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Abstract 

Salt crystallisation is a very common and powerful weathering agent that can modify the 

petrophysical properties of building stone such as granite. In addition, the weathering can 

affect the susceptibility of the stone to biological colonisation. The aims of the present 

study were to examine the properties of a granite weathered by sodium chloride 

crystallisation and to evaluate the effects of the weathering on the secondary 

bioreceptivity of the stone to subaerial phototrophic biofilms. For this purpose, granite 

samples were subjected to a laboratory-based accelerated salt weathering test, and 

changes in weight, open porosity, bulk density, capillary water content, abrasion pH and 

surface roughness of the samples were determined. Samples of both weathered and non-

weathered granite were then inoculated with a multi-species phototrophic culture derived 

from a natural subaerial biofilm and incubated under standardised laboratory conditions 

for three months. The weight loss produced by the weathering process was consistent 

with significant changes in abrasion pH and surface roughness. The bioreceptivity of the 

stone was also altered. According to the bioreceptivity index (BI), the granite under study 

was characterised by ‘mild primary bioreceptivity’, but ‘high secondary bioreceptivity’ 

after the salt weathering process. Study of the secondary bioreceptivity of stone materials 

can provide very useful information about response to weathering effects, and the findings 

can be used to improve the selection of materials for building purposes. 
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1. Introduction 

The term ‘bioreceptivity’ was introduced by Guillitte [1] as an alternative to the term 

‘susceptibility’ for use in the field of building ecology. It is defined as ‘the aptitude of a 

material to be colonised by one or several groups of living organisms without necessarily 

undergoing any biodeterioration’. This definition implies an ecological interaction 

between the colonising organisms and the material, and the term can also be defined as 

‘the totality of material properties that contribute to the establishment, anchorage and 

development of fauna and/or flora’. Guillitte [1] also established differences that depend 

on the degree of alteration of the material under study. Hence, when a material has not 

yet been exposed to colonisation, so that its properties remain very similar or identical to 

those in the initial state, the bioreceptivity will only be expressed in response to the 

appearance of the first colonising organisms and is termed ‘primary bioreceptivity’. In 

stone, primary bioreceptivity indicates the initial potential of freshly cut quarry rocks to 

be colonised. When the properties of a material evolve over time under the action of 

colonising organisms or other environmental factors, it may result in a different type of 

bioreceptivity, called ‘secondary bioreceptivity’, involving weathered rocks. When the 

properties of the material are artificially modified, as by the coatings or consolidation 

treatments commonly used to conserve stonework, ‘tertiary bioreceptivity’ can be 

induced. 

Studying the bioreceptivity of lithotypes under laboratory conditions before using them 

as building stones is essential for appropriate selection of construction materials and thus 

for the preventive conservation of outdoor stone buildings and monuments. Several 

studies have investigated the bioreceptivity of stone materials (see [2] for a review). Most 

of these have assessed the primary bioreceptivity of different types of construction 

material [3-12] and the influence of different conservation treatments on the tertiary 

bioreceptivity [13-19]. These investigations have provided very valuable information 

concerning the stone characteristics influencing the susceptibility to biological 

colonisation, as well as the effects of some stone treatments. However, the relationships 

between the potential bioreceptivity of stone and the physical or chemical characteristics 

of the material have not been clearly established, although some properties such as surface 

roughness, open porosity and mineralogical characteristics are considered key factors [2]. 

In the particular case of granite, Prieto and Silva [4] demonstrated that the primary 

bioreceptivity of several types of granite varies due to the differences in some physical 
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properties. The extent of colonisation was mainly related to the surface roughness, in 

addition to four intrinsic properties: abrasion pH, bulk density, open porosity and 

capillary water. These researchers developed a simple, rapid method of investigating the 

potential bioreceptivity of granite to cyanobacteria, based on the characterisation of these 

intrinsic properties and use of an equation to estimate the expected amount of chlorophyll 

a (chl a) per cm2. More recently, Vázquez-Nion et al. [12] carried out a comprehensive 

study of the primary bioreceptivity of eleven varieties of granitic rocks commonly used 

as construction material and ornamental stone. In this study, sample blocks were 

inoculated with a multi-species phototrophic culture and incubated under standardised 

growth conditions, revealing that growth of phototrophic biofilms is strongly enhanced 

by high open porosity, capillary water content and surface roughness, rather than by 

differences in the chemical and mineralogical composition of the granites. 

