oy (—3) is antiample, we have that H°(Y,wy) = 0. The other Hodge numbers
for H*(Y,Q) were computed by Hirzebruch in [42], Chapter 22.

By classical results of Hodge theory and classification of quadratic forms, we have that the lattice
given by the degree four integral cohomology group H*(Y,Z), endowed with the intersection form
(, ) with reversed sign, is isometric to the odd unimodular lattice L := Iz = Z®?*®Z(—1)®2! (see
Example 0.2.4). It contains an element h such that (h,h) = —3, corresponding to the square of the
class of a hyperplane in Y. For reasons which will be clear later, we prefer to consider the group
H*(Y,Z)(1), where (1) denotes the Tate twist, which carries a weight-two Hodge structure. By [39],
Proposition 2.1.2, the twisted primitive lattice H*(Y,Z)o(1) with intersection form of reversed sign is
isometric to

L0 := Ay(—1) @ U®? @ Eg(—1)%2.

We set
Q:={yeP(L°QC): (y,y) =0, (y,7) > 0}. (2.1)

The choice of a connected component D’ of () determines the local period domain for cubic fourfolds.
Let I't be the subgroup of the group of automorphism of L, preserving the class h and the component
D'. The global period domain of cubic fourfolds is the quotient D := I'"\D’. We denote by C the
moduli space of cubic fourfolds and let

7:C—>D
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be the period map. Voisin proved that 7 is an open immersion, i.e. Torelli Theorem holds for cubic
fourfolds (see [94]).

A cubic fourfold Y is special if there exists a rank-two (negative definite) primitive sublattice
(K, (,)) of H{Y,Z) n H**(Y), containing the class h. This lattice K is a labelling for Y. We
will write K; to underline the fact that the labelling has discriminant d. By Hassett’s work, special
Hodge structures with a labelling of discriminant d form a divisor D/ in the local period domain. If
Dy = I''\D/, then C4 = C n Dy (via 7) is the irreducible divisor in C of special cubic fourfolds of
discriminant d. By [39], Theorem 1.0.1, the divisor C4 is non empty if and only if

d> 6 and d = 0,2(mod6). (0)

It turns out that there are numerical conditions on d which ensure the existence of an associated K3
surface, as we explain in the following proposition.

Theorem 2.1.1 (|39], Theorem 1.0.2). Let Y be a cubic fourfold in Cq with labelling K4. There exist
a K3 surface X with polarization class of degree d and an isometry of Hodge structures

Ki = H*(X,Z)o

between the orthogonal sublattice to Kq in HY(Y,Z)(1) and the degree two primitive cohomology of the
K3 surface, if and only if d satisfies the following condition:

44d,9¢1d, ptd for any odd prime p such that p = 2(mod 3). (a)

We point out the following property concerning the discriminant group d(K dl) of K dL, endowed
with the discriminant form At induced by the intersection form.

Proposition 2.1.2 ([39], Proposition 3.2.6). If d = 0(mod6), then d(K;) = Z /3Z & Z /3Z, which is
cyclic unless nine divides d. Furthermore, we may choose this isomorphism so that

arc1 ((0,1)) = —g(monZ) and gy ((1,0)) = > (mod 22).

oL
If d = 2(mod 6), then d(K7) =~ Z /dZ. Furthermore, we may choose a generator g so that

1—2d
e (9) = 3T(mod 2Z).

2.2 Immersion into the moduli spaces of K3 surfaces

In [39], Section 5.3, Hassett proved that the existence of an isometry of Hodge structures as in Theorem
2.1.1 allows an identification between the moduli space of marked special cubic fourfolds of discriminant
d and the moduli space of degree d polarized K3 surfaces. Let us explain this observation. We fix
a rank-two, negative definite, primitive sublattice K45 < L of discriminant d, containing h. We write
I’; to denote the subgroup of the group of automorphisms of L fixing the class h and preserving the
labelling K. Let Dllab be the global period domain which parametrizes Hodge structures z € D" with
K4 < H*%(z) n L, modulo the action of F:{, ie.

Db .= T \Dy.
We say that Dilab is the global period domain of labelled special Hodge structures with discriminant d.

Notice that D}iab is birational to Dy via the morphism D}fb — D. Actually, a very general point in Dy

has a unique labelling. In particular, leb is the normalization of Dy (see [39], Section 3.1)
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Let, now, G:lr be the subgroup of F:l” of automorphisms acting trivially on Ky. Then, the global
period domain of marked special Hodge structures of discriminant d is the quotient

DA GI\D),.

In this new space, two cubic fourfolds having the same labelling K; which comes from different primitive
embeddings in H??(—) n L are not identified. The relation between D" and D% is explained in the
following proposition.

Proposition 2.2.1 (39|, Proposition 5.3.1). The group G;’ is equal to F(‘; (resp. the group G(‘; is an
indez-two subgroup of T'Y ), if d = 2(mod 6) (resp. if d = 0(mod 6)).

The forgetful map p : D" — D(lfb is an isomorphism (resp. a double cover), if d = 2(mod 6) (resp.
if d = 0(mod6) ).

Remark 2.2.2. If d = 0(mod6), then the Hodge structures on L° represented by elements in the
same fiber of p are exchanged by the automorphism v of I't such that v ¢ Gg (see [39], the proof of
Proposition 5.3.1).

On the other hand, let N, and Ny be respectively the local and the global period domains for K3
surfaces with polarization class of degree d. We have the following result.

Theorem 2.2.3 (|39], Theorem 5.3.2, 5.3.3). Let d be a positive integer satisfying conditions (0) and
(a). Then, there exists an isomorphism

Ja : DF" — Ny,

which is unique up to the choice of an element in Iso(d(K7),d(AY))/(£1), which is the quotient of the

set of all such isomorphisms of discriminant groups by the action of the group {n € Z /dZ : n® = 1}.

2.3 Mukai lattice for Ku(Y)

Let us now consider the categorical framework. We have already mentioned in the introduction that
the subcategory Ku(Y") of a cubic fourfold Y behaves in a certain way as the derived category of a K3
surface. In [57], Kuznetsov proved that for certain special cubic fourfolds Y, there exist a K3 surface
X and an equivalence of categories Ku(Y) = DP(X). In general, if this condition is satisfied, we say
that Ku(Y') is geometric. In [4], Addington and Thomas explained the relation between Kuznetsov’s
K3 surface and Hassett’s Hodge theoretic associated K3 surface. Let us recall the construction.

We denote by K (Y )op the topological K-theory of Y, which in this case is just the Grothendieck
group of topological complex vector bundles over Y. Recall that the Euler pairing on K (Y )¢op is given
by x(E,F) = >..(—1)'dim Hom(E, F[i]). Let

4
v: K(Y )top ®Q = P H?(Y,Q)(p),

p=0

be the isomorphism induced by the Mukai vector, which is defined by v(—) = ch(—).4/td(X) (see [44],
Definition 5.28). Then v induces a weight-zero Hodge structure on

K(Ku(Y))top := {k € K(Y )top : X([Oy(i)],x) =0, for all i = 0,1,2}.
More precisely, we have that

K(Ku(Y))p®C = D ) HP(Ku(Y)),
ptq=
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where

) (Ku(Y)) = v (H¥ (V)

and

H"' (Ku(Y)) =v ' (H(Y,C)@ H''(Y) @ H**(Y) @ H*(Y) @ H'(Y, C)).

We denote by H(Ku(Y),Z) the lattice K (Ku(Y))top(—1) with the induced weight-two Hodge structure:
it is isomorphic to the lattice A := Eg(—1)92 @ U®* and it is called the Mukai lattice of Y (see [4],
Section 2.3). Let

NEKu(Y)) := AN (Ku(Y),Z) = A (Ku(Y)) n H(Ku(Y), Z)

be the generalized Néron-Severi lattice of Ku(Y') and we denote by T'(Ku(Y)) its orthogonal comple-
ment in H(Ku(Y),Z), which is the generalized trascendental lattice of Ku(Y). Then, there exist two
elements A1, Ay in N(Ku(Y')), corresponding to the projections in Ku(Y') of the structure sheaf of a
line in Y twisted by 1 and 2 respectively, spanning a rank two sublattice with intersection matrix

2 -1
e (2 3).
Proposition 2.3.1 ([4], Proposition 2.3). The Mukai vector induces an isometry between the orthogonal

complement Ay of As in ]:{(Ku(Y),Z) and the primitive lattice (Y- = H*(Y,Z)o(1). Moreover, if
Kl,--.,kn are elements of H(Ku(Y'),Z), then v induces an isometry

<)\1, )\2, Klyeon, Kn>J' = <h, CQ(K/]_)7 e ,CQ(K,n)>J‘.

Remark 2.3.2. Since, by definition, the lattice Ag is contained in N(Ku(Y')), the orthogonality
condition implies that T(Ku(Y')) is in Ay. In particular, as observed in [47], Section 3.3, the orthogonal
complement to the trascendental lattice in As is N(Ku(Y)) n As.

Theorem 2.3.3 ([4], Theorem 1.1). If Ku(Y) is geometric, then Y belongs to Cq for some d satisfying
condition (a) of Theorem 2.1.1. Conversely, for each d satisfying (a), the set of cubic fourfolds Y in
Cq for which Ku(Y) is geometric forms a Zariski open dense subset.

Remark 2.3.4. In [8], the authors prove that every Y € C4 for d satisfying (a) is geometric, extending
Addington and Thomas’ result to the whole divisor (see [69], Theorem 3.7).

In [47], Proposition 3.4, Huybrechts proved that, given two cubic fourfolds Y and Y’ the existence
of a Fourier-Mukai equivalence Ku(Y) — Ku(Y”) implies the existence of a Hodge isometry of the
corresponding Mukai lattices. The surprising fact is that, under some assumptions, the category
Ku(Y) is completely determined by the Hodge structure on H(Ku(Y),Z), as we recall in the next
section.

2.4 Associated twisted K3 surface

In [47], Huybrechts generalized Theorem 2.1.1 and Theorem 2.3.3 to the case of cubic fourfolds admit-
ting an associated twisted K3 surface. We recall that a twisted K3 surface is the data of a K3 surface
X and a class in the Brauer group H?(X, O% )tors of X. Following [49], Section 2, let B be a rational
class of H?(X,Q), which is sent to o through the composition

H*(X,Q) — H*(X,0x) 2% H*(X,0%).

46



We say that B is a B-field lift of . We denote by H (X, a,Z) the cohomology ring H*(X,Z) with the
Mukai pairing and the weight two Hodge structure defined by

H*Y(X,a) := exp(B)H**(X) and HY' (X, «):= exp(B)H"(X).

We see that H(X7 «, Z) is isomorphic as a lattice to A and we call it the Mukai lattice of (X, ). We
can consider the algebraic part

N(X,a) = HYY(X,0,7) := HYY(X,0) n H(X, o, Z)

and we define the generalized twisted trascendental lattice T'(X, ) as the orthogonal complement of
N(X, ) with respect to the Mukai pairing. On the other hand, using the intersection product with
B, we can identify the class a with a surjective morphism « : Tx — Z Jord(a)Z. Then, the kernel
of « is isomorphic via exp(B) to T(X, «) (see [43], Proposition 4.7). For this reason, we will use the
same notation for T'(X, ) and ker(a) (resp. for N(X, ) and the orthogonal complement of ker(a) in
H(X,,Z)), even if the first one is primitively embedded in H (X, «,Z), while the second one is not.

As in the untwisted case, the condition of having an associated twisted K3 surface on the level of
Hodge structures on the Mukai lattices depends only on the value of the discriminant d.

Theorem 2.4.1 (|47], Theorem 1.3). LetY be a cubic fourfold. There exist a twisted K3 surface
(X, @) and a Hodge isometry H(Ku(Y),Z) =~ H(X, «, Z) if and only if Y belongs to Cq for d such that

n; = 0(mod 2) for all primes p; = 2(mod 3) in 2d = prl (a’)
Moreover, Theorem 2.3.3 and Remark 2.3.4 have the following analogous in the twisted setting.

e If there exists a twisted K3 surface (X, «) such that the category Ku(Y') is equivalent to the
derived category DP (X, a) of bounded complexes of a-twisted coherent sheaves on X, then the
cubic fourfold Y belongs to Cy for d satisfying condition (a’) of Theorem 2.4.1 (see [47], Theorem

1.4(1)).

e In [47]|, Theorem 1.4(ii), Huybrechts proved that if d satisfies (a’), then a Zariski open subset
of cubic fourfolds Y in the divisor Cq have Ku(Y) => DP(X,«). In [8], the authors extend this
result to all cubic fourfolds in Cy.

Remark 2.4.2 (Derived Torelli Theorem). In [47|, Theorem 1.5(ii), Huybrechts proved that for d
satisfying (a’) and a Zariski dense open set of cubics Y € Cg4, there exists a Fourier-Mukai equivalence
Ku(Y) = Ku(Y”) if and only if there exists a Hodge isometry H(Ku(Y),Z) =~ H(Ku(Y"),Z). Now,
using that every Y in such a divisor has Ku(Y) = DP(X, a) by [8], we can extend this result to all
the divisor Cy4 following the same proof of [47] (see [69], Theorem 3.27).

Remark 2.4.3. Set

Q:={peP(ARC): (p,p) =0,(p,p) > 0}.
A point ¢ € Q is of K3 type (resp. of twisted K3 type) if there is a K3 surface X (resp. a twisted K3
surface (X, «)) such that the Hodge structure defined by ¢ on A is Hodge isometric to H(X,Z) (resp.

H(X,a,Z)) (see [47], Definition 2.5). We denote by Qks (resp. Qg) the set of points of K3 type
(resp. of twisted K3 type) n Q.
Notice that D' < Q < Q, as L° ~ AZL. Thus, we can consider the sets
DKg = QK3 NnD and DK3’ = QK3’ N D/,
containing period points in D’ of (twisted) K3 type (see [47], Section 2.5).
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2.5 Counting formulas for Fourier-Mukai partners of a K3 surface

The aim of this section is to recollect some known formulas which count the number of isomorphism
classes of (twisted) Fourier-Mukai partners of a given (twisted) K3 surface. We recall that a twisted
Fourier-Mukai partner of a K3 surface X (resp. of a twisted K3 surface (X, «)) is a twisted K3 surface
(X', a’) such that there exists an equivalence of categories D?(X) = DP(X’, /) (resp. DP(X,a) =
DP(X’,)); if the Brauer class o is trivial, we say that the Fourier-Mukai partner is untwisted.

The first result concerns the number of isomorphism classes of untwisted Fourier-Mukai partners
of a very general polarized K3 surface, which is determined by the number of distinct primes in the

factorization of the degree of the polarization class.

Theorem 2.5.1 ([81], Proposition 1.10). Let X be a K3 surface with Néron-Severi lattice NS(X) of
rank one generated by a polarization class lx such that lg( = 2n. Let m be the number of (isomorphism
classes of ) Fourier-Mukai partners of X ; then we have:

em=1,ifl3%=2ori3 =2,
o m=2""1 if 13 =2p ... pit,
o m=2" if 1% =200t .. .ph,
where a, h and the e;’s are natural numbers with a = 2, the p;’s are different primes such that p; = 3.

More generally, Ma proved in [67] a counting formula for isomorphism classes of twisted Fourier-
Mukai partners of a twisted K3 surface (X, @) which admits an untwisted Fourier-Mukai partner (see
[67], Theorem 1.1). Moreover, relaxing this hypothesis, he obtained an upper bound to the number of
twisted Fourier-Mukai partners of (X, a). We conclude this paragraph by resuming Ma’s construction,
which will be useful in the next chapter.

Let (X, ) be a twisted K3 surface with ord(«) = k. We recall that a twisted K3 surface (X', o)
is isomorphic to (X, a) if there exists an isomorphism F : X =~ X’ such that F*o/ = a. We denote
by FM" (X, ) the set of isomorphism classes of Fourier-Mukai partners (X', /) of (X, a), having o/
of order r. We say that (X1, ;) and (X2, a2) in FM"(X, a) are ~-equivalent if there exists a Hodge
isometry g : T'x, = Tx, such that g*as = a;. We define the quotient

FM'(X,a) = FM"(X,a)/ ~

and we denote by m : FM"(X,a) - FM"(X,a) the quotient map. Let I"(d(T(X,«))) be the set of
all isotropic subgroups of order 7 of the discriminant group (d(T'(X, @), g7(x,q)) of T(X, @), i.e.

I'd(T(X,«a))) := {x edT(X,a)): qT(Xa)(az) =0e€Q/2Z,ord(x) = r} .

We define the map
p: FM"(X, o) = Opge(T(X, ) \I"(d(T(X, @))), (2.2)

where Opqg(7'(X, @) is the group of Hodge isometries of the generalized trascendental lattice, in the
following way. For every (Xj,a;) in FM" (X, a), there exists a Hodge isometry g; : T'(X1, 1) =
T(X,«). Then

gi/ (TX1) ~ TXl ~ %

T(X,0) ~ T(X1,01) ~ 1Z
is an isotropic, cyclic subgroup of d(T'(X, «)) of order r. Thus, for every class [( X1, a1)] in FM"(X, a),
we set

p([(X1,01)]) = 2 := [g1(a7 1 (1))] € Onag(T(X, )" (d(T (X, ))).
We have that:
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1. The map pu is well-defined and injective (see [67], Lemma 3.2);
2. The image of u is contained in Onqg(7(X, a))\J"(d(T(X, @))), where
J(d(T(X,a))) ={xeI"(d(T(X,))) : there exists an embedding U — (N (X, «), A(z))},
for A1 d(T(X, ) = d(N(X, a)) (see [67], Proposition 3.4).
On the other hand, for every (X1, aq) in FM" (X, «), we can define a map
vim H(m(X1,a1)) = T(X1, 1) Y\Emb(U, N(X1)), (2.3)

where Emb (U, N(X1)) is the set of the embeddings of U in N(X;) = H°(X1,Z)®NS(X,)® H*(X1,7Z)
and I'(X1, a1) 7T is the set of orientation-preserving isometries of N(X1), ! which come from isometries
of T, fixing o (see [67], Section 3.2). We have that:

1. The map v is injective (see [67], Lemma 3.5);

2. The map v is surjective if and only if the Céldararu’s Conjecture holds (see [67], Remark 3.7).

We recall the statement of Cdldararu’s Conjecture, which was proposed for the first time in [23],
Conjecture 5.5.5.

Conjecture 2.5.2 ([67], Question 3.8). Let (X, ) be a twisted K3 surface. For each untwisted Fourier-
Mukai partner X' of X and each Hodge isometry g : Tx: = Tx, the twisted K3 surface (X', g*a) is a
Fourier-Mukai partner of (X, a).

Remark 2.5.3. We point out that Conjecture 2.5.2 is related to an other conjecture due to Céldararu,
which asks whether two twisted K3 surfaces having Hodge isometric twisted trascendental lattices are
Fourier-Mukai partners. This conjecture is known to be false in general by [49], Example 4.11.

To state Ma’s formula, we need to introduce some notation. For every x in I"(d(T'(X, a))), we
define the overlattice
T, :={x,T(X,a))
of T(X, «) and the morphism
Ty _ L
TX.a) = W=7

oy Ty —

For a pair (z, M) such that
A(z),N(X,a)=U® M,
we define the number
(2, M) := #(Ondg (T, az)\O(d(M))/O(M)),
where Opngg(T%, @) is the set of Hodge isometries g of T, such that g*o, = a,. For a natural number

r, we define
1, ifr=1,2

e(r) = {2, itr>3.

Finally, if G(L) is the genus of a lattice L, O(L)g is the kernel of the map 71, : O(L) — O(d(L)) and
O(L)¢ is the subgroup of O(L)y of orientation-preserving isometries, we define the subsets

Gi(L) :=={L'e G(L) : O(L")§ # O(L)o}, Ga(L):={L €G(L):O(L") = O(L)o}.

Using the previous observations, Ma proved that the following inequality holds.

'In general, given a lattice L of signature (l4,1-) with I+ > 0, we can consider the set of oriented positive definite
l4+-planes in L ® R. An orientation for L is the choice of an orientation for such a positive definite [;-plane. For a
subgroup I' of O(L), we denote by I'" the subgroup of isometries of I" which preserve the given orientation (see [67],
Section 2.1).
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Theorem 2.5.4 (|67], Proposition 4.3). We have the inequality

#HFM' (X, 0) <)’ {ZT(x, M) +e(r) Y 7(z, M’)} . (2.4)
T M M’
Here:

o x runs over the set Onqg(T(X, a))\J"(d(T(X, )));

o the lattices M and M’ run over the sets Gi(My), Ga(My) respectively, where M, is a lattice
satisfying (M), N(X,a)) = U @ M,.
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Chapter 3

Fourier-Mukai partners of cubic fourfolds

In this chapter we present the proof of Theorem 1.0.1 and Theorem 1.0.2, which are the main results
of [87].

3.1 Construction of the examples (untwisted case)

The aim of this section is to prove Theorem 1.0.1, whose statement is the following.

Theorem 3.1.1. Let d be a positive integer satisfying (0) and (a). Let Y be a very general cubic
fourfold in Cq and let m be the number of non-isomorphic Fourier-Mukai partners of an associated K3
surface to'Y. Then, the cubic fourfold Y has exactly m non-isomorphic Fourier-Mukai partners, when
d = 2(mod 6); otherwise, if d = 0(mod6), the number of non-isomorphic Fourier-Mukai partners of Y
is equal to [m/2].

In the first paragraph we exhibit some preliminary computations on the level of the period domain
of (marked) cubic fourfolds, while in the last section we provide the proof of the theorem.

3.1.1 Some preliminary computations

Let Y be a very general special cubic fourfold in C; with d satisfying condition (a) of Theorem 2.1.1; let
us choose a K3 surface X of degree d associated to Y. In this section we study the number of distinct
points in the period domain D; determined by the non-isomorphic representatives of the isomorphism
classes of untwisted Fourier-Mukai partners of X.