The secondary bioreceptivity of stones has been much less widely investigated [20-28]. 

Silva et al. [21] examined the causes of an extensive colonisation on a granite building. 

These researchers concluded that the severe weathering of the raw granite used for 

construction, characterised by high porosity and capillarity -which favoured rapid 

absorption of large amounts of water- played a key role in the propensity of the material 

to be colonised. Papida et al. [22] induced artificial microbial and physical weathering in 

samples of two limestones and one dolomite and observed that the combination of 

physical and biological processes significantly enhanced the extent of decay relative to 

the sum of the individual actions of each process. Moreover, these processes favoured the 

selection of microbial consortia, as specific bacterial populations remained high 

throughout the experiment, even though the samples were not re-inoculated and no extra 

nutrients were added. Cámara et al. [24, 25] claimed that the weathering of dolostone 

samples depends on the fungal colonisation strategy, which is a direct consequence of the 

bioreceptivity of the lithic substrate. These researchers identified a sequence of fungal 

colonisation in which the prior presence and activity of endolithic microorganisms helped 

lichen symbiosis to become established during later stages of colonisation, favoured by 

previous biodeterioration processes. Marques et al. [27] compared the bioreceptivity of 

freshly quarried and naturally weathered schist to biofilm-forming cyanobacteria. They 

observed that the bioreceptivity of weathered schist was significantly higher than that of 

unweathered schist, in addition to differences in physical properties and abrasion pH 

related to the degree of weathering. In relation to how subaerial biofilms interact with 
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stone, an increasing number of researchers claim that in some cases biofilms have no 

impact on the integrity of building stones or may even be bioprotective [29, 30]. For 

instance, Gulotta et al. [28] observed that the chemical-physical weathering of carbonate 

stones influenced the growth of subaerial biofilms, but that, apart from altering the 

aesthetic appearance of the stone, biofilms were not primary damaging factors. 

In summary, chemical-physical weathering processes can alter properties that affect the 

susceptibility of stone to biological colonisation; however, the extent of these effects and 

also the potential variability induced by different types of weathering and in different 

lithotypes remain poorly understood. Salt weathering is a very powerful and widespread 

deterioration agent of building materials, including granite [31-35]. Mechanical action of 

dissolution-crystallisation cycles can exert pressures capable of producing a weight loss, 

a change in the size of the grains, a degree of splitting, a change in the size of the pores 

and visible surface deterioration [36]. Salt weathering can therefore modify the 

petrophysical properties of the stone, including those related to the bioreceptivity. Thus, 

the aims of the present study were as follows: i) to assess the alteration in the properties 

of granite produced by sodium chloride crystallisation; and ii) to evaluate the effects of 

this type of weathering on the secondary bioreceptivity of the stone to subaerial 

phototrophic biofilms. 

2. Materials and methods 

2.1.  Lithotype studied 

The stone used in the study was Campo Lameiro granite (hereafter CL) (Figure 1). CL 

granite is characterised by fine to medium grains and the presence of two micas (biotite 

and muscovite) in equal proportions or by being rich in muscovite crystals, which can 

reach a diameter of up to 1 cm. The size distribution of grains is equigranular, although 

some feldspar megacrystals may occur. Fissures are very common in this granite, mainly 

inside the plagioclase crystals. The essential components are quartz (often fractured), K-

feldspar (microcline), plagioclases (acidic albite-oligoclase), biotite, late magmatic 

muscovite, sillimanite and andalusite. Chlorite, apatite, zircon, tourmaline, rutile and 

scarce opaque grains occur as accessory minerals. 