We recall that N(Ku(Y')) has rank 3, because Y is very general in Cq (see [47], Lemma 2.2).
Let vy be a generator of the rank one lattice N(Ku(Y)) n Ay. Let m (possibly equal to 1) be the
number of isomorphism classes of Fourier-Mukai partners of X. We fix a representative for each class
of isomorphism and we denote them by Xi,..., X,,, choosing X; := X. By [83], Theorem 3.3, this is
equivalent to ask that, for every index 2 < k < m, there exists a Hodge isometry H(X,Z) = H (X}, 7).
In particular, the Néron-Severi lattice of X has rank one with the polarization class of degree d. We
denote by ) the point in the local period domain N/, which is determined by the Hodge structure on
the trascendental lattices of the K3 surface Xj. These points also descend to different points in the
global period domain N, since they come from non-isomorphic polarized K3 surfaces.

Composing the isometries of Proposition 2.3.1 and of Theorem 2.1.1, we get the isometry of Hodge
structures

¢ : T(Ku(Y)) = O\, Ao, oyt = HA(X, Z)y = Tk,

where the trascendental lattice T'(Ku(Y)) is defined in Section 2.3. This induces an isomorphism
Dy A
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between the local period domains. For every 1 < k < m, we denote by y the preimage of z; with
respect to j'. By definition, the point y; parametrizes a special Hodge structure with labelling of
discriminant d on Ay . In particular, there exists a class vy, in Ay with (vg,vx) = (vy,vy), such that
if Ty, = (Z vp)t in AQL, then there is an isometry of Hodge structures ¢y, : Tx, = Tj.

As verified in the proof of Theorem 5.3.2 of [39], the isomorphism j' descends to an isomorphism

DI A

Thus, the points y1, . . ., ym descends to distinct points, which we denote in the same way, in the period
domain D",

Let us consider their images in the global period domain Diﬁb; here, these points could be identified.
By the way, we observe that, if some of them are not identified in Dilab, then they correspond to distinct
points in the global period domain D,;. Indeed, the map sending D}iab in Dy, which forgets the labelling,
is an isomorphism on very general points of Dy .

In particular, it is enough to study the behavior of the forgetful map p : DJ**" — D}iab over the
points 91, ..., Ym, to understand how many of them define different very general special Hodge struc-
tures of discriminant d. According to Proposition 2.2.1, we have to distinguish two cases depending

on the value of the discriminant.

Case d = 2(mod 6): by Theorem 2.2.3, we have that the map p is an isomorphism. Hence, y1,...,¥m
are not identified by the action of F;’ and they determine m distinct very general special Hodge struc-
tures of discriminant d.

Case d = 0(mod 6): by Theorem 2.2.3, the map p is a double cover. Thus, it is possible that there
exist two indexes 1 < ky # kg < m such that yg, and yx, belong to the same fiber of p. As recalled in
Remark 2.2.2, this is equivalent to asking that the diagram

Ty, —— Ay

;l b (3.1)

T, —— AL

2

commutes. Moreover, we have that ~ induces an isometry of Hodge structures between Tx,, and Ty,
which we denote by 7/, via ¢y, and ¢g,. The isometry 4/ does not extend to an automorphism of
A = Eg(—1)®2 @ U®3, as we prove in the next lemma.

Lemma 3.1.2. The K3 surfaces Xy, and Xy, are not isomorphic.

Proof. Keeping the notation used above, we have that the lattices Tk, , T, sit in the diagram (3.1), by
hypothesis.

First of all, we prove that the isometry +' does not extend to an automorphism of A. Indeed, let
%" be the isomorphism over the discriminant groups induced by +/, which respects the discriminant
quadratic forms. By construction, we have 7/ := (¢,) 1 0y 0 ¢, ; thus, passing to the discriminant
groups, we have the following commutative diagram:

%)
d(Tx,,) — d(T},)

ﬂ b . (3.2)
Pko

d(Tx,,) —2 d(T},)

By Proposition 0.2.7 ([76], Proposition 1.6.1), we have that d(T,_ ) is isomorphic to the discriminant
group of the Néron-Severi lattice d(NS(X,)) for every ¢ = 1,2. As a consequence, there exists an
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induced isomorphism

Vv + dNS(Xp,)) — d(NS(Xp,).)

Now, by Proposition 0.2.8 (|76], Proposition 1.5.2), we have that the isometry 4’ extends to the whole
A if and only if the isomorphism 7}, comes from an isometry of the form NS(X},) = NS(X},). But, we
recall that NS(Xy,) = ZI, for every i = 1,2. Hence, there exist only two isometries between NS(X}, )
and NS(Xp,), defined by sending the polarization class Iy, to I, (resp. to —l,).

Let us suppose that the isomorphism of discriminant groups 7% comes from one of these two
isometries. Then, it has to act as the multiplication by 1 or —1 on the generators of the discriminant
groups. By diagram (3.2), we deduce that the same property holds for the isomorphism 7 : d(7},) =
d(Ty,). We recall that, for every i = 1,2, the lattice T}, is isometric to the orthogonal complement in L
of the labelling Ksi. Thus, the induced isomorphism between the discriminant groups d(KsiL)’s acts
as the multiplication by +1 on the generators, in contradiction with the definition of v (see Remark
2.2.2). Thus, we deduce that the isomorphism 7%, does not arise from an isometry NS(X}, ) = NS(X,)
and, hence, the isometry 7' does not extend to an isometry of A, as we stated.

Finally, we observe that there cannot exist an isometry between the cohomology groups H?(X, ,Z)
and H?(X},,7Z), because it should be an extension of 7/. Hence, by Torelli Theorem for K3 surfaces,
we deduce that the K3 surfaces Xy, and X}, are not isomorphic, as we wanted. O

Anyway, the fibers of the map p contain two points. Hence, we deduce that our points y1,...,ym
descend to at least [m/2] different Hodge structures in Dy.

On the other hand, we observe that if 1" is a sublattice of A which is Hodge isometric to T,
then the lattice v(T'), with the Hodge structure induced by that one on T through ~¢, satisfies the
same property. As a consequence, we obtain that the K3 surface X, ) with trascendental lattice v(7)
is a Fourier-Mukai partner of X. Since by Lemma 3.1.2 they are non-isomorphic K3 surfaces, their
corresponding period points in Ny define two distinct period points in D}**, which belong to the same
fiber of p. It follows that the m points y1,...,y, determine exactly [m/2]| different special Hodge

structures of discriminant d.

3.1.2 Proof of Theorem 1.0.1

Keeping the notation introduced in Section 3.1, we set

_m if d = 2(mod 6)
PV my/2] it d = 0(mod6).

Firstly, we prove that p is an upper bound to the number of Fourier-Mukai partners of Y. Actually, this
represents an alternative way to prove the finiteness result of [47]|, Corollary 3.5, under the previous
hypotheses.

Proposition 3.1.3. Let Y be a very general cubic fourfold in Cq with d satisfying condition (a)
of Theorem 2.1.1. If the associated K3 surface X admits m (possibly equal to one) non-isomorphic
Fourier-Mukai partners, then the cubic fourfold Y cannot have more than m (resp. [m/2]|) Fourier-
Mukai partners if d = 2(mod 6) (resp. if d = 0(mod6)).

Proof. Consider the p distinct points y1, ... ,y, € Dg defined in Section 3.1.1. We claim that y; belongs
to the image of the period map of cubic fourfolds for every 1 < k < p. Indeed, we observe that d is
not 2 or 6, because d satisfies condition (0), as C4 is not empty. Moreover, the point y; is very general
in Dy, thus it has a unique labelling, as recalled in Section 2.2. It follows that y; is a period point in
the complement of Dy U Dg. By [63], Theorem 1.1, there exists a cubic fourfold Yj in C; such that
7(Yr) = yi, as we wanted.
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Now, let Y’ be a Fourier-Mukai partner of Y, i.e. such that there exists an equivalence Ku(Y) —
Ku(Y”) of Fourier-Mukai type. By [47], Proposition 3.4, this induces a Hodge isometry H(Ku(Y),Z) =~
H(Ku(Y"),Z). Notice that Y is a very general element in Cy, as Y is. Thus its period point 7(Y’) € Dy
corresponds to a point in D}fb which we denote in the same way. Let v’ € D' be a point in the fiber
p1(7(Y")). We set 2’ := j(y') € Ng. The point z’ corresponds to a very general K3 surface X’ with
unique primitive polarization Iy, of degree d. In particular, since H(Ku(Y”),Z) is Hodge isometric to
the Mukai lattice H(X', 7Z), it follows from [83], Theorem 3.3 that X’ is a Fourier-Mukai partner of X.
Thus, there exists an index k € {1,...,m} such that, if [x, denotes the unique primitive polarization
on Xy, then (X', lx/) = (Xy,lx,) as polarized K3 surfaces. Equivalently, we have that the points z’
and zj, are identified in Ny. Since j is an isomorphism, it follows that y, = ¢/ in D7, In particular,
they represent the same point in Dg: by the Torelli Theorem for cubic fourfolds, we conclude that Y’
is isomorphic to Y. This implies the desired statement. O

We are ready to prove Theorem 1.0.1, which is formulated in a more precise way using Theorem
2.5.1.

Proposition 3.1.4 (Theorem 1.0.1). Let d be a positive integer satisfying conditions (0) and (a).
Then, the number of isomorphism classes of Fourier-Mukai partners for a very general cubic fourfold
m Cyq is

e p=2""1 ifd=2(mod6) and the prime factorization of d has h > 1 distinct odd primes;
e p=2""2 ifd=0(mod6) and the prime factorization of d has h > 2 distinct odd primes;
e p =1, otherwise.

Proof. Let Y be a very general cubic fourfold in C4 as in the statement. We consider the p distinct
points y1,...,yp in Dy defined in Section 3.1.1. Arguing as in the proof of Proposition 3.1.3, by [63],
Theorem 1.1, there exist p very general special cubic fourfolds Y7, ...,Y) € C4 such that 7(Y}) = yy, for
k =1,...,p. Notice that Y7 = Y and the cubic fourfolds Y7,...,Y) are not isomorphic to each other
by Torelli Theorem for cubic fourfolds.

By construction, for every 2 < k < p, there is an isometry of Hodge structures

HKu(Y),Z) =~ H(X,Z) =~ H(X;,, Z) ~ HKu(Yy),Z).

By Remark 2.4.2; the existence of such an isometry of Hodge structures implies the existence of a
Fourier-Mukai equivalence between Ku(Y') and Ku(Yy). On the other hand, by Proposition 3.1.3 every
other Fourier-Mukai partner of Y is isomorphic to one of those we constructed. Finally, the counting
formula of Theorem 2.5.1 implies the statement. O

Example 3.1.5. Using Proposition 3.1.4, it is easy to find the divisors in C whose very general
element has non trivial Fourier-Mukai partners. For example, take d = 182, which is = 2(mod 6). By
Proposition 3.1.4 the very general cubic fourfold in C1g2 has one non-isomorphic Fourier-Mukai partner.
If d = 546 = 0(mod 6), then the very general element in Cs46 has one non-isomorphic Fourier-Mukai
partner.

Remark 3.1.6. Notice that, to prove these results, we have fixed an associated K3 surface to Y and,
consequently, an isomorphism between the period domains D7*" and Ny. Actually, we could choose
a Fourier-Mukai partner of X as fixed associated K3 surface to Y: this would have given a different
isomorphism j on the level of period domains and a different identification of Fourier-Mukai partners
of Y with Fourier-Mukai partners of X (see [40], Remark 27). Anyway, the considerations about the

number of Fourier-Mukai partners hold in the same way.
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3.2 Construction of the examples (twisted case)

This section is devoted to the proof of Theorem 1.0.2, whose statement is the following.

Theorem 3.2.1. Let d be a positive integer satisfying (0) and (a°). Assume that 9 does not divide
d. LetY be a very general cubic fourfold in Cq with associated twisted K3 surface (X, «), where o has
order k; let m’ be the number of non-isomorphic Fourier-Mukai partners of (X, «) with Brauer class of
order k. Then the cubic fourfold Y admits at least m’' non-isomorphic Fourier-Mukai partners, when
d = 2(mod 6); otherwise, if d = 0(mod6), the number of non-isomorphic Fourier-Mukai partners of Y
is at least [m'/2].

In particular, in Section 3.2.2 and 3.2.3 we explicit the lower bound to the number of Fourier-Mukai
partners of a cubic fourfold Y as in Theorem 1.0.2, in terms of the number of primes in the prime
factorization of the discriminant of ¥ and the Euler function evaluated in the order of the Brauer class
of the associated twisted K3 surface.

3.2.1 Proof of Theorem 1.0.2

Let Y be a very general special cubic fourfold in C4 such that condition (a’) of Theorem 2.4.1 holds. If d
satisfies in addition (a), then we fix an associated untwisted K3 surface and the following construction
provides the same period points constructed in Section 3. In the general case, the cubic fourfold Y has
a twisted associated K3 surface, which we denote by (X, ) with « of order x, and there is an isometry
of Hodge structures

¢: HKu(Y),Z) ~ HX,o, 7).

Notice that ¢ induces a Hodge isometry ¢ : T(Ku(Y)) = T'(X, ). Recall that T'(Ku(Y)) is isometric
to the orthogonal complement K dL c L% c L of a labelling K4 — L, as Y is very general in Cg. On the
other hand, we identify T(X, «) with an abstract sublattice T of A such that T(X,a) =~ T. In other
words, the lattice T sits in the commutative diagram

T(X,a)— H(X,a,Z)

Jz

lie

Te— A
We have that ¢ induces an isometry
j: Ky =T.
Assume in addition that
9 does not divide the discriminant d. (b)

Notice that condition (b) implies that the discriminant group of 7'(Ku(Y')) and, consequently, also
that of T'(X, «), are cyclic, by Proposition 2.3.1 and Proposition 2.1.2. As a consequence, by [76],
Theorem 1.14.4, the natural embedding

T(X,a) > HX,0,Z) = A (3.3)

is unique up to isometry of A, because rk(N (X, a)) = I(d(T(X,))) + 2 = 3.

Now, let (X', a’) be a twisted Fourier-Mukai partner of (X, «) of order x. By [49], Proposition 4.3,
there is an isometry of Hodge structures H(X, «,Z) =~ H(X', o/, Z). This induces the Hodge isometry
T(X,a) = T(X’,a). Since the embedding of (3.3) is unique in the above sense, we have that T'(X, a)
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and T'(X', o) are identified with the same sublattice T" of A and the weight two Hodge structures
determined by H?%(X,«a) and H*%(X’, o) induce two Hodge structures on 7', which are exchanged
by an isometry fr € O(T). The situation is summarized by the following commutative diagram:

(X, ) T——s
JZ J{fT
X' al) T——
Via j, the lattice T(X’,o/) = T with the Hodge structure induced by H*°(X’,a/) determines a
Hodge structure on K dL. We have then an induced Hodge structure on LY having the generator of
T(X',a')*t < LY in its (1, 1) part. This corresponds to a period point y' in the quadric ) defined
in (2.1). Up to exchanging H*%(X’,a’) with H*?(X’,o/), we can assume that y' is in D). This is
a generalization of the argument used in [39], Section 5.3, to construct the isomorphism of period
domains D/, and N,
The image of ¥’ in Dy (which we still denote by ') is equal to the period point y := 7(Y") if and

only if there is an isometry of K7 induced by T(X,a) =~ T(X’,a’) which extends to an isometry of
L, i.e. which sits in a commutative diagram of the form

~

—

e

~

T( —

T(X,a) T2 K10,

-

T(X',o/) =T & Kt L0

In this case, we would have that the two Hodge structures on K j given by those on T'(X,a) and
T(X', ), respectively, induce the same Hodge structure on LY.

As in the untwisted case, it is convenient to consider firstly the period domain D7*". Here, the
points y and ¢y are identified if and only if they are in the same orbit by the action of G;’. We recall
that elements in G; are isometries of K j acting trivially on the discriminant group d(K j)

Assume that (X', /) is not isomorphic to (X, «). In the next lemma, we prove that y and 3’ are
distinct in the period domain DJ**" under this assumption.

Lemma 3.2.2. The period points y and y' are distinct in DJ.

Proof. We will actually prove that if y = ¢’ in DJ**", then the twisted K3 surfaces (X, a) and (X', o)
are isomorphic, in contradiction with our assumption.
If y and y are the same point in the period domain D7, then there exists an isometry of Hodge
structures
n:T(X,a)=T(X' o),

such that the induced isomorphism 7 between the discriminant groups d(7'(X, «)) and d(T(X’, o)) is
trivial. More precisely, there exists a lattice T, which is Hodge isometric to T(X,«) and T'(X’, o),
such that the map 7, which sits in the diagram

T(X,a) ——=T(X', o)

% F

T— "™ T

acts as the identity on the discriminant group d(7').
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First of all, we prove that the Hodge isometry 7 extends to a Hodge isometry of the trascendental
lattices T'x and T'x/. Indeed, we set

e
T )

T
H:? and H/:

which are cyclic subgroups of d(T') of order k. Thus, H and H’ are the same subgroup, because they
have the same order. Moreover, if 77 denotes the automorphism of d(7") induced by 7, then

nr(H) = idgy)(H) = H.

By [76], Proposition 1.4.2, we conclude that the isometry np extends to an isometry g : Tx = Tx.
By construction, the isometry g preserves the Hodge structures on Tx and Tx/. If we define the
embeddings i : T >~ T(X,a) > Tx ~ Sand i : T = T(X', &) > Tx» =~ S, we have a commutative
diagram

i

T S
nTl J/QS
T-",8

where gg is the isometry induced by g via the identification of Tx and T'xs with a lattice S.
Secondly, we prove that, if the isomorphism 77 acts as the identity on d(7'), then also gg, induced
by gs, is the identity on d(S). Indeed, let us denote by g¢ (resp. n7.) the extension of gg to S (resp. of

nr) to T. We recall that g¢ and 7y are defined by the precomposition with gs and 77, respectively,
and they make the diagram

T8 SV T
UTJ/ lgs Jgg ﬁ%J
T3 SV Tv

to commute. Next, we observe that we have the isomorphisms of groups

v /g v v /it v
SYAT) ST a3 ST

H S H 857

where H = S/i(T) and H' = S/i'(T). We claim that the isomorphism

= ST SY/iN(T)
g: H = H! ’
induced by g¢¢, is identified with gg via the isomorphisms r and r’. Indeed, we have that g§ = 7y |sv
induces the isomorphism
SY SY
i) Ty

g:

which is actually the restriction of 77 to SY/T. Now, we denote by m and 7’ the quotient maps

SV SV, SYSY/i(T)

(T g ") fg
The isomorphism g, defined by § passing to the quotient, is well defined, because
' (§(H)) = 7'(qr(H)) = 7'(H') = 0.
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Thus the diagram

SV /(T 5 SY /(T
/i(T) //( ) (34)
SY gs SV
S S

commutes. Now, we observe that § acts as the identity, since it is induced by nr|(sv /7y which is the
identity map by our hypothesis. Since the diagram (3.4) commutes, we conclude that also gg acts as
the identity map, as we stated.

Finally, we denote by Z [ the rank one lattice which is the orthogonal complement of S in A. Since
d(S) =~ d(Z1), by Proposition 0.2.8, we conclude that the isometry gg extends to an isometry fj of A
and, therefore, the isometry g extends to f : H*(X,Z) =~ H?(X',Z). Furthermore, the restriction of
fa to Z1 is the identity, because by construction it induces the identity on the discriminant group of
Z1. In particular, we deduce that the isometry f preserves the ample cones of X and X’. By Torelli
Theorem, we have that there exists an isomorphism F' between the K3 surfaces X’ and X such that
F* = f. Since, by definition, the isometry f sends the class a to o, we conclude that (X, «) and
(X', ') are isomorphic as twisted K3 surfaces, in contradiction with our assumption. Therefore, we
conclude that y and ' are not the same point in DJ**, as we wanted. O

Proof of Theorem 1.0.2. The representatives of the m’ isomorphism classes of twisted Fourier-Mukai
partners of order k of (X, ) determine m’ distinct period points y, € DJ* by Lemma 3.2.2. Arguing
as in the untwisted case, the proof follows from Proposition 2.2.1, Theorem 1.1 of [63] and Remark
2.4.2. O

Remark 3.2.3. In analogy to the untwisted case, the identification between Hodge structures on the
generalized trascendental lattice of twisted Fourier-Mukai partners of (X, a) with fixed order of the
Brauer class and certain Hodge structures in D/, depends on the choice of the isometry j, or equivalently
of a Fourier-Mukai partner of (X, «). However, the number of Fourier-Mukai partners constructed in
Theorem 1.0.2 does not depend on this choice.

Remark 3.2.4. Notice that it is necessary to assume that ord(a) = ord(a/), in order to extend the
isometry 7 to the trascendental lattices. Indeed, if this condition is not satisfied, then the discriminant
groups of T'x and Txs could not be isomorphic. Actually, we can prove that Lemma 3.2.2 does not
hold in general without this assumption, by giving a counterexample in the untwisted case.

We set d = 2 - 132, which is congruent to 2 modulo 6 and let Y be a very general cubic fourfold
in C4. Since d satisfies condition (a), there exists a K3 surface X, which is associated to Y. By the
counting formula of Theorem 2.5.1, the K3 surface X admits 2° = 1 isomorphism class of Fourier-Mukai
partners. On the other hand, by [67], Proposition 5.1, there exist ¢(13) - 27! = 6 isomorphism classes
of Fourier-Mukai partners of order 13 of X. We denote by (X’,a’) one of them. Assume that there is
a cubic fourfold Y’ € Cy such that H(Ku(Y’),Z) = H(X',o/,Z). By Remark 2.4.2, we have that Y is
a Fourier-Mukai partner of Y. On the other hand, by the counting formula of Theorem 3.1.4, every
Fourier-Mukai partner of Y is isomorphic to Y7 it follows that Y =~ Y’. On the other hand, the K3
surfaces X and (X', a’) cannot clearly be isomorphic.

This prevents us to have a well-defined map between DJ'*" and the period space of generalized
Calabi-Yau structures of hyperkéhler type (see [43] for the definition), and to generalize Theorem 5.3.2
and 5.3.3 of [39] to the twisted case.