[Figure 1 approximately here] 

2.2.  Laboratory-induced salt weathering of granites 
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Nine cubic blocks (5x5x5 cm3) of granite CL were subjected to a salt crystallisation test 

modified from [37] using sodium chloride. The weathering process comprised 15 cycles, 

each consisting of three steps: i) immersion of the blocks in a saline solution (NaCl 16 % 

w/w) at room temperature (~ 20 ºC) for 4 hours; ii) removal of the blocks from the solution 

and drying in an oven at 60 ºC for 16 h; iii) cooling of the blocks at room temperature for 

4 h before the next cycle was started. Every five cycles (ie after 5, 10 and 15 cycles), three 

granite blocks were removed for analysis, and the NaCl solution was changed. At the end 

of the procedure, the salts were extracted from the stone blocks by successive washing 

with distilled water until the electrical conductivity in the washing water was below 0.5 

μS cm-1. The blocks were then dried until they reached a constant weight and the dry 

weight loss (%) was calculated. Three additional blocks of granite CL not subjected to 

the salt crystallisation process were used as controls (non-weathered samples) in the 

subsequent experimental procedures. 

2.3.  Characterisation of weathered and non-weathered granite 

The properties of the granite (both weathered and non-weathered) related to the 

bioreceptivity were analysed to assess the effects of the laboratory-based salt 

crystallisation test. Abrasion pH values were measured after grinding 20 g of rock sample 

in 40 mL of distilled water for 2.25 min and allowing the solution to settle for another 2 

min [38]. The samples were also physically characterized by determination of the bulk 

density and open porosity according to [39]. As water can be a limiting factor in biological 

colonisation, the maximum amount of water absorbed by capillary suction (capillary 

water content) was also determined according to [40]. All determinations were carried 

out in triplicate. 

The granite blocks were cut with a diamond blade to produce samples of size 5 x 2.5 x 1 

cm3. The samples were classified as surface (cut from the outer part of the blocks) and 

inner (from the 1 cm-inner part of the blocks), as depicted in Figure 2. In order to study 

the possible variations in the surface roughness of the stone due to the salt weathering 

process, 1 cm2 areas of both types of samples were examined by White Light Optical 

Interferometry (WLOI) (Wyko NT1100) in Vertical Scanning Interferometry (VSI) 

mode. The results were reported as Sa values (µm), representing the mean roughness of 

the surface.  

[Figure 2 approximately here] 
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2.4.  Procedure for biofilm formation 

A multi-species phototrophic culture, derived from a natural biofilm grown on a granite 

building (San Martín Pinario Monastery, Santiago de Compostela, NW Spain) and 

composed by several taxa, including Bryophyta (Syntrichia ruralis protonemata), 

Charophyta (Klebsormidium sp.), Chlorophyta (Bracteacoccus sp., Chlamydomonas sp., 

Chlorella sp. and Stichococcus bacillaris) and Cyanobacteria (Aphanocapsa sp. and 

Leptolyngbya cebennensis), was used as the inoculum for forming biofilms in laboratory. 

This culture and the original biofilm have previously been characterized in detail via high-

throughput sequencing and microscopic observations [41, 42]. 

For both weathered (5, 10 and 15 cycles) and non-weathered (0 cycles) stone, 1 mL of 

culture (equivalent to 1.5 mg dry weight biomass), in exponential growth phase, was 

inoculated on the upper surface of each of ten previously autoclaved 5x2.5x1 cm3 samples 

cut from the blocks. Five of these were surface samples, used to study the effect of 

possible variations in roughness on the secondary bioreceptivity, and five were inner 

samples, used to study the effect of the other stone properties without having to consider 

possible variations in surface roughness (Figure 2). A total of 40 samples were inoculated. 