3.2.2 Ma’s formula in our setting

The aim of this paragraph is to prove that if we consider a very general cubic fourfold Y in Cy4 satisfying
condition (a’) and (b), then formula (2.4) gives precisely the number of elements in the set FM" (X, a),
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where (X, ) is a twisted K3 surface associated to Y. The key point of the proof is the fact that the
Caldararu Conjecture 2.5.2 holds in this particular case.

Proposition 3.2.5. Let (X,a) be a twisted K3 surface such that there exist a special cubic fourfold
Y of discriminant d and a Hodge isometry H(X,a,Z) =~ H(Ku(Y),Z). If X has rk(NS(X)) = 1, and
91 d, then the number of (isomorphism classes of ) Fourier-Mukai partners of (X, a) of order r is given
by formula (2.4).

Proof. Firstly, we observe that the Caldararu’s Conjecture 2.5.2 holds under our assumptions for every
Fourier-Mukai partner (X1, 1) of (X, «). More precisely, we prove that if a K3 surface X/ has the
trascendental lattice Ty, Hodge isometric to Ty, via g1, then the twisted K3 surface (X1, 0] :=gfaq)
is a Fourier-Mukai partner of (Xi,a;). Indeed, the isometry g; restricts to the isometry of Hodge
structures

f=(g)lrexgap) : T(X1 0h) = T(X1, 1),
Notice that there exists a Hodge isometry T'(X,«) = T'(Xj,a1); therefore, the discriminant group

d(T(X1,a1)) is cyclic. Thus, by Theorem 0.2.9 ([76], Theorem 1.14.1), the isometry f extends to an
isometry of Hodge structures

¢1: H(X},a},2) = H(X1,0a1,7).

By [47], Lemma 2.3, we know that every Hodge structure on A determined by a point in D’ admits a
Hodge isometry that reverses any given orientation of the four positive directions. As a consequence,
up to composing with this isometry, we can assume that ¢, is orientation-preserving: by [50], Theorem
0.1, we conclude that there exists an equivalence of categories Db(X o) = Db(X 1,a1). In particular,
we obtain that the map v of (2.3) is bijective.

To conclude the proof, we show that the map y of (2.2) has image Opqg(T'(X, @) \J" (d(T(X, @)));
in particular, this implies that we have an equality in formula (2.4).

Let z be in J"(d(T (X, ))); by definition, x is an element of I"(d(T(X, «))) such that there exists
an embedding

p:U— M$7

where

M, := (M), N(X,a)) c N(X,a)"
is an overlattice of N (X, «). By [76], Proposition 1.4.1, we have that

d(Mz) = Mx))yH/(AMx)) = ()t [z) = d(Ty).

Thus, by [76], Proposition 1.6.1, we have an embedding M, ®T, — A, with M, and T}, both embedded
primitively. We define the lattice 3
Ay = o(U)t A,

which is isometric to the K3 lattice A, with the Hodge structure induced from T,. By the surjectivity
of the period map, there exist a K3 surface X, and a Hodge isometry

h:H*(X,,Z) = Ay.

We denote by ay, the composition ag o k|7, _; then, we obtain a twisted K3 surface (X, asp).
Now, we observe that the map h induces the isometry

[:T( Xy, ) =keroay, @ kera, = T(X, a).

Moreover, since d(T'(X, «)) is a cyclic group, applying [76], Theorem 1.14.4, we conclude that f extends
to a Hodge isometry

f:H(Xy,a0,Z) ~ HX,a,7Z).
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By [47], Lemma 2.3, we can assume that f is orientation-preserving. By [50], Theorem 0.1, we conclude
that (X, o) belongs to FM"(X, o). By construction, we have that p([(X,, ay)]) = [z].

Finally, we observe that if  and 2’ in J"(d(T(X,«))) are in the same orbit for the action of
Omnag(T (X, )), then the twisted K3 surfaces (X,, ) and (X[, af,), such that u([(Xy,ap)]) = [7]
and p([(X(,, a),)]) = [2'], are ~-equivalent. Indeed, by hypothesis, there exists a Hodge isometry 7 of
T(X, ) which induces an isomorphism 77 on d(7'(X, «)) such that 77(x) = 2/. Then, by Proposition 0.2.6
([76], Proposition 1.4.2), the overlattices (z,T'(X, a)) = Tx,, and {z’,T(X, a)) = Ty, are isomorphic.
Moreover, this isomorphism sends a, to o/W because it is an extension of 7; this observation completes
the proof of the proposition. O

3.2.3 Application of Proposition 3.2.5

Let Y be a very general special cubic fourfold of discriminant d satisfying conditions (a’) and (b). By
Proposition 3.2.5, we have that the number of isomorphism classes of Fourier-Mukai partners of order
k of (X, ) is

m/ =Z{ZT($,M) +€(T)ZT($,M/)}.

T M M’

Let us write m’ in a more explicit way, in order to find numerical conditions on d and x, which
guarantee the existence of non-isomorphic Fourier-Mukai partners for Y. We consider only the case
k = 2, because we have already treated the untwisted case in Section 4.1. Let ¢ be the degree of the
polarization class on X. Notice that d = k?c (see [47], Lemma 2.13).

Lemma 3.2.6. Let g be a generator of the cyclic group d(T(X,«)) of order d. Then
I(A(T(X, ))) = {(anc)g : a & (Z/xZ)"}.

Proof. We observe that every element of the form = = (arc)g with a € (Z/kZ)* belongs to the
set I"(d(T'(X,«))). Indeed, let g be a generator of d(T'(X,«)) as in Proposition 2.1.2. An easy
computation shows that gp(xq)((akc)g) € 2Z and that (arc)g has order k. On the other hand,
the elements of I*(d(T(X,«a))) are all the possible generators of the unique subgroup of order s of
d(T(X,a)) = Z /dZ. O

For every x = (akc)g in I["(d(T(X,a))), we set

M, == \(z),N(X,a)) and H,:= ]\7(]})4(%'

We point out that
JHA(T(X,a))) = {z e I"(d(T(X,))) : M, = U@ ZI with I = ¢}.

Indeed, given z € J®(d(T(X, a))), let (X4, o) be the twisted K3 surface such that u([(Xz, az)]) = [z]
(which exists because u is surjective as showed in the proof of Proposition 3.2.5). Then, by definition,

we have that
N(X;) = {\(z),N(X,a)) and Tx, ={z,T(X,)).

Since T(Xz, ) = T(X, «), we have that
d = |d(T(Xs, az))] = ord(aq)?|d(Tx, )| = #*|d(Tx, )|,

which implies that .
d(My) = d(Tx,) = Z /cZ.

On the other hand, the opposite inclusion follows from the definition of J*(d(T'(X, «))).
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Lemma 3.2.7. Every element x in I"(d(T(X, a))) belongs to J*(d(T'(X, a))).

Proof. Let & = (akc)g be the image via p of the isomorphism class of the K3 surface (X, «), with @ in
(Z /kZ)*. By definition, we have that

U®ZIl=N(X)=(\z),NX,a),

with 12 = ¢; in particular, the lattice U@Z is an overlattice of N(X,a). Let x = (akc)g be an element
in I"(d(T(X,))). Since the groups H, and Hz are cyclic subgroups of d(N (X, «)) of the same order,
they are the same subgroup. By [76], Theorem 1.4.1, we conclude that the overlattices U @ Z1 and M,
are isomorphic. In particular, the element z is in J*(d(T(X, ))). O

Proposition 3.2.8. We have that

©(k)2h2 if k>2andc=2

m' = #FM"(X, o) =
# ( ) {cp(h;)th if k=2 orc>2,

where h is the number of distinct prime factors in the prime factorization of ¢/2 if ¢ > 2, and h = 1 if
c=2.

Proof. We observe that the lemmas of this subsection and the fact that Onqg(T(X, «)) = {#£id} imply
that
1 if k=2,

#(Onag(T(X, )\ (A(T(X, ))) = {;W) if 5> 2

where ¢ denotes the Euler function. On the other hand, as we have already observed, the only lattice
M, such that M, =~ U @ M, is Z1 with 1?2 = ¢. Thus, our computation is actually the same used in
[67], to prove Proposition 5.1. Indeed, we have that

gl(Zl) if c= 2,

QZU:{Z”:{QAZU if ¢ > 2.

Moreover, we notice that

O(Z!l) = {#id} and O(d(Z1)) = {{(K;})h iz : Z’
2Z ’

In particular, the order of the set O(d(Z1)) is 2" if ¢ > 2. Finally, we observe that

{£id} if K =2,

0 Txux:
tag(Tz, az) {ﬁ@ ith> 2.

So, if Kk > 2, then
(k) if c =2,
(k)2" = p(k)2"1 if ¢ > 2.

3
Il
——

NI
€ €

Otherwise, if kK = 2, then

as we claimed. O
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By Proposition 3.2.5 and Proposition 3.2.8, we have that the lower bound given by Theorem
1.0.2 is explicitely determined. In particular, it is easy to construct examples of very general twisted
K3 surfaces and, consequently, of very general cubic fourfolds with an arbitrary big number of non-
isomorphic Fourier-Mukai partners.

Example 3.2.9. Let us take d = 50, which satisfies condition (a’) and (b). A cubic fourfold in
Cso has a twisted associated K3 surface with Brauer class of order kK = 5. By Theorem 1.0.2 and
Proposition 3.2.8, the very general element in Csyp admits at least ¢(5)/2 = 4/2 = 2 (isomorphim
classes of ) Fourier-Mukai partners.

Remark 3.2.10. A natural question is whether it is possible to count Fourier-Mukai partners for a
very general special cubic fourfold Y € C; without associated (twisted) K3 surface. Following the proof
in [81] for the case of K3 surfaces, one could reduce the problem to counting the number of overlattices
A= Ay of S®T, where S = Zvy and T = T(Ku(Y')) are primitively embedded in A. However, to
argue in this way, we need that an isometry between the generalized trascendental lattices lifts to an
isometry of the Mukai lattices. This holds if 9 1 d, as we have already explained in Section 3.2.1. The
second issue is that As is not unimodular; for this reason, the computation performed in [81], Lemma
4.5 cannot be performed in the same way.

62



Chapter 4

Rational curves of low degree on cubic
fourfolds

The aim of this chapter is to prove Theorem 1.0.3, Theorem 1.0.4 and to discuss some applications.
This is the content of [65] which is a joint work with Chunyi Li and Xiaolei Zhao.

4.1 Stability conditions on Ku(Y)

In this section we review the construction of stability conditions on Ku(Y') following [7]. The new
contribution is given by Proposition 4.1.5, where we prove that this construction does not depend on
the line fixed at the very beginning, and Lemma 4.1.6, which is useful to characterize weak semistable
objects with discriminant zero and negative rank by their Chern character.

4.1.1 Summary of the construction and line-change trick

Let us firstly recall the construction of Bridgeland stability conditions on Ku(Y") introduced in [7]| by
Bayer, Lahoz, Macri and Stellari. The key idea of their strategy is to embed the Kuznetsov component
into a “three dimensional” category, where it is easier to define weak stability conditions by tilting, as
explained in Section 0.4.2. More concretely, let us fix a line L < Y which is not contained in a plane
in Y, and we denote by

oY 5Y

the blow-up of L in Y. The projection from L to a disjoint P? equips Y with a natural conic fibration
structure

7Y — P2

In particular, we have an associated sheaf of Clifford algebras over P3, whose even part (resp. odd part)
is denoted by By (resp. By). Let h be the hyperplane class on P? and we use the same notation for its
pullback to Y. We consider the By-bimodules

BQj = Bo ®Ops(jh) and 82j+1 = Bl ®OP3(jh) for j e’l.

As recalled in Example 0.1.32, by Kuznetsov’s work, we have a semiorthogonal decomposition of Db(f/)
with a component given by the essential image of DP(IP3, By) via a fully faithful functor ®. On the other
hand, we can apply Orlov’s blow-up formula reviewed in Example 0.1.31, in order to get a semiorthg-
onal decomposition of DP(Y) with a copy of the DP(Y) and three copies of the exceptional divisor.
Starting from these decompositions, in [7], Proposition 7.7, they proved that there is a semiorthogonal

decomposition of the form
DP(P3, By) = (¥(c* Ku(Y)), By, B2, Bs), (4.1)
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where W : D*(Y) — DP(P3, By) is a fully faithful functor defined by
V(=) = m(=®@ Oy (h) ® EML)).
Here € is a sheaf of right 7*Bg-modules on Y, constructed in Section 7 of [7]. Denote by
Forg : D*(P3, By) — DP(P?)

the forgetful functor; it is known that Forg(&) is a vector bundle of rank 2.

Now the first step is to construct weak stability conditions on the derived category DP (P2, By) :=
DP(Coh(P?, By)), where Coh(P?, By) is the category of coherent sheaves on P? with a right By-modules
structure. It turns out that, in order to obtain a suitable Bogomolov inequality for Db(IP’?’,BO), it is
necessary to modify the usual Chern character. More precisely, for F € Db(IP’3, By), the modified Chern

character is defined as
1 11l

32 )

where [ denotes the class of a line in P3. Notice that it differs from the usual Chern character from
degree = 2. Moreover, the twisted Chern character is given by

chp, (F) = ch(Forg(F))(

2
chg0 = e Phchp, = (tk, chpg, 1 —rk Bh,chp, 2 —Bh - chg, 1 + 1k %h% ).

In the next, we will identify the Chern characters on P? with rational numbers.

One useful property of chp, is that its image lattice is spanned by the modified Chern characters
of A1, A2 and chp, <2(B;) for i = 1,2,3. See the proof of Proposition 9.10 of [7] for details.

We denote by Coh?(P3, By) the heart of a bounded t-structure obtained by tilting Coh(P?, By) with
respect to the slope stability at slope 8. We consider the rank three lattice A%O defined as in Section
0.4.2 just using the Mdified Chern character. Furthermore, the discriminant can be defined as

Apy(F) = (chp, 1 (F))? — 21k(F) chg, 2(F) = (ch 1 (F))* — 2rk(F) chy} ,(F).

Having this notation, we can state the following result, which is the analogous of Proposition 0.4.14 in
our noncommutative setting.

Proposition 4.1.1 ([7], Proposition 9.3). Given a > 0 and 8 € R, the pair 0.5 = (Coh” (P2, By), Za. 5)
with

. 1
Zo,s(F) = ichg (F) + 50” chigy o(F) = ch (F)

defines a weak stability condition on Db(IF’3, By). The quadratic form can be given by the discriminant
Ap,. In particular, for a o, g-semistable object F, we have

Ap,(F) = 0.

Remark 4.1.2. We observe that the last part of Proposition 4.1.1 follows easily from |7|, Theorem
8.3 arguing as in [11], Section 3.

We recall that when chgo’l(]—') # 0, the slope of F associated to o, g is defined as

 R(Zap(F)) b o(F) = Sa?ch o (F)
bt P = S @) T ah,
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Remark 4.1.3. We can represent these weak stability conditions as explained in Section 0.4.3. The
difference is that in this case we prefer to work with the homogeneous coordinates [Chg(},o : chgil :
chgolg] on P(A%O) and the corresponding affine coordinates on AQBO = P(A%O)\{Cho = 0}. Thus, a
weak stability condition defined by the point (a, ) € R-g x R is identified with the weak stability
condition corresponding to the point (8 + 1, M) above the parabola Ag, in Azzao' We will use
this description in the next sections.

The second step is to induce stability conditions on Ku(Y') from the weak stability conditions on
Db(P3,Bo). We only sketch this part as details will not be used. We fix a < i and f = —1, and
we consider the tilting of Coh™!(P?, By) with respect to fa,p = 0. This new heart is denoted by

Coh&_l(ﬂﬂ, By). Note that Ku(Y) embeds into D(P3, By). As shown in [7], Section 9, the pair
0o = (Cohg, 1 (P?,By) n Ku(Y), —iZa,—1) (4.2)
defines a Bridgeland stability condition on Ku(Y).

Remark 4.1.4. Notice that these stability conditions are constructed with respect to the Néron-Severi
lattice N(Ku(Y")) by [7], Proposition 9.10. More precisely, consider the factorization H (Ku(Y'),Z) —

N(Ku(Y)) 5 A%O. We define the element n(c) € N(Ku(Y)) such that Z(u(—)) = (n(o),—). We
denote by P < N(Ku(Y))c the open subset consisting of those vectors whose real and imaginary parts
span positive-definite two-planes in N(Ku(Y))g. Then n(o) is in (A2)c n P.

One subtle issue is that the Clifford structure and the embedding of Ku(Y') in DP(P3, By) depend
on the choice of the line L to blow up. However, for the induced stability conditions on the Kuznetsov
component, we are able to prove the following result.

Proposition 4.1.5. For a fized o > 0, the induced stability condition o, defined in (4.2) is independent
of the choice of L.

Proof. For simplicity, we denote the stability condition by the pair
or = (Ar, Z1).

The central charge Z, factors via ch? ,» which is independent of the choice of L. We need to show that
the heart Aj, is constant.

Let Fy be the Fano variety of lines on Y. If Y contains a plane, then we remove the set of lines
over this plane from the Fano variety and we denote it by Fy to simplify the notation. It is shown
in [8] that o, is a family of stability conditions over Fy, satisfying the openness of heart property. In
particular, if an object F is or,-semistable for a line Ly € Fy, then there exists an open set Uy < Fy,
such that F is op-semistable for any line L € Uj.

Now we show that in our case, this implies that F is o-semistable for any L € Fy . If not, assume
that there exists a line L such that F is not or,-semistable. Then we consider the Harder-Narasimhan
filtration of F with respect to the slicing of o, :

FicFc---cF,=F.

By our assumption, F is or,-semistable, and its phase satisfies ¢(F1) > ¢(F).

Using the openness of heart property again, we know that there exists an open set U; < Fy, such
that for any L € Uy, F; is or-semistable. In particular, if we take a line L € Uy n Uy, then F and F
are both oy -semistable. Since the central charge is independent of L, we still have ¢(F1) > ¢(F). On
the other hand, by our construction there is a non-trivial morphism F; — F, giving a contradiction
(see (3) in Section 0.4.1). This concludes the proof of the statement. O

65



4.1.2 Stable objects of discriminant zero

The following general lemma will be crucial in order to study the destabilizing objects by their Chern
characters. The basic idea is that a stable object E of zero discriminant and negative rank has to be
stable with respect to any weak stability condition o, g. Then, comparing the slopes of £ and B; with
respect to different stability conditions, we get strong restrictions on Hom(B;, E[j]), which can be used
to show that F = Bl@"[l]. We suggest to keep in mind the representation of weak stability conditions
explained in Remark 4.1.3.

Lemma 4.1.6. Let E be a 04, g,-semistable object in CohP (P3,By) for some ag > 0 and By € R.
Assume that Ag,(E) = 0 and rk(E) < 0. Then

E=BP[1] for someieZ andneN.

Proof. In order to simplify the notation, we set

B chy! (E)
HE= Tk(E)

As we will compare the slopes of E with B;, it is helpful to keep in mind that

Chg§71(81) 7 B 1

rk(B;) 2 4

Without loss of generality, by considering E ®p, By, for suitable k£ € Z, we may assume that
11
HE € [_1’ Z)'

By choosing a stable factor of E, we may first assume that E is actually o, g,-stable. By [11],
Lemma 3.9, when 8 > ugp — 1, the object E is in CohB(IP’B,BO) and can become strictly semistable
only when each stable factor E; satisfies Ag,(E;) < Ap,(E) = 0, which is not possible. Therefore, we
deduce that E is o, g-stable for 8 > pg — 1. In particular, we have that E is o4 g, stable for

1

Since rk(E) < 0, we have

po+,8, (B-2[1]) < po4 g, (E) < pop, (Br).

Here and in the following, the notation g4 g, means that it is possible to find suitable values
of @ > 0, realizing the relations between the slopes (use the property in (4) in Section 0.4.1). By
comparing the slope using (3) in Section 0.4.1 and applying Serre duality, it follows that

Hom(By, E[j]) =0
for j # 1. Therefore, x(B1, E) < 0.

Now we study the vertical wall. Suppose that F is strictly semistable when 5o = ug — 1. Then
each stable factor F; satisfies one of the two conditions:

rk(E;) < 0 or chg! ,(E:) = (0,0,0).
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We study these two cases separately. Given a stable factor E; with negative rank, by [11], Lemma
3.9, we have that E;[—1] is in the heart Coh”(P3, By) and it is o g-stable for any 8+ 1 < pg. In
particular, F;[—1] is og g,-stable for

—% <pB3+1<upug.
Since rk(E;) < 0, we have
po+5(B—2[1]) < po g5 (Ei[=1]) < po.55(Bu)-
As a consequence, we get
Hom(By, E;[1]) = Hom(E;[—1], B_o[1])* = 0.

Since E; is also o, g-stable for § > pgp — 1 (by the same argument used for E), we deduce that
Hom(By, E;[j]) = 0 for any j € Z, i.e. E; € Bf. In particular, x(Bi, E;) = 0.

In the second case, we show that such a torsion stable factor cannot exist. Assume that E; is a
stable factor with chgiQ(Ei) = (0,0,0); note that

Homp, (Bi, Ei[j]) = Homo, (Ox, Forg(E; ®p, B-1)[j]) =0
if and only if 7 # 0. This implies that x(Bi1, E;) > 0. Since x(Bi, E;) is also non positive by the

previous computation, we conclude that F; has to be zero. Hence, we may assume that each stable
factor E; satisfies rk(E;) < 0.