In order to promote biofilm formation, the inoculated samples were subjected to 

favourable growth conditions, as previously described [42]. The samples were placed in 

Petri dishes, which were periodically filled with sterilized distilled water and were 

incubated in a climatic chamber under stationary conditions of 23 °C, 95 % relative 

humidity and a 12 h light/dark photoperiod (~20 µmol photon m-2 s-1) for three months. 

Lightning was provided by fluorescent lamps (OSRAM L 36W/765). The position of each 

block was semi-randomly varied to prevent the effects of possible micro-climatic 

variations in the chamber. 

2.5. Assessment of biofilm growth 

Pulse Amplitude Modulated (PAM) fluorometry was used to assess biofilm growth on 

the stones after the three-month incubation period. Fluorescence signals were measured 

at different wavelengths in a Phyto-PAM (Heinz Walz GmbH) equipped with a Phyto-

EDF fiberoptics emitter-detector unit, which allows measurement on surfaces via a 50 

mm long and 4 mm diameter perspex rod [43]. Inoculated blocks were kept in darkness 

for 20 min prior to the measurements, carried out with the tip of the rod directly in contact 
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with the block/biofilm surface. The fluorescence parameters recorded were F0, the 

minimal fluorescence signal of dark-adapted cells, and Fm, the maximal fluorescence 

signal after a saturating light pulse in dark-adapted cells. The values of these two 

parameters can be used to calculate the maximum quantum yield as Yield = (Fm - F0)/Fm, 

a measure of the maximum photochemical efficiency of PSII that can be considered an 

indicator of the general level of fitness of the photosynthetic organisms. The F0,665nm 

signal was expressed as µg chl a cm-2 by using a previously developed equation [12] and 

used as indicator of the phototrophic biofilm biomass. The F0,470nm / F0,645nm ratio was 

considered an indicator of the dominance of green algae (high values) or cyanobacteria 

(low values) in the biofilms [12]. A total of 6 readings were taken at different zones on 

each block, and the mean value was calculated. 

Biofilm growth after the three-month incubation period was also assessed by colour 

measurements obtained with a portable spectrophotometer (Konica Minolta CM-700d). 

A total of 6 readings were made in different zones on each block under the following 

conditions: illuminant D65, observer 2° and a 10 mm diameter target area [44]. The colour 

of the blocks was measured directly on the surface of the humid samples before 

inoculation and at the end of the three-month incubation period. The colour measurements 

were made within the CIELAB colour space, and the total colour difference ΔE*ab was 

calculated [45]. 

2.6. Statistical analyses 

The data on the properties of both weathered and non-weathered stones and the 

parameters used to assess the biofilm growth at the end of the three-month incubation 

period were subjected to analysis of variance (ANOVA) and post-hoc Tukey HSD tests, 

in order to study the effect of the weathering process on the bioreceptivity. The 

relationships between the different variables were also determined by two-tailed Bivariate 

Spearman’s correlations. Statistical analyses were implemented using SPSS Statistics 

v19.0 (IBM) software, and differences were considered statistically significant at p ≤ 

0.05. 

The chl a content and ΔE*ab values for the phototrophic biofilms developed on the stones 

were also used to calculate the bioreceptivity index (BI) developed by Vázquez-Nion et 

al. [46]. 
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3. Results and discussion 

3.1. Weathering of granite by salt crystallisation 

The properties related to the bioreceptivity measured in the weathered and non-weathered 

granite, as well as the results of the ANOVA, are shown in Table 1. For sound granite (ie 

non-subjected to the salt crystallisation weathering process) the values obtained were 2.52 

± 0.02 g cm-3 for bulk density, 4.82 ± 0.84 % for open porosity, 0.20 ± 0.03 g cm-2 for 

capillary water content and 6.76 ± 0.22 for abrasion pH. In previous studies, the values 

of the properties associated with the bioreceptivity of four [4] and eleven [12] different 

varieties of granite (sound and weathered) were between 2.4 and 2.9 g cm-3 for bulk 

density, between 0.5 and 11.0 % for open porosity and between 5.98 and 9.58 for abrasion 

pH. The relatively high values of open porosity and low values of bulk density and 

abrasion pH found in the CL granite reveal a certain degree of alteration in the granite 

prior to the samples being subjected to the laboratory-based salt weathering test [4]. This 

stone is therefore expected to be susceptible to salt crystallisation weathering [36]. 