Now we want to show that chgo{ < (Ei[-1]) = cchg,ol’ <2(Bo) for some positive integer c. It suffices

hi! (B
to show that % = —i. Assume not, we may consider the tilt stability condition 00+.8, for some
-1 —1
rk(By) ! rk(E;)

In this case, we have

to+,g; (B-1[1]) < poy g (Bol[1l]) < poy g (Eil—1]) < poy,g; (B2) < po g (Bs)

and

o+, (B-1[1]) < pro+.8, (Bo[1]) < po+,8, (Es) < po+,8, (B2) < pot s, (B3)-

Hence
Hom(Bs, E;[j]) = Hom(B3, E;[j]) = 0

for any j € Z. This shows that E; belongs to ¥(o* Ku(Y)). In particular, the twisted Chern character
of F; satisfies
chi) <o (Ei) = a1 + by

for some (a,b) # (0,0). Note that any F; with such truncated twisted Chern character satisfies
Ap,(E;) = 7. This leads to a contradiction with the assumption that E has zero discriminant.
We may now assume that chg(i < (Ei[-1]) = cchgo{ <2(Bo) for some positive integer c. Since

f0+,85 (B=3[1]) < po+ ;s (B-1[1]) < pro+ g5 (Ei[—1]) < po+ p5(B2)
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and

po+,8, (B-1[1]) < po+p, (E:) < poy.p, (B2),

we have the vanishing Hom(Bs, E;[j]) = 0 for any j € Z, and Hom(By, E;[j]) = 0 for any j # 0 or —1.
Therefore, we have that

0= X(B2> EZ) = XOp3 (OIP’37 Forg(Ei)(_h))
= chg(Forg(Es)(—h)) + 2 chy(Forg(E;)(—h

~—

)+ % chy (Forg(Ey)(—h)) + rk(E,)

3
= X0y (Ops, Forg(E;)) — cha(Forg(Ei)) — 5 chy (Forg(E;)) — rk(E;)
_ 1 11
= X0,5 (Ops, Forg(E;)) — chg o (Ei) — 3 chy! | (E) — 5 rk(E;)
1 1 11
= X0,s (Ops, Forg(E;)) — ﬁ rk(E;) + 3 rk(E;) — 32 rk(E;)

> X0,s (Ops, Forg(E;)) = —hom(By, E;[—1]) + hom(Bo, E;).

In particular, it follows that Hom(By, E;[—1]) # 0. As both By and E;[—1] are ooy g,-stable with
the same slope, we must have E; = Bp[l]. Since this condition holds for every stable factor and
Ext!' (B, By) = 0, we deduce that E = BY"[1] as desired. O

4.2 LLSvS eightfold and stability

This section is devoted to the proof of Theorem 1.0.4. The strategy is the following. We consider
the object in DP(Y) which can be associated to a twisted cubic curve and we prove that its image in
Db(}P’?’7 By) is stable with respect the weak stability condition o, —1 for a large. Then we compute the
walls where the stability can change. At the first wall the object of a non CM twisted cubic curve
becomes unstable, but its projection in Ku(Y') is stable. Then we prove that this new object remains
stable and we relate the moduli space obtained in this way to the eightfold My .

4.2.1 Twisted cubics and objects

Let Y be a smooth cubic fourfold not containing a plane. We will use the notation introduced in
Example 0.3.10. As in [62], given a twisted cubic curve C contained in a cubic surface S < Y, we
denote by F¢ the kernel of the evaluation map

H(Y,Zp/5(2H)) ® Oy — Ioys(2H),

where Z¢ /g is the ideal sheaf of C' in S and H is the class of a hyperplane in Y. Let F{. be the
projection of Fg in the Kuznetsov category Ku(Y). Explicitly, as the projection is the composition
of the mutations Ro,, (g Lo, Lo, (i) (whose definition is recalled in Section 0.1.4), it is possible to
compute that

Fl=Roy, () Fo.

Indeed, by [62], Lemma 2.3, if C'is an aCM twisted cubic curve, then F¢ is in Ku(Y'); in this case, F¢
and F(, are identified. If C' is a non CM curve, by the definition of F{., we have the triangle

Fl, — Fo — Oy(—H)[1] ® Oy (—H)|[2].
Using the notation introduced in the previous section, we set

Ec:=V(o"F¢) and Eg = U(o"F();
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by (4.1) we have that Ef, is in (By, By, B3)*. Applying o* and ¥, for a non CM curve C, we get the
triangle
Bl — Ec — B_1[1] @ B_1[2]; (4.3)

here we have used [7], Proposition 7.7. In particular, we note that
chy! «o(EG) = chg) o(Bo) = chg! o(¥o* (21 + A2)) = (0,6,0).

Now, we recall that, since Y does not contain a plane, the cubic surface S, which is cut out by
the P3 spanned by C, is irreducible. We will assume that the line L, which is blown up in the cubic
fourfold, is disjoint from this P3. For such a choice of L, the blow-up o and the projection 7 map
S isomorphically to a cubic surface S’ in the base P3. In this section and in the next section, for a
fixed twisted cubic C, we will work with such a line L. By Proposition 4.1.5, this will not change the
stability condition induced on Ku(Y).

Let 0,4 5 be the weak stability condition on D”(P?, By) introduced in Proposition 4.1.1. In the next
proposition we prove that F¢ is 0, —1-stable for o large enough.

Proposition 4.2.1. The torsion sheaf Ec on P? is slope-stable. In particular, Ec is Oa,—1-stable for
a>» 0.

Proof. We compute E¢ with respect to L. Recall that m,0*Oy = 0; hence, by definition of Fz and
FE¢, we have

Ec = mu(0*Fo ® Og (h) ® E[1]) = M (0" Leys(2H) ® Oy (h) ® E),

where £ is a vector bundle supported on Y. Asa consequence, the sheaf F¢ is torsion free, supported
over the irreducible cubic surface S’ in P3.

Note that chg(i <2(Ec) = (0,6,0). Let F be a torsion sheaf destabilizing Ec. Then we have that I
has the same support of Ex and it has rank one as a sheaf over S’. It follows that cth{ <1 (F) =(0,3).
However, such an object cannot exist in Coh(PP?, By), because this character is not in the lattice spanned
by the characters of A1, Ay and B; for i = 1,2,3. It follows that E¢ is slope-stable, in the sense that
any proper By-subsheaf of Fx has a smaller slope chgol,1 /rk. Since for @ — o0, the weak stability o4 1
converges to the slope stability, we deduce the desired statement. O

4.2.2 Computation of the walls with respect to o, _;

Having the stability of E¢ for a large from Proposition 4.2.1, we are now interested in computing
explicitly the walls where the object could potentially become strictly semistable. In this section, we
list the character chgol’ <o of all possible destabilizing objects of E¢ and E{. with respect to the weak
stability conditions o4 1.

We recall that by [7], Remark 8.4, the rank of Byp-modules on P? is always a multiple of 4. Thus,
we write the characters of the destabilizing subobjects and quotient objects as

(0,6,0) = (4a,b, g) + (—4a,6 — b, —g) (4.4)

for a, b, c € Z. These characters have to satisfy several additional conditions:
1. The two characters have non-negative discriminant Ap, as recalled in Proposition 4.1.1.
2. There exists a > 0 such that the two characters have the same slope with respect to oq, 1.

3. The two characters should be integral combinations of the characters of A1 and A2, and cth{ <2(lS’z-)
fori =1,2,3.
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4. The ordinary Chern character of objects in Db(]ID3) truncated to degree 2 is represented by a
triple (R, C, D/2), where C' and D are integers of the same parity. Thus, the two characters have

the form
11

D
(R7 Ca 5)(17 07 _372

1 D 5

)(1,1,2

Using these conditions, by a standard computation we obtain the following result.
Proposition 4.2.2. The possible solutions of (4.4) are:
1. fora=3/4,a=1,b=3,¢c=09;
2. for o= 1/4,
(a) a=x1,b=1, c=+1;
(b) a==42,b=2,c==+2;
(c) a==%3,b=3, c==3;
(d) a=1,b=3,c=1;
3. a very small value & ~ 1/9.

Note that the stability condition o, is constructed from 0,1 with a < 1/4. In the rest of this
section, we will study the stability of Ec. We will firstly prove that if C' is an aCM curve, then E¢
remains stable with respect to o, 1 after the first wall. On the other hand, if C' is non CM, then F¢ is
destabilized. In particular, we need to consider the mutation Ef, of E¢, which instead becomes stable.
Then we prove that the second wall can be crossed without changing the stability of E,. The third
wall also does not change the stability of E(,; this fact can be directly proved without using specific
information about the destabilizing objects.

4.2.3 First wall: o = %

By Proposition 4.2.1 and Proposition 4.2.2, we have that E¢ is 04, _1-stable for a > 3/4. In this
section, we study the stability of E¢ after the first wall.

Proposition 4.2.3. For 1/4 < a < 3/4, we have that E(, is 04,1-stable. More precisely:
o If C is an aCM twisted cubic curve in'Y, then Ep = E¢ is 04, —1-stable.

o If C is a non CM cubic curve, then Ec becomes strictly oo —1-semistable at the wall o = 3/4.
Instead, for 1/4 < a < 3/4, the object E. is 0q,—1-stable.

Proof. Let us consider the destabilizing quotient object given by Proposition 4.2.2 with
chyg! o, = (—4,3,-9/8).

By Lemma 4.1.6, we know that this object is B_1[1]. Since the Serre functor on DP(P?, By) is
5(=) = (=) ®s, B-3[3],

by (4.1) we have that
Homp, (E¢, B-1[1]) = Hompg, (B2, E5[2])Y = 0.

The first claim follows easily from the fact that Ec =~ E{, in the aCM case.
Assume now that C' is a non CM twisted cubic curve. Then using the sequence (4.3) and the fact
that
HOIIlB0 (BQ, B_1 [3]) = HomBO (3_1, 8_1) Vo~ (C,
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we get

HOHl[_g0 (Ec, B_l[l]) ~ C.

In particular, for @ = 3/4, it follows that E¢ is strictly o, —i-semistable and the Jordan-Holder
filtration in Coh™!(IP3, By) is given by

0 > Mg — E¢c — B_1[1] — 0.

Finally, for 1/4 < o < 3/4, using again the sequence (4.3), it is easy to see that the new stable object
is B¢, which fits into the sequence

0 — B_i[1] - E}, — Mg — 0.

4.2.4 Second wall: a = i
The aim of this section is to prove the following result.
Proposition 4.2.4. Let 0 < o < 1/4. If C is a twisted cubic curve in'Y, then E(, is 04,—1-stable.

This proposition is a consequence of Lemma 4.2.5 and Lemma 4.2.6 below.

We firstly consider the objects given by the second part of Proposition 4.2.2 and we show that
they cannot destabilize E(,. The key observation is that if Ef. is destabilized, then a slope comparison
argument implies that its stable factors have to be in ¥(o* Ku(Y")). This will lead to a contradiction,
as such stable factors do not exist for the wall @ = 1/4.

Lemma 4.2.5. Let E be a 01, __,-stable object in V(o*Ku(Y")) with chgo1 «(E) =(0,6,0). Then E
4 k) P
18 Ui_a_l-Stabl@-

+

Proof. Suppose that E is not o1___;-stable; we consider the Harder-Narasimham filtration of £ with
4 b
respect to o1__ _4:
4 b}
0—>E1—>—>Ek=E

Here each factor F;1/E; is o 1o _;-semistable with strictly decreasing slopes.

Assume that Hom(Ey/Ey_1,Bo[1]) # 0. Note that Fy/E)_1 is a quotient object of E in the heart
Coh™(P3, By). Since By[1] is also an object in Coh™!(P3, By), the assumption above implies

Hom(FE, By[1]) # 0.
By Serre duality, we obtain
Hom(Bs, E[2]) = (Hom(FE, By[1]))* # 0,
which contradicts the condition that F € U(o* Ku(Y')). Therefore, it follows that
Hom(Bs, Ey,/Ex-1[2]) = 0.

By a similar argument, we get
Hom(Bl, Ek—l) = 0.

Note that we have the following inequalities:
pr y(Boo[1]) < pr \(Bafl]) < p1  (Ep/Ej-1) =
pi g (Br) < pi 4 (B2) < pr _(Bs);
P11 (Br/Er1) < pi_c 1 (Bu);
M%_E,_l(BO[l]) < N%_a_l(Ei/Ei—l) for every 1 <i < k.
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We point out that both Ej_; and Ej/Ej_, are p1 _,-semistable, and each E;/F;_q is p1__ _4-
47 4 )
semistable. By Serre duality, we have

Hom(Bs, Ex/Eg-1[j]) = Hom(Bs, Ex-1[j]) = 0,
for s =1,2,3 and every j # 1. Since F € U(o* Ku(Y)),

X(Bs, Ex/Ex—1) + X(Bs, Eg—1) = x(Bs, E) = 0
for s = 1,2, 3. Therefore,

Hom(Bs, Ex/Ex—1[1]) = Hom(Bs, Ex_1[1]) = 0,

for s = 1,2, 3. In particular, we deduce that Ej_; and Ej,/Ej_; are in U(c* Ku(Y')). As a consequence,
the twisted Chern character of F)_ satisfies

_ _ 1
ChBO{gQ(Ek—l) = aChBigz(Bl) + b(oa 67 O) € {(l‘, Y, 5.%’)}

7
and cthl’Q(Ek_l) =cA\ +d\y € {(z,y,—==x)}.

32
We conclude that chgo1 <2(Ek—1) must be of the form (0,y,0). However, it would destabilize £ with
respect to o1 _;, which is a contradiction. This proves the stability of F as in the statement. O
4 b}

Now we consider the third wall in Proposition 4.2.2. In this case, we obtain a slightly general result,
showing that for v < 1/4, the only stable objects are in ¥(o* Ku(Y')) and they cannot be destabilized.
The argument is similar to the proof of Lemma 4.2.5.

Lemma 4.2.6. For 0 < ag < 1, let E be a 04,1 stable object such that [E] = [E(] in the numerical
Grothendieck group. Then E is in U(oc*Ku(Y)) and it is 04,—1 stable for any 0 < a < ayp.

Proof. We set p1 = pia,,—1 for simplicity. As [E] = [E{] in the numerical Grothendieck group, we
observe that

p(B-2[1]) < p(B-1[1]) < w(Bo[1]) < u(E) < p(B1) < u(Bz) < pu(Bs).

By Serre duality we have that
Hom(Bs, E[j]) =0

for any s = 1,2,3 and j # 1. Again, since [E] = [E{] in the numerical Grothendieck group, we have
X(BSvE) = X(BSvE/C) =0
for s =1,2,3. It follows that
Hom(Bs, E[1]) =0
for any s = 1,2,3, proving that E belongs to ¥(c* Ku(Y)).
Suppose that E becomes strictly o, _1-semistable for some o < ap < %. We may consider the
Harder-Narasimhan filtration of E with respect to oq—c —1:
OCE1C---CEk=E.

By comparing pq—c—1 of Ey/Ex_1, Ex_1, B_2[1], B_1[1], Bo[l], Bi, B2 and Bs, using the same
argument applied in the proof of Lemma 4.2.5, we get the conclusion that both Fy/E)_1 and Ey_; are
in ¥(o*Ku(Y)). But this implies that
1 _ 7
{(xayv §a2x)} 3 ChB(},<2(Ek71) = G,Al + b)\2 € {(1’, Y, _ﬁw)}

Hence, we must have chlgo1 <2(Ex-1) = (0,y,0), which leads to a contradiction. This proves the stability
of E as we wanted. O
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4.2.5 Stability after the second tilt and the moduli space

This section is devoted to the proof of Theorem 1.0.4. Firstly, we show that Ef, is 02771—stab1e, where
02771 is the weak stability condition on DP(P3, By) obtained by tilting on 1 (see [7], the proof of
Theorem 1.2). In particular, this implies the stability of F/, with respect to the stability condition
0 =0, on Ku(Y'), defined in (4.2) and constructed in [7].

Theorem 4.2.7. Let Y be a smooth cubic fourfold not containing a plane. If C is a twisted cubic
curve on'Y', then the object F[, is o-stable, with respect to o := o4 given in (4.2).

Proof. Note that by definition the stability function for o, | is Za,—1 multiplied by —/—1. In par-
ticular, the new heart obtained through the second tilt is just the previous heart rotated by ninety
degrees. It follows that the walls would correspond to those we have computed for o, 1 and the
previous argument proves that these can be crossed preserving the stability of Ef. This implies the
stability of Ef, with respect to 037_1. As the stability conditions o on Ku(Y) are induced from 027_1
for o < 1/4, and F(, is in the Kuznetsov component, we get the desired statement. O

Now we are able to describe the moduli space M, (2X1 + A\2) of o-stable objects with Mukai vector
2A\1 + A2 and, in particular, its identification with the LLSvS eightfold My constructed in [64]. We
use a standard argument, which is very similar to [62], Section 5.3. We point out that the results in
[8] implies that M,(2A; + A2) is a smooth, projective, irreducible hyperkéihler eightfold.

Theorem 4.2.8. The moduli space Ms(2)\1 + A2) parametrizes only objects of the form F(,. Moreover,
My(2A1 + A2) is isomorphic to the LLSvS eightfold My .

Proof. Let M3 be the irreducible component of the Hilbert scheme parameterizing twisted cubic curves
on Y. Then there exists a quasi-universal family 7 on Y x M3 parametrizing the sheaves Zr/y (2H).
By [58], Theorem 6.4, we have a semiorthogonal decomposition of the form

DP(Y x M3) = (Ku(Y x Ms), Oy ®DP(M3), Oy (H) ®DP(Ms), Oy (2H) R DP(M3)).

Now consider the relative projection F' of F in Ku(Y x M3) := Ku(Y)®DP(Ms). Asin [3], it is possible
to verify that the projection of Zr/y (2H) in the Kuznetsov component is exactly F, (see Section 4.4.3
for the computation in the non CM case). So, Theorem 4.2.7 implies that F’ is a quasi-universal family
of o-stable objects F/, in Ku(Y’). Then there is an induced dominant morphism Mg — My (2A1 + A2).
As Msj is projective, we know that this morphism is surjective. This concludes the first statement.
For the second statement, we just need to show that for two twisted cubic curves C; and Cy, we
have Fél = FéQ if and only if C; and C5 are contained in the same fiber of the morphism Mg — My
constructed in [64]. This is exactly proved in [3]|, Proposition 2. Indeed, they consider the projection
in the K3 subcategory (Oy (—H), Oy, Oy (H))*, which is equivalent to Ku(Y"). This ends the proof of
the theorem. O

4.3 Fano variety and stability

In this section, we use a similar argument to that applied in the case of twisted cubic curves in order to
describe the Fano variety Fy parametrizing lines in a cubic fourfold Y as a moduli space of Bridgeland
stable objects.
Recall that given a line ¢ in Y, we can associate an object Py in Ku(Y'), which sits in the distin-
guished triangle
Oy (—H)[1] - P, — 1y,

where Z, denotes the ideal sheaf of £ in Y (see [62], Section 6.3). It is easy to compute that the Mukai
vector of Py is A\1 + As.
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By Proposition 4.1.5, we can assume that the line L used in the construction of stability conditions
is disjoint from ¢. ! Let us compute explicitly the image M, = W(c*P,) in DP(P?, By). By [7],
Proposition 7.7, we have that
V(Op(—H)) = B1.
On the other hand, we consider the sequence
Ig i Oy - Og.

We recall that
\I/(Of,) = 0.

By our assumption, we know that ¢ maps isomorphically to a line in P3; hence we have that
U(0*Zy) = U(0"O)[-1] = m(E(R)]5-1(s))

is a torsion sheaf supported over the image of £ in P3. We denote it by £. So we have the distinguished
triangle

B_i[1] — M, — & (4.5)
in DP(P3, By).

Note that .
Chl;ol,gQ(Mf) = (_47 37 g)

The following lemma gives us the starting point of the wall crossing argument.
Lemma 4.3.1. The object My is 04, —1-stable for o » 0.

Proof. Assume that M, is not stable with respect to o4, —1 for a » 0. Then there is a destabilizing
sequence
P—->M,—Q
in the heart Coh™(P3, By), where P, Q are o, _1-semistable for a » 0, and pto,—1(P) > pta.—1(Q). We
have two possibilities for P: either it is torsion or it has rank equal to —4. If we are in the first case,
then, for a going to infinity, the slope jio,—1(P) is a finite number, while po —1(Q) = +00. Thus such
a P cannot destabilize M.
In the case rk(P) = —4, let us consider the cohomology sequence

0= HHP) = HH(Mp) —» HHQ) — HO(P) — H (M) — HO(Q) — 0.

By (4.5) we have that H~1(M,) = B_1 and H°(M;) = &. Also, we know that H~(Q) = 0, because
Q is a torsion element in the heart. It follows that #~!(P) = B_; and we have the sequence

0—H'(P) - & — H' Q) — 0.

We recall that & is a rank two torsion free sheaf over its support. Since H(P) is a subsheaf of
&, it has the same support. There are three cases. If H°(P) has the same rank of & as a sheaf on its
support, then
-1 -1
Ch30,<2(P) = ChBo,$2(MZ)’

and pa,—1(Q) = +00, so it is not a destabilizing sequence. The second possibility is that H°(P) has
rank 1 and it is torsion free as a sheaf over a line. In this case, we have chgol’Q(P) = (—4,3,-1/8),
whose slope fiq,—1 is less than that of M. The third case when H(P) = 0 is similar. This proves the
stability of M, for a big enough. O

Notice that if Y contains a plane P, then it is possible to choose L such that L n ¢ = & and L is not on P. For
example, we consider a P? intersecting P in a point. We define the cubic surface S = Y nP3. Choosing a general P3, we
have that S is smooth. Every line on S is not on P by definition. Then it is easy to find a line L on S with the desired
properties.
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Now an easy computation using the four conditions listed at the beginning of Section 4.2.2 shows
that the only potential wall for M, is given by ay = %. In the following lemma, we prove that M,

remains stable after crossing this wall.

Lemma 4.3.2. Let ag > %. If E is a 04,,—1-stable object in V(o™ Ku(Y')) such that Chgol,gz(E) =

(—4,3, %), then E is 04, —1-stable for any o > 0.

Proof. A direct computation and [11|, Lemma 3.9, imply that the object E can be strictly semistable
only with respect to 0,5 .. If this happens, the Harder-Narasimham filtration of F with respect to

o5 would be of tﬁe form

4 )

OcEicFE

with Chgol <(£1) = (0,2,1) and chlgo1 <«(E/Er) = (4,1, —1). By Lemma 4.1.6, we have that E/F; ~
Bo[1]. In particular, we get
Hom(Bs, E[3]) = (Hom(E, By))* # 0,

which contradicts to the assumption that E is in U(o* Ku(Y')). This proves the stability of E as
claimed. O

Proof of Theorem 1.0.3. The first part is a consequence of Lemma 4.3.1 and Lemma 4.3.2. The second
part follows from the same argument explained in Section 4.2.5 for twisted cubics. We point out
that by projecting the universal family, we get an isomorphism from Fy to Mys(\; + A2). Hence the
projectivity of My(A1 + A2) follows from that of Fy-, without using the result in [8]. O

4.4 Applications

In this section we discuss some applications of Theorem 1.0.3 and Theorem 1.0.4, concerning the
categorical version of Torelli Theorem and the derived Torelli Theorem for cubic fourfolds. We also
explain the identification of the period point of My with that of Fy.

4.4.1 Torelli Theorem for cubic fourfolds

In the Appendix of [7] the authors gave a different proof of the categorical version of Torelli Theorem
for cubic fourfolds introduced in [48], in the case that the algebraic Mukai lattice does not contain
(—2)-classes, e.g. for very general cubic fourfolds. In particular, they deduce the classical version of
Torelli Theorem for cubic fourfolds. The key point of their proof is the interpretation of the Fano
variety of lines on a very general cubic fourfold as a moduli space of Bridgeland stable objects in the
Kuznetsov component.

As a direct consequence of Theorem 1.0.3, we are able to reprove the categorical formulation of
Torelli Theorem for cubic fourfolds without the generality assumption. We recall that the degree shift
functor of a cubic fourfold Y is the autoequivalence (1) of Ku(Y') given by the composition of the
tensor product with the line bundle Oy (1) and the projection to Ku(Y).

Corollary 4.4.1 (Categorical Torelli Theorem). Two cubic fourfolds Y and Y’ are isomorphic if and
only if there is an equivalence between Ku(Y') and Ku(Y’), whose induced map on the algebraic Mukai
lattices commutes with the action of the degree shift functor (1).

Proof. Notice that Theorem 1.0.3 implies that the object P, associated to a line £ in Y is stable with
respect to every stability condition o such that n(o) € (A2)c N P. Then we apply the same argument
of the proof of [7], Theorem A.1. O
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4.4.2 Period point of My

In this section we discuss the relation between the period point of the LLSvS eightfold My associated
to a cubic fourfold Y and the period point of Y. 2

As observed in (30|, Example 6.4, the period point of Y is identified with the period point of the
Fano variety Fy. More precisely, let QMéQ) be the moduli space of smooth projective hyperkéhler
fourfolds with a fixed polarization class of degree 6 and divisibility 2, deformation equivalent to the
Hilbert square of a K3 surface. The Fano variety Fy with the Pliicker polarization is an element in
2./\/lé2). Let

2pé2) : QMéQ) N 273é2)

be the period map which is an open embedding by Verbitsky’s Torelli Theorem (see [93]).

We recall that the embedding of Hodge structures

H*(Fy,Z) - (M) < H(Ku(Y),Z),
identifies the polarization class with A1 + 2Xo and H2(Fy,Z)0 is Hodge isometric to (A1, A\1 + 2)\2>L
(see |2], Proposition 7).
Let 4./\/19) be the moduli space of smooth projective hyperkéihler eightfolds with a fixed polarization

class of degree 2 and divisibility 2, deformation equivalent to the Hilbert scheme of points of length
four on a K3 surface. Let

4p§2) : 4M§2) R 4732(2)

be the period map of these eightfolds.

By a direct computation it is possible to show that My carries a natural polarization class of
degree 2 and divisibility 2. Actually, as observed in [62|, Lemma 3.7, the eightfold My admits a
natural antisymplectic involution 7 whose fixed locus contains the cubic fourfold Y. Thus, My with

(2)

the fixed polarization is an element of My~

Proposition 4.4.2. Given a cubic fourfold Y, we have that
2 2
2p) (Fy) = ) (My)
and they coincide with the period point of Y.

Proof. In [8] the authors prove that if M is a moduli space of Bridgeland stable objects in Ku(Y") with
Mukai vector v of dimension 2 4+ v? > 0, then there is an embedding of Hodge structures

H*(M,Z) — H(Ku(Y),Z).

More precisely, the image of H?(M,Z) is identified with the orthogonal complement vt of v in the
Mukai lattice. Thus, by Theorem 1.0.4, we have the Hodge isometry

H*(My,Z) = (A + 2X9)™.

In particular, we can identify the polarization class on My with A;. Then, the primitive degree two
lattice H2(My, 7)o is Hodge isometric to (A1 + 2)a, )\1>L. It follows that

H*(My,Z)o = (v, Aoyt = H2(Fy, Z)o,
which implies the statement. O

As explained in [26], Section B.1, Proposition 4.4.2 can be used to reprove in a more direct way the
result by Laza and Loojenga (see [63]) about the image of the period map of cubic fourfolds, excluding
the divisor of cubic fourfolds containing a plane. This is a work in progress of Bayer and Mongardi.

2We point out that Franco Giovenzana is independently working on this problem.
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4.4.3 Approach to Derived Torelli Theorem for cubic fourfolds

In [47], Theorem 1.5, Huybrechts proved a version of the derived Torelli Theorem for cubic fourfolds,
which was extended by [8], as recalled in Remak 2.4.2

An interesting question would be to prove the theorem without assumptions on the cubic fourfold.
Here we suggest a possible strategy which makes use of the description of the eightfold My given by
Theorem 4.2.7. For this reason, we need to assume that Y does not contain a plane (actually, in this
case the derived Torelli Theorem holds as recalled above).

Assume that there is a Hodge isometry ¢ : H(Ku(Y),Z) =~ H(Ku(Y’),Z). Let v := 2X\; + Ay
and we set v’ := ¢(v). By [8], the moduli space M,/ (v") for o’ € Stab(Ku(Y”)) is non empty and in
particular is a hyperkéihler eightfold. By the Birational Torelli Theorem for hyperkihler varieties (see
for example [45], Corollary 6.1), we have that M,(v) is birational to M,/ (v’). Thus, by [9], Theorem
1.4 (which works in the same way in our setting), we can find a stability condition ¢” such that M, (v)
is isomorphic to M,»(v'). By the construction in [64], the cubic fourfold Y is embedded in M, (v) as
a Lagrangian submanifold. Thus, we can see Y inside M,~(v’"). We denote by F the restriction of the
universal family £ on My (v') x Y to Y x Y.

Here we deal only with the simple case Y = Y’ and ¢ € O(H(Ku(Y),Z)). In the next result we
show that the Fourier-Mukai functor ®x : DP(Y) — DP(Y), defined by ®x(—) = ¢.(p*(—) ® F),
commutes with the identity over Ku(Y'). In this case, it is convenient to denote by i* the projection
functor into the Kuznetsov component, changing the notation of the previous sections.

Proposition 4.4.3. Let Y be a cubic fourfold which does not contain a plane. Let i be the inclusion
of Ku(Y) in DP(Y) and we denote by i* its left adjoint functor. Then we have that ®x = i o i*.

Proof. By [56], Theorem 3.7 and Proposition 3.8, we have that the composition i0i* is a Fourier-Mukai
functor with kernel given by G := pr(Oa). Here Oa denotes the structure sheaf of the diagonal in
Y xY and pr: DP(Y x Y) — D”(Y)®Ku(Y) is the projection functor. Moreover, we have that G
belongs to Ku(Y)(—2) xIKu(Y'). Note that this is precisely the condition for a Fourier-Mukai functor
of DP(Y) in itself in order to factorize to the Kuznetsov component (see [48], Corollary 1.6).

We claim that ®g(0,) = G, is o-stable for every y € Y. Indeed, given a point y on the cubic
fourfold, there is a non CM twisted cubic curve C on Y which has y as embedded point. In particular,
we have the sequence

0= Zeyy (2) = gy (2) = Oy — 0, (4.6)

where Cj is the plane cubic curve, singular in y, defined by C. The ideal sheaf of Cjy in Y has the
following resolution:
0— Oy(=1) > 0P - Oy (1)® — I 5y (2) — 0. (4.7)

We recall that i* := Rp, (—1) Loy Lo, 1) We observe that i*(Z¢, v (2)) = 0. Indeed, we split the
sequence (4.7) in two exact sequences

0K = Oy (1) — Tg,y(2) -0

and
0— Oy(-1) > 0P - K — 0.

From the first sequence we get Lo, (1)(Z¢c, /v (2)) = Lo, (1)(K)[1]. On the other hand, Ly, (1) has not
effect on the second sequence, because the objects are in (Oy (1))*. Applying Lo, , we obtain

Loy Lo, 1)(K) = Lo, (Oy(-1)) = Oy (=1)[1].

It follows that
Loy Loy 1)(Zey /v (2)) = Oy (—1)[2].
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Since Ro,, (~1)(Oy (—1)) = 0, we deduce that i*(Z¢, y(2)) = 0. Thus by the sequence (4.6), we deduce

that i*(Zoyy (2)) = i*(0,)[-1].
Now, note that i*(Zc/y(2)) = i*(Z¢/s(2)), where S is the cubic surface containing C. Indeed, by

the resolution
0— Oy = Oy (1)® - Zg(2) — 0,

we see that Zg/y(2) is in (Oy, Oy (1)). Hence, i*(Zg/y(2)) = 0. Using the exact sequence
0 — Zg/y(2) = Loy (2) = Zoys(2) — 0,

we get
*(Zoyy (2)) = i*(Zeys(2)) = Fe.

By the previous computation, we deduce that i*(Oy) =~ F/[1], which is o-stable by Theorem 1.0.4.
It follows that G defines an inclusion of Y in the eightfold M, (v) by

y— <I>g((’)y).

Thus G has to be isomorphic to the restriction of the universal family £/ of M,(v) x Y to Y x Y. We
conclude that G =~ F, which gives the statement. O

In the general case, it is expected that the Fourier-Mukai functor @ x factorizes to an equivalence
on the level of the Kuznetsov categories.
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Part 11

Gushel-Mukai fourfolds
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Chapter 5

Introduction to Part 11

This part is devoted to the study of the double EPW sextic of a Gushel-Mukai fourfold as a moduli
space of (twisted) stable sheaves on a K3 surface (see [88]). Finally, we describe a conic fibration for
ordinary Gushel-Mukai fourfolds (firstly appeared in [84]), which could provide the geometrical setting
in order to construct Bridgeland stability conditions for their Kuznetsov component (this is a joint
work in progress with Alex Perry and Xiaolei Zhao).

The geometry of Gushel-Mukai (GM) varieties has been recently studied by Debarre and Kuznetsov
in 28], [29], and from a categorical point of view by Kuznetsov and Perry in [61]. Of particular interest
is the case of GM fourfolds, which are smooth intersections of dimension four of the cone over the
Grassmannian Gr(2,5) with a quadric hypersurface in a eight-dimensional linear space over C. Indeed,
these Fano fourfolds have a lot of similarities with cubic fourfolds; for instance, it is unknown if the
very general GM fourfold is irrational, even if there are rational examples (see [91], Section 4, [89],
Section 3, and [27|, Section 7).

In [27] Debarre, Iliev and Manivel investigated the period map and the period domain of GM
fourfolds, in analogy to the work done by Hassett for cubic fourfolds. In particular, they proved that
period points of Hodge-special GM fourfolds (see Definition 6.2.2) form a countable union of irreducible
divisors in the period domain, depending on the discriminant of the possible labellings (see Section
2.3). It is not difficult to check that the discriminant of a Hodge-special GM fourfold is an integer
= 0,2 or 4 (mod 8) (see [27], Lemma 6.1). Furthermore, the non-special cohomology of a Hodge-
special GM fourfold X is Hodge isometric (up to a Tate twist) to the degree two primitive cohomology
of a polarized K3 surface if and only if the discriminant d of X satisfies also the following numerical
condition:

8 1 d and the only odd primes which divide d are =1 (mod 4). ()

The first result of this part is a generalization of the previous property to the twisted case, as done
by Huybrechts for cubic fourfolds in [47].

Theorem 5.0.1. A GM fourfold X has an associated twisted K3 surface in the cohomological sense
(see Definition 7.1.11) if and only if the discriminant d of X satisfies

d= szh with n; =0 (mod 2) for p;=3 (mod 4). ()

On the other hand, a general GM fourfold X has an associated hyperkdhler variety, as cubic
fourfolds have their Fano variety of lines. Indeed, X determines a triple (Vg, Vs, A) of Lagrangian
data, where Vg D V; are six and five dimensional vector spaces, respectively, and A c /\3V6 is a
Lagrangian subspace with respect to the symplectic structure induced by the wedge product, with no
decomposable vectors (see [28], Theorem 3.16). Conversely, it is possible to reconstruct an ordinary
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and a special GM variety from a Lagrangian data having A without decomposable vectors (see [28],
Theorem 3.10 and Proposition 3.13). The data of A determines a stratification in subschemes of the
form YAZ?’ cY;( 2 Yfl < P(Vg), where YA21 is a Eisenbud-Popescu-Walter (EPW) sextic hypersurface
(see Section 6.2). As recalled in Example 0.3.12, if YA23 is empty, then the double cover Y4 of the EPW
sextic is a hyperkahler fourfold deformation equivalent to the Hilbert scheme of length-two subschemes
on a K3 surface. Actually, in order to guarantee the smoothness of Yy, it is enough to avoid the divisor
D, in the period domain by [29], Remark 5.29.

The second main result is the following theorem, whose analogue for cubic fourfolds was proven by
Addington in [2]. Let A\; and A2 be the classes in the topological K-theory of a GM fourfold defined in
(6.4).

Theorem 5.0.2. Let X be a Hodge-special GM fourfold such that YA;?’ = . Consider the following
propositions:

(a) X has discriminant d satisfying (xx);

(b) Tx is Hodge isometric to Ts(—1) for some K38 surface S, or equivalently, there is a hyperbolic
plane U = (K1, ka) primitively embedded in the algebraic part of the Mukai lattice;

(¢) Yy is birational to a moduli space of stable sheaves on S.

Then we have that (a) implies (b), and (b) is equivalent to (c).
Moreover, (b) implies (a) if either H>?(X,7Z) has rank 3, or there is an element T in the hyperbolic
plane U such that {\1, A2, T) has discriminant =2 or 4 (mod 8).

In Section 7.1.3 we discuss a counterexample showing that the inverse implication of the second part
of Theorem 5.0.2 does not hold in full generality. More precisely, we show that there are GM fourfolds
satisfying condition (b), but without a Hodge-associated K3 surface. In particular, we deduce that
property (b) is not always divisorial and that there are period points of K3 type corresponding to GM
fourfolds without a Hodge-associated K3 surface.

We also prove its natural extension to the twisted case, as in [47] for cubic fourfolds.

Theorem 5.0.3. Let X be a Hodge-special GM fourfold with discriminant d such that YAZ?’ = . Then
Yy is birational to a moduli space of stable twisted sheaves on a K3 surface S if and only if d satisfies

(xx").

Finally, we determine the numerical condition on the discriminant d of a Hodge-special GM fourfold
in order to have Y, birational to the Hilbert scheme Sl on a K3 surface S; this condition is stricter
than that of (xx), as proved in [2] for cubic fourfolds (see Remark 7.2.7).

Theorem 5.0.4. Let X be a Hodge-special GM fourfold of discriminant d such that YA>3 = . Then
Y4 is birational to the Hilbert scheme S12 on a K3 surface S if and only if d satisfies the condition

a*d=2n*>+2 foranel. (k)

The strategy to prove these results relies on the definition of the Mukai lattice for the Kuznetsov
component, which is the K3 subcategory arising from the semiorthogonal decomposition of the derived
category of a GM fourfold constructed in [61] (see also Example 0.1.30). The Mukai lattice is defined
as done in [4] by Addington and Thomas for cubic fourfolds; actually, we can prove the analogue of
their results, using the vanishing lattice of a GM fourfold instead of the primitive degree four lattice
of cubic fourfolds. In particular, following the work of Addington, this allows us to apply Propositions
4 and 5 of |2] and, then, to prove Theorems 5.0.2 and 5.0.4. On the other hand, we obtain that if
a very general GM fourfold has a homological associated K3 surface, then there is a Hodge-theoretic
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associated K3 surface (see Theorem 7.1.10 for a more precise statement).

It becomes evident that there are many information about the geometry of the GM fourfold which
can be recovered from its Kuznetsov component. In particular, Bridgeland stability conditions would
be a powerful tool for this kind of investigation. As an example, it would be possible to study moduli
spaces of stable objects in Ku(X), as done in the case of cubic fourfolds. As explained in Section
4.1.1, Bayer, Lahoz, Macri and Stellari develop a method to induce Bridgeland stability conditions
on semiorthogonal decompositions (see |7]). As a consequence, they prove that there are Bridgeland
stability conditions on the Kuznetsov component of many Fano threefolds and cubic fourfolds. In
this last case, the starting point in order to apply their general method is the construction of a conic
fibration induced by the blow up of a line in the cubic fourfold and the projection to P3.

The last result of this thesis is the construction of a flat conic fibration for ordinary GM fourfolds,
obtained by blowing up of a degree four del Pezzo surface in the GM fourfold and projecting to a
P? (see Proposition 8.1.3). In particular, this geometric picture is obtained by the restriction to a
hyperplane of a fibration constructed by Debarre and Kuznetsov in [28], Proposition 4.5. We point
out that in [84], joint with Mattia Ornaghi, we used this fibration to prove Voevodsky’s conjecture for
general GM fourfolds.

In a joint work in progress with Alex Perry and Xiaolei Zhao, we are trying to use this result to
induce Bridgeland stability conditions on the GM category.

Related works. In [51], Proposition 2.1, Iliev and Madonna prove that if a smooth double EPW
sextic is birational to the Hilbert scheme S[2 on a K3 surface S with polarization of the degree d, then
the negative Pell equation Pgj(—1) : n? — %aQ = —1 is solvable. Thus Theorem 5.0.4 is consistent
with this necessary condition (see also Remark 7.2.8).

Finally, in [30], Corollary 7.6, Debarre and Macri prove that the Hilbert square of a general polarized
K3 surface of degree d is isomorphic to a double EPW sextic if and only if the Pell equation Py/p(—1)
is solvable and the equation Pog(5) : n? — (2d)a®? = 5 is not. By Theorem 5.0.4, we see that the

birationality to this Hilbert scheme is obtained by relaxing the second condition on Pag(5).
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Chapter 6

Background material

The aim of this section is to recall some definitions and properties concerning Hodge-special GM
fourfolds and to fix the notation. Our main references are [27|, [28] [29] and [61].

6.1 Geometry of GM varieties

Let V5 be a 5-dimensional complex vector space; we denote by Gr(2,V5) the Grassmannian of 2-
dimensional subspaces of Vs, viewed in P(A?Vs) =~ P? via the Pliicker embeddig. Let CGr(2,Vs)
P(C® A?Vs) =~ P be the cone over Gr(2, Vs) of vertex v := P(C).

Definition 6.1.1. A GM variety of dimension 2 < n < 6 is a smooth n-dimensional intersection
X =CGr(2,V5) nP(W) nQ,

where W is a n + 5-dimensional vector subspace of C® /\2 V5 and @ is a quadric hypersurface in
P(W) =~ P+,
A GM fourfold is a GM variety of dimension 4.

Notice that v does not belong to X, because X is smooth. Thus, the linear projection from v defines

a regular map
vx : X — Gr(2,Vs)

called the Gushel map. We denote by Ux the pullback via vx of the tautological rank-2 subbundle
of Gr(2, V).

We can associate two hulls to X. The Grassmannian hull of X is the intersection
My := CGr(2,V5) n P(W);

it is a variety of dimension n + 1, because X has dimension n, and, by definition, X = Mx n @ is a
quadric section of Mx. Let W’ = W /C be the projection of W to /\2 V5. The intersection

MY = Gr(2,V5) n P(W')
is called the projected Grassmannian hull of X. We can distinguish two cases:

e If the linear space P(W) does not contain the vertex v, then the linear projection P(W) —
P(A?V3) from v is well-defined: indeed, we have W =~ W’. In particular, we have My =~ M}
via this map. Therefore, considering @ as a quadric hypersurface in P(W’), we have that

X =MynQ=Gr(2,Vs) nP"™nQ c P,

i.e. X is a quadric section of a linear section of the Grassmannian Gr(2,V5). Gushel-Mukai
varieties of this form are called ordinary.
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e If the vertex v is contained in P(W), then the linear space P(W) is a cone over P(W’); in
particular, we have that Mx = CMY%. Since X is smooth by definition, the quadric @ does not
contain the vertex of the cone. Thus, the projection from the vertex defines a double cover

2:1
vx 1 X = M.

In other words, the variety X is a double cover of a linear section of Gr(2,Vs): Gushel-Mukai
varieties of this form are called special. Moreover, the branch divisor of the double cover vx is
X' := My nQ', where Q' = Q nIP(W’). Since by [28], Proposition 2.20, the hull M’ is smooth,
we have that X’ is a smooth ordinary Gushel-Mukai variety of dimension n — 1.

We denote by o; ; € H2(+3)(Gr(2, V), Z) the Schubert cycles on Gr(2,Vs) for every 3 =i > j =0
and we set o; := 0;0. The restriction h := v% 01 of the hyperplane class H := o1 on IP’(C(—B/\2 Vs)
defines a natural polarization of degree 10 on X. Indeed, CGr(2, V5) has degree 5, the degree of @ is 2
and X is dimensionally trasverse. On the other hand, since the canonical class of CGr(2,V5) is —6H,
by adjunction formula we get

Kx = (=6+ (6 —n) +2)h = —(n—2)h.