[Table 1 approximately here] 

After the laboratory-based salt weathering test, the granite samples suffered significant 

weight loss (Table 1). The loss of material increased with the number of weathering cycles 

applied, up to 1.08 ± 0.25 % after 15 cycles. This weight loss was not accompanied by 

significant changes in bulk density, open porosity or capillary water content. However, 

the laboratory-based weathering process significantly altered the abrasion pH and the 

surface roughness of the granite. Abrasion pH significantly decreased from an initial 

value of 6.76 ± 0.22 to 5.86 ± 0.08 after 10 cycles of weathering. The application of 

additional 5 cycles (ie after 15 cycles) did not produce any subsequent significant change. 

Sa values increased continuously throughout the weathering process, from 18.90 ± 4.36 

µm in the non-weathered granite up to 52.37 ± 4.85 µm after 15 cycles. The weight loss 

observed after the alteration of the granite can therefore be mainly attributed to the loss 

of material from the surface of the stone blocks (Figure 3). 

[Figure 3 approximately here] 

The loss of stone material was mainly from the surface and not within the blocks, as 

revealed by the non-significant modification (p > 0.05) of properties such as bulk density, 

open porosity and capillary water content, which are more closely related to the inner 
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porous system, after the salt crystallization tests. Changes in the bioreceptivity could 

therefore be only induced on the surface of the weathered blocks but not the inner part. 

In order to check this possible effect, samples from 1 cm inside the blocks (Figure 2) were 

also studied in the subsequent bioreceptivity assay. The roughness of the inner samples, 

obtained by cutting the blocks with a diamond blade, was assumed to be the same for 

either weathered and non-weathered granite, measured as 9.56 ± 3.10 µm (Sa, Figure 3C). 

3.2. Assessment of biofilm growth on the weathered and non-weathered granite 

Samples of non-weathered granite and granite weathered by the salt crystallization 

process, from the surface and from the inner part of the original blocks (ie with the same 

surface roughness) were subjected to the previously described inoculation and incubation 

protocol. After the three-month growth period, phototrophic biofilms were visible on all 

samples studied (Figure 4).  

[Figure 4 approximately here] 

The extent of the colonisation on the stone samples, assessed by Phyto-PAM and colour 

measurements, is shown in Figure 5. The chl a contents determined in the different cases 

studied (Figure 5A), used as proxy for biofilm growth quantification, ranged from 0.91 ± 

0.28 (5 cycles-weathered inner samples) to 2.70 ± 0.40 µg cm-2 (15 cycles-weathered 

surface samples). Considering the surface samples, granite CL showed similar amounts 

of chl a in non-weathered blocks and blocks weathered for 5 cycles, but an increase in 

the colonisation achieved in blocks subjected to 10 and 15 cycles of weathering. These 

results are consistent with those of previous studies in which a higher degree of surface 

roughness and lower abrasion pH (Table 1) are related to higher bioreceptivity in granitic 

rocks [4, 12]. Considering the inner samples (all with the same degree of surface 

roughness) biofilm growth was similar, independently of the number of weathering cycles 

applied. The lower degree of roughness derived from cutting the blocks with a diamond 

blade, maintaining the rest of variables at the same levels, undoubtedly decreased the 

bioreceptivity of these samples, as in all cases the inner part of the block was less 

susceptible to colonisation than the surface, but those were not affected by the weathering. 