Let (Sch/C) be the category of schemes over C. For 2 < n < 6, the moduli stack M, of n-
dimensional Gushel-Mukai varieties is the fibered category over (Sch/C) whose fiber over S € (Sch/C)
is the groupoid of pairs (7 : x — S, L), where 7 : x — S is a smooth proper morphism of schemes and
L belongs to Pic,,g(S), such that for every geometric point 5 € S the pair (X3, £5) is isomorphic to an
n-dimensional Gushel-Mukai variety with its natural polarization. A morphism from (7" : x' — S, L)
to (m:x — S, L) is a fiber product diagram

;9
X —

X
5255

such that (¢')*(£) = L' € Picy/e(5'). By [61], Proposition 2.4, we have that M,, is a smooth and
irreducible Deligne-Mumford stack of finite type over C, of dimension 25 — (6 —n)(5 — n)/2.

6.2 Period map and Hodge-special GM fourfolds

From now on, we restrict our investigation to GM fourfolds. By the previous section, we have that a
GM fourfold X is a Fano fourfold with canonical class —2h. We recall the Hodge numbers of X:

1
0 0
0 1 0
0 0 0 0
0 1 22 1 0

(see [51], Lemma 4.1). Notice that H*(X,Z) is torsion free by [29], Proposition 3.3. The classes h?
and %09 span the embedding of the rank-two lattice H*(Gr(2,V5s),Z) in H4(X,Z). The vanishing
lattice of X is the sublattice

HYX,Z)oo = {z € HY(X,Z) : - v%(H*(Gr(2,V5),Z)) = 0} .
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By [27], Proposition 5.1, we have an isomorphism of lattices
HY(X,Z)oo = E3®U?® Ip(2) =: A.

Let e and f be two classes in I222 of square 2 and e - f = 0, which generate the orthogonal of
A in Iyep. The choice of an isometry ¢ : HY(X,Z) =~ Iy sending %011 and 7% (02 — 011) to e
and f respectively, and such that ¢(H*(X,Z)o) = A, determines a marking for X. Notice that the
Hodge structure on the vanishing lattice is of K3 type. Let O(A) be the subgroup of automorphisms
of O(A) acting trivially on the discriminant group d(A). The groups O(A) and O(A) act properly and
discontinuosly on the complex variety

Q:={wePARC):w-w=0w-w < 0}. (6.1)

The global period domain is the quotient D := O(A)\Q, which is an irreducible quasi-projective
variety of dimension 20. We observe that two markings differ by the action of an element in (~)(A) It
follows that the period map p : My — D, which sends X to the class of the one dimensional subspace
H31(X), is well-defined. As a map of stacks, p is dominant with 4-dimensional smooth fibers (see [27],
Theorem 4.4). The period point of X is the image p(X) in D.

As proved in [29], the period point of a general GM fourfold is determined by that of its associated
double EPW sextic. More precisely, let (Vg, V5, A) be the Lagrangian data of X, as defined in the
introduction. As recalled in Example 0.3.12, by the work of O’Grady, we can consider the closed
subschemes

Y7 = {[Un] € P(V) : dim(A n (U & N\ Vo) 21} for 1> 0.

Since A has no decomposable vectors, we have that Y, := YA2 'is a normal sextic hypersurface, called
EPW sextic, which is singular along the integral surface Yf 2. Moreover, YA2 3 is finite and it is the
singular locus of Y7 2 while Y7 1 is empty (see [28], Proposition B.2). Let Y4 be the double cover of
the EPW sextic Y4 branched over YAZ2. If YA>3 is empty, (e.g. for generic A), then the double EPW
sextic Y is a smooth hyperkéhler fourfold of K3 type (see [79], Theorem 1.1). In this case, the period
point of Y4 coincides with p(X), as explained in the following result.

Theorem 6.2.1 ([29], Theorem 5.1). Let X be a GM fourfold with associated Lagrangian data (Vs, Vs, A).
Assume that the double EPW sextic Yy is smooth (i.e. YA>3 = (). Then, there is an isometry of Hodge
structures

HYX,Z)oo = H*(Ya,Z)o(—1),

where HQ(YA, Z)o is the degree two primitive cohomology of Y4 equipped with the Beauville-Bogomolov-
Fugiki form q.

As in the case of special cubic fourfolds, it is possible to consider GM fourfolds such that the rank
of H*(X,Z) is not minimal. We call them Hodge-special in order to avoid confusion with special GM
fourfolds defined before.

Definition 6.2.2. A GM fourfold X is Hodge-special if H>?(X) n H*(X,Q)oo # 0.

Equivalently, X is Hodge-special if and only if H%?(X,Z) contains a rank-three primitive sublattice
K containing v% (H*(Gr(2,V5),Z)). Such a lattice K is a labelling for X and the discriminant of the
labelling is the determinant of the intersection matrix on K. We say that X has discriminant d if it
has a labelling of discriminant d.

We have that d is positive and d = 0,2 or 4(mod 8) (see [27], Lemma 6.1). More precisely, the
period point of a Hodge-special GM fourfold with discriminant d belongs to an irreducible divisor Dy
in D if d = 0(mod 4), or to the union of two irreducible divisors D/, and D} in D if d = 2(mod 8) (see
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[27], Corollary 6.3). In particular, the hypersurfaces D/, and D/ are interchanged by the involution rp,
defined on D by exchanging e and f.

Let X be a Hodge-special GM fourfold with a labeling K of discriminant d. The orthogonal K=+ of
K in I 5 is the non-special lattice of X it is equipped with a Hodge structure induced by the Hodge
structure on H*(X,Z). A pseudo-polarized K3 surface S of degree d is Hodge-associated to (X, K)
if it exists an isometry of Hodge structures between the non-special cohomology K+ and the primitive
cohomology lattice H?(S,Z)o which reverses the sign. As already explained in the introduction, this
is equivalent to have d satisfying (). Moreover, if p(X) is not in Dg, then the pseudo-polarization is
a polarization (see [27], Proposition 6.5).

6.3 Kuznetsov component and K-theory

The analogy of GM fourfolds with cubic fourfold reflects also on their derived categories. Indeed, we
denote by DP (X)) the derived category of bounded complexes of coherent sheaves on a GM fourfold X.
As recalled in Example 0.1.30, by [61], Proposition 4.2, there exists a semiorthogonal decomposition
of the form

Db(X) = <Ku(X)7 OX?“?(? OX(l)az/{;‘((l»?
where Ku(X) is the right orthogonal to the subcategory generated by the exceptional objects

Ox,U%, Ox(1),Ux(1), (6.2)

in DP(X). We refer to Ku(X) as the Kuznetsov component of X. The Kuznetsov component has the
same Serre functor of the derived category of a K3 surface (see [61]|, Proposition 4.5). In particular,
the category Ku(X) is a non commutative K3 surface. Moreover, if X is an ordinary GM fourfold
containing a quintic del Pezzo surface, then there exists a K3 surface S realizing the equivalence
Ku(X) = DP(S) (see [61], Theorem 1.2).

We denote by Ko(Ku(X)) the Grothendieck group of Ku(X) and let x be the Euler pairing. The
numerical Grothendieck group of Ku(X) is given by the quotient Ko(Ku(X))pum := Ko(Ku(X))/ ker x.
By the additivity with respect to semiorthogonal decompositions, we have the orthogonal direct sum

Ko(X)num = Ko(Ku(X))num @ {[Ox], [UX], [Ox (D], [UZ (1) Davumn = Ko(Ku(X))num S Z°

with respect to x. In particular, since the Hodge conjecture holds for X over Q (see [24]), it follows
that
rank(Ko(Ku(X))num) = Y 2**(X,Q) — 4 = 4+ h**(X,Q) — 4 = h**(X, Q).
k
We recall the following lemma, which will be useful to study the relation between the Mukai lattice of
Ku(X) and the vanishing cohomology of X.

Lemma 6.3.1 (|61], Lemma 5.14 and Lemma 5.16). If X is a non Hodge-special GM fourfold, then
Ko(Ku(X))num = Z*

and it admits a basis such that the Euler form with respect to this basis is given by

-2 0
0o -2/
We end this section with the explicit computation of the basis of Lemma 6.3.1. The Todd class of

a GM fourfold X is ) . 17 .
X)=1 SR —hd+ —ht .
td(X) +h+ <3h 127)(02) + 60h + 10h (6.3)
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Let P be a point in X, L be a line lying on X, ¥ be the zero locus of a regular section of %, S be the
complete intersection of two hyperplanes in X and H be a hyperplane section of X. Since X is not
Hodge-special, the structure sheaves of these subvarieties give a basis for the numerical Grothendieck
group. Thus, an element x in Ko(X )pum can be written as

Kk = a[Ox] + b[Oy] + c[Os] + d[Os] + €[OL] + f[Op],

for a,b,c,d,e, f € Z. A computation using Riemann-Roch gives that s belongs to Ko(Ku(X)) if and
only if it is a linear combination of the following classes:

A1 = —4[O0x] + 2[Og] + [Os] + 5[OL] — 5[Op] (6.4)
Ao = =2[Ox] + [Ox] + 2[OL] — [Op].

It is easy to verify that the matrix they define with respect to the Euler form is as in Lemma 6.3.1.

Remark 6.3.2. Let C be a generic conic in a GM fourfold X; we denote by O¢ its structure sheaf.
Notice that A; is the class in the K-theory of X of the projection of O¢(1) in Ku(X). Indeed, the
projection pr : DP(X) — Ku(X) is given by the composition pr := LOXLL{;‘;LOX(I)LL{;(U of the left
mutation functors with respect to the exceptional objects. Performing this computation, we get that

[pr(Oc(1))] = [Oc(D)] = [Ox (V)] + [Ux] + [Ox],

which has the same Chern character of A;. The second element Ag should be the class of an object in
Ku(X) obtained as the image of pr(O¢(1)) via an autoequivalence of Ku(X).
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Chapter 7

Double EPW sextic of a Gushel-Mukai
fourfold

In this chapter, we prove Theorems 5.0.1, 5.0.2, 5.0.3, 5.0.4. These results appear in [88|.

7.1 Mukai lattice for the Kuznetsov component

In this section we describe the Mukai lattice of the GM category. The main results of Section 7.1.1
are Proposition 7.1.1, where we prove that the vanishing lattice is Hodge isometric to the orthogonal
of the lattice generated by A; and As in the Mukai lattice, and Corollary 7.1.5, where we determine
Hodge-special GM fourfolds by their Mukai lattice. In Section 7.1.2 we relate the condition of having
an associated K3 surface with the Mukai lattice (Theorem 7.1.6); as a consequence, we get Theorem
7.1.10, where we prove that the existence of a homological associated K3 surface implies that there is
a Hodge-theoretic associated K3 surface for very general Hodge-special GM fourfolds. Then we prove
Theorem 5.0.1. We follow the methods introduced in [4] and [47] for cubic fourfolds.

7.1.1 Mukai lattice and vanishing lattice

Let X be a GM fourfold. We denote by K (X))t the topological K-theory of X which is endowed with
the Euler pairing x. As recalled in Section 2.2, the group H*(X,Z) is torsion-free; by [6], Section 2.5
(see also [4], Theorem 2.1), it follows that also K (X )top is torsion-free.

Inspired by [4], we define the Mukai lattice of the Kuznetsov component Ku(X) as the abelian

group
K(Ku(X))top := {r € K(X)top : x([Ox(0)], %) = x([Ux ()], ) = 0 for i = 0,1}

with the Euler form y. We point out that K (Ku(X))top is torsion-free, because K (X )top is. We recall
that the Mukai vector of an element x of K (X )op is given by

v(k) = ch(k).A/td(X)
and it induces an isomorphism of Q-vector spaces v : K(X)iop ® Q = H*(X,Q). We define the
weight-zero Hodge structure on the Mukai lattice given by pulling back via the isomorphism
4
K(Ku(X))wop ® C — P H* (X, C)(p)
p=0

induced by v. It is also convenient to consider the Mukai lattice K (Ku(X))op(—1) with weight-two

Hodge structure (), , ,_o HP9(Ku(X)) and Euler form with reversed sign. In the following, we will use
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both conventions according to the situation. The Néron-Severi lattice of Ku(X) is
N(Ku(X)) = H" (Ku(X), Z) := H* (Ku(X)) n K (Ku(X))top

and the trascendental lattice T(Ku(X)) is the orthogonal complement of the Néron-Severi lattice with
respect to x.

We observe that by [61], Theorem 1.2, there exist GM fourfolds X such that the associated
Kuznetsov component Ku(X) is equivalent to the derived category of a K3 surface S. Moreover, any
equivalence Ku(X) = DP(S) induces an isometry of Hodge structures K (Ku(X))iop(—1) = K (S)top,
by the same argument used in [4], Section 2.3. We set A := U*@ Eg(—1)? and we recall that K (.S)op is
isomorphic as a lattice to A. Since the definition of K (Ku(X))top does not depend on X (any two GM
fourfolds are deformation equivalent), we deduce that the Euler form is symmetric on K (Ku(X))top
and K (Ku(X))top is isomorphic as a lattice to A(—1) = U* @ E2.

We denote by (Ap, /\2>L the orthogonal complement with respect to the Euler pairing of the sub-
lattice of K(Ku(X))op generated by the objects Ai, Ao determined in (6.4). In the next result, we
explain the relation of this lattice with the vanishing lattice H*(X,Z)go.

Proposition 7.1.1. Let X be a GM fourfold. Then the Mukai vector v induces an isometry of Hodge
structures
O, )t = HY(X,Z)00(2) = (W2 A% o9)t.

Moreover, for every set of n objects (i, ..., C, i K(Ku(X))op, the Mukai vector induces the isometry

<)\la )\27 Cl, ceey Cn>L = <h2a’7§(0-2’ CQ(Cl)v R CZ(CTL»J_'

Proof. By definition & belongs to (A1, A2)* < K(Ku(X))tep if and only if
X(A1; k) = x(A2,5) = 0.

The Chern character of k has the form
ch(k) = ko + koh + kg + keh® + ksh*  for ko, k, ke, ks € Q and ky € HY(X, Q).

Thus, using Riemann-Roch, we can express the conditions (7.1) as a linear system in the variables
ko, ko, ks - h% ky - Yx01,1, ke, ks. Since the equations are linearly independent, we obtain that the
system (7.1) has a unique solution, i.e.

ko=ko=ke=hks =0 and ky-h? =k vior1=0.

In particular, ch(x) belongs to (1, h, h?, v% o2, h3, Rt = <h2,’y}‘(02>L in H*(X,Q). Since ks -h = 0,
v(k) = ky, i.e. v(k) is in the sublattice (h?,y% o)t of H4(X,Q). Since the lowest-degree term of the
Mukai vector is integral (see [6], Section 2.5, and [29], Proposition 3.4), we conclude that x belongs to
(A1, Aot if and only if v(x) is in H*(X,Z)go.

By [6], Section 2.5, we have that v : (\y, o)t — H4(X,Z)0o(2) is injective. It remains to prove
the surjectivity. It is possible to argue as in the proof of [4], Proposition 2.3, using [6], Section 2.5. We
propose an alternative way. We observe that the lattices (A1, Ao)* and H*(X,Z)go have both rank 22.
Notice that (A1, A2)* has signature (20, 2). Moreover, the discriminant group of (A1, Ag)™ is isomorphic
to (Z/27Z)?%, because the Mukai lattice is unimodular. On the other hand, by Section 2.2 (see [27]),
Proposition 5.1, we deduce that H*(X,Z)oy and {(\i, Ao)* have the same signature and isomorphic
discriminant groups. Since the genus of such a lattice contains only one element by [76], Theorem
1.14.2, we conclude that v is an isometry which preserves the Hodge structures, as we wanted.
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For the second part of the proposition, let v({;) = 2o + 22h + 24 + 26h> + 2sh* with zg, 20, 26, 23 € Q
and z4 € H*(X,Q). Using the previous computation, we have that

0= (i) = fX exp (W) v(C)* - ka = ka - 24

for every & in (A1, Ao, (1, . .., (o). Since zy is by definition a linear combination of ¢3(¢;), h? and V%02,
using again that k4 is in H*(X,Z)go, we deduce that ky - z4 = 0 if and only if k4 - c2(¢;) = 0. This
completes the proof of the statement. O

We point out that the lattice (A1, A2) has a primitive embedding in K (Ku(X))top by [76], Corollary
1.12.3. By Proposition 7.1.1, we have the isomorphism of lattices

O, Ao)t = HY (X, Z)oo = E2@ U ® Ir0(2).

On the other hand, the lattice (A1, A2) is isomorphic to Ip2(2). Notice that by [76], Theorem 1.14.4,
there exists a unique (up to isomorphism) primitive embedding

i:ly2(2) — A(-1) = E2 U™

Let us denote by f1, fo the standard generators of Iy 2(2) and by u1,v; (resp. ug, v2) the standard basis
of the first (resp. the second) hyperbolic plane U. Then, we define i setting

i(fi) =w —v1 i(f2) = uz — va.
The orthogonal complement of Iy 2(2) via i is
In2(2)t = EZ0 U@ Ip(2).
In particular, we have an isometry ¢ : K (Ku(X))iop = A(—1) such that
o) =i(f1),  d(A2) =i(f2), S, Ao)") = Top(2)' = EZ® U @ Ioo(2), (7.2)

which is equivalent to the data of a marking for X. Hence, we can write p(X) = [¢c(H??(Ku(X)))].
Now, we prove that the isomorphism of Proposition 7.1.1 extends to the quotients K (Ku(X))top/{A1, A2)
and H*(X,Z)/{h?,~v%02). The proof is analogous to that of [4], Proposition 2.4.

Proposition 7.1.2. The second Chern class induces a group isomorphism
- KKu(X))op  HYX,Z)
Oy ko)

Proof. The composition of the projection p : H4(X,Z) - H*(X,Z)/{h? v%o9) with ¢z is a group
homomorphism, because

ca(k1 + K2) = ca(k1) + c1(k1)c1(k2) + ca(ka) = ca(k1) + mh? + co(k) formeZ.
Since the second Chern classes of A\; and A9 are respectively
c2(M\1) = 2R and  ca(N\g) = VX011,

we have that (A1, A2) is in the kernel of poco. In particular, the induced morphism ¢ of the statement
is well-defined.

Notice that ¢; is injective. Indeed, let k be an element in K (Ku(X))iop such that ca(x) belongs
to the sublattice (h?,y%09). In particular, x is an element of K(X)op such that ch(x) belongs to
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HY(X,Z)®H*(X,Z)®Z{h?, vioo)®HS (X, Z)®HS8(X, Z). Then we have that x is a linear combination
of [Ox],[0x],[0s], [Os], [OL], [Op] with the notation of Section 2.4, because X is AK-compatible
(see [61], Section 5). Since it belongs to K (Ku(X))top, by the same computation done in the end of
Section 2.4, we deduce that k is a linear combination of A1 and Ao, as we claimed.

Finally, we show that ¢ is surjective. Let T be a class in H*(X,Z). By [4], Theorem 2.1(3),
there exists 7 in K (X)iop such that v(7) is the sum of —T" with highter degree terms. Then the
projection pr(7) of 7 in K(Ku(X))top is a linear combination of 7 and the classes of the exceptional
objects in (6.2). Since the Chern classes of the exceptional objects are all multiples of h’ and YXo11,
it follows that c2(pr(7)) differs form co(7) by a linear combination of h? and y%07,1. We conclude that
éa(pr(7)) = ca(r) = T in HY(X, Z)/{h? v%o2). O

Remark 7.1.3. Notice that the image of the algebraic K-theory K(Ku(X)) in K(Ku(X))top is con-
tained in NV (Ku(X)). However, we do not know if the opposite inclusion holds, because it is not clear
if every Hodge class in H??(X,7Z) comes from an algebraic cycle with integral coefficients. In the case
of cubic fourfolds the integral Hodge conjecture holds by the work of Voisin (see [94]); thus, in [4],
Proposition 2.4, they use this fact to prove that the (1,1) part of the Hodge structure on the Mukai
lattice is identified with K (Ku(X))num-

Voisin’s argument should work also for GM fourfolds, but it requires to give a description of the
intermediate Jacobian of a GM threefold, as done in [71], Theorem 5.6, and [31], Theorem 1.4, in the
cubic threefolds case. An other approach could be firstly to construct Bridgeland stability conditions
for the Kuznetsov component (e.g. as in [7] for the Kuznetsov component of a cubic fourfold). Then,
to deduce the integral Hodge conjecture by an argument on moduli spaces of stable objects with given
Mukai vector, along the same lines as in [8] where they develop the argument for cubic fourfolds.

Finally, we need the following lemma, which is a consequence of Proposition 7.1.2; the proof is the
same as that of [4], Proposition 2.5, so we skip it.

Lemma 7.1.4. Let Ky, ...,k be in K(Ku(X))iop; we define the sublattices
Mg = (v, Ay K1, - By © K(Ku(X))top

and
MH = <h2)7§(027 02(51)7 ey 62(ﬁn)> = H4(X7 Z)

1. An element k of K(Ku(X))top is in Mg if and only if ca(k) is in My.
My is primitive if and only if Mg is.
My is non degenerate if and only if Mg is.

If Mg is in N(Ku(X)), then Mg and My are non-degenerate.

S

If Mg and My are non-degenerate, then My has signature (1, s) if and only if M has signature
(r —2,s+ 2) and they have isomorphic discriminant groups.

Corollary 7.1.5. The period point of a Hodge-special GM fourfold X belongs to the divisor Dy (resp.
to the union of the divisors D!, and D) for d = 0 (mod 4) (resp. for d = 2 (mod 8)) if and only
if there exists a primitive sublattice Mg of N(Ku(X)) of rank 3 and discriminant d which contains

(A1, A2).

Proof. As recalled in Section 2.3, we have that the period point of X satisfies the condition of the
statement if and only if there is a labelling My of H?2(X,Z) with discriminant d. The claim follows
from Lemma 7.1.4. O
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7.1.2 Associated (twisted) K3 surface and Mukai lattice

The first result of this section characterizes period points of very general Hodge-special GM fourfolds
by their Mukai lattice. It is analogous to [4], Theorem 3.1, for cubic fourfolds and the proof develops
in a similar fashion.

Theorem 7.1.6. Let X be a Hodge-special GM fourfold. If X admits a Hodge-associated K38 surface,
then N(Ku(X)) contains a copy of the hyperbolic plane. Moreover, the converse holds assuming one
of the following conditions:

1. X is very general (i.e. H>?*(X,7) has rank 3);

2. There is an element T in the hyperbolic plane such that (A1, Ao, T) has discriminant d = 2 or 4
(mod 8).

Proof. Assume that X has a Hodge-associated K3 surface; as recalled in the introduction and in
Section 2.3, there exists a labelling My whose discriminant d satisfies (x#). Equivalently, by Corollary
7.1.5, there exists a primitive sublattice Mk in N(Ku(X)) of rank 3 containing (A1, A2), with same
discriminant d. Thus, there exists a rank one primitive sublattice Zw and a primitive embedding
j:Zw— U@ E? with w? = —d, such that M3 in K(Ku(X))tep is isomorphic to Zw*'. Adding U
to both sides of j, we get the primitive embedding of U @ Z w in /~\(—1). Since U ® Zw and Mg <
K (Ku(X))top = A(—1) have isomorphic orthogonal complements, they have isomorphic discriminant
groups by [76], Corollary 1.6.2. Since one contains U, they are isomorphic by [76], Corollary 1.13.4. In
particular, we conclude that U is contained in Mx < N(Ku(X)), as we wanted.

Conversely, let X be as in the second part of the statement and let k1, k2 be two classes in N (Ku(X))
spanning a copy of U. Notice that (A1, \2) is negative definite and U is indefinite; hence, the lattice
(A1, A2, K1, K2) has rank three or four. We distinguish these two cases.

Rank 3. Let Mg be the saturation of (A1, Ag, k1, k2) and we denote by d its discriminant. We have
the inclusions U ¢ My < K(Ku(X))wp = A(=1). Since U is unimodular, there exists a rank one
sublattice Zw with w? = —d such that Mg =~ U ® Zw. On the other hand, the orthogonal to U in
K(Ku(X))top is an even unimodular lattice of signature (19, 3); thus it is isomorphic to U@ F2. As a
consequence, we have that M3z in K (Ku(X))top is isomorphic to Zw® in U@ E2. As observed before,
this is equivalent to the existence of a labelling My for X of discriminant d satisfying condition (#x).
This ends the proof in the rank three. In particular, this proves the statement for X very general.

Rank 4. Consider the rank three lattices of the form (A1, Ao, k1 + yk2), where x and y are intergers
not both zero. We define the quadratic form

disc({A1, Ao, xk1 + ykoy) ifz#0o0ry+#0
Q(ﬂj‘, y) = .
0 ifx=y=0.
We observe that the second Chern class ca(wk1 + yrz) is in H??(X); hence, by the Hodge-Riemann
bilinear relations and Lemma 7.1.4, it follows that Q(z,y) is positive unless x = y = 0.
Let

-2 0 k m
0 -2 [ n
k [ 0 1
m n 1 0



be the matrix defined by the Euler pairing on the lattice (A1, A9, k1, ko). We have that

-2 0 kx + my
Qx,y) = 0 —2 lx +ny
kx +my lz+ny 2xy

= 8zy + 2(kz + my)? + 2(lx + ny)?
= (2k% + 21%)2® + (8 + 4km + 4in)zy + (2m?* + 2n?)y>
We set
A:=2k*+21?, B:=8+4km+4ln, C:=2m?+ 2n2
We denote by h the highest common factor of A, B and C'; notice that h is even. We set

a=A/h, b=B/h, c=C/h
and we have that Q(x,y) = hq(z,y), where
q(z,y) = az® + by + cy®.

In the next lemmas we prove that h satisfies (x#) and that there exist integers x and y such that ¢(z, y)
represents a prime p =1 (mod 4) .

Lemma 7.1.7. The only odd primes that divide the highest common factor h of the coefficients of )
are =1 (mod 4). Moreover, we have that 8 1 h.

Proof. Let Z[+/—1] be the domain of Gaussian integers with the Euclidean norm ||. We set
a:=k+I0v/—-1 and vy:=m+nv-—1.

We rewrite the coefficients of () as
A=2la]*, B=4Re(ay) +8, C =2]y%

Suppose that p is an odd prime which is not congruent to 1 modulo 4, i.e. p = 3 (mod 4). Then
p is prime in Z[y/—1] (see [25], Proposition 4.18). Thus if p divides A = 2aa, then p divides a. In
particular, p divides Re(a7); so p does not divide Re(a¥) + 2. It follows that p does not divide B and
we conclude that p 1 h.

For the second part, we observe that 8 | h if and only if k,1,m,n are even. In this case, we have
that 8 | Q(z,y) for every x,y € Z. However, the assumption we made in item 2 of the theorem exclude
this possibility. O

Lemma 7.1.8. We have that a # 3 (mod 4), ¢ # 3 (mod 4), and b is even.

Proof. By definition we have that
h h
k2412 = 50 and m?+n?= 5C

Notice that if an odd prime = 3 (mod 4) divides the sum of two squares, then it has to appear with
even exponent (see |77|, Corollary 5.14). Since by Lemma 7.1.7 the only odd primes dividing h are = 1
(mod 4), we have that a prime = 3 (mod 4) appears in the prime factorization of a and ¢ only with
even exponent. This gives the first part of the claim.

Now, we prove that b is odd if and only if 8 | h. This implies the desired statement by the second
part of Lemma 7.1.7.
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Assume that b is odd. Since
B = 4(2 + Re(a7)) = hb,

we have that 4 | h. Thus, 4 divides A = 2|a|? and C = 2|y|?. It follows that (1 + +/—1) | @ and
(1 ++/=1) | v, which implies that 2 | «§. We conclude that 8 | B and thus 8 | h.

Conversely, assume that 8 | h; arguing as above, we see that 8 | B. Notice that 2 { h/8, because
otherwise 2 | B/8, in contradiction with the fact that B = 8(1 4 2r). Since

we conclude that b is odd. O
Lemma 7.1.9. There exist integers x and y such that q(z,y) is a prime p=1 (mod 4).

Proof. We adapt part of the proof of [4], Proposition 3.3, to our case. Let us list all the possible forms
q(x,y) modulo 4, using the restrictions given by Lemma 7.1.8:

For b =0 (mod 4):

(mod 4)

0,97, 2y°

(mod 4)

2, 2% +y°

0
1
2

a
a
a

(mod 4)

222, 222 + 2y°

For b =2 (mod 4):

2zy, 2xy + 2y°

2 + 2xy + 2, 2% + 2wy + 22
222 + 2zy, 222 + 22y + y2, 2% + 2y + 297

Notice that we have excluded the cases

2?4+ 2y2%, 2?4+ 2xy, 22% +v?,  2xy + v,

because by completing the square we get

22+ 2zy = (2 +y)? -y = (x+y)* +3y*> (mod 4)

and

242 = (x+y)? 2oy +yP=(x+y)i+ 2oy +yP =2 +y)? +322 (mod 4),

which is not possible by Lemma 7.1.8.
We exclude the cases corresponding to a non primitive form, i.e.

0,2y°%, 222,222 + 292, 2xy, 2xy + 242, 222 + 22y, 222 + 2zy + 242

In the other cases, we find that ¢ can represent only numbers which are = 0 or 1 (mod 4) (i.e.
y? 2%, (v +y)?, 2% + 22y + 22, 222 + 20y + %), or = 0,1 or 2 (mod 4) (i.e. 22 +y?). Since a primitive
positive definite form represents infinitely many primes, it must represent a prime = 1 (mod 4). [

We observe that h satisfies (#*) by Lemma 7.1.7. Thus, by Lemma 7.1.9 we conclude that there exist
some integers  and y not both zero such that the discriminant of the lattice (A1, Ao, zK1 + yk2) satisfies
(#x). This observation implies the proof of the statement. Indeed, if Mk is the saturation of this lattice,
then its discriminant still satifies condition (**), because discr({\1, Ao, TK1 + yra)) = i2discr(My), and
M has rank three. By the same argument used at the end of the rank three case, we deduce that X
has a Hodge-associated K3 surface. O
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In Section 3.3 we give examples of GM fourfolds having a primitively embedded hyperbolic plane
in the algebraic part of the Mukai lattice, but without a Hodge-associated K3 surface.

A consequence of Theorem 7.1.6 is that the condition of having a homological associated K3 surface
implies the existence of a Hodge-associated K3 surface for very general GM fourfolds. This is analogous
to the easy implication of [4], Theorem 1.1.

Theorem 7.1.10. Let X be a GM fourfold such that Ku(X) is equivalent to the derived category
of a K8 surface S. Under the hypothesis of the second part of Theorem 7.1.6, we have that X has
discriminant d with d satisfying (sx).

Proof. Assume that there is an equivalence ® : Ku(X) = DP"(S) where S is a K3 surface. We
observe that K (.S)num contains a copy of the hyperbolic plane spanned by the classes of the structure
sheaf of a point and the ideal sheaf of a point. Since ® induces an isometry of Hodge structures
K(Ku(X))top(—1) = K(S)top, it follows that U is contained in N(Ku(X)). Applying Theorem 7.1.6,
we deduce the proof of the result. O

In the last part of this section we show that period points of Hodge-special GM fourfolds with an
associated twisted K3 surface are organized in a countable union of divisors determined by the value
of the discriminant. The argument essentially follows [47], Section 2. To this end, given a GM fourfold
X, we consider the Mukai lattice K (Ku(X))op(—1) with the weight-two Hodge structure and Euler
pairing with reversed sign. Accordingly, the local period domain is given by

Q:={weP(lo(2)'®C):w-w=0,w-o >0}

changing the sign of the definition in (6.1) and identifying A = I5(2)*. We set Q = {x e P(A®C) :
22 =0, (z.z) > 0} and we consider the canonical embedding of 2 in Q.

We recall that a point = of Q is of K3 type (resp. twisted K3 type) if there exists a K3 surface
S (resp. a twisted K3 surface (S,a)) such that A with the Hodge structure defined by  is Hodge
isometric to H(S,Z) (resp. H(S,a,Z)) (see [47], Definition 2.5). By [47], Lemma 2.6, we have that a
point z € Q is of K3 type (resp. of twisted K3 type) if and only if there exists a primitive embedding
of U (resp. an embedding of U(n)) in the (1,1)-part of the Hodge structure defined by z on A. We
denote by Dks (resp. Dka) the set of points of 2 of K3 type (resp. of twisted K3 type).

Definition 7.1.11. A GM fourfold X has an associated twisted K3 surface if the period point p(X)
comes from a point in Dygx.

Remark 7.1.12. Notice that if X has a Hodge-associated K3 surface, then it corresponds to a point x
of K3 type. In fact, it follows from the first part of Theorem 7.1.6 and [47], Lemma 2.6. Moreover, the
converse holds for very general Hodge-special GM fourfolds and for GM fourfolds satisfying condition
2 in Theorem 7.1.6. On the other hand, in Section 3.3 we see that a GM fourfold with period point of
K3 type does not necessarily have a Hodge-associated K3 surface.

Proof of Theorem 5.0.1. The proof is analogous to that of [47], Proposition 2.10. As done in [47],
Proposition 2.8, we have that
Diy =N U et.

0#£eel
x(g,6)=0

Assume that x is a twisted K3 type point. By the previous observation, there exists an isotropic non
trivial element ¢ in A. We consider the lattice (A1, A2,£) in A, with Euler pairing given by

-2 0 =z
0 -2y
zr y 0



Notice that (A1, Ao, ) has discriminant 222 + 2y?, which satisfies condition (##'). Then, let My be
the saturation of (A1, A2, &) in A. If d is the discriminant of Mk and i is the index of (A1, A2, ) in its
saturation, then we have

222 + 2y = i%d.

It follows that also d verifies condition (##'), as we wanted.
The other implication of the statement is proved following the same argument in the opposite
direction. m

7.1.3 Extending Theorem 7.1.6: a counterexample

In this section we show that there are examples of GM fourfolds having a primitively embedded
hyperbolic plane in the Néron-Severi lattice, but which cannot have a Hodge-associated K3 surface.
Consistently with Theorem 7.1.6, our examples have rank(N(Ku(X))) = 4 and their period points
belong only to divisors corresponding to discriminants = 0 (mod 8).

Assume that X is a GM fourfold such that N(Ku(X)) = (A1, A2, 71, 72) with Euler form given by

0 0
0 0
—2(k*+12)  1-2km—2In
1—2km —2ln  —2(m? + n?)

(7.3)

S O O N
oS O N O

(here we consider the Mukai lattice K (Ku(X))top(—1) with weight-two Hodge structure and quadratic
form with reversed sign). Recall that by the Hodge Index Theorem and Lemma 7.1.4, the Néron-Severi
lattice of Ku(X) has signature (2, ). Thus, we have to choose k, [, m,n € Z such that the form in (7.3)
has signature (2,2). This happens if and only if

4(kn — Im)? + 4km + 4ln — 1 > 0,

or, equivalently, if and only if
(kn —Im)* + km + In > 0.

It is not difficult to see that there are infinite many values for these integers satisfying this requirement,
e.g. if
km + In > 0. (7.4)

For the rest of this section, we will require this stronger condition to simplify the computation.
Notice that the classes

K1 :i=kM +1+ 71 and ko i=mA +nhy + T

span a copy of U in N(Ku(X)).

However, it is easy to see that every labelling of X will have discriminant congruent to 0 modulo
8; hence, we cannot find a labelling with discriminant satisfying (xx). It follows that X cannot have a
Hodge-associated K3 surface.

It remains to prove that such a GM fourfold exists. We recall that the image of the period map
is contained in the complement of the divisors Dy, Dy and Dy (it is expected that they coincide). In
particular, the period point of a nodal GM fourfold lies in Dg (see [27], Section 7.5). We know that the
period points we are considering are not in Do and D,4. In the next lemma, we study the conditions
on k,l,m,n in order to avoid the divisor Dg.

Lemma 7.1.13. The period point of a GM fourfold X with N(Ku(X)) as in (7.3) satisfying (7.4) is
not in Dg if and only if either k # m or | # n, and (k,1) # (1,0),(0,1), (m,n) # (1,0),(0,1).
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Proof. We actually prove that p(X) is in Dy if and only if either &k = m and [ = n, or (k,1) = (1,0),
or (k,1) =(0,1), or (m,n) = (1,0), or (m,n) = (0,1).

First of all, we observe that X has period point in Dg if and only if there is a class 7 in N (Ku(X))
of selfintersection —2, which is orthogonal to Ay and Ao. Indeed, by Corollary 7.1.5, we have that
p(X) € Dy if and only if there is a primitive sublattice (A1, A2, 7) of N(Ku(X)) with discriminant —8.
Since N(Ku(X)) is an even lattice, the matrix representing the Euler pairing in this basis is of the
form
a
b
c

L O N
SN O
[\

Since 8 divides the discriminant, we have that a and b are even. Diagonalizing the matrix, we obtain
a basis whose form is given by

20 0
02 0
0 0 2k
Thus the discriminant is —8 if and only if £k = —1, as we claimed.

As 7 is orthogonal to A; and Ao, we write 7 = y71 + d7o and
x(1) = =2(k* + 1)y — 2(m? + n?)6% + 2v5(1 — 2km — 2In).

We search the values of k,l, m,n such that x(7) = —2 has a solution in v and ¢. Equivalently, we
study the equation
(vk + 6m)? + (vl 4 6n)% —~6 = 1. (7.5)

It is easy to see that (k,l) = (1,0), or (k,l) = (0,1), or (m,n) = (1,0), or (m,n) = (0,1) if and
only if one between 71 and 19 has square —2.

Assume we are not in the previous situation, i.e. 70 # 0. We observe that if Kk = m and [ = n, then
the possible solutions for the equation (7.5) are (y,d) = £(1,—1). Indeed, if v # —d, we have

Ey+0)2+ P +6)?—~75=2(y+6)? =~ > 1.

So, the solutions of (7.5) have the form v = =4, i.e. (7,9) = £(1, —1). Conversely, if (v,d) = £(1,—1),
then £k =m and [ = n.

In the next, we prove that these are the only possibilities for &, 1, m,n such that equation (7.5) has
solution in v and ¢. Indeed, assume that there are other values for k, [, m,n such that there exists a
solution (v, ¢) for (7.5). Notice that either v > 0 or vd = 0, or (v,d) = £(1, —1); since the last two
cases are in the previous list, we assume 9 > 0. Then we have

(% + 1)v% + (m? + n?)6% + v6(2km + 2In — 1) > 1,

because 2km + 2in — 1 > 0 by condition (7.4). It follows that (7.5) is not satisfied, in contradiction
with our assumption. This ends the proof of the claim. O

The aim of the following part is to prove that among all the Hodge structures on A having algebraic
part given by the lattice defined in (7.3) and satisfying the condition in Lemma 7.1.13, there is at least
one which belongs to the image of the period map of GM fourfolds.

We denote by Siimn the set of period points in D whose Hodge structure on A with algebraic
part containing the lattice Ny, defined in (7.3), for k,l,m, n satisfying (7.4) and the condition in
Lemma 7.1.13. This is the locus in D coming from P(Nkl,l,m,n ®C) c P(A® C). We set

S:= U Sk,l,m,n

k,lmm
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and we denote by &’ < S the locus of period points with algebraic part of rank four. Thus, points in
S’ are very general points of S and their algebraic part is equal to a lattice Ni g pm.n.

Lemma 7.1.14. The intersection of 8" with the image of the period map p is non empty.

Proof. The argument is inspired by [30], from which we take the notation. Let ./\/lgl) be the moduli
space of (smooth) hyperkihler fourfolds deformation equivalent to the Hilbert square of a K3 surface,
with polarization of degree 2 and divisibility 1, whose period domain is given by D. By [30], Theorem
6.1 and Example 6.3, we have that the image of the period map pgl) : ./\/lgl) — D is equal to the
complement of the divisors Dy, Dg and Df,. Thus, by our assumption, it follows that S is contained

in the image of the period map pgl).

We denote by Z/{2(1) the Zariski open set of ./\/lgl) parametrizing smooth double EPW sextics. By

[27], Theorem 8.1, we have that pgl) (L{2(1)) meets every component of Dy among the possible values of
d > 8 (except D). ! As a consequence, if we set

which is a hypersurface in pgl)(./\/lgl)), then
1 1 1 1
048 = D8 ) 5
In particular, we have that U2(,1d) is a Zariski open set in Dé}()i.
Now, we fix k and [, and we set d := —8(k? + [2). We have that

Ug(’lcg M U Sk,l,m,n # @a

m,n

where m,n vary in the countable range of values given by (7.4) and Lemma 7.1.13. Indeed, the union
Um,n Sk,mn is dense in Dglc)l by [?], Section 5.3.4. As Uz(lcg is Zariski open in DS;, we deduce the
claim. Thus, there exist m and n such that

Ug(’lcg N Sk,l,m,n # .

As the set above is Zariski open in S pn, it contains a very general point of Sy, n, Which belongs
to &'. Tt follows that
1 1
PPUY S £ @

For every x € pgl) (Z/{Q(l)) NS’, we denote by Y4 a smooth double EPW sextic such that pél) ([Ya]) =

Finally, we observe that there exists a GM fourfold X such that its associated double EPW sextic
is precisely Yy4. Indeed, Y4 determines a six dimensional C-vector space Vg and a Lagrangian subspace
AcC /\3 Vs without decomposable vectors. The choice of a five dimensional subspace V5 < V4 with
An /\3 V5 of the right dimension defines a Lagrangian data, which by [28], Theorem 3.10, Proposition
3.13, and Theorem 3.16 determines a GM fourfold X, as we wanted. O

Applying Lemma 7.1.14 to a lattice as in (7.3) with the conditions given by (7.4) and Lemma
7.1.13, we deduce that there is a GM fourfold X having the desired properties. We point out that
this example includes all the possible GM fourfolds X with N(Ku(X)) of rank four, which do not
satisfy the assumption we made in item 2 of Theorem 7.1.6. It follows that the condition of having an
embedded U in N(Ku(X)) is not divisorial, in contrast to what happens for cubic fourfolds.

1We point out that [27], Theorem 8.1 does not cover the case of the divisor Dfs. Anyway, in the first version of [30],
Footnote 4, they argue as follows. Having a GM fourfold with an associated double EPW sextic whose period point is in
Dlg, we consider its dual GM fourfold. By [28]|, Theorem 3.27, they have dual EPW sextics. Then, their period points
are dual by [29], Section 5.4, which means that one is in D/g and the other is in Df.
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7.2 Associated double EPW sextic

The aim of this section is to prove Theorems 5.0.2, 5.0.3 and 5.0.4 stated in the introduction. We follow
the argument of [2] and of [47] for the twisted case; in particular, we define a Markman embedding for
H?(Y4,Z) in A and we apply Propositions 4 and 5 of [2].

7.2.1 Proof of Theorem 5.0.2 and 5.0.3

Assume that X is a GM fourfold with Lagrangian data (Vg, V5, A) such that Y4 is smooth. Before start-
ing with the proofs, we need the following lemma, which relates the sublattice )t of K(Ku(X))top
(equipped with the induced Hodge structure) and H?(Yy,Z).

Lemma 7.2.1. There exists an isometry of Hodge structures between the lattices Ot € K(Ku(X))top
and H?(Ya,Z)(1).

Proof. Composing the isometry of Proposition 7.1.1 with that of Theorem 6.2.1, we obtain the Hodge
isometry
f : <)\1, A2>J‘ = HQ(YA,Z)o(l).

Notice that twisting by 1, we have shifted by two the weight of the Hodge structure on the primitive
cohomology and we have reversed the sign of g; in particular, f is an isometry of weight zero Hodge
structures.