Thus, the ANOVA of these data (Table 2) revealed that both the weathering process and 

the surface of the block inoculated (the surface or in the inner part of the original block) 

significantly affected the chl a content. The interaction between these two factors did not 

significantly affect the bioreceptivity of the stone samples. 
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[Figure 5 and Table 2 approximately here] 

Regarding the other Phyto-PAM parameters measured in the biofilms formed on the 

granite studied (Table 2), no significant effects were observed for the maximum quantum 

yield, but the weathering degree and the surface inoculated significantly affected the 

F0,470nm / F0,645nm ratio. The maximum quantum yield of the microorganisms grown on 

granite CL is similar for both weathered and non-weathered samples and for both inner 

and surface samples, with values around 0.55 (Figure 5B). However, a continuous 

decrease, from 0.63 ± 0.03 (non-weathered) to 0.58 ± 0.03 (15 cycles-weathered) for the 

F0,470nm / F0,645nm ratio was observed in the surface samples (Figure 5C). This was not 

observed in the inner samples, which suggests better adaptation of the cyanobacteria 

present in the inocula, than that of green algae, to the increased surface roughness of the 

stone derived from the laboratory-induced weathering. Differences in how microbial 

communities under the same environmental conditions adapt to changes in the physical 

properties of colonised stones have previously been reported. Papida et al. [22] observed 

that, from a mixed microbial population, halotolerant heterotrophic bacteria survived 

particularly well on an artificially weathered limestone, probably due to the higher porous 

structure of the stone, which enhanced the water content. Cámara et al. [25] found 

different distribution patterns of microbial colonization in a dolostone quarry related to 

different biodeterioration degrees. They suggest that the presence and activity of 

pioneering endolithic microorganisms could have helped lichens to settle, and the loss of 

some endolithic fungi in more developed communities could be related to the chemical 

and physical effects of the lichen thalli on the substrate. 

The total colour differences caused by biofilm growth on the granite were only 

significantly affected by the surface inoculated (Table 2). Thus, ΔE*ab values remained 

constant independently of the cycles of weathering applied for both surface and inner 

slabs, although the values of the former were always higher (Figure 5D). Thus, the 

differences in chl a contents of surface and inner samples probably caused the differences 

in the ΔE*ab values, but the differences in the chl a contents due to the weathering process 

in the surface slabs were not reflected by colour measurements. 

The correlations between the properties of the granite studied, both weathered and non-

weathered, and the parameters used to assess biofilm growth in the different cases may 

help to explain these data. The chl a contents were significantly correlated with the 
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surface roughness and the abrasion pH of the samples tested (Table 3). The correlation 

between the chl a content and surface roughness can be attributed to the general decrease 

in chl a in the inner samples relative to the surface samples. Moreover, the increased 

surface roughness of the granite brought about by the salt crystallisation promoted biofilm 

growth. In addition to the increase in the surface roughness, the granite weathering also 

decreased the abrasion pH. The photosynthetic performance (yield) of the biofilm-

forming microorganisms was not correlated with any of the stone properties studied, 

although the surface roughness was significantly correlated with the microbial 

composition of the biofilms (as ratio F0,470nm / F0,645nm). As previously noted, greater 

surface roughness seems to be related to the proliferation of cyanobacteria rather than 

green algae. The presence of anchoring sites and micro-refuges for the attachment and 

settlement of biological colonization in rougher surfaces [2] may have favoured the 

cyanobacterial growth due to their smaller cell size [47]. The significant correlation 

between ΔE*ab and surface roughness can mainly be attributed to the general decrease of 

these values in the inner samples relative to the surface samples. 

[Table 3 approximately here] 

3.3.Secondary bioreceptivity of granite 

The values of the bioreceptivity index (BI) [46] were calculated for the granite studied 

(Table 4). The BI values, derived from the chl a contents and ΔE*ab values measured on 

the stones after the application of the standardised biofilm growth conditions, fitted to a 

0-10 scale, enable classification of the granites according to their bioreceptivity. Thus, 

low values of BI correspond to stone that is least susceptible to biological colonisation 

while high values indicate that the stone is highly bioreceptive. The BI obtained for non-

weathered granite CL, ie for describing its primary bioreceptivity, was 5.3, thus 

classifying this granite as having ‘mild bioreceptivity’. The application of 5 salt 

weathering cycles did not modify the classification. However, after 10 and 15 weathering 

cycles, the bioreceptivity of the granite was substantially increased (to respectively 6.2 

and 6.5), thus classifying the weathered granite CL as ‘highly bioreceptive’. 

[Table 4 approximately here] 

For fresh cut quarry stones used for building purposes, granite CL is therefore expected 

to be ‘mildly’ susceptible to colonisation by subaerial phototrophic biofilms. This level 
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of primary bioreceptivity is similar to that reported for other granites commonly used as 

construction materials [46]. However, if structures made from this granite are subjected 

to the weathering process described here due to the effect of salt (sodium chloride) 

crystallisation, the bioreceptivity may increase. Salt crystallisation is a very common and 

powerful weathering agent of building materials, including granite, particularly in marine 

environments and under mild climatic conditions [32, 35, 48-51]. Dissolution-

crystallisation cycles can alter the surface roughness and the abrasion pH of granites, but 

also can change the size of the grains and pores, which may modify its petrophysical 

properties and produce visible surface deterioration [31-34, 36, 52]. As an increasing 

number of cycles in the laboratory-induced salt weathering process produced a more 

intense weathering (Table 1), the number of cycles applied to the granite could represent 

the intensity and/or the exposure time of a natural salt weathering process. Thus, if the 

granite is moderately weathered by salts in the environment (here represented by 5 cycles 

of weathering), the bioreceptivity may be expected to remain constant. However, if the 

weathering process continues (here represented by 10-15 cycles of weathering) so that 

the properties of the stone are substantially altered (surface roughness and abrasion pH), 

the granite is expected to become ‘highly bioreceptive’. Under this new scenario, the 

biological colonisation of the granite may increase, which may ultimately affect the 

treatments used to conserve the stone building or monument. 

4. Conclusions 

The laboratory-based salt weathering test used in the present study led to weight loss in 

the granite samples under study. The weight loss was not accompanied by significant 

changes in bulk density, open porosity or capillary water content, but the abrasion pH and 

surface roughness of the stone were significantly altered. Assessment of biofilm 

formation on the weathered and non-weathered granite revealed different levels of 

susceptibility to biological colonisation. As expected, the increased surface roughness 

and decreased abrasion pH derived from the weathering promoted biofilm growth. 

Moreover, as changes in the microbial composition were detected in the different biofilms 

formed, the different microorganisms present in the multi-species phototrophic culture 

used as the inoculum seem to vary in their capacity to adapt to the changes in the stone 

properties. Thus, greater proliferation of cyanobacteria relative to green algae can be 

expected in salt-weathered granite.  
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Calculation of the bioreceptivity index (BI) for the weathered and non-weathered granite 

revealed that the salt weathering process led to an increase in the bioreceptivity of the 

stone. Thus, granite CL was characterised by mild primary bioreceptivity, but high 

secondary bioreceptivity derived from the salt weathering, which could affect subsequent 

processes of biodeterioration or bioprotection. These results show that the study of the 

secondary bioreceptivity of granites and other construction materials that have been 

subjected to weathering processes can provide useful information about the expected 

responses in the medium to long term and can therefore improve the selection of materials 

for building purposes. 
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Tables 

Table 1. Results of ANOVA of the properties of the granite studied before and after 

different cycles of the laboratory-based salt crystallisation weathering test. Values are 

expressed as means ± standard deviation of three replicates. Different superscript letters 

indicate significant differences between the number of weathering cycles applied. P-

values ≤ 0.05 are indicated in bold type. 