Now, we observe that (\;)* is isomorphic to E2 ® U3 @ Z(uy + v1) via the marking ¢ defined in
(7.2). On the other hand, by [79], Theorem 1.1, we have the isometry

H?*(Ya,Z) = H*(S,Z) ®Z = Es(~1)* @ U3 ® In1(2),
where S is a degree-four K3 surface and ¢(§) = —2. Twisting by 1, we get
H?(YA,Z)(1) = E2@U* @74, with ¢(8) = 2,

using that U(—1) = U. In particular, <)\1}L and H?(Y4,7)(1) are isomorphic lattices.
Let ha be the polarization class on Y, with satisfies ¢(ha) = —2 in H?(Y4,Z)(1) (see [79], eq.
(1.3)). We define an isometry g : (A, Ao)t @ o) = H?(Y4,Z)o(1) ® (h4) such that

g(2) =ha and  g((hr,A2)™) = f((, de)t) = H(Ya, Z)o(1).

Notice that g preserves the Hodge structures, because f does and g sends the (0,0) class Ao to the
(0,0) class ha. In particular, g defines an isomorphism of Hodge structures (A )t =~ H?(Y4, Q)(1)
over Q.

We claim that g extends to an isometry (A)* =~ H?(Yx,Z)(1) over Z. Indeed, we set S; :=
H*(Y4,7Z)0(1), So := (A1, Xo)t and L := H?(Ya,Z)(1). We denote by K; and K» the orthogonal
complements of S7 and Sy in L. By definition, we have K = (ha) and Ky = (A\3). We set

L L
Hi = —— cd(S d(K d Hy:i= ——— cd(S d(K>9);
Y (S51) ®d(K1) an 2= 5 oK, © (S2) @ d(K2);
recall that 7 7 7

Let H; s and H; i be the projections of H; in d(S;) and d(K;), respectively. Then, there is an
isomorphism v; : H; s =~ H; , given by the composition of the inverse of the projection on the first
factor with the projection to the second factor. By definition H; k is a subgroup of d(K;) = Z /2Z.
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We exclude the case H; g = 0. Then we have H; g = d(K;). We list the generators of the subgroups
of d(S;) @ d(K;) mapping to Z /2Z via the two projections:

(1,0,1),(0,1,1) and (1,1,1).

Since H; is isotropic with respect to ¢ := gs, @ ¢k, we exclude (1,1,1), because

1 1 1 1
L1,1) =tz =—o Z.
Moreover, recall that by [76], Proposition 1.4.1(b), we have that
HiL
d(L) = —*
=1,

where H;- is the orthogonal to H; in d(S;)@d(K;). This condition implies that H; = {(0,1,1)). Indeed,
assume that H; = {(1,0,1)). Writing explicitely the generators of the discriminant groups we have

aw) =y, ds) =B aw) -y, Ho- iR

However, we have

x
AN (N
Q
=
+
>
NN

giving a contradiction.
Now, recall that by [76], Corollary 1.5.2, the isometry f extends to an isometry of L if and only if
there exists an isometry f’: Ky — K» such that the diagram

d(S1) «=— Hys —=— Hix —— d(K))
[
d(Sy) «=— Ha g —o— Hy i —— d(K>).

>~

commutes, where f and f’ are induced by f and f’ on the discriminant groups. So, we consider the
isometry f’ : K; — K5 sending hy to Ag; we have that f’ acts trivially on the discriminant group.
On the other hand, the isometry f acts either as the identity on Z /27 x 7Z/2Z or it exchanges the two
factors. Assume we are in the first case. Then, we have that f’ o ~1((0,1)) = 72 o £((0,1)).

In the second case, we change the marking ¢ with the marking ¢/ : K (Ku(X))op = A(—1), such
that ¢’ (A1) = f2 and ¢/(A\2) = f1. By the same argument explained above, we have that Hy = {(1,0,1))

and Hy g = ((1,0)). It follows that

20 f((0,1)) = 72((1,0)) = Ho,x = f o 7((0,1)).

Then [76], Corollary 1.5.2 applies and we deduce that the isometry f extends to an isometry of L. It
follows that g is well defined over Z, which concludes the proof. O

Remark 7.2.2. In the same way we can prove that there is a Hodge isometry (\o)t =~ H?(Y4,Z)(1)
which extends f and sending A1 to h4.

By Lemma 7.2.1, it follows that there is a primitive embedding
H?(Y4,Z) — K(Ku(X))iop(—1)-

By [70], Section 9, it is unique up to isometry of A. Thus it defines a Markman embedding as
discussed in [2], Section 1.
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Proof of Theorem 5.0.2. If d satisfies (##), then N(Ku(X)) contains a copy of the hyperbolic plane U
by Theorem 7.1.6. This proves that (a) implies (b). Recall that Tx is Hodge isometric to Ty (—1) by
Theorem 6.2.1. Then (b) is equivalent to (c) by Proposition 4 in [2].

Assume that X is as in the second part of the statement. Then by Theorem 7.1.6 we have that
d satisfies (xx) if and only if U < N(Ku(X)). The statement follows applying [2], Proposition 4 as
before. O

Remark 7.2.3. As observed in [2] for cubic fourfolds, under the hypothesis of Theorem 5.0.2, we have
that Y, is birational to a moduli space of Bridgeland stable objects if and only if d satisfies (x#), by
[10], Theorem 1.2(c).

Remark 7.2.4. As observed in [29], Remark 5.29, the image of the closure of the locus of smooth GM
fourfolds having singular associated double EPW sextic is precisely the divisor Df,. We claim that
there exist Hodge-special GM fourfolds with smooth associated double EPW sextic. Indeed, by [27],
Section 7.2, this is clear for general GM fourfolds containing a 7-plane: their period points lie in the
divisor Dj2 and they do not belong to DY, because of generality assumption. Now, let d be a positive
integer = 0,2,4 (mod 8). Assume d > 12 if d = 0 (mod 4), resp. d = 10 if d = 2 (mod 8). By [27],
Theorem 8.1, the image of the period map meets all divisors D4, D), and D’ for the respective values of
the discriminant. More precisely, for every d as before, they construct a GM fourfold Xy whose period
point p(Xo) belongs to the intersection of DY, with Dy (resp. D), or D) if d =0 (mod 4) (resp. d = 2
(mod 8)). Consider the case d =0 (mod 4). Since the period map is dominant (see Section 2.2), there
exists an open dense subset U of D contaning p(Xp) such that U < p(My). Notice that U n Dy is
open in Dy and it contains p(Xy). Moreover, it is not contained in Dy N DY), because the latter has
codimension 1 in Dy. It follows that (U nDy)\D7, # &. The same argument applies to the case d = 2
(mod 8) and it completes the proof of the claim.

Remark 7.2.5. Assume that X is a Hodge-special GM fourfold such that Yy is smooth. Notice that
the period point defined by the Hodge structure on K (Ku(X))top(—1) is of K3 type if and only if Yy
is birational to a moduli space of stable sheaves on a K3 surface.

As in [47], Proposition 4.1, in the case of cubic fourfolds, we can prove the twisted version of
Theorem 5.0.2.

Proof of Theorem 5.0.3. Assume that Yy is birational to a moduli space M (v) of a-twisted stable
sheaves on a K3 surface S, where v is primitive in I:[LI(S, a,Z) and (v,v) = 2. Using the embedding
H*(Y4,Z) < K(Ku(X))top(—1) and Torelli Theorem for hyperkiihler manifolds, this is equivalent to
have an isometry of Hodge structures K (Ku(X))iop(—1) = H(S, a,Z), which restricts to

H*(Y4,Z) = H*(M(v),Z) = vt — H(S, o, 7).

Equivalently, by Theorem 5.0.1, we have that X is Hodge-special with a labelling of discriminant d
satisfying condition (#x’). This proves one direction.

On the other hand, assume that p(X) belongs to a divisor with d satisfying (#*’). Then the image
v of \; through H?(Y4,Z) < K(Ku(X))top(—1) = H(S,a,Z) is primitive. Since the induced moduli
space M (v) is non-empty and the Hodge isometry H?(Yy,Z) =~ vt =~ H?(M(v),Z) extends to A, we
conclude the desired statement. O

7.2.2 Proof of Theorem 5.0.4

Firstly, we need the following lemma, which is analogous to [2], Lemma 9, and that we will use also in
Section 4.2.
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Lemma 7.2.6. Let X be a Hodge-special GM fourfold of discriminant d such that d =2 or 4 (mod 8).
Then there exists an element 7 in N(Ku(X)) such that (A1, A2, T) is a primitive sublattice of discrim-
mant d with Fuler pairing given, respectively, by

-2 0 1 -2 0 0
0 -2 0 or 0 -2 1 with d = 2 + 8k,
1 0 2k 0 1 2k

-2 0 1

0 -2 1 with d = 4 + 8k.

1 1 2k

Proof. By Corollary 7.1.5, there exists an element 7 € N(Ku(X)) such that (A;, A2, 7) is a primitive
sublattice of discriminant d with Euler paring given by

-2 0 a
0 -2 b
a b ¢

Notice that c is even, because N(Ku(X)) is an even lattice.
Assume that d = 2 (mod 8); then one of @ and b is even and the other is odd. Assume that b is
even. Substituting 7 with 7/ = 7 + b/2\,, we get a new basis with Euler form

-2 0 a
o -2 0
a 0 (¢

-2 0 e

0 -2 0

e 0 2k
If e = —1, we change 7 with —7 and we return to the case e = 1. If a is even, by the same argument
we obtain a basis with the second matrix in the statement. This proves the claim in the case d = 2
(mod 8). The case d =4 (mod 8) works in the same way. O

Proof of Theorem 5.0.4. Assume that there exist a K3 surface S and a birational equivalence Y4 --»
Stz By Lemma 7.2.1 and [2], Proposition 5, this is equivalent to the existence of an element w in
N(Ku(X)) such that the Euler pairing of K := (A1, A2, w) has the form

-2 0 1
0 -2 n for some neZ.
1 n 0

In particular, the discriminant of K is 2n? + 2. Let M be the saturation of K; if a is the index of K
in My and d is the discriminant of My, we have that discr(K) = a?d, as we wanted.

Conversely, assume that d satisfies condition (###). Then there exist integers n and a such that
a’d = 2n? + 2. Firstly, we observe that 2n? + 2 satisfies (#*). Indeed, every odd prime p dividing
n?+1is =1 (mod 4), and 8 2n? + 2. It follows that a is the product of odd primes =1 (mod 4); in
particular, a = 1 (mod 4).

Suppose firstly that d = 2 (mod 8); then n is even. Indeed, assume that n = 1 (mod 4) (resp.
n = 3 (mod 4)). It follows that n? + 1 = 2 (mod 4); then d = 4 (mod 8), which is impossible.
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Furthermore, by Lemma 7.2.6, there is an element 7 € N(Ku(X)) such that the sublattice (A1, A2, 7)
has Euler pairing of the form

-2 0 1 -2 0 0
0O -2 0 or 0o -2 1
1 0 2k 0 1 2k

Assume that we are in the first case. We set

-1
w:i="2 5 A1 +g/\2+aTEN(Ku(X)),

where n/2 is an integer, because n is even. An easy computation shows that
X(A,w) =1 and x(w)=0.

By [2], Proposition 5, it follows that Y4 is birational to S[2! for a K3 surface S.
If we are in the second case, we consider the Markman embedding H%(Y4,Z) © K(Ku(X))top(—1)
defined by the Hodge isometry (A\o)*t = H%(Y4,Z)(1) (see Remark 7.2.2). Setting

-1
¢ e + a7 € N(Ku(X)),

n
==\ +
w 9 1

the proof follows from |[2|, Proposition 5.

Now assume that d = 4 (mod 8); then n is odd. Indeed, if n =0 (mod 4) (resp. n =2 (mod 4)),
then n? + 1 = 1 (mod 4). Since a?d/2 = n? + 1 and @ = 1 (mod 4), we conclude that d/2 = 1
(mod 4), which is impossible. By Lemma 7.2.6, there is an element 7 € N(Ku(X)) such that the
sublattice (A1, A2, 7) has Euler pairing of the form

-2 0 1
0 —2 1 | withd=4+8k.
1 1 2k
We set )
wzza2 )\1+a2n)\2+aTeN(Ku(X)).
Notice that (a — n)/2 is integral, because n is odd. Arguing as before, we conclude the proof of the
result. O

Remark 7.2.7. As seen in the proof of Theorem 5.0.4, condition (##x) implies condition (#x). On the
other hand, condition (##x) is stricter than condition (#*). For example, d = 50 satisfies (*#), but not

Remark 7.2.8. In [51], Proposition 2.1, they proved that if a smooth double EPW sextic is birational
to the Hilbert scheme S[2! on a K3 surface S with polarization of the degree d, then the negative Pell
equation
Pd/g(—l) : 7”L2 — §a =—1

is solvable in Z. This condition is actually condition (##x) in the case of the double EPW associated to
a GM fourfold. Notice also that the K3 surface S, realizing the birational equivalence between Y, and
S2l in Theorem 5.0.4, has a pseudo-polarization of degree d. Indeed, the hypothesis implies that there
is a rank-three sublattice M of N(Ku(X)). Moreover, it contains a copy of the hyperbolic plane and
H?(S,7) =~ U < N(Ku(X)), as explained in the proof of [2], Proposition 5. Then, the generator of
U+ n Mg has degree d, as we wanted. Moreover, if p(X) ¢ Dg, then there are no classes of square 2
in H*(X,Z)oo n H*?(X,Z). In this case, the pseudo-polarization is a polarization class on S.
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Chapter 8

Stability conditions on Ku(X) (work in
progress)

In this section we describe a conic fibration over a P associated to an ordinary GM fourfold. This
construction was firstly described in the joint work [84] with Mattia Ornaghi. This is also the starting
point of a joint work in progress with Alex Perry and Xiaolei Zhao, where we are trying to construct
stability conditions on the component Ku(X).

8.1 Conic fibration over P?

Let X be an ordinary GM fourfold. We denote by 7 : Px(Ux) — X the projectivization of the bundle
Ux. We can consider the map

p:Px(Ux) — P(Vs)
induced by the embedding Uy — V5 ® Ox. By [28], Proposition 4.5, we have that p is a fibration
in quadrics. More precisely, by 28], Remark 3.15 and Remark B.4, the fibers of p are all conics in

P? except for the fiber over a point vy in P(V3), which is a 2-dimensional quadric in P3. Let us fix a
four-dimensional subvector space Vj of V5 such that the point vy is not contained in P(V;). We set

X = Px(Ux) xpvs) P(Va)

and we denote by j the restriction of p to X. Thus, we have the following commutative diagram

Xﬂbp(%)

By the previous observations, we have that the restriction p defines a flat conic fibration over P(V}) =
P3. In the following, we prove that X is smooth for a general choice of the subspace Vj.

Notice that for every x in X, the fiber of o over z is equal to P(Ux  n V4). In particular, we have
that o~1(z) is a point (resp. a line) if the dimension of Ux , N Vj is equal to 1 (resp. if Ux, = Vi). Tt
follows that the locus of non trivial fibers of ¢ is the intersection

S = Gr(2,V4)mXcIP>(/2\V5) ~ P9, (8.2)

Since the Grassmannian Gr(2,V}) has degree 2, we have that the degree of S is at most 4. Moreover,
the expected dimension of S is 2. On the other hand, by Lefschetz Theorem the fourfold X cannot
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contain a divisor with degree less than 10, because its class has to be cohomologous to the class of a
hyperplane in X. Thus, we conclude that dim(S) < 2. In the next lemma, we show that S is smooth
if V4 is general and vg is not contained in Vj; in this case, S is a del Pezzo surface of degree 4.

Lemma 8.1.1. The locus S defined in (8.2) is smooth for a general subvector space Vy of Vi such that
vo ¢ Vi

Proof. Using the identification H°(Gr(2, V5),U*) =~ V¥, we observe that the zero locus of a regular sec-
tion of U* is an embedded Grassmannian Gr(2, Vy) < Gr(2, Vs). Indeed, a section s € H(Gr(2, V;),U*)
corresponds to a linear form 7, € VZ*, which determines Vj = ker(ns) < Vs. Thus, the zero locus Z(s) of
s contains points z = [Vz2] of Gr(2, V) such that the restriction of 7, to V3 is trivial. This is equivalent
to have V5 c V, as we claimed.

Moreover, the condition that vg is not in Vj is equivalent to the fact that the hyperplane in V¥
defined by vy does not contain 7n,. This assumption determines an open subset U of V:*. Since U* is
generated by its global sections, by [75], Theorem 1.10, we have that the zero locus of a general element
in H°(Gr(2, V;),U*) is smooth of codimension 2. We point out that U contains a general element, i.e.
a section whose zero locus is smooth of the expected codimension.

Now let us consider the map

Vi HO(Gr(2, V), U*) — HY(X,U%),

defined by pulling back sections of U* via yx. Notice that % is injective. Indeed, for s # 0 €
HY(Gr(2, Vs),U*), the fact that % (s) is the zero section is equivalent to having X < Z(s) = Gr(2, V4),
in contradiction with the definition of X. We conclude that s = 0.

We prove that 7% is actually bijective. To this end, it is enough to show that HY(X,U%) has
dimension 5. The Todd class of X is computed in (6.3). By Riemann-Roch, we have that the Euler
characteristic x(X,U%) = 5. In Lemma 8.1.2 we prove that all the higher cohomology groups of U%
vanish; it follows that VZ* ~ HY(X,U%).

We conclude that the zero locus of a section s of U% is represented by an intersection as in (8.2)
and it is enough to choose s in the open subset U defined above, in order to guarantee the smoothness
of Z(s). O

Lemma 8.1.2. For i > 0, we have that
RHU%) = dim(H'(X,U%)) = 0.

Proof. We set G := Gr(2,V;) and Mx := G n P(W); by definition we have that X = Mx n Q. To
simplify the notation, given a sheaf F on G, we denote in the same way its pullback to Mx or to X
and the pushforward of the pullback of F on G. Actually, by adjuction of pullback and pushforward,
they have isomorphic cohomology groups.

Let us consider the exact sequences

0—- Og(—1) - Og — Opy — 0
and
0— Oy (—2) > Oy — Ox — 0

of sheaves on GG and on My respectively. We denote by Uy, —the restriction of U* to My. Tensoring
the first sequence by U*, the second by Z/l]’\“JX and applying projection formula on the third element of
the sequences, we get

0—>U*(-1) > U* - Uy, —0 (8.3)

and
0— L{j\'}x(—Q) — Z/{j\'}x — Uy — 0. (8.4)
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In order to prove the claim, by (8.4) it is enough to show that

WUz ) = T (U (=2)) =0 for i > 0.

Since
R (U*) =0 fori>0
and
R U*(—1)) = K (U*(=2)) = K(U*(=3)) = 0 for every i
(see [33], Proposition 4.8), we deduce from (8.3) the desired vanishing. O

As a consequence, we obtain the smoothness of the blow up X.

Proposition 8.1.3 ([84], Proposition 2.3). Let X be an ordinary GM fourfold. For a general vector
space Vy < V5 such that the non flat point vy does not belong to P(Vy), we have that X is the blow-up
of X in S. In particular, the map p: X — P(Vy) defined in (8.1) is a flat conic fibration, where X is
smooth.

Proof. Choosing Vj as in Lemma 8.1.1, we have that the locus S defined by (8.2) is smooth of codi-
mension 2. Notice that ~1(.9) is by definition the projective bundle Pg(Uyx) — S. On the other hand,
the exceptional divisor of the blow-up of X in S is isomorphic to the projectivized conormal bundle
Ps(N, 3| +)- Since S is the zero locus of a regular section of U%, the conormal bundle of S in X is
isomorphic to Ux. Hence, we deduce that X is the blow-up of X in S. It follows that X is smooth, as
we claimed. O

In conclusion, we have the following commutative diagram

o Pps(F) (8.5)

//\w

where F is a rank three vector bundle over P3. We denote by H (resp. by h) the hyperplane class
of X (resp. of P?) and we use the same notation for their pullback to X and Pgs(F). The rest of
this section is devoted to prove that F is Tps(—h), i.e. the tangent bundle over P? twisted by the line
bundle Ops(—h).

Let P> = P(A? V4) be the five dimensional projective space containing Gr(2, V4). Then the blow up
of P* = P(A? V5) in P° is the projective bundle P := Pps ((’)® ® Ops(—h)) over P> = P(A? Vs/ A\? Va).
We identify P? with P(Vy). Indeed, if vy,...,v4 is a basis for V; and we complete it to a basis of
V5 adding vs, then v1 A vs,...,v4 A v5 is a basis for the quotient /\2 Vs/ /\2 V4. Then the natural
identification gives the desired isomorphism.

Notice that the blow up of the Grassmannian Gr(2,Vs) in Gr(2,V;) is contained in P and maps
to P3. By the same argument used for X and its blow up in S, it can be described as the projective
bundle Pgy(2,15)(U). In particular, if v is in V4, then the fiber over v is P(v A V5) and we have the
natural exact sequence of vector spaces

0—-veVy—oveVs—>Vs/v=vaV;—0.

This gives the exact sequence
0 — Ops(—h) - O — € -0,
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where Pps3 (€) is the blow up of Gr(2, V) in Gr(2, V4). Writing (’)1?)35 = (9[%9}34@(’)]133, we have that Ops (—h)

maps into C’)E?f by definition. Recognizing the Euler sequence from this construction, we deduce that
£ = 7&»3(—h) @ OPS.

Now let us consider the intersection of Gr(2,Vs) with P(W) = P® and its blow up in Gr(2, V4) n
P(W). By the following commutative diagram

Blaa,v2) e () (Gr(2, Va) A B(W)) —— Bl x2 1 par) (BOV)) (8.6)

| |

Bla(2,v4) (Gr(2, Vs)) ———— Bly r2 4, (B(A 15)))

we get
F— OF ® Ops(—h) . (8.7)

| |

Tps(—h) @ Ops —— O @ Opa(—h)
This implies F = Tps(—h), as we wanted. Alternatively, we can consider the sequence
0 — Op(e)(—1) = Opgy — Opr) — 0,
since P(F) is a hyperplane section of P(£). Then applying the push-forward to P?, we get
0> Ops = (Tys(—h) @ Ogs)¥ — F¥ -0,

as desired.
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