Number 

of cycles 

Weight loss 

(%) 

Bulk density 

(g cm-3) 

Open 

porosity 

(%) 

Capillary 

water (g 

cm-2) 

Abrasion pH 

Surface 

roughness, Sa 

(µm) 

0 0.00 ± 0.00a 2.52 ± 0.02 4.82 ± 0.84 0.20 ± 0.03 6.76 ± 0.22a 18.90 ± 4.36a 

5 0.23 ± 0.05ab 2.52 ± 0.01 4.29 ± 0.46 0.18 ± 0.02 6.22 ± 0.14ab 31.50 ± 1.99ab 

10 0.55 ± 0.05b 2.49 ± 0.02 5.25 ± 0.63 0.21 ± 0.01 5.86 ± 0.08b 38.09 ± 4.57bc 

15 1.08 ± 0.25c 2.51 ± 0.02 4.67 ± 0.77 0.20 ± 0.04 5.89 ± 0.10b 52.37 ± 4.85c 

ANOVA F = 38.9 F = 1.3 F = 1.0 F = 0.3 F = 16.6 F = 23.0 

 p < 0.001 p = 0.330 p = 0.448 p = 0.813 p = 0.010 p = 0.006 

 

 

Table 2. Results of ANOVA of the Phyto-PAM parameters and colour measurements 

used to assess the biofilm growth on the different blocks studied, considering the number 

of weathering cycles applied and the surface of the sample inoculated (the surface or the 

inner part of the cubic blocks) as factors. P-values ≤ 0.05 are indicated in bold type. 

Factor Chl a (µg cm-2) Yield F0,470nm / F0,645nm  ΔE*ab 

Weathering 0.037 0.195 0.026 0.240 

 F = 3.2 F = 1.7 F = 3.5 F = 1.5 

Surface < 0.001 0.848 0.001 < 0.001 

 F = 48.3 F < 0.1 F = 12.2 F = 30.8 

Weathering x Surface 0.266 0.353 0.129 0.699 

 F = 1.4 F = 1.1 F = 2.0 F = 0.5 
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Table 3. Bivariate Spearman’s correlation matrix for the properties of the granite studied 

and the parameters used to assess the biofilm growth at the end of the incubation period 

(n = 40). Significant correlations (p ≤ 0.05) are indicated in bold type.  

 Chl a Yield F0,470nm / F0,645nm  ΔE*ab 

Bulk density -0.264 0.018 0.073 -0.131 

Open porosity 0.229 -0.054 0.066 0.210 

Capillary water 0.262 -0.158 -0.024 0.203 

Abrasion pH -0.392 0.080 0.301 0.021 

Surface roughness, Sa 0.745 -0.132 -0.640 0.529 

 

 

Table 4. Bioreceptivity index (BI) [46] calculated for the weathered and non-weathered 

granite CL. 

Weathering cycles BI Classification 

0 5.3 Mild bioreceptivity 

5 5.2 Mild bioreceptivity 

10 6.2 High bioreceptivity 

15 6.5 High bioreceptivity 
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Figures 

 

Figure 1. Location of the granite quarry where the material was obtained. 
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Figure 2. Cutting procedure for obtaining samples for subsequent inoculations from the 

weathered and non-weathered blocks. 
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Figure 3. Optical microscope images of the granite CL. The areas outlined by dotted lines 

(10 x 10 mm2) indicate where the WLOI measurements were made to quantify the surface 

roughness. A) Non-weathered granite, surface sample; B) weathered granite after 15 

cycles, surface sample; C) weathered granite after 15 cycles, inner sample. The respective 

images derived from WLOI (colour scale indicates the variation in surface roughness) are 

shown on the right of each image. 
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Figure 4. Appearance of samples after the three-month incubation period. Upper: 10 

cycles-weathered surface sample; lower: non-weathered inner sample. 
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Figure 5. Results of Phyto-PAM analysis: A) chl a content, B) maximum quantum yield 

and C) F0,470nm / F0,645nm ratio; and colour measurements: D) ΔE*ab, used to assess the 

biofilm growth on the different blocks studied at the end of the three-month incubation 

period, expressed as mean values of five replicates (error bars indicate standard 

deviations). 